inode.c 139.5 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136 137 138 139 140
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
141 142 143
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
144

145 146 147
/*
 * Test whether an inode is a fast symlink.
 */
148
static int ext4_inode_is_fast_symlink(struct inode *inode)
149
{
150
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 152 153 154 155 156 157 158 159 160
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
161
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162
				 int nblocks)
163
{
164 165 166
	int ret;

	/*
167
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 169 170 171
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
172
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173
	jbd_debug(2, "restarting handle %p\n", handle);
174
	up_write(&EXT4_I(inode)->i_data_sem);
175
	ret = ext4_journal_restart(handle, nblocks);
176
	down_write(&EXT4_I(inode)->i_data_sem);
177
	ext4_discard_preallocations(inode);
178 179

	return ret;
180 181 182 183 184
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
185
void ext4_evict_inode(struct inode *inode)
186 187
{
	handle_t *handle;
188
	int err;
189

190
	trace_ext4_evict_inode(inode);
191 192 193

	ext4_ioend_wait(inode);

A
Al Viro 已提交
194
	if (inode->i_nlink) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
222 223 224 225
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

226
	if (!is_bad_inode(inode))
227
		dquot_initialize(inode);
228

229 230
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
231 232 233 234 235
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

236 237 238 239 240
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
241
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242
	if (IS_ERR(handle)) {
243
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 245 246 247 248
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
249
		ext4_orphan_del(NULL, inode);
250
		sb_end_intwrite(inode->i_sb);
251 252 253 254
		goto no_delete;
	}

	if (IS_SYNC(inode))
255
		ext4_handle_sync(handle);
256
	inode->i_size = 0;
257 258
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
259
		ext4_warning(inode->i_sb,
260 261 262
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
263
	if (inode->i_blocks)
264
		ext4_truncate(inode);
265 266 267 268 269 270 271

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
272
	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 274 275 276
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
277
			ext4_warning(inode->i_sb,
278 279 280
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
281
			ext4_orphan_del(NULL, inode);
282
			sb_end_intwrite(inode->i_sb);
283 284 285 286
			goto no_delete;
		}
	}

287
	/*
288
	 * Kill off the orphan record which ext4_truncate created.
289
	 * AKPM: I think this can be inside the above `if'.
290
	 * Note that ext4_orphan_del() has to be able to cope with the
291
	 * deletion of a non-existent orphan - this is because we don't
292
	 * know if ext4_truncate() actually created an orphan record.
293 294
	 * (Well, we could do this if we need to, but heck - it works)
	 */
295 296
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
297 298 299 300 301 302 303 304

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
305
	if (ext4_mark_inode_dirty(handle, inode))
306
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
307
		ext4_clear_inode(inode);
308
	else
309 310
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
311
	sb_end_intwrite(inode->i_sb);
312 313
	return;
no_delete:
A
Al Viro 已提交
314
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 316
}

317 318
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
319
{
320
	return &EXT4_I(inode)->i_reserved_quota;
321
}
322
#endif
323

324 325
/*
 * Calculate the number of metadata blocks need to reserve
326
 * to allocate a block located at @lblock
327
 */
328
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329
{
330
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331
		return ext4_ext_calc_metadata_amount(inode, lblock);
332

333
	return ext4_ind_calc_metadata_amount(inode, lblock);
334 335
}

336 337 338 339
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
340 341
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
342 343
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 345 346
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
347
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 349
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350
			 "with only %d reserved data blocks",
351 352 353 354 355
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
356

357 358 359 360 361 362 363 364 365
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
			 "with only %d reserved metadata blocks\n", __func__,
			 inode->i_ino, ei->i_allocated_meta_blocks,
			 ei->i_reserved_meta_blocks);
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

366 367 368
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370
			   used + ei->i_allocated_meta_blocks);
371
	ei->i_allocated_meta_blocks = 0;
372

373 374 375 376 377 378
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
379
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380
				   ei->i_reserved_meta_blocks);
381
		ei->i_reserved_meta_blocks = 0;
382
		ei->i_da_metadata_calc_len = 0;
383
	}
384
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385

386 387
	/* Update quota subsystem for data blocks */
	if (quota_claim)
388
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389
	else {
390 391 392
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
393
		 * not re-claim the quota for fallocated blocks.
394
		 */
395
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396
	}
397 398 399 400 401 402

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
403 404
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
405
		ext4_discard_preallocations(inode);
406 407
}

408
static int __check_block_validity(struct inode *inode, const char *func,
409 410
				unsigned int line,
				struct ext4_map_blocks *map)
411
{
412 413
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
414 415 416 417
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
418 419 420 421 422
		return -EIO;
	}
	return 0;
}

423
#define check_block_validity(inode, map)	\
424
	__check_block_validity((inode), __func__, __LINE__, (map))
425

426
/*
427 428
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
462 463 464 465 466 467 468 469 470
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
471 472 473 474 475
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
476 477
			if (num >= max_pages) {
				done = 1;
478
				break;
479
			}
480 481 482 483 484 485
		}
		pagevec_release(&pvec);
	}
	return num;
}

486
/*
487
 * The ext4_map_blocks() function tries to look up the requested blocks,
488
 * and returns if the blocks are already mapped.
489 490 491 492 493
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
494 495
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
496 497 498 499 500 501 502 503
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
504
 * that case, buffer head is unmapped
505 506 507
 *
 * It returns the error in case of allocation failure.
 */
508 509
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
510 511
{
	int retval;
512

513 514 515 516
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
517
	/*
518 519
	 * Try to see if we can get the block without requesting a new
	 * file system block.
520
	 */
521 522
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
523
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
524 525
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
526
	} else {
527 528
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
529
	}
530 531
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
532

533
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
534 535 536 537 538 539 540 541 542 543
		int ret;
		if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
			/* delayed alloc may be allocated by fallocate and
			 * coverted to initialized by directIO.
			 * we need to handle delayed extent here.
			 */
			down_write((&EXT4_I(inode)->i_data_sem));
			goto delayed_mapped;
		}
		ret = check_block_validity(inode, map);
544 545 546 547
		if (ret != 0)
			return ret;
	}

548
	/* If it is only a block(s) look up */
549
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
550 551 552 553 554 555
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
556
	 * ext4_ext_get_block() returns the create = 0
557 558
	 * with buffer head unmapped.
	 */
559
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
560 561
		return retval;

562 563 564 565 566 567 568 569 570 571
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
572
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
573

574
	/*
575 576 577 578
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
579 580
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
581 582 583 584 585 586 587

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
588
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
589
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
590 591 592 593
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
594
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
595
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
596
	} else {
597
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
598

599
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
600 601 602 603 604
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
605
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
606
		}
607

608 609 610 611 612 613 614
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
615
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
616 617
			ext4_da_update_reserve_space(inode, retval, 1);
	}
618
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
619
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
620

621 622 623 624 625 626 627 628 629
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
			int ret;
delayed_mapped:
			/* delayed allocation blocks has been allocated */
			ret = ext4_es_remove_extent(inode, map->m_lblk,
						    map->m_len);
			if (ret < 0)
				retval = ret;
		}
630 631
	}

632
	up_write((&EXT4_I(inode)->i_data_sem));
633
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
634
		int ret = check_block_validity(inode, map);
635 636 637
		if (ret != 0)
			return ret;
	}
638 639 640
	return retval;
}

641 642 643
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

644 645
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
646
{
647
	handle_t *handle = ext4_journal_current_handle();
648
	struct ext4_map_blocks map;
J
Jan Kara 已提交
649
	int ret = 0, started = 0;
650
	int dio_credits;
651

T
Tao Ma 已提交
652 653 654
	if (ext4_has_inline_data(inode))
		return -ERANGE;

655 656 657
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

658
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
659
		/* Direct IO write... */
660 661 662
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
663
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
664
		if (IS_ERR(handle)) {
665
			ret = PTR_ERR(handle);
666
			return ret;
667
		}
J
Jan Kara 已提交
668
		started = 1;
669 670
	}

671
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
672
	if (ret > 0) {
673 674 675
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
676
		ret = 0;
677
	}
J
Jan Kara 已提交
678 679
	if (started)
		ext4_journal_stop(handle);
680 681 682
	return ret;
}

683 684 685 686 687 688 689
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

690 691 692
/*
 * `handle' can be NULL if create is zero
 */
693
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
694
				ext4_lblk_t block, int create, int *errp)
695
{
696 697
	struct ext4_map_blocks map;
	struct buffer_head *bh;
698 699 700 701
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

702 703 704 705
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
706

707 708 709
	/* ensure we send some value back into *errp */
	*errp = 0;

710 711 712 713 714 715 716 717 718
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
719
	}
720 721 722
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
723

724 725 726 727 728 729 730 731 732 733 734 735 736
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
737
		}
738 739 740 741 742 743 744
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
745
	}
746 747 748 749 750 751
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
752 753
}

754
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
755
			       ext4_lblk_t block, int create, int *err)
756
{
757
	struct buffer_head *bh;
758

759
	bh = ext4_getblk(handle, inode, block, create, err);
760 761 762 763
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
764
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
765 766 767 768 769 770 771 772
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

773 774 775 776 777 778 779
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
780 781 782 783 784 785 786
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

787 788
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
789
	     block_start = block_end, bh = next) {
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
807
 * close off a transaction and start a new one between the ext4_get_block()
808
 * and the commit_write().  So doing the jbd2_journal_start at the start of
809 810
 * prepare_write() is the right place.
 *
811 812
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
813 814 815 816
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
817
 * By accident, ext4 can be reentered when a transaction is open via
818 819 820 821 822 823
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
824
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
825 826 827 828 829
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
830
				       struct buffer_head *bh)
831
{
832 833 834
	int dirty = buffer_dirty(bh);
	int ret;

835 836
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
837
	/*
C
Christoph Hellwig 已提交
838
	 * __block_write_begin() could have dirtied some buffers. Clean
839 840
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
841
	 * by __block_write_begin() isn't a real problem here as we clear
842 843 844 845 846 847 848 849 850
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
851 852
}

853 854
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
855 856
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
857
static int ext4_write_begin(struct file *file, struct address_space *mapping,
858 859
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
860
{
861
	struct inode *inode = mapping->host;
862
	int ret, needed_blocks;
863 864
	handle_t *handle;
	int retries = 0;
865
	struct page *page;
866
	pgoff_t index;
867
	unsigned from, to;
N
Nick Piggin 已提交
868

869
	trace_ext4_write_begin(inode, pos, len, flags);
870 871 872 873 874
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
875
	index = pos >> PAGE_CACHE_SHIFT;
876 877
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
878 879

retry:
880 881 882 883
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
884
	}
885

886 887 888 889
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

890
	page = grab_cache_page_write_begin(mapping, index, flags);
891 892 893 894 895 896 897
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

898
	if (ext4_should_dioread_nolock(inode))
899
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
900
	else
901
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
902 903

	if (!ret && ext4_should_journal_data(inode)) {
904 905 906
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
907 908

	if (ret) {
909 910
		unlock_page(page);
		page_cache_release(page);
911
		/*
912
		 * __block_write_begin may have instantiated a few blocks
913 914
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
915 916 917
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
918
		 */
919
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
920 921 922 923
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
924
			ext4_truncate_failed_write(inode);
925
			/*
926
			 * If truncate failed early the inode might
927 928 929 930 931 932 933
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
934 935
	}

936
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
937
		goto retry;
938
out:
939 940 941
	return ret;
}

N
Nick Piggin 已提交
942 943
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
944 945 946 947
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
948
	return ext4_handle_dirty_metadata(handle, NULL, bh);
949 950
}

951
static int ext4_generic_write_end(struct file *file,
952 953 954
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

997 998 999 1000
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1001
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1002 1003
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1004
static int ext4_ordered_write_end(struct file *file,
1005 1006 1007
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1008
{
1009
	handle_t *handle = ext4_journal_current_handle();
1010
	struct inode *inode = mapping->host;
1011 1012
	int ret = 0, ret2;

1013
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1014
	ret = ext4_jbd2_file_inode(handle, inode);
1015 1016

	if (ret == 0) {
1017
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1018
							page, fsdata);
1019
		copied = ret2;
1020
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1021 1022 1023 1024 1025
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1026 1027
		if (ret2 < 0)
			ret = ret2;
1028 1029 1030
	} else {
		unlock_page(page);
		page_cache_release(page);
1031
	}
1032

1033
	ret2 = ext4_journal_stop(handle);
1034 1035
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1036

1037
	if (pos + len > inode->i_size) {
1038
		ext4_truncate_failed_write(inode);
1039
		/*
1040
		 * If truncate failed early the inode might still be
1041 1042 1043 1044 1045 1046 1047 1048
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1049
	return ret ? ret : copied;
1050 1051
}

N
Nick Piggin 已提交
1052
static int ext4_writeback_write_end(struct file *file,
1053 1054 1055
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1056
{
1057
	handle_t *handle = ext4_journal_current_handle();
1058
	struct inode *inode = mapping->host;
1059 1060
	int ret = 0, ret2;

1061
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1062
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1063
							page, fsdata);
1064
	copied = ret2;
1065
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1066 1067 1068 1069 1070 1071
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1072 1073
	if (ret2 < 0)
		ret = ret2;
1074

1075
	ret2 = ext4_journal_stop(handle);
1076 1077
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1078

1079
	if (pos + len > inode->i_size) {
1080
		ext4_truncate_failed_write(inode);
1081
		/*
1082
		 * If truncate failed early the inode might still be
1083 1084 1085 1086 1087 1088 1089
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1090
	return ret ? ret : copied;
1091 1092
}

N
Nick Piggin 已提交
1093
static int ext4_journalled_write_end(struct file *file,
1094 1095 1096
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1097
{
1098
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1099
	struct inode *inode = mapping->host;
1100 1101
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1102
	unsigned from, to;
1103
	loff_t new_i_size;
1104

1105
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1106 1107 1108
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1109 1110
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
1111 1112 1113 1114 1115
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1116 1117

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1118
				to, &partial, write_end_fn);
1119 1120
	if (!partial)
		SetPageUptodate(page);
1121 1122
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1123
		i_size_write(inode, pos+copied);
1124
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1125
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1126 1127
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1128
		ret2 = ext4_mark_inode_dirty(handle, inode);
1129 1130 1131
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1132

1133
	unlock_page(page);
1134
	page_cache_release(page);
1135
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1136 1137 1138 1139 1140 1141
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1142
	ret2 = ext4_journal_stop(handle);
1143 1144
	if (!ret)
		ret = ret2;
1145
	if (pos + len > inode->i_size) {
1146
		ext4_truncate_failed_write(inode);
1147
		/*
1148
		 * If truncate failed early the inode might still be
1149 1150 1151 1152 1153 1154
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1155 1156

	return ret ? ret : copied;
1157
}
1158

1159
/*
1160
 * Reserve a single cluster located at lblock
1161
 */
1162
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1163
{
A
Aneesh Kumar K.V 已提交
1164
	int retries = 0;
1165
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1166
	struct ext4_inode_info *ei = EXT4_I(inode);
1167
	unsigned int md_needed;
1168
	int ret;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1180 1181 1182 1183 1184 1185

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1186
repeat:
1187
	spin_lock(&ei->i_block_reservation_lock);
1188 1189 1190 1191 1192 1193
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1194 1195
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1196
	trace_ext4_da_reserve_space(inode, md_needed);
1197

1198 1199 1200 1201
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1202
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1203 1204 1205
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1206 1207 1208 1209
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1210
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1211 1212
		return -ENOSPC;
	}
1213
	ei->i_reserved_data_blocks++;
1214 1215
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1216

1217 1218 1219
	return 0;       /* success */
}

1220
static void ext4_da_release_space(struct inode *inode, int to_free)
1221 1222
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1223
	struct ext4_inode_info *ei = EXT4_I(inode);
1224

1225 1226 1227
	if (!to_free)
		return;		/* Nothing to release, exit */

1228
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1229

L
Li Zefan 已提交
1230
	trace_ext4_da_release_space(inode, to_free);
1231
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1232
		/*
1233 1234 1235 1236
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1237
		 */
1238 1239
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
1240
			 "data blocks", inode->i_ino, to_free,
1241 1242 1243
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1244
	}
1245
	ei->i_reserved_data_blocks -= to_free;
1246

1247 1248 1249 1250 1251
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1252 1253
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1254
		 */
1255
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1256
				   ei->i_reserved_meta_blocks);
1257
		ei->i_reserved_meta_blocks = 0;
1258
		ei->i_da_metadata_calc_len = 0;
1259
	}
1260

1261
	/* update fs dirty data blocks counter */
1262
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1263 1264

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1265

1266
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1267 1268 1269
}

static void ext4_da_page_release_reservation(struct page *page,
1270
					     unsigned long offset)
1271 1272 1273 1274
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1275 1276 1277
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1278
	ext4_fsblk_t lblk;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1291

1292 1293 1294 1295 1296
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1297 1298 1299 1300 1301 1302 1303
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1304
		    !ext4_find_delalloc_cluster(inode, lblk))
1305 1306 1307 1308
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1309
}
1310

1311 1312 1313 1314 1315 1316
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1317
 * them with writepage() call back
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1328 1329
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1330
{
1331 1332 1333 1334 1335
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1336
	loff_t size = i_size_read(inode);
1337 1338
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1339
	int journal_data = ext4_should_journal_data(inode);
1340
	sector_t pblock = 0, cur_logical = 0;
1341
	struct ext4_io_submit io_submit;
1342 1343

	BUG_ON(mpd->next_page <= mpd->first_page);
1344
	memset(&io_submit, 0, sizeof(io_submit));
1345 1346 1347
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1348
	 * If we look at mpd->b_blocknr we would only be looking
1349 1350
	 * at the currently mapped buffer_heads.
	 */
1351 1352 1353
	index = mpd->first_page;
	end = mpd->next_page - 1;

1354
	pagevec_init(&pvec, 0);
1355
	while (index <= end) {
1356
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1357 1358 1359
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1360
			int commit_write = 0, skip_page = 0;
1361 1362
			struct page *page = pvec.pages[i];

1363 1364 1365
			index = page->index;
			if (index > end)
				break;
1366 1367 1368 1369 1370

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1371 1372 1373 1374 1375 1376
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1377 1378 1379 1380 1381
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1382
			/*
1383 1384
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1385
			 * __block_write_begin.  If this fails,
1386
			 * skip the page and move on.
1387
			 */
1388
			if (!page_has_buffers(page)) {
1389
				if (__block_write_begin(page, 0, len,
1390
						noalloc_get_block_write)) {
1391
				skip_page:
1392 1393 1394 1395 1396
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1397

1398 1399
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1400
			do {
1401
				if (!bh)
1402
					goto skip_page;
1403 1404 1405
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1406 1407 1408 1409
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1410 1411 1412 1413 1414 1415 1416
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1417

1418 1419 1420 1421 1422
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1423
					skip_page = 1;
1424 1425
				bh = bh->b_this_page;
				block_start += bh->b_size;
1426 1427
				cur_logical++;
				pblock++;
1428 1429
			} while (bh != page_bufs);

1430 1431
			if (skip_page)
				goto skip_page;
1432 1433 1434 1435 1436

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1437
			clear_page_dirty_for_io(page);
1438 1439 1440 1441 1442 1443
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1444
				err = __ext4_journalled_writepage(page, len);
1445
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1446 1447
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1448 1449 1450 1451 1452 1453
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1454 1455
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1456 1457

			if (!err)
1458
				mpd->pages_written++;
1459 1460 1461 1462 1463 1464 1465 1466 1467
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1468
	ext4_io_submit(&io_submit);
1469 1470 1471
	return ret;
}

1472
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1473 1474 1475 1476 1477 1478
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1479
	ext4_lblk_t start, last;
1480

1481 1482
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1483 1484 1485 1486 1487

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1488
	pagevec_init(&pvec, 0);
1489 1490 1491 1492 1493 1494
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1495
			if (page->index > end)
1496 1497 1498 1499 1500 1501 1502
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1503 1504
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1505 1506 1507 1508
	}
	return;
}

1509 1510 1511
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1512 1513 1514
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1515 1516
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1517 1518
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1519 1520
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1521
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1522 1523
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1524 1525 1526 1527
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1528
	       EXT4_I(inode)->i_reserved_meta_blocks);
1529 1530 1531
	return;
}

1532
/*
1533 1534
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1535
 *
1536
 * @mpd - bh describing space
1537 1538 1539 1540
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1541
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1542
{
1543
	int err, blks, get_blocks_flags;
1544
	struct ext4_map_blocks map, *mapp = NULL;
1545 1546 1547 1548
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1549 1550

	/*
1551 1552
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1553
	 */
1554 1555 1556 1557 1558
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1559 1560 1561 1562

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1563
	/*
1564
	 * Call ext4_map_blocks() to allocate any delayed allocation
1565 1566 1567 1568 1569 1570 1571 1572
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1573
	 * want to change *many* call functions, so ext4_map_blocks()
1574
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1575 1576 1577 1578 1579
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1580
	 */
1581 1582
	map.m_lblk = next;
	map.m_len = max_blocks;
1583
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1584 1585
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1586
	if (mpd->b_state & (1 << BH_Delay))
1587 1588
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1589
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1590
	if (blks < 0) {
1591 1592
		struct super_block *sb = mpd->inode->i_sb;

1593
		err = blks;
1594
		/*
1595
		 * If get block returns EAGAIN or ENOSPC and there
1596 1597
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1598 1599
		 */
		if (err == -EAGAIN)
1600
			goto submit_io;
1601

1602
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1603
			mpd->retval = err;
1604
			goto submit_io;
1605 1606
		}

1607
		/*
1608 1609 1610 1611 1612
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1613
		 */
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1625
		}
1626
		/* invalidate all the pages */
1627
		ext4_da_block_invalidatepages(mpd);
1628 1629 1630

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1631
		return;
1632
	}
1633 1634
	BUG_ON(blks == 0);

1635
	mapp = &map;
1636 1637 1638
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1639

1640 1641
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1642 1643 1644
	}

	/*
1645
	 * Update on-disk size along with block allocation.
1646 1647 1648 1649 1650 1651
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1652 1653 1654 1655 1656
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1657 1658
	}

1659
submit_io:
1660
	mpage_da_submit_io(mpd, mapp);
1661
	mpd->io_done = 1;
1662 1663
}

1664 1665
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1677 1678
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1679 1680
{
	sector_t next;
1681
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1682

1683 1684 1685 1686
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1687
	 * ext4_map_blocks() multiple times in a loop
1688 1689 1690 1691
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1692
	/* check if thereserved journal credits might overflow */
1693
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1714 1715 1716
	/*
	 * First block in the extent
	 */
1717 1718 1719 1720
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1721 1722 1723
		return;
	}

1724
	next = mpd->b_blocknr + nrblocks;
1725 1726 1727
	/*
	 * Can we merge the block to our big extent?
	 */
1728 1729
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1730 1731 1732
		return;
	}

1733
flush_it:
1734 1735 1736 1737
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1738
	mpage_da_map_and_submit(mpd);
1739
	return;
1740 1741
}

1742
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1743
{
1744
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1745 1746
}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

1791 1792 1793 1794
		retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
		if (retval)
			goto out_unlock;

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1811
/*
1812 1813 1814
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1815 1816 1817 1818 1819 1820 1821
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1822 1823
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1824
				  struct buffer_head *bh, int create)
1825
{
1826
	struct ext4_map_blocks map;
1827 1828 1829
	int ret = 0;

	BUG_ON(create == 0);
1830 1831 1832 1833
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1834 1835 1836 1837 1838 1839

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1840 1841
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1842
		return ret;
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1855
		set_buffer_mapped(bh);
1856 1857
	}
	return 0;
1858
}
1859

1860 1861 1862
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1863
 * callback function for block_write_begin() and block_write_full_page().
1864
 * These functions should only try to map a single block at a time.
1865 1866 1867 1868 1869
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1870 1871 1872
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1873 1874
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1875 1876
				   struct buffer_head *bh_result, int create)
{
1877
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1878
	return _ext4_get_block(inode, iblock, bh_result, 0);
1879 1880
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1903
	ClearPageChecked(page);
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1917 1918
	BUG_ON(!ext4_handle_valid(handle));

1919 1920 1921 1922 1923 1924 1925
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1926
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1927 1928 1929 1930 1931
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1932
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1933 1934 1935 1936
out:
	return ret;
}

1937
/*
1938 1939 1940 1941
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1942
 * we are writing back data modified via mmap(), no one guarantees in which
1943 1944 1945 1946
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1947 1948 1949
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
1950
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1951
 *   - grab_page_cache when doing write_begin (have journal handle)
1952 1953 1954 1955 1956 1957 1958 1959 1960
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1961
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1977
 */
1978
static int ext4_writepage(struct page *page,
1979
			  struct writeback_control *wbc)
1980
{
T
Theodore Ts'o 已提交
1981
	int ret = 0, commit_write = 0;
1982
	loff_t size;
1983
	unsigned int len;
1984
	struct buffer_head *page_bufs = NULL;
1985 1986
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
1987
	trace_ext4_writepage(page);
1988 1989 1990 1991 1992
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1993

T
Theodore Ts'o 已提交
1994 1995
	/*
	 * If the page does not have buffers (for whatever reason),
1996
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
1997 1998
	 * fails, redirty the page and move on.
	 */
1999
	if (!page_has_buffers(page)) {
2000
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2001 2002
					noalloc_get_block_write)) {
		redirty_page:
2003 2004 2005 2006
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2007 2008 2009 2010 2011
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2012
		/*
2013 2014 2015
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
2016 2017 2018
		 * We can also reach here via shrink_page_list but it
		 * should never be for direct reclaim so warn if that
		 * happens
2019
		 */
2020 2021
		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
								PF_MEMALLOC);
T
Theodore Ts'o 已提交
2022 2023 2024
		goto redirty_page;
	}
	if (commit_write)
2025
		/* now mark the buffer_heads as dirty and uptodate */
2026
		block_commit_write(page, 0, len);
2027

2028
	if (PageChecked(page) && ext4_should_journal_data(inode))
2029 2030 2031 2032
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2033
		return __ext4_journalled_writepage(page, len);
2034

T
Theodore Ts'o 已提交
2035
	if (buffer_uninit(page_bufs)) {
2036 2037 2038 2039
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2040 2041
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2042 2043 2044 2045

	return ret;
}

2046
/*
2047
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2048
 * calculate the total number of credits to reserve to fit
2049 2050 2051
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2052
 */
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2064
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2065 2066 2067 2068 2069
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2070

2071 2072
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2073
 * address space and accumulate pages that need writing, and call
2074 2075
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2076 2077 2078
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2079 2080
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2081
{
2082
	struct buffer_head	*bh, *head;
2083
	struct inode		*inode = mapping->host;
2084 2085 2086 2087 2088 2089
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2090

2091 2092 2093
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2094 2095 2096 2097
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2098
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2099 2100 2101 2102
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2103
	*done_index = index;
2104
	while (index <= end) {
2105
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2106 2107
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2108
			return 0;
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2120 2121
			if (page->index > end)
				goto out;
2122

2123 2124
			*done_index = page->index + 1;

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2135 2136 2137
			lock_page(page);

			/*
2138 2139 2140 2141 2142 2143
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2144
			 */
2145 2146 2147 2148
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2149 2150 2151 2152
				unlock_page(page);
				continue;
			}

2153
			wait_on_page_writeback(page);
2154 2155
			BUG_ON(PageWriteback(page));

2156
			if (mpd->next_page != page->index)
2157 2158 2159 2160 2161 2162
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2163 2164
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2165
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2166 2167
				if (mpd->io_done)
					goto ret_extent_tail;
2168 2169
			} else {
				/*
2170 2171
				 * Page with regular buffer heads,
				 * just add all dirty ones
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2187 2188
						if (mpd->io_done)
							goto ret_extent_tail;
2189 2190
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2191 2192 2193 2194 2195 2196 2197 2198 2199
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2200 2201 2202 2203 2204 2205
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2206 2207 2208 2209 2210
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2211
				    wbc->sync_mode == WB_SYNC_NONE)
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2222
					goto out;
2223 2224 2225 2226 2227
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2228 2229 2230
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2231 2232 2233
out:
	pagevec_release(&pvec);
	cond_resched();
2234 2235 2236 2237
	return ret;
}


2238
static int ext4_da_writepages(struct address_space *mapping,
2239
			      struct writeback_control *wbc)
2240
{
2241 2242
	pgoff_t	index;
	int range_whole = 0;
2243
	handle_t *handle = NULL;
2244
	struct mpage_da_data mpd;
2245
	struct inode *inode = mapping->host;
2246
	int pages_written = 0;
2247
	unsigned int max_pages;
2248
	int range_cyclic, cycled = 1, io_done = 0;
2249 2250
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2251
	loff_t range_start = wbc->range_start;
2252
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2253
	pgoff_t done_index = 0;
2254
	pgoff_t end;
S
Shaohua Li 已提交
2255
	struct blk_plug plug;
2256

2257
	trace_ext4_da_writepages(inode, wbc);
2258

2259 2260 2261 2262 2263
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2264
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2265
		return 0;
2266 2267 2268 2269 2270

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2271
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2272 2273 2274 2275 2276
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2277
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2278 2279
		return -EROFS;

2280 2281
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2282

2283 2284
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2285
		index = mapping->writeback_index;
2286 2287 2288 2289 2290
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2291 2292
		end = -1;
	} else {
2293
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2294 2295
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2296

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2314 2315 2316 2317 2318 2319
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2330
retry:
2331
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2332 2333
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2334
	blk_start_plug(&plug);
2335
	while (!ret && wbc->nr_to_write > 0) {
2336 2337 2338 2339 2340 2341 2342 2343

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2344
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2345

2346 2347 2348 2349
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2350
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2351
			       "%ld pages, ino %lu; err %d", __func__,
2352
				wbc->nr_to_write, inode->i_ino, ret);
2353
			blk_finish_plug(&plug);
2354 2355
			goto out_writepages;
		}
2356 2357

		/*
2358
		 * Now call write_cache_pages_da() to find the next
2359
		 * contiguous region of logical blocks that need
2360
		 * blocks to be allocated by ext4 and submit them.
2361
		 */
2362
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2363
		/*
2364
		 * If we have a contiguous extent of pages and we
2365 2366 2367 2368
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2369
			mpage_da_map_and_submit(&mpd);
2370 2371
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2372
		trace_ext4_da_write_pages(inode, &mpd);
2373
		wbc->nr_to_write -= mpd.pages_written;
2374

2375
		ext4_journal_stop(handle);
2376

2377
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2378 2379 2380 2381
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2382
			jbd2_journal_force_commit_nested(sbi->s_journal);
2383 2384
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2385
			/*
2386 2387 2388
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2389
			 */
2390
			pages_written += mpd.pages_written;
2391
			ret = mpd.retval;
2392
			io_done = 1;
2393
		} else if (wbc->nr_to_write)
2394 2395 2396 2397 2398 2399
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2400
	}
S
Shaohua Li 已提交
2401
	blk_finish_plug(&plug);
2402 2403 2404 2405 2406 2407 2408
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2409 2410

	/* Update index */
2411
	wbc->range_cyclic = range_cyclic;
2412 2413 2414 2415 2416
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2417
		mapping->writeback_index = done_index;
2418

2419
out_writepages:
2420
	wbc->nr_to_write -= nr_to_writebump;
2421
	wbc->range_start = range_start;
2422
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2423
	return ret;
2424 2425
}

2426 2427 2428 2429 2430 2431 2432 2433 2434
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2435
	 * counters can get slightly wrong with percpu_counter_batch getting
2436 2437 2438 2439
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2440 2441 2442
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2453
	if (2 * free_blocks < 3 * dirty_blocks ||
2454
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2455
		/*
2456 2457
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2458 2459 2460 2461 2462 2463
		 */
		return 1;
	}
	return 0;
}

2464
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2465 2466
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2467
{
2468
	int ret, retries = 0;
2469 2470 2471 2472 2473 2474
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2475 2476 2477 2478 2479 2480 2481

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2482
	trace_ext4_da_write_begin(inode, pos, len, flags);
2483
retry:
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2495 2496 2497
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2498

2499
	page = grab_cache_page_write_begin(mapping, index, flags);
2500 2501 2502 2503 2504
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2505 2506
	*pagep = page;

2507
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2508 2509 2510 2511
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2512 2513 2514 2515 2516 2517
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2518
			ext4_truncate_failed_write(inode);
2519 2520
	}

2521 2522
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2523 2524 2525 2526
out:
	return ret;
}

2527 2528 2529 2530 2531
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2532
					    unsigned long offset)
2533 2534 2535 2536 2537 2538 2539 2540 2541
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2542
	for (i = 0; i < idx; i++)
2543 2544
		bh = bh->b_this_page;

2545
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2546 2547 2548 2549
		return 0;
	return 1;
}

2550
static int ext4_da_write_end(struct file *file,
2551 2552 2553
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2554 2555 2556 2557 2558
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2559
	unsigned long start, end;
2560 2561 2562
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2563 2564
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2565 2566
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2567
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2568 2569
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2570
		default:
2571 2572 2573
			BUG();
		}
	}
2574

2575
	trace_ext4_da_write_end(inode, pos, len, copied);
2576
	start = pos & (PAGE_CACHE_SIZE - 1);
2577
	end = start + copied - 1;
2578 2579 2580 2581 2582 2583 2584 2585

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2586
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2587 2588
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
2589
			if (new_i_size > EXT4_I(inode)->i_disksize)
2590 2591
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2592 2593 2594 2595 2596
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2597
		}
2598
	}
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2620
	ext4_da_page_release_reservation(page, offset);
2621 2622 2623 2624 2625 2626 2627

out:
	ext4_invalidatepage(page, offset);

	return;
}

2628 2629 2630 2631 2632
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2633 2634
	trace_ext4_alloc_da_blocks(inode);

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2645
	 *
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2658
	 * the pages by calling redirty_page_for_writepage() but that
2659 2660
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2661
	 * simplifying them because we wouldn't actually intend to
2662 2663 2664
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2665
	 *
2666 2667 2668 2669 2670 2671
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2672

2673 2674 2675 2676 2677
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2678
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2679 2680 2681 2682 2683 2684 2685 2686
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2687
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2688 2689 2690 2691 2692
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2693 2694 2695 2696 2697 2698
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2709 2710
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2722
		 * NB. EXT4_STATE_JDATA is not set on files other than
2723 2724 2725 2726 2727 2728
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2729
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2730
		journal = EXT4_JOURNAL(inode);
2731 2732 2733
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2734 2735 2736 2737 2738

		if (err)
			return 0;
	}

2739
	return generic_block_bmap(mapping, block, ext4_get_block);
2740 2741
}

2742
static int ext4_readpage(struct file *file, struct page *page)
2743
{
T
Tao Ma 已提交
2744 2745 2746
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2747
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2748 2749 2750 2751 2752 2753 2754 2755

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2756 2757 2758
}

static int
2759
ext4_readpages(struct file *file, struct address_space *mapping,
2760 2761
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2762 2763 2764 2765 2766 2767
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2768
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2769 2770
}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2791
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2792
{
2793
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2794

2795 2796
	trace_ext4_invalidatepage(page, offset);

2797 2798 2799 2800 2801
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2802 2803 2804 2805 2806 2807
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2808 2809 2810 2811
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2812 2813
}

2814
static int ext4_releasepage(struct page *page, gfp_t wait)
2815
{
2816
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2817

2818 2819
	trace_ext4_releasepage(page);

2820 2821 2822
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2823 2824 2825 2826
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2827 2828
}

2829 2830 2831 2832 2833
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2834
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2835 2836
		   struct buffer_head *bh_result, int create)
{
2837
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2838
		   inode->i_ino, create);
2839 2840
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2841 2842
}

2843
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2844
		   struct buffer_head *bh_result, int create)
2845
{
2846 2847 2848 2849
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
2850 2851
}

2852
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2853 2854
			    ssize_t size, void *private, int ret,
			    bool is_async)
2855
{
2856
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2857 2858
        ext4_io_end_t *io_end = iocb->private;

2859 2860
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2861
		goto out;
2862

2863
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2864
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2865 2866 2867
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2868 2869
	iocb->private = NULL;

2870
	/* if not aio dio with unwritten extents, just free io and return */
2871
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2872
		ext4_free_io_end(io_end);
2873 2874 2875
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2876
		inode_dio_done(inode);
2877
		return;
2878 2879
	}

2880 2881
	io_end->offset = offset;
	io_end->size = size;
2882 2883 2884 2885
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2886

2887
	ext4_add_complete_io(io_end);
2888
}
2889

2890 2891 2892 2893 2894 2895 2896 2897 2898
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct inode *inode;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2899 2900 2901
		ext4_msg(io_end->inode->i_sb, KERN_INFO,
			 "sb umounted, discard end_io request for inode %lu",
			 io_end->inode->i_ino);
2902 2903 2904 2905
		ext4_free_io_end(io_end);
		goto out;
	}

2906 2907 2908 2909
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2910
	inode = io_end->inode;
2911
	ext4_set_io_unwritten_flag(inode, io_end);
2912
	ext4_add_complete_io(io_end);
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2930
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2949 2950 2951 2952 2953
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2954
 * For holes, we fallocate those blocks, mark them as uninitialized
2955
 * If those blocks were preallocated, we mark sure they are split, but
2956
 * still keep the range to write as uninitialized.
2957
 *
2958
 * The unwritten extents will be converted to written when DIO is completed.
2959
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2960
 * set up an end_io call back function, which will do the conversion
2961
 * when async direct IO completed.
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
2976 2977 2978
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
2979
	loff_t final_size = offset + count;
2980

2981 2982 2983
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2984

2985
	BUG_ON(iocb->private == NULL);
2986

2987 2988
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
2989

2990 2991 2992 2993 2994
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
2995

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
3022
		}
3023 3024
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
3025
		/*
3026 3027 3028 3029
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
3030
		 */
3031 3032
		ext4_inode_aio_set(inode, io_end);
	}
3033

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3080

3081 3082 3083 3084 3085 3086
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3087
	}
3088

3089
	return ret;
3090 3091 3092 3093 3094 3095 3096 3097
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3098
	ssize_t ret;
3099

3100 3101 3102 3103 3104 3105
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3106 3107 3108 3109
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3110
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3111
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3112 3113 3114 3115 3116 3117
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3118 3119
}

3120
/*
3121
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3133
static int ext4_journalled_set_page_dirty(struct page *page)
3134 3135 3136 3137 3138
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3139
static const struct address_space_operations ext4_ordered_aops = {
3140 3141
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3142
	.writepage		= ext4_writepage,
3143 3144 3145 3146 3147 3148 3149 3150
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3151
	.error_remove_page	= generic_error_remove_page,
3152 3153
};

3154
static const struct address_space_operations ext4_writeback_aops = {
3155 3156
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3157
	.writepage		= ext4_writepage,
3158 3159 3160 3161 3162 3163 3164 3165
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3166
	.error_remove_page	= generic_error_remove_page,
3167 3168
};

3169
static const struct address_space_operations ext4_journalled_aops = {
3170 3171
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3172
	.writepage		= ext4_writepage,
3173 3174 3175 3176 3177 3178
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
3179
	.direct_IO		= ext4_direct_IO,
3180
	.is_partially_uptodate  = block_is_partially_uptodate,
3181
	.error_remove_page	= generic_error_remove_page,
3182 3183
};

3184
static const struct address_space_operations ext4_da_aops = {
3185 3186
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3187
	.writepage		= ext4_writepage,
3188 3189 3190 3191 3192 3193 3194 3195 3196
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3197
	.error_remove_page	= generic_error_remove_page,
3198 3199
};

3200
void ext4_set_aops(struct inode *inode)
3201
{
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3216
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3217 3218 3219 3220
		break;
	default:
		BUG();
	}
3221 3222
}

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3243
		return -ENOMEM;
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3272
 * from:   The starting byte offset (from the beginning of the file)
3273 3274 3275 3276 3277 3278 3279
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3280
 *         for updating the contents of a page whose blocks may
3281 3282 3283
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3284
 * Returns zero on success or negative on failure.
3285
 */
E
Eric Sandeen 已提交
3286
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3312 3313
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3326 3327
		unsigned int end_of_block, range_to_discard;

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3413
		} else
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3437 3438 3439 3440 3441 3442 3443 3444
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3445
 * Returns: 0 on success or negative on failure
3446 3447 3448 3449 3450 3451
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3452
		return -EOPNOTSUPP;
3453 3454 3455

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
3456
		return -EOPNOTSUPP;
3457 3458
	}

3459 3460
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3461
		return -EOPNOTSUPP;
3462 3463
	}

3464 3465 3466
	return ext4_ext_punch_hole(file, offset, length);
}

3467
/*
3468
 * ext4_truncate()
3469
 *
3470 3471
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3472 3473
 * simultaneously on behalf of the same inode.
 *
3474
 * As we work through the truncate and commit bits of it to the journal there
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3488
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3489
 * that this inode's truncate did not complete and it will again call
3490 3491
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3492
 * that's fine - as long as they are linked from the inode, the post-crash
3493
 * ext4_truncate() run will find them and release them.
3494
 */
3495
void ext4_truncate(struct inode *inode)
3496
{
3497 3498
	trace_ext4_truncate_enter(inode);

3499
	if (!ext4_can_truncate(inode))
3500 3501
		return;

3502
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3503

3504
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3505
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3506

3507
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3508
		ext4_ext_truncate(inode);
3509 3510
	else
		ext4_ind_truncate(inode);
3511

3512
	trace_ext4_truncate_exit(inode);
3513 3514 3515
}

/*
3516
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3517 3518 3519 3520
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3521 3522
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3523
{
3524 3525 3526 3527 3528 3529
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3530
	iloc->bh = NULL;
3531 3532
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3533

3534 3535 3536
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3537 3538
		return -EIO;

3539 3540 3541
	/*
	 * Figure out the offset within the block group inode table
	 */
3542
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3543 3544 3545 3546 3547 3548
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3549
	if (!bh) {
3550 3551
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3552 3553 3554 3555
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3579
			int i, start;
3580

3581
			start = inode_offset & ~(inodes_per_block - 1);
3582

3583 3584
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3597
			for (i = start; i < start + inodes_per_block; i++) {
3598 3599
				if (i == inode_offset)
					continue;
3600
				if (ext4_test_bit(i, bitmap_bh->b_data))
3601 3602 3603
					break;
			}
			brelse(bitmap_bh);
3604
			if (i == start + inodes_per_block) {
3605 3606 3607 3608 3609 3610 3611 3612 3613
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3614 3615 3616 3617 3618 3619 3620 3621 3622
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3623
			/* s_inode_readahead_blks is always a power of 2 */
3624 3625 3626 3627 3628
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3629
			if (ext4_has_group_desc_csum(sb))
3630
				num -= ext4_itable_unused_count(sb, gdp);
3631 3632 3633 3634 3635 3636 3637
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3638 3639 3640 3641 3642
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3643
		trace_ext4_load_inode(inode);
3644 3645
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3646
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3647 3648
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3649 3650
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3651 3652 3653 3654 3655 3656 3657 3658 3659
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3660
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3661 3662
{
	/* We have all inode data except xattrs in memory here. */
3663
	return __ext4_get_inode_loc(inode, iloc,
3664
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3665 3666
}

3667
void ext4_set_inode_flags(struct inode *inode)
3668
{
3669
	unsigned int flags = EXT4_I(inode)->i_flags;
3670 3671

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3672
	if (flags & EXT4_SYNC_FL)
3673
		inode->i_flags |= S_SYNC;
3674
	if (flags & EXT4_APPEND_FL)
3675
		inode->i_flags |= S_APPEND;
3676
	if (flags & EXT4_IMMUTABLE_FL)
3677
		inode->i_flags |= S_IMMUTABLE;
3678
	if (flags & EXT4_NOATIME_FL)
3679
		inode->i_flags |= S_NOATIME;
3680
	if (flags & EXT4_DIRSYNC_FL)
3681 3682 3683
		inode->i_flags |= S_DIRSYNC;
}

3684 3685 3686
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3707
}
3708

3709
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3710
				  struct ext4_inode_info *ei)
3711 3712
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3713 3714
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3715 3716 3717 3718 3719 3720

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3721
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3722 3723 3724 3725 3726
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3727 3728 3729 3730
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3731

3732 3733 3734 3735 3736 3737
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3738
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3739
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3740 3741
		ext4_find_inline_data_nolock(inode);
	}
3742 3743
}

3744
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3745
{
3746 3747
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3748 3749
	struct ext4_inode_info *ei;
	struct inode *inode;
3750
	journal_t *journal = EXT4_SB(sb)->s_journal;
3751
	long ret;
3752
	int block;
3753 3754
	uid_t i_uid;
	gid_t i_gid;
3755

3756 3757 3758 3759 3760 3761 3762
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3763
	iloc.bh = NULL;
3764

3765 3766
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3767
		goto bad_inode;
3768
	raw_inode = ext4_raw_inode(&iloc);
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3802
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3803 3804
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3805
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3806 3807
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3808
	}
3809 3810
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3811
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3812

3813
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3814
	ei->i_inline_off = 0;
3815 3816 3817 3818 3819 3820 3821 3822 3823
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3824
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3825
			/* this inode is deleted */
3826
			ret = -ESTALE;
3827 3828 3829 3830 3831 3832 3833 3834
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3835
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3836
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3837
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3838 3839
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3840
	inode->i_size = ext4_isize(raw_inode);
3841
	ei->i_disksize = inode->i_size;
3842 3843 3844
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3845 3846
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3847
	ei->i_last_alloc_group = ~0;
3848 3849 3850 3851
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3852
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3853 3854 3855
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3867
		read_lock(&journal->j_state_lock);
3868 3869 3870 3871 3872 3873 3874 3875
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3876
		read_unlock(&journal->j_state_lock);
3877 3878 3879 3880
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3881
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3882 3883
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3884 3885
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3886
		} else {
3887
			ext4_iget_extra_inode(inode, raw_inode, ei);
3888
		}
3889
	}
3890

K
Kalpak Shah 已提交
3891 3892 3893 3894 3895
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3896 3897 3898 3899 3900 3901 3902
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3903
	ret = 0;
3904
	if (ei->i_file_acl &&
3905
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3906 3907
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3908 3909
		ret = -EIO;
		goto bad_inode;
3910
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3911 3912 3913 3914 3915
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3916
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3917 3918
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3919
		/* Validate block references which are part of inode */
3920
		ret = ext4_ind_check_inode(inode);
3921
	}
3922
	if (ret)
3923
		goto bad_inode;
3924

3925
	if (S_ISREG(inode->i_mode)) {
3926 3927 3928
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3929
	} else if (S_ISDIR(inode->i_mode)) {
3930 3931
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3932
	} else if (S_ISLNK(inode->i_mode)) {
3933
		if (ext4_inode_is_fast_symlink(inode)) {
3934
			inode->i_op = &ext4_fast_symlink_inode_operations;
3935 3936 3937
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3938 3939
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3940
		}
3941 3942
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3943
		inode->i_op = &ext4_special_inode_operations;
3944 3945 3946 3947 3948 3949
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3950 3951
	} else {
		ret = -EIO;
3952
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3953
		goto bad_inode;
3954
	}
3955
	brelse(iloc.bh);
3956
	ext4_set_inode_flags(inode);
3957 3958
	unlock_new_inode(inode);
	return inode;
3959 3960

bad_inode:
3961
	brelse(iloc.bh);
3962 3963
	iget_failed(inode);
	return ERR_PTR(ret);
3964 3965
}

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
3976
		 * i_blocks can be represented in a 32 bit variable
3977 3978
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3979
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3980
		raw_inode->i_blocks_high = 0;
3981
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3982 3983 3984 3985 3986 3987
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3988 3989 3990 3991
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3992
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3993
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3994
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3995
	} else {
3996
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3997 3998 3999 4000
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4001
	}
4002
	return 0;
4003 4004
}

4005 4006 4007 4008 4009 4010 4011
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4012
static int ext4_do_update_inode(handle_t *handle,
4013
				struct inode *inode,
4014
				struct ext4_iloc *iloc)
4015
{
4016 4017
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4018 4019
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4020
	int need_datasync = 0;
4021 4022
	uid_t i_uid;
	gid_t i_gid;
4023 4024 4025

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4026
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4027
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4028

4029
	ext4_get_inode_flags(ei);
4030
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4031 4032
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4033
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4034 4035
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4036 4037 4038 4039
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4040
		if (!ei->i_dtime) {
4041
			raw_inode->i_uid_high =
4042
				cpu_to_le16(high_16_bits(i_uid));
4043
			raw_inode->i_gid_high =
4044
				cpu_to_le16(high_16_bits(i_gid));
4045 4046 4047 4048 4049
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4050 4051
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4052 4053 4054 4055
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4056 4057 4058 4059 4060 4061

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4062 4063
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4064
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4065
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4066 4067
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4068 4069
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4070
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4071 4072 4073 4074
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4090
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4091
			ext4_handle_sync(handle);
4092
			err = ext4_handle_dirty_super(handle, sb);
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4107 4108 4109
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4110

4111 4112 4113 4114 4115
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4116
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4117 4118
	}

4119 4120
	ext4_inode_csum_set(inode, raw_inode, ei);

4121
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4122
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4123 4124
	if (!err)
		err = rc;
4125
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4126

4127
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4128
out_brelse:
4129
	brelse(bh);
4130
	ext4_std_error(inode->i_sb, err);
4131 4132 4133 4134
	return err;
}

/*
4135
 * ext4_write_inode()
4136 4137 4138 4139 4140
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4141
 *   transaction to commit.
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4152
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4169
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4170
{
4171 4172
	int err;

4173 4174 4175
	if (current->flags & PF_MEMALLOC)
		return 0;

4176 4177 4178 4179 4180 4181
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4182

4183
		if (wbc->sync_mode != WB_SYNC_ALL)
4184 4185 4186 4187 4188
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4189

4190
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4191 4192
		if (err)
			return err;
4193
		if (wbc->sync_mode == WB_SYNC_ALL)
4194 4195
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4196 4197
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4198 4199
			err = -EIO;
		}
4200
		brelse(iloc.bh);
4201 4202
	}
	return err;
4203 4204 4205
}

/*
4206
 * ext4_setattr()
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4220 4221 4222 4223 4224 4225 4226 4227
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4228
 */
4229
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4230 4231 4232
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4233
	int orphan = 0;
4234 4235 4236 4237 4238 4239
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4240
	if (is_quota_modification(inode, attr))
4241
		dquot_initialize(inode);
4242 4243
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4244 4245 4246 4247
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4248
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4249
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4250 4251 4252 4253
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4254
		error = dquot_transfer(inode, attr);
4255
		if (error) {
4256
			ext4_journal_stop(handle);
4257 4258 4259 4260 4261 4262 4263 4264
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4265 4266
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4267 4268
	}

4269
	if (attr->ia_valid & ATTR_SIZE) {
4270

4271
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4272 4273
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4274 4275
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4276 4277 4278
		}
	}

4279
	if (S_ISREG(inode->i_mode) &&
4280
	    attr->ia_valid & ATTR_SIZE &&
4281
	    (attr->ia_size < inode->i_size)) {
4282 4283
		handle_t *handle;

4284
		handle = ext4_journal_start(inode, 3);
4285 4286 4287 4288
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4289 4290 4291 4292
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4293 4294
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4295 4296
		if (!error)
			error = rc;
4297
		ext4_journal_stop(handle);
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4310
				orphan = 0;
4311 4312 4313 4314
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4315 4316
	}

4317
	if (attr->ia_valid & ATTR_SIZE) {
4318
		if (attr->ia_size != i_size_read(inode)) {
4319
			truncate_setsize(inode, attr->ia_size);
4320 4321 4322 4323 4324
			/* Inode size will be reduced, wait for dio in flight.
			 * Temporarily disable dioread_nolock to prevent
			 * livelock. */
			if (orphan) {
				ext4_inode_block_unlocked_dio(inode);
4325
				inode_dio_wait(inode);
4326 4327
				ext4_inode_resume_unlocked_dio(inode);
			}
4328
		}
4329
		ext4_truncate(inode);
4330
	}
4331

C
Christoph Hellwig 已提交
4332 4333 4334 4335 4336 4337 4338 4339 4340
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4341
	if (orphan && inode->i_nlink)
4342
		ext4_orphan_del(NULL, inode);
4343 4344

	if (!rc && (ia_valid & ATTR_MODE))
4345
		rc = ext4_acl_chmod(inode);
4346 4347

err_out:
4348
	ext4_std_error(inode->i_sb, error);
4349 4350 4351 4352 4353
	if (!error)
		error = rc;
	return error;
}

4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4373 4374
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4375 4376 4377 4378

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4379

4380 4381
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4382
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4383
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4384
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4385
}
4386

4387
/*
4388 4389 4390
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4391
 *
4392
 * If datablocks are discontiguous, they are possible to spread over
4393
 * different block groups too. If they are contiguous, with flexbg,
4394
 * they could still across block group boundary.
4395
 *
4396 4397
 * Also account for superblock, inode, quota and xattr blocks
 */
4398
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4399
{
4400 4401
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4428 4429
	if (groups > ngroups)
		groups = ngroups;
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4443
 * Calculate the total number of credits to reserve to fit
4444 4445
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4446
 *
4447
 * This could be called via ext4_write_begin()
4448
 *
4449
 * We need to consider the worse case, when
4450
 * one new block per extent.
4451
 */
A
Alex Tomas 已提交
4452
int ext4_writepage_trans_blocks(struct inode *inode)
4453
{
4454
	int bpp = ext4_journal_blocks_per_page(inode);
4455 4456
	int ret;

4457
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4458

4459
	/* Account for data blocks for journalled mode */
4460
	if (ext4_should_journal_data(inode))
4461
		ret += bpp;
4462 4463
	return ret;
}
4464 4465 4466 4467 4468

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4469
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4470 4471 4472 4473 4474 4475 4476 4477 4478
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4479
/*
4480
 * The caller must have previously called ext4_reserve_inode_write().
4481 4482
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4483
int ext4_mark_iloc_dirty(handle_t *handle,
4484
			 struct inode *inode, struct ext4_iloc *iloc)
4485 4486 4487
{
	int err = 0;

4488
	if (IS_I_VERSION(inode))
4489 4490
		inode_inc_iversion(inode);

4491 4492 4493
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4494
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4495
	err = ext4_do_update_inode(handle, inode, iloc);
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4506 4507
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4508
{
4509 4510 4511 4512 4513 4514 4515 4516 4517
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4518 4519
		}
	}
4520
	ext4_std_error(inode->i_sb, err);
4521 4522 4523
	return err;
}

4524 4525 4526 4527
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4528 4529 4530 4531
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4544 4545
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4570
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4571
{
4572
	struct ext4_iloc iloc;
4573 4574 4575
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4576 4577

	might_sleep();
4578
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4579
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4580 4581
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4582
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4596 4597
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4598 4599
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4600
					ext4_warning(inode->i_sb,
4601 4602 4603
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4604 4605
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4606 4607 4608 4609
				}
			}
		}
	}
4610
	if (!err)
4611
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4612 4613 4614 4615
	return err;
}

/*
4616
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4617 4618 4619 4620 4621
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4622
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4623 4624 4625 4626 4627 4628
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4629
void ext4_dirty_inode(struct inode *inode, int flags)
4630 4631 4632
{
	handle_t *handle;

4633
	handle = ext4_journal_start(inode, 2);
4634 4635
	if (IS_ERR(handle))
		goto out;
4636 4637 4638

	ext4_mark_inode_dirty(handle, inode);

4639
	ext4_journal_stop(handle);
4640 4641 4642 4643 4644 4645 4646 4647
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4648
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4649 4650 4651
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4652
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4653
{
4654
	struct ext4_iloc iloc;
4655 4656 4657

	int err = 0;
	if (handle) {
4658
		err = ext4_get_inode_loc(inode, &iloc);
4659 4660
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4661
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4662
			if (!err)
4663
				err = ext4_handle_dirty_metadata(handle,
4664
								 NULL,
4665
								 iloc.bh);
4666 4667 4668
			brelse(iloc.bh);
		}
	}
4669
	ext4_std_error(inode->i_sb, err);
4670 4671 4672 4673
	return err;
}
#endif

4674
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4690
	journal = EXT4_JOURNAL(inode);
4691 4692
	if (!journal)
		return 0;
4693
	if (is_journal_aborted(journal))
4694
		return -EROFS;
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4706

4707 4708 4709 4710
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4711
	jbd2_journal_lock_updates(journal);
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4722
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4723 4724
	else {
		jbd2_journal_flush(journal);
4725
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4726
	}
4727
	ext4_set_aops(inode);
4728

4729
	jbd2_journal_unlock_updates(journal);
4730
	ext4_inode_resume_unlocked_dio(inode);
4731 4732 4733

	/* Finally we can mark the inode as dirty. */

4734
	handle = ext4_journal_start(inode, 1);
4735 4736 4737
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4738
	err = ext4_mark_inode_dirty(handle, inode);
4739
	ext4_handle_sync(handle);
4740 4741
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4742 4743 4744

	return err;
}
4745 4746 4747 4748 4749 4750

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4751
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4752
{
4753
	struct page *page = vmf->page;
4754 4755
	loff_t size;
	unsigned long len;
4756
	int ret;
4757 4758 4759
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4760 4761 4762
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4763

4764
	sb_start_pagefault(inode->i_sb);
4765
	file_update_time(vma->vm_file);
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4776
	}
4777 4778

	lock_page(page);
4779 4780 4781 4782 4783 4784
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4785
	}
4786 4787 4788 4789 4790

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4791
	/*
4792 4793
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4794
	 */
4795 4796
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4797
					ext4_bh_unmapped)) {
4798 4799 4800 4801
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4802
		}
4803
	}
4804
	unlock_page(page);
4805 4806 4807 4808 4809 4810 4811 4812
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4813
		ret = VM_FAULT_SIGBUS;
4814 4815 4816 4817 4818 4819 4820 4821
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4822
			ext4_journal_stop(handle);
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4833
	sb_end_pagefault(inode->i_sb);
4834 4835
	return ret;
}