inode.c 140.5 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136 137 138 139 140
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
141 142 143
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
144

145 146 147
/*
 * Test whether an inode is a fast symlink.
 */
148
static int ext4_inode_is_fast_symlink(struct inode *inode)
149
{
150
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 152 153 154 155 156 157 158 159 160
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
161
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162
				 int nblocks)
163
{
164 165 166
	int ret;

	/*
167
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 169 170 171
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
172
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173
	jbd_debug(2, "restarting handle %p\n", handle);
174
	up_write(&EXT4_I(inode)->i_data_sem);
175
	ret = ext4_journal_restart(handle, nblocks);
176
	down_write(&EXT4_I(inode)->i_data_sem);
177
	ext4_discard_preallocations(inode);
178 179

	return ret;
180 181 182 183 184
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
185
void ext4_evict_inode(struct inode *inode)
186 187
{
	handle_t *handle;
188
	int err;
189

190
	trace_ext4_evict_inode(inode);
191 192 193

	ext4_ioend_wait(inode);

A
Al Viro 已提交
194
	if (inode->i_nlink) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
222 223 224 225
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

226
	if (!is_bad_inode(inode))
227
		dquot_initialize(inode);
228

229 230
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
231 232 233 234 235
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

236 237 238 239 240
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
241
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242
	if (IS_ERR(handle)) {
243
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 245 246 247 248
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
249
		ext4_orphan_del(NULL, inode);
250
		sb_end_intwrite(inode->i_sb);
251 252 253 254
		goto no_delete;
	}

	if (IS_SYNC(inode))
255
		ext4_handle_sync(handle);
256
	inode->i_size = 0;
257 258
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
259
		ext4_warning(inode->i_sb,
260 261 262
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
263
	if (inode->i_blocks)
264
		ext4_truncate(inode);
265 266 267 268 269 270 271

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
272
	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 274 275 276
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
277
			ext4_warning(inode->i_sb,
278 279 280
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
281
			ext4_orphan_del(NULL, inode);
282
			sb_end_intwrite(inode->i_sb);
283 284 285 286
			goto no_delete;
		}
	}

287
	/*
288
	 * Kill off the orphan record which ext4_truncate created.
289
	 * AKPM: I think this can be inside the above `if'.
290
	 * Note that ext4_orphan_del() has to be able to cope with the
291
	 * deletion of a non-existent orphan - this is because we don't
292
	 * know if ext4_truncate() actually created an orphan record.
293 294
	 * (Well, we could do this if we need to, but heck - it works)
	 */
295 296
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
297 298 299 300 301 302 303 304

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
305
	if (ext4_mark_inode_dirty(handle, inode))
306
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
307
		ext4_clear_inode(inode);
308
	else
309 310
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
311
	sb_end_intwrite(inode->i_sb);
312 313
	return;
no_delete:
A
Al Viro 已提交
314
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 316
}

317 318
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
319
{
320
	return &EXT4_I(inode)->i_reserved_quota;
321
}
322
#endif
323

324 325
/*
 * Calculate the number of metadata blocks need to reserve
326
 * to allocate a block located at @lblock
327
 */
328
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329
{
330
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331
		return ext4_ext_calc_metadata_amount(inode, lblock);
332

333
	return ext4_ind_calc_metadata_amount(inode, lblock);
334 335
}

336 337 338 339
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
340 341
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
342 343
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 345 346
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
347
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 349
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350
			 "with only %d reserved data blocks",
351 352 353 354 355
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
356

357 358 359 360 361 362 363 364 365
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
			 "with only %d reserved metadata blocks\n", __func__,
			 inode->i_ino, ei->i_allocated_meta_blocks,
			 ei->i_reserved_meta_blocks);
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

366 367 368
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370
			   used + ei->i_allocated_meta_blocks);
371
	ei->i_allocated_meta_blocks = 0;
372

373 374 375 376 377 378
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
379
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380
				   ei->i_reserved_meta_blocks);
381
		ei->i_reserved_meta_blocks = 0;
382
		ei->i_da_metadata_calc_len = 0;
383
	}
384
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385

386 387
	/* Update quota subsystem for data blocks */
	if (quota_claim)
388
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389
	else {
390 391 392
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
393
		 * not re-claim the quota for fallocated blocks.
394
		 */
395
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396
	}
397 398 399 400 401 402

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
403 404
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
405
		ext4_discard_preallocations(inode);
406 407
}

408
static int __check_block_validity(struct inode *inode, const char *func,
409 410
				unsigned int line,
				struct ext4_map_blocks *map)
411
{
412 413
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
414 415 416 417
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
418 419 420 421 422
		return -EIO;
	}
	return 0;
}

423
#define check_block_validity(inode, map)	\
424
	__check_block_validity((inode), __func__, __LINE__, (map))
425

426
/*
427 428
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
462 463 464 465 466 467 468 469 470
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
471 472 473 474 475
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
476 477
			if (num >= max_pages) {
				done = 1;
478
				break;
479
			}
480 481 482 483 484 485
		}
		pagevec_release(&pvec);
	}
	return num;
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/*
 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 */
static void set_buffers_da_mapped(struct inode *inode,
				   struct ext4_map_blocks *map)
{
	struct address_space *mapping = inode->i_mapping;
	struct pagevec pvec;
	int i, nr_pages;
	pgoff_t index, end;

	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + map->m_len - 1) >>
		(PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index,
					  min(end - index + 1,
					      (pgoff_t)PAGEVEC_SIZE));
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page))
				break;

			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					set_buffer_da_mapped(bh);
					bh = bh->b_this_page;
				} while (bh != head);
			}
			index++;
		}
		pagevec_release(&pvec);
	}
}

529
/*
530
 * The ext4_map_blocks() function tries to look up the requested blocks,
531
 * and returns if the blocks are already mapped.
532 533 534 535 536
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
537 538
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
539 540 541 542 543 544 545 546
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
547
 * that case, buffer head is unmapped
548 549 550
 *
 * It returns the error in case of allocation failure.
 */
551 552
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
553 554
{
	int retval;
555

556 557 558 559
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
560
	/*
561 562
	 * Try to see if we can get the block without requesting a new
	 * file system block.
563
	 */
564 565
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
566
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
567 568
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
569
	} else {
570 571
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
572
	}
573 574
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
575

576
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 578 579 580 581 582 583 584 585 586
		int ret;
		if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
			/* delayed alloc may be allocated by fallocate and
			 * coverted to initialized by directIO.
			 * we need to handle delayed extent here.
			 */
			down_write((&EXT4_I(inode)->i_data_sem));
			goto delayed_mapped;
		}
		ret = check_block_validity(inode, map);
587 588 589 590
		if (ret != 0)
			return ret;
	}

591
	/* If it is only a block(s) look up */
592
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
593 594 595 596 597 598
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
599
	 * ext4_ext_get_block() returns the create = 0
600 601
	 * with buffer head unmapped.
	 */
602
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
603 604
		return retval;

605 606 607 608 609 610 611 612 613 614
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
615
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
616

617
	/*
618 619 620 621
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
622 623
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
624 625 626 627 628 629 630

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
631
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
632
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
633 634 635 636
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
637
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
638
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
639
	} else {
640
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
641

642
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643 644 645 646 647
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
648
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
649
		}
650

651 652 653 654 655 656 657
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
658
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
659 660
			ext4_da_update_reserve_space(inode, retval, 1);
	}
661
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
662
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
663

664 665 666 667
		/* If we have successfully mapped the delayed allocated blocks,
		 * set the BH_Da_Mapped bit on them. Its important to do this
		 * under the protection of i_data_sem.
		 */
668 669
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
			int ret;
670
			set_buffers_da_mapped(inode, map);
671 672 673 674 675 676 677
delayed_mapped:
			/* delayed allocation blocks has been allocated */
			ret = ext4_es_remove_extent(inode, map->m_lblk,
						    map->m_len);
			if (ret < 0)
				retval = ret;
		}
678 679
	}

680
	up_write((&EXT4_I(inode)->i_data_sem));
681
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
682
		int ret = check_block_validity(inode, map);
683 684 685
		if (ret != 0)
			return ret;
	}
686 687 688
	return retval;
}

689 690 691
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

692 693
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
694
{
695
	handle_t *handle = ext4_journal_current_handle();
696
	struct ext4_map_blocks map;
J
Jan Kara 已提交
697
	int ret = 0, started = 0;
698
	int dio_credits;
699

700 701 702
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

703
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
704
		/* Direct IO write... */
705 706 707
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
708
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
709
		if (IS_ERR(handle)) {
710
			ret = PTR_ERR(handle);
711
			return ret;
712
		}
J
Jan Kara 已提交
713
		started = 1;
714 715
	}

716
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
717
	if (ret > 0) {
718 719 720
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
721
		ret = 0;
722
	}
J
Jan Kara 已提交
723 724
	if (started)
		ext4_journal_stop(handle);
725 726 727
	return ret;
}

728 729 730 731 732 733 734
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

735 736 737
/*
 * `handle' can be NULL if create is zero
 */
738
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
739
				ext4_lblk_t block, int create, int *errp)
740
{
741 742
	struct ext4_map_blocks map;
	struct buffer_head *bh;
743 744 745 746
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

747 748 749 750
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
751

752 753 754
	/* ensure we send some value back into *errp */
	*errp = 0;

755 756 757 758 759 760 761 762 763
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
764
	}
765 766 767
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
768

769 770 771 772 773 774 775 776 777 778 779 780 781
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
782
		}
783 784 785 786 787 788 789
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
790
	}
791 792 793 794 795 796
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
797 798
}

799
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
800
			       ext4_lblk_t block, int create, int *err)
801
{
802
	struct buffer_head *bh;
803

804
	bh = ext4_getblk(handle, inode, block, create, err);
805 806 807 808
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
809
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
810 811 812 813 814 815 816 817
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

818 819 820 821 822 823 824
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
825 826 827 828 829 830 831
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

832 833
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
834
	     block_start = block_end, bh = next) {
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
852
 * close off a transaction and start a new one between the ext4_get_block()
853
 * and the commit_write().  So doing the jbd2_journal_start at the start of
854 855
 * prepare_write() is the right place.
 *
856 857
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
858 859 860 861
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
862
 * By accident, ext4 can be reentered when a transaction is open via
863 864 865 866 867 868
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
869
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
870 871 872 873 874
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
875
				       struct buffer_head *bh)
876
{
877 878 879
	int dirty = buffer_dirty(bh);
	int ret;

880 881
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
882
	/*
C
Christoph Hellwig 已提交
883
	 * __block_write_begin() could have dirtied some buffers. Clean
884 885
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
886
	 * by __block_write_begin() isn't a real problem here as we clear
887 888 889 890 891 892 893 894 895
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
896 897
}

898 899
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
900 901
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
902
static int ext4_write_begin(struct file *file, struct address_space *mapping,
903 904
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
905
{
906
	struct inode *inode = mapping->host;
907
	int ret, needed_blocks;
908 909
	handle_t *handle;
	int retries = 0;
910
	struct page *page;
911
	pgoff_t index;
912
	unsigned from, to;
N
Nick Piggin 已提交
913

914
	trace_ext4_write_begin(inode, pos, len, flags);
915 916 917 918 919
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
920
	index = pos >> PAGE_CACHE_SHIFT;
921 922
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
923 924

retry:
925 926 927 928
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
929
	}
930

931 932 933 934
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

935
	page = grab_cache_page_write_begin(mapping, index, flags);
936 937 938 939 940 941 942
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

943
	if (ext4_should_dioread_nolock(inode))
944
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
945
	else
946
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
947 948

	if (!ret && ext4_should_journal_data(inode)) {
949 950 951
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
952 953

	if (ret) {
954 955
		unlock_page(page);
		page_cache_release(page);
956
		/*
957
		 * __block_write_begin may have instantiated a few blocks
958 959
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
960 961 962
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
963
		 */
964
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
965 966 967 968
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
969
			ext4_truncate_failed_write(inode);
970
			/*
971
			 * If truncate failed early the inode might
972 973 974 975 976 977 978
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
979 980
	}

981
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
982
		goto retry;
983
out:
984 985 986
	return ret;
}

N
Nick Piggin 已提交
987 988
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
989 990 991 992
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
993
	return ext4_handle_dirty_metadata(handle, NULL, bh);
994 995
}

996
static int ext4_generic_write_end(struct file *file,
997 998 999
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1042 1043 1044 1045
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1046
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1047 1048
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1049
static int ext4_ordered_write_end(struct file *file,
1050 1051 1052
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1053
{
1054
	handle_t *handle = ext4_journal_current_handle();
1055
	struct inode *inode = mapping->host;
1056 1057
	int ret = 0, ret2;

1058
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1059
	ret = ext4_jbd2_file_inode(handle, inode);
1060 1061

	if (ret == 0) {
1062
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1063
							page, fsdata);
1064
		copied = ret2;
1065
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1066 1067 1068 1069 1070
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1071 1072
		if (ret2 < 0)
			ret = ret2;
1073 1074 1075
	} else {
		unlock_page(page);
		page_cache_release(page);
1076
	}
1077

1078
	ret2 = ext4_journal_stop(handle);
1079 1080
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1081

1082
	if (pos + len > inode->i_size) {
1083
		ext4_truncate_failed_write(inode);
1084
		/*
1085
		 * If truncate failed early the inode might still be
1086 1087 1088 1089 1090 1091 1092 1093
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1094
	return ret ? ret : copied;
1095 1096
}

N
Nick Piggin 已提交
1097
static int ext4_writeback_write_end(struct file *file,
1098 1099 1100
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1101
{
1102
	handle_t *handle = ext4_journal_current_handle();
1103
	struct inode *inode = mapping->host;
1104 1105
	int ret = 0, ret2;

1106
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1107
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1108
							page, fsdata);
1109
	copied = ret2;
1110
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1111 1112 1113 1114 1115 1116
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1117 1118
	if (ret2 < 0)
		ret = ret2;
1119

1120
	ret2 = ext4_journal_stop(handle);
1121 1122
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1123

1124
	if (pos + len > inode->i_size) {
1125
		ext4_truncate_failed_write(inode);
1126
		/*
1127
		 * If truncate failed early the inode might still be
1128 1129 1130 1131 1132 1133 1134
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1135
	return ret ? ret : copied;
1136 1137
}

N
Nick Piggin 已提交
1138
static int ext4_journalled_write_end(struct file *file,
1139 1140 1141
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1142
{
1143
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1144
	struct inode *inode = mapping->host;
1145 1146
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1147
	unsigned from, to;
1148
	loff_t new_i_size;
1149

1150
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1151 1152 1153
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1154 1155
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
1156 1157 1158 1159 1160
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1161 1162

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1163
				to, &partial, write_end_fn);
1164 1165
	if (!partial)
		SetPageUptodate(page);
1166 1167
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1168
		i_size_write(inode, pos+copied);
1169
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1170
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1171 1172
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1173
		ret2 = ext4_mark_inode_dirty(handle, inode);
1174 1175 1176
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1177

1178
	unlock_page(page);
1179
	page_cache_release(page);
1180
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1181 1182 1183 1184 1185 1186
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1187
	ret2 = ext4_journal_stop(handle);
1188 1189
	if (!ret)
		ret = ret2;
1190
	if (pos + len > inode->i_size) {
1191
		ext4_truncate_failed_write(inode);
1192
		/*
1193
		 * If truncate failed early the inode might still be
1194 1195 1196 1197 1198 1199
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1200 1201

	return ret ? ret : copied;
1202
}
1203

1204
/*
1205
 * Reserve a single cluster located at lblock
1206
 */
1207
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1208
{
A
Aneesh Kumar K.V 已提交
1209
	int retries = 0;
1210
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1211
	struct ext4_inode_info *ei = EXT4_I(inode);
1212
	unsigned int md_needed;
1213
	int ret;
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1225 1226 1227 1228 1229 1230

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1231
repeat:
1232
	spin_lock(&ei->i_block_reservation_lock);
1233 1234 1235 1236 1237 1238
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1239 1240
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1241
	trace_ext4_da_reserve_space(inode, md_needed);
1242

1243 1244 1245 1246
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1247
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1248 1249 1250
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1251 1252 1253 1254
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1255
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1256 1257
		return -ENOSPC;
	}
1258
	ei->i_reserved_data_blocks++;
1259 1260
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1261

1262 1263 1264
	return 0;       /* success */
}

1265
static void ext4_da_release_space(struct inode *inode, int to_free)
1266 1267
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1268
	struct ext4_inode_info *ei = EXT4_I(inode);
1269

1270 1271 1272
	if (!to_free)
		return;		/* Nothing to release, exit */

1273
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1274

L
Li Zefan 已提交
1275
	trace_ext4_da_release_space(inode, to_free);
1276
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1277
		/*
1278 1279 1280 1281
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1282
		 */
1283 1284
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
1285
			 "data blocks", inode->i_ino, to_free,
1286 1287 1288
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1289
	}
1290
	ei->i_reserved_data_blocks -= to_free;
1291

1292 1293 1294 1295 1296
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1297 1298
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1299
		 */
1300
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1301
				   ei->i_reserved_meta_blocks);
1302
		ei->i_reserved_meta_blocks = 0;
1303
		ei->i_da_metadata_calc_len = 0;
1304
	}
1305

1306
	/* update fs dirty data blocks counter */
1307
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1308 1309

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1310

1311
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1312 1313 1314
}

static void ext4_da_page_release_reservation(struct page *page,
1315
					     unsigned long offset)
1316 1317 1318 1319
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1320 1321 1322
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1323
	ext4_fsblk_t lblk;
1324 1325 1326 1327 1328 1329 1330 1331 1332

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
1333
			clear_buffer_da_mapped(bh);
1334 1335 1336
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1337

1338 1339 1340 1341 1342
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
		    !ext4_find_delalloc_cluster(inode, lblk, 1))
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1355
}
1356

1357 1358 1359 1360 1361 1362
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1363
 * them with writepage() call back
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1374 1375
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1376
{
1377 1378 1379 1380 1381
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1382
	loff_t size = i_size_read(inode);
1383 1384
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1385
	int journal_data = ext4_should_journal_data(inode);
1386
	sector_t pblock = 0, cur_logical = 0;
1387
	struct ext4_io_submit io_submit;
1388 1389

	BUG_ON(mpd->next_page <= mpd->first_page);
1390
	memset(&io_submit, 0, sizeof(io_submit));
1391 1392 1393
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1394
	 * If we look at mpd->b_blocknr we would only be looking
1395 1396
	 * at the currently mapped buffer_heads.
	 */
1397 1398 1399
	index = mpd->first_page;
	end = mpd->next_page - 1;

1400
	pagevec_init(&pvec, 0);
1401
	while (index <= end) {
1402
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1403 1404 1405
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1406
			int commit_write = 0, skip_page = 0;
1407 1408
			struct page *page = pvec.pages[i];

1409 1410 1411
			index = page->index;
			if (index > end)
				break;
1412 1413 1414 1415 1416

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1417 1418 1419 1420 1421 1422
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1423 1424 1425 1426 1427
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1428
			/*
1429 1430
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1431
			 * __block_write_begin.  If this fails,
1432
			 * skip the page and move on.
1433
			 */
1434
			if (!page_has_buffers(page)) {
1435
				if (__block_write_begin(page, 0, len,
1436
						noalloc_get_block_write)) {
1437
				skip_page:
1438 1439 1440 1441 1442
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1443

1444 1445
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1446
			do {
1447
				if (!bh)
1448
					goto skip_page;
1449 1450 1451
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1452 1453 1454 1455
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1456 1457
					if (buffer_da_mapped(bh))
						clear_buffer_da_mapped(bh);
1458 1459 1460 1461 1462 1463 1464
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1465

1466 1467 1468 1469 1470
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1471
					skip_page = 1;
1472 1473
				bh = bh->b_this_page;
				block_start += bh->b_size;
1474 1475
				cur_logical++;
				pblock++;
1476 1477
			} while (bh != page_bufs);

1478 1479
			if (skip_page)
				goto skip_page;
1480 1481 1482 1483 1484

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1485
			clear_page_dirty_for_io(page);
1486 1487 1488 1489 1490 1491
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1492
				err = __ext4_journalled_writepage(page, len);
1493
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1494 1495
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1496 1497 1498 1499 1500 1501
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1502 1503
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1504 1505

			if (!err)
1506
				mpd->pages_written++;
1507 1508 1509 1510 1511 1512 1513 1514 1515
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1516
	ext4_io_submit(&io_submit);
1517 1518 1519
	return ret;
}

1520
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1521 1522 1523 1524 1525 1526
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1527
	ext4_lblk_t start, last;
1528

1529 1530
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1531 1532 1533 1534 1535

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1536 1537 1538 1539 1540 1541
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1542
			if (page->index > end)
1543 1544 1545 1546 1547 1548 1549
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1550 1551
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1552 1553 1554 1555
	}
	return;
}

1556 1557 1558
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1559 1560 1561
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1562 1563
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1564 1565
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1566 1567
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1568
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1569 1570
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1571 1572 1573 1574
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1575
	       EXT4_I(inode)->i_reserved_meta_blocks);
1576 1577 1578
	return;
}

1579
/*
1580 1581
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1582
 *
1583
 * @mpd - bh describing space
1584 1585 1586 1587
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1588
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1589
{
1590
	int err, blks, get_blocks_flags;
1591
	struct ext4_map_blocks map, *mapp = NULL;
1592 1593 1594 1595
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1596 1597

	/*
1598 1599
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1600
	 */
1601 1602 1603 1604 1605
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1606 1607 1608 1609

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1610
	/*
1611
	 * Call ext4_map_blocks() to allocate any delayed allocation
1612 1613 1614 1615 1616 1617 1618 1619
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1620
	 * want to change *many* call functions, so ext4_map_blocks()
1621
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1622 1623 1624 1625 1626
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1627
	 */
1628 1629
	map.m_lblk = next;
	map.m_len = max_blocks;
1630
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1631 1632
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1633
	if (mpd->b_state & (1 << BH_Delay))
1634 1635
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1636
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1637
	if (blks < 0) {
1638 1639
		struct super_block *sb = mpd->inode->i_sb;

1640
		err = blks;
1641
		/*
1642
		 * If get block returns EAGAIN or ENOSPC and there
1643 1644
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1645 1646
		 */
		if (err == -EAGAIN)
1647
			goto submit_io;
1648

1649
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1650
			mpd->retval = err;
1651
			goto submit_io;
1652 1653
		}

1654
		/*
1655 1656 1657 1658 1659
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1660
		 */
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1672
		}
1673
		/* invalidate all the pages */
1674
		ext4_da_block_invalidatepages(mpd);
1675 1676 1677

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1678
		return;
1679
	}
1680 1681
	BUG_ON(blks == 0);

1682
	mapp = &map;
1683 1684 1685
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1686

1687 1688
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1689

1690 1691
		if (ext4_should_order_data(mpd->inode)) {
			err = ext4_jbd2_file_inode(handle, mpd->inode);
1692
			if (err) {
1693
				/* Only if the journal is aborted */
1694 1695 1696
				mpd->retval = err;
				goto submit_io;
			}
1697
		}
1698 1699 1700
	}

	/*
1701
	 * Update on-disk size along with block allocation.
1702 1703 1704 1705 1706 1707
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1708 1709 1710 1711 1712
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1713 1714
	}

1715
submit_io:
1716
	mpage_da_submit_io(mpd, mapp);
1717
	mpd->io_done = 1;
1718 1719
}

1720 1721
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1733 1734
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1735 1736
{
	sector_t next;
1737
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1738

1739 1740 1741 1742
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1743
	 * ext4_map_blocks() multiple times in a loop
1744 1745 1746 1747
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1748
	/* check if thereserved journal credits might overflow */
1749
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1770 1771 1772
	/*
	 * First block in the extent
	 */
1773 1774 1775 1776
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1777 1778 1779
		return;
	}

1780
	next = mpd->b_blocknr + nrblocks;
1781 1782 1783
	/*
	 * Can we merge the block to our big extent?
	 */
1784 1785
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1786 1787 1788
		return;
	}

1789
flush_it:
1790 1791 1792 1793
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1794
	mpage_da_map_and_submit(mpd);
1795
	return;
1796 1797
}

1798
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1799
{
1800
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1801 1802
}

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

1847 1848 1849 1850
		retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
		if (retval)
			goto out_unlock;

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1867
/*
1868 1869 1870
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1871 1872 1873 1874 1875 1876 1877
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1878 1879
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1880
				  struct buffer_head *bh, int create)
1881
{
1882
	struct ext4_map_blocks map;
1883 1884 1885
	int ret = 0;

	BUG_ON(create == 0);
1886 1887 1888 1889
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1890 1891 1892 1893 1894 1895

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1896 1897
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1898
		return ret;
1899

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1911
		set_buffer_mapped(bh);
1912 1913
	}
	return 0;
1914
}
1915

1916 1917 1918
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1919
 * callback function for block_write_begin() and block_write_full_page().
1920
 * These functions should only try to map a single block at a time.
1921 1922 1923 1924 1925
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1926 1927 1928
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1929 1930
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1931 1932
				   struct buffer_head *bh_result, int create)
{
1933
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1934
	return _ext4_get_block(inode, iblock, bh_result, 0);
1935 1936
}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1959
	ClearPageChecked(page);
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1973 1974
	BUG_ON(!ext4_handle_valid(handle));

1975 1976 1977 1978 1979 1980 1981
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1982
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1983 1984 1985 1986 1987
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1988
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1989 1990 1991 1992
out:
	return ret;
}

1993
/*
1994 1995 1996 1997
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1998
 * we are writing back data modified via mmap(), no one guarantees in which
1999 2000 2001 2002
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2003 2004 2005
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
2006
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2007
 *   - grab_page_cache when doing write_begin (have journal handle)
2008 2009 2010 2011 2012 2013 2014 2015 2016
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
2017
 * but other buffer_heads would be unmapped but dirty (dirty done via the
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2033
 */
2034
static int ext4_writepage(struct page *page,
2035
			  struct writeback_control *wbc)
2036
{
T
Theodore Ts'o 已提交
2037
	int ret = 0, commit_write = 0;
2038
	loff_t size;
2039
	unsigned int len;
2040
	struct buffer_head *page_bufs = NULL;
2041 2042
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
2043
	trace_ext4_writepage(page);
2044 2045 2046 2047 2048
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2049

T
Theodore Ts'o 已提交
2050 2051
	/*
	 * If the page does not have buffers (for whatever reason),
2052
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
2053 2054
	 * fails, redirty the page and move on.
	 */
2055
	if (!page_has_buffers(page)) {
2056
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2057 2058
					noalloc_get_block_write)) {
		redirty_page:
2059 2060 2061 2062
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2063 2064 2065 2066 2067
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2068
		/*
2069 2070 2071
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
2072 2073 2074
		 * We can also reach here via shrink_page_list but it
		 * should never be for direct reclaim so warn if that
		 * happens
2075
		 */
2076 2077
		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
								PF_MEMALLOC);
T
Theodore Ts'o 已提交
2078 2079 2080
		goto redirty_page;
	}
	if (commit_write)
2081
		/* now mark the buffer_heads as dirty and uptodate */
2082
		block_commit_write(page, 0, len);
2083

2084
	if (PageChecked(page) && ext4_should_journal_data(inode))
2085 2086 2087 2088
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2089
		return __ext4_journalled_writepage(page, len);
2090

T
Theodore Ts'o 已提交
2091
	if (buffer_uninit(page_bufs)) {
2092 2093 2094 2095
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2096 2097
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2098 2099 2100 2101

	return ret;
}

2102
/*
2103
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2104
 * calculate the total number of credits to reserve to fit
2105 2106 2107
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2108
 */
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2120
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2121 2122 2123 2124 2125
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2126

2127 2128
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2129
 * address space and accumulate pages that need writing, and call
2130 2131
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2132 2133 2134
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2135 2136
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2137
{
2138
	struct buffer_head	*bh, *head;
2139
	struct inode		*inode = mapping->host;
2140 2141 2142 2143 2144 2145
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2146

2147 2148 2149
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2150 2151 2152 2153
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2154
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2155 2156 2157 2158
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2159
	*done_index = index;
2160
	while (index <= end) {
2161
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2162 2163
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2164
			return 0;
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2176 2177
			if (page->index > end)
				goto out;
2178

2179 2180
			*done_index = page->index + 1;

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2191 2192 2193
			lock_page(page);

			/*
2194 2195 2196 2197 2198 2199
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2200
			 */
2201 2202 2203 2204
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2205 2206 2207 2208
				unlock_page(page);
				continue;
			}

2209
			wait_on_page_writeback(page);
2210 2211
			BUG_ON(PageWriteback(page));

2212
			if (mpd->next_page != page->index)
2213 2214 2215 2216 2217 2218
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2219 2220
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2221
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2222 2223
				if (mpd->io_done)
					goto ret_extent_tail;
2224 2225
			} else {
				/*
2226 2227
				 * Page with regular buffer heads,
				 * just add all dirty ones
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2243 2244
						if (mpd->io_done)
							goto ret_extent_tail;
2245 2246
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2247 2248 2249 2250 2251 2252 2253 2254 2255
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2256 2257 2258 2259 2260 2261
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2262 2263 2264 2265 2266
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2267
				    wbc->sync_mode == WB_SYNC_NONE)
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2278
					goto out;
2279 2280 2281 2282 2283
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2284 2285 2286
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2287 2288 2289
out:
	pagevec_release(&pvec);
	cond_resched();
2290 2291 2292 2293
	return ret;
}


2294
static int ext4_da_writepages(struct address_space *mapping,
2295
			      struct writeback_control *wbc)
2296
{
2297 2298
	pgoff_t	index;
	int range_whole = 0;
2299
	handle_t *handle = NULL;
2300
	struct mpage_da_data mpd;
2301
	struct inode *inode = mapping->host;
2302
	int pages_written = 0;
2303
	unsigned int max_pages;
2304
	int range_cyclic, cycled = 1, io_done = 0;
2305 2306
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2307
	loff_t range_start = wbc->range_start;
2308
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2309
	pgoff_t done_index = 0;
2310
	pgoff_t end;
S
Shaohua Li 已提交
2311
	struct blk_plug plug;
2312

2313
	trace_ext4_da_writepages(inode, wbc);
2314

2315 2316 2317 2318 2319
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2320
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2321
		return 0;
2322 2323 2324 2325 2326

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2327
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2328 2329 2330 2331 2332
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2333
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2334 2335
		return -EROFS;

2336 2337
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2338

2339 2340
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2341
		index = mapping->writeback_index;
2342 2343 2344 2345 2346
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2347 2348
		end = -1;
	} else {
2349
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2350 2351
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2352

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2370 2371 2372 2373 2374 2375
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2386
retry:
2387
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2388 2389
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2390
	blk_start_plug(&plug);
2391
	while (!ret && wbc->nr_to_write > 0) {
2392 2393 2394 2395 2396 2397 2398 2399

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2400
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2401

2402 2403 2404 2405
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2406
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2407
			       "%ld pages, ino %lu; err %d", __func__,
2408
				wbc->nr_to_write, inode->i_ino, ret);
2409
			blk_finish_plug(&plug);
2410 2411
			goto out_writepages;
		}
2412 2413

		/*
2414
		 * Now call write_cache_pages_da() to find the next
2415
		 * contiguous region of logical blocks that need
2416
		 * blocks to be allocated by ext4 and submit them.
2417
		 */
2418
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2419
		/*
2420
		 * If we have a contiguous extent of pages and we
2421 2422 2423 2424
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2425
			mpage_da_map_and_submit(&mpd);
2426 2427
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2428
		trace_ext4_da_write_pages(inode, &mpd);
2429
		wbc->nr_to_write -= mpd.pages_written;
2430

2431
		ext4_journal_stop(handle);
2432

2433
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2434 2435 2436 2437
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2438
			jbd2_journal_force_commit_nested(sbi->s_journal);
2439 2440
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2441
			/*
2442 2443 2444
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2445
			 */
2446
			pages_written += mpd.pages_written;
2447
			ret = mpd.retval;
2448
			io_done = 1;
2449
		} else if (wbc->nr_to_write)
2450 2451 2452 2453 2454 2455
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2456
	}
S
Shaohua Li 已提交
2457
	blk_finish_plug(&plug);
2458 2459 2460 2461 2462 2463 2464
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2465 2466

	/* Update index */
2467
	wbc->range_cyclic = range_cyclic;
2468 2469 2470 2471 2472
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2473
		mapping->writeback_index = done_index;
2474

2475
out_writepages:
2476
	wbc->nr_to_write -= nr_to_writebump;
2477
	wbc->range_start = range_start;
2478
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2479
	return ret;
2480 2481
}

2482 2483 2484 2485 2486 2487 2488 2489 2490
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2491
	 * counters can get slightly wrong with percpu_counter_batch getting
2492 2493 2494 2495
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2496 2497 2498
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2509
	if (2 * free_blocks < 3 * dirty_blocks ||
2510
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2511
		/*
2512 2513
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2514 2515 2516 2517 2518 2519
		 */
		return 1;
	}
	return 0;
}

2520
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2521 2522
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2523
{
2524
	int ret, retries = 0;
2525 2526 2527 2528 2529 2530
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2531 2532 2533 2534 2535 2536 2537

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2538
	trace_ext4_da_write_begin(inode, pos, len, flags);
2539
retry:
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2551 2552 2553
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2554

2555
	page = grab_cache_page_write_begin(mapping, index, flags);
2556 2557 2558 2559 2560
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2561 2562
	*pagep = page;

2563
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2564 2565 2566 2567
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2568 2569 2570 2571 2572 2573
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2574
			ext4_truncate_failed_write(inode);
2575 2576
	}

2577 2578
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2579 2580 2581 2582
out:
	return ret;
}

2583 2584 2585 2586 2587
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2588
					    unsigned long offset)
2589 2590 2591 2592 2593 2594 2595 2596 2597
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2598
	for (i = 0; i < idx; i++)
2599 2600
		bh = bh->b_this_page;

2601
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2602 2603 2604 2605
		return 0;
	return 1;
}

2606
static int ext4_da_write_end(struct file *file,
2607 2608 2609
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2610 2611 2612 2613 2614
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2615
	unsigned long start, end;
2616 2617 2618
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2619 2620
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2621 2622
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2623
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2624 2625
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2626
		default:
2627 2628 2629
			BUG();
		}
	}
2630

2631
	trace_ext4_da_write_end(inode, pos, len, copied);
2632
	start = pos & (PAGE_CACHE_SIZE - 1);
2633
	end = start + copied - 1;
2634 2635 2636 2637 2638 2639 2640 2641

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2642
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2653

2654 2655 2656
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2657 2658 2659 2660 2661
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2662
		}
2663
	}
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2685
	ext4_da_page_release_reservation(page, offset);
2686 2687 2688 2689 2690 2691 2692

out:
	ext4_invalidatepage(page, offset);

	return;
}

2693 2694 2695 2696 2697
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2698 2699
	trace_ext4_alloc_da_blocks(inode);

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2710
	 *
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2723
	 * the pages by calling redirty_page_for_writepage() but that
2724 2725
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2726
	 * simplifying them because we wouldn't actually intend to
2727 2728 2729
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2730
	 *
2731 2732 2733 2734 2735 2736
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2737

2738 2739 2740 2741 2742
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2743
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2744 2745 2746 2747 2748 2749 2750 2751
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2752
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2753 2754 2755 2756 2757
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2768 2769
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2781
		 * NB. EXT4_STATE_JDATA is not set on files other than
2782 2783 2784 2785 2786 2787
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2788
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2789
		journal = EXT4_JOURNAL(inode);
2790 2791 2792
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2793 2794 2795 2796 2797

		if (err)
			return 0;
	}

2798
	return generic_block_bmap(mapping, block, ext4_get_block);
2799 2800
}

2801
static int ext4_readpage(struct file *file, struct page *page)
2802
{
2803
	trace_ext4_readpage(page);
2804
	return mpage_readpage(page, ext4_get_block);
2805 2806 2807
}

static int
2808
ext4_readpages(struct file *file, struct address_space *mapping,
2809 2810
		struct list_head *pages, unsigned nr_pages)
{
2811
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2812 2813
}

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2834
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2835
{
2836
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2837

2838 2839
	trace_ext4_invalidatepage(page, offset);

2840 2841 2842 2843 2844
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2845 2846 2847 2848 2849 2850
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2851 2852 2853 2854
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2855 2856
}

2857
static int ext4_releasepage(struct page *page, gfp_t wait)
2858
{
2859
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2860

2861 2862
	trace_ext4_releasepage(page);

2863 2864 2865
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2866 2867 2868 2869
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2870 2871
}

2872 2873 2874 2875 2876
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2877
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2878 2879
		   struct buffer_head *bh_result, int create)
{
2880
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2881
		   inode->i_ino, create);
2882 2883
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2884 2885
}

2886
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2887
		   struct buffer_head *bh_result, int create)
2888
{
2889 2890 2891 2892
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
2893 2894
}

2895
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2896 2897
			    ssize_t size, void *private, int ret,
			    bool is_async)
2898
{
2899
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2900 2901
        ext4_io_end_t *io_end = iocb->private;

2902 2903
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2904
		goto out;
2905

2906
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2907
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2908 2909 2910
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2911 2912
	iocb->private = NULL;

2913
	/* if not aio dio with unwritten extents, just free io and return */
2914
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2915
		ext4_free_io_end(io_end);
2916 2917 2918
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2919
		inode_dio_done(inode);
2920
		return;
2921 2922
	}

2923 2924
	io_end->offset = offset;
	io_end->size = size;
2925 2926 2927 2928
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2929

2930
	ext4_add_complete_io(io_end);
2931
}
2932

2933 2934 2935 2936 2937 2938 2939 2940 2941
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct inode *inode;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2942 2943 2944
		ext4_msg(io_end->inode->i_sb, KERN_INFO,
			 "sb umounted, discard end_io request for inode %lu",
			 io_end->inode->i_ino);
2945 2946 2947 2948
		ext4_free_io_end(io_end);
		goto out;
	}

2949 2950 2951 2952
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2953
	inode = io_end->inode;
2954
	ext4_set_io_unwritten_flag(inode, io_end);
2955
	ext4_add_complete_io(io_end);
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2973
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2992 2993 2994 2995 2996
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2997
 * For holes, we fallocate those blocks, mark them as uninitialized
2998
 * If those blocks were preallocated, we mark sure they are splited, but
2999
 * still keep the range to write as uninitialized.
3000
 *
3001 3002
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
3003
 * set up an end_io call back function, which will do the conversion
3004
 * when async direct IO completed.
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
3022
		int overwrite = 0;
3023 3024
		get_block_t *get_block_func = NULL;
		int dio_flags = 0;
3025

3026 3027 3028 3029 3030 3031
		BUG_ON(iocb->private == NULL);

		/* If we do a overwrite dio, i_mutex locking can be released */
		overwrite = *((int *)iocb->private);

		if (overwrite) {
3032
			atomic_inc(&inode->i_dio_count);
3033 3034 3035 3036
			down_read(&EXT4_I(inode)->i_data_sem);
			mutex_unlock(&inode->i_mutex);
		}

3037
		/*
3038 3039 3040
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
3041
 		 * to prevent parallel buffered read to expose the stale data
3042
 		 * before DIO complete the data IO.
3043 3044
		 *
 		 * As to previously fallocated extents, ext4 get_block
3045 3046 3047
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3048 3049 3050 3051 3052 3053 3054 3055
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3056
 		 */
3057
		iocb->private = NULL;
D
Dmitry Monakhov 已提交
3058
		ext4_inode_aio_set(inode, NULL);
3059
		if (!is_sync_kiocb(iocb)) {
3060 3061
			ext4_io_end_t *io_end =
				ext4_init_io_end(inode, GFP_NOFS);
3062 3063 3064 3065
			if (!io_end) {
				ret = -ENOMEM;
				goto retake_lock;
			}
3066 3067
			io_end->flag |= EXT4_IO_END_DIRECT;
			iocb->private = io_end;
3068 3069
			/*
			 * we save the io structure for current async
3070
			 * direct IO, so that later ext4_map_blocks()
3071 3072 3073 3074
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
D
Dmitry Monakhov 已提交
3075
			ext4_inode_aio_set(inode, io_end);
3076 3077
		}

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
		if (overwrite) {
			get_block_func = ext4_get_block_write_nolock;
		} else {
			get_block_func = ext4_get_block_write;
			dio_flags = DIO_LOCKING;
		}
		ret = __blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
					 get_block_func,
					 ext4_end_io_dio,
					 NULL,
					 dio_flags);

3092
		if (iocb->private)
D
Dmitry Monakhov 已提交
3093
			ext4_inode_aio_set(inode, NULL);
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3111
		} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3112
						EXT4_STATE_DIO_UNWRITTEN)) {
3113
			int err;
3114 3115
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
3116
			 * completed, we could do the conversion right here
3117
			 */
3118 3119 3120 3121
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3122
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3123
		}
3124 3125 3126 3127

	retake_lock:
		/* take i_mutex locking again if we do a ovewrite dio */
		if (overwrite) {
3128
			inode_dio_done(inode);
3129 3130 3131 3132
			up_read(&EXT4_I(inode)->i_data_sem);
			mutex_lock(&inode->i_mutex);
		}

3133 3134
		return ret;
	}
3135 3136

	/* for write the the end of file case, we fall back to old way */
3137 3138 3139 3140 3141 3142 3143 3144 3145
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3146
	ssize_t ret;
3147

3148 3149 3150 3151 3152 3153
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

3154
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3155
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3156 3157 3158 3159 3160 3161
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3162 3163
}

3164
/*
3165
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3177
static int ext4_journalled_set_page_dirty(struct page *page)
3178 3179 3180 3181 3182
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3183
static const struct address_space_operations ext4_ordered_aops = {
3184 3185
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3186
	.writepage		= ext4_writepage,
3187 3188 3189 3190 3191 3192 3193 3194
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3195
	.error_remove_page	= generic_error_remove_page,
3196 3197
};

3198
static const struct address_space_operations ext4_writeback_aops = {
3199 3200
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3201
	.writepage		= ext4_writepage,
3202 3203 3204 3205 3206 3207 3208 3209
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3210
	.error_remove_page	= generic_error_remove_page,
3211 3212
};

3213
static const struct address_space_operations ext4_journalled_aops = {
3214 3215
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3216
	.writepage		= ext4_writepage,
3217 3218 3219 3220 3221 3222
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
3223
	.direct_IO		= ext4_direct_IO,
3224
	.is_partially_uptodate  = block_is_partially_uptodate,
3225
	.error_remove_page	= generic_error_remove_page,
3226 3227
};

3228
static const struct address_space_operations ext4_da_aops = {
3229 3230
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3231
	.writepage		= ext4_writepage,
3232 3233 3234 3235 3236 3237 3238 3239 3240
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3241
	.error_remove_page	= generic_error_remove_page,
3242 3243
};

3244
void ext4_set_aops(struct inode *inode)
3245
{
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3260
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3261 3262 3263 3264
		break;
	default:
		BUG();
	}
3265 3266
}

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3287
		return -ENOMEM;
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3316
 * from:   The starting byte offset (from the beginning of the file)
3317 3318 3319 3320 3321 3322 3323
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3324
 *         for updating the contents of a page whose blocks may
3325 3326 3327
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3328
 * Returns zero on success or negative on failure.
3329
 */
E
Eric Sandeen 已提交
3330
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3356 3357
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3370 3371
		unsigned int end_of_block, range_to_discard;

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3457
		} else
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3481 3482 3483 3484 3485 3486 3487 3488
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3489
 * Returns: 0 on success or negative on failure
3490 3491 3492 3493 3494 3495
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3496
		return -EOPNOTSUPP;
3497 3498 3499

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
3500
		return -EOPNOTSUPP;
3501 3502
	}

3503 3504
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3505
		return -EOPNOTSUPP;
3506 3507
	}

3508 3509 3510
	return ext4_ext_punch_hole(file, offset, length);
}

3511
/*
3512
 * ext4_truncate()
3513
 *
3514 3515
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3516 3517
 * simultaneously on behalf of the same inode.
 *
3518
 * As we work through the truncate and commit bits of it to the journal there
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3532
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3533
 * that this inode's truncate did not complete and it will again call
3534 3535
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3536
 * that's fine - as long as they are linked from the inode, the post-crash
3537
 * ext4_truncate() run will find them and release them.
3538
 */
3539
void ext4_truncate(struct inode *inode)
3540
{
3541 3542
	trace_ext4_truncate_enter(inode);

3543
	if (!ext4_can_truncate(inode))
3544 3545
		return;

3546
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3547

3548
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3549
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3550

3551
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3552
		ext4_ext_truncate(inode);
3553 3554
	else
		ext4_ind_truncate(inode);
3555

3556
	trace_ext4_truncate_exit(inode);
3557 3558 3559
}

/*
3560
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3561 3562 3563 3564
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3565 3566
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3567
{
3568 3569 3570 3571 3572 3573
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3574
	iloc->bh = NULL;
3575 3576
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3577

3578 3579 3580
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3581 3582
		return -EIO;

3583 3584 3585
	/*
	 * Figure out the offset within the block group inode table
	 */
3586
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3587 3588 3589 3590 3591 3592
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3593
	if (!bh) {
3594 3595
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3596 3597 3598 3599
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3623
			int i, start;
3624

3625
			start = inode_offset & ~(inodes_per_block - 1);
3626

3627 3628
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3641
			for (i = start; i < start + inodes_per_block; i++) {
3642 3643
				if (i == inode_offset)
					continue;
3644
				if (ext4_test_bit(i, bitmap_bh->b_data))
3645 3646 3647
					break;
			}
			brelse(bitmap_bh);
3648
			if (i == start + inodes_per_block) {
3649 3650 3651 3652 3653 3654 3655 3656 3657
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3658 3659 3660 3661 3662 3663 3664 3665 3666
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3667
			/* s_inode_readahead_blks is always a power of 2 */
3668 3669 3670 3671 3672
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3673
			if (ext4_has_group_desc_csum(sb))
3674
				num -= ext4_itable_unused_count(sb, gdp);
3675 3676 3677 3678 3679 3680 3681
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3682 3683 3684 3685 3686
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3687
		trace_ext4_load_inode(inode);
3688 3689
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3690
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3691 3692
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3693 3694
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3695 3696 3697 3698 3699 3700 3701 3702 3703
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3704
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3705 3706
{
	/* We have all inode data except xattrs in memory here. */
3707
	return __ext4_get_inode_loc(inode, iloc,
3708
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3709 3710
}

3711
void ext4_set_inode_flags(struct inode *inode)
3712
{
3713
	unsigned int flags = EXT4_I(inode)->i_flags;
3714 3715

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3716
	if (flags & EXT4_SYNC_FL)
3717
		inode->i_flags |= S_SYNC;
3718
	if (flags & EXT4_APPEND_FL)
3719
		inode->i_flags |= S_APPEND;
3720
	if (flags & EXT4_IMMUTABLE_FL)
3721
		inode->i_flags |= S_IMMUTABLE;
3722
	if (flags & EXT4_NOATIME_FL)
3723
		inode->i_flags |= S_NOATIME;
3724
	if (flags & EXT4_DIRSYNC_FL)
3725 3726 3727
		inode->i_flags |= S_DIRSYNC;
}

3728 3729 3730
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3751
}
3752

3753
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3754
				  struct ext4_inode_info *ei)
3755 3756
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3757 3758
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3759 3760 3761 3762 3763 3764

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3765
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3766 3767 3768 3769 3770
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3771 3772 3773 3774
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3775

3776
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3777
{
3778 3779
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3780 3781
	struct ext4_inode_info *ei;
	struct inode *inode;
3782
	journal_t *journal = EXT4_SB(sb)->s_journal;
3783
	long ret;
3784
	int block;
3785 3786
	uid_t i_uid;
	gid_t i_gid;
3787

3788 3789 3790 3791 3792 3793 3794
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3795
	iloc.bh = NULL;
3796

3797 3798
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3799
		goto bad_inode;
3800
	raw_inode = ext4_raw_inode(&iloc);
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3834
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3835 3836
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3837
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3838 3839
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3840
	}
3841 3842
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3843
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3844

3845
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3846 3847 3848 3849 3850 3851 3852 3853 3854
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3855
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3856
			/* this inode is deleted */
3857
			ret = -ESTALE;
3858 3859 3860 3861 3862 3863 3864 3865
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3866
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3867
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3868
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3869 3870
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3871
	inode->i_size = ext4_isize(raw_inode);
3872
	ei->i_disksize = inode->i_size;
3873 3874 3875
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3876 3877
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3878
	ei->i_last_alloc_group = ~0;
3879 3880 3881 3882
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3883
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3884 3885 3886
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3898
		read_lock(&journal->j_state_lock);
3899 3900 3901 3902 3903 3904 3905 3906
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3907
		read_unlock(&journal->j_state_lock);
3908 3909 3910 3911
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3912
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3913 3914
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3915 3916
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3917 3918
		} else {
			__le32 *magic = (void *)raw_inode +
3919
					EXT4_GOOD_OLD_INODE_SIZE +
3920
					ei->i_extra_isize;
3921
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3922
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3923
		}
3924
	}
3925

K
Kalpak Shah 已提交
3926 3927 3928 3929 3930
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3931 3932 3933 3934 3935 3936 3937
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3938
	ret = 0;
3939
	if (ei->i_file_acl &&
3940
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3941 3942
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3943 3944
		ret = -EIO;
		goto bad_inode;
3945
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3946 3947 3948 3949 3950
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3951
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3952 3953
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3954
		/* Validate block references which are part of inode */
3955
		ret = ext4_ind_check_inode(inode);
3956
	}
3957
	if (ret)
3958
		goto bad_inode;
3959

3960
	if (S_ISREG(inode->i_mode)) {
3961 3962 3963
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3964
	} else if (S_ISDIR(inode->i_mode)) {
3965 3966
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3967
	} else if (S_ISLNK(inode->i_mode)) {
3968
		if (ext4_inode_is_fast_symlink(inode)) {
3969
			inode->i_op = &ext4_fast_symlink_inode_operations;
3970 3971 3972
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3973 3974
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3975
		}
3976 3977
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3978
		inode->i_op = &ext4_special_inode_operations;
3979 3980 3981 3982 3983 3984
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3985 3986
	} else {
		ret = -EIO;
3987
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3988
		goto bad_inode;
3989
	}
3990
	brelse(iloc.bh);
3991
	ext4_set_inode_flags(inode);
3992 3993
	unlock_new_inode(inode);
	return inode;
3994 3995

bad_inode:
3996
	brelse(iloc.bh);
3997 3998
	iget_failed(inode);
	return ERR_PTR(ret);
3999 4000
}

4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
4011
		 * i_blocks can be represented in a 32 bit variable
4012 4013
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4014
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4015
		raw_inode->i_blocks_high = 0;
4016
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4017 4018 4019 4020 4021 4022
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4023 4024 4025 4026
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4027
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4028
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4029
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4030
	} else {
4031
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
4032 4033 4034 4035
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4036
	}
4037
	return 0;
4038 4039
}

4040 4041 4042 4043 4044 4045 4046
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4047
static int ext4_do_update_inode(handle_t *handle,
4048
				struct inode *inode,
4049
				struct ext4_iloc *iloc)
4050
{
4051 4052
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4053 4054
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4055
	int need_datasync = 0;
4056 4057
	uid_t i_uid;
	gid_t i_gid;
4058 4059 4060

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4061
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4062
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4063

4064
	ext4_get_inode_flags(ei);
4065
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4066 4067
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4068
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4069 4070
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4071 4072 4073 4074
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4075
		if (!ei->i_dtime) {
4076
			raw_inode->i_uid_high =
4077
				cpu_to_le16(high_16_bits(i_uid));
4078
			raw_inode->i_gid_high =
4079
				cpu_to_le16(high_16_bits(i_gid));
4080 4081 4082 4083 4084
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4085 4086
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4087 4088 4089 4090
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4091 4092 4093 4094 4095 4096

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4097 4098
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4099
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4100
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4101 4102
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4103 4104
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4105
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4106 4107 4108 4109
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4125
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4126
			ext4_handle_sync(handle);
4127
			err = ext4_handle_dirty_super(handle, sb);
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4142 4143 4144
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4145

4146 4147 4148 4149 4150
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4151
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4152 4153
	}

4154 4155
	ext4_inode_csum_set(inode, raw_inode, ei);

4156
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4157
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4158 4159
	if (!err)
		err = rc;
4160
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4161

4162
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4163
out_brelse:
4164
	brelse(bh);
4165
	ext4_std_error(inode->i_sb, err);
4166 4167 4168 4169
	return err;
}

/*
4170
 * ext4_write_inode()
4171 4172 4173 4174 4175
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4176
 *   transaction to commit.
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4187
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4204
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4205
{
4206 4207
	int err;

4208 4209 4210
	if (current->flags & PF_MEMALLOC)
		return 0;

4211 4212 4213 4214 4215 4216
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4217

4218
		if (wbc->sync_mode != WB_SYNC_ALL)
4219 4220 4221 4222 4223
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4224

4225
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4226 4227
		if (err)
			return err;
4228
		if (wbc->sync_mode == WB_SYNC_ALL)
4229 4230
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4231 4232
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4233 4234
			err = -EIO;
		}
4235
		brelse(iloc.bh);
4236 4237
	}
	return err;
4238 4239 4240
}

/*
4241
 * ext4_setattr()
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4255 4256 4257 4258 4259 4260 4261 4262
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4263
 */
4264
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4265 4266 4267
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4268
	int orphan = 0;
4269 4270 4271 4272 4273 4274
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4275
	if (is_quota_modification(inode, attr))
4276
		dquot_initialize(inode);
4277 4278
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4279 4280 4281 4282
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4283
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4284
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4285 4286 4287 4288
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4289
		error = dquot_transfer(inode, attr);
4290
		if (error) {
4291
			ext4_journal_stop(handle);
4292 4293 4294 4295 4296 4297 4298 4299
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4300 4301
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4302 4303
	}

4304
	if (attr->ia_valid & ATTR_SIZE) {
4305

4306
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4307 4308
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4309 4310
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4311 4312 4313
		}
	}

4314
	if (S_ISREG(inode->i_mode) &&
4315
	    attr->ia_valid & ATTR_SIZE &&
4316
	    (attr->ia_size < inode->i_size)) {
4317 4318
		handle_t *handle;

4319
		handle = ext4_journal_start(inode, 3);
4320 4321 4322 4323
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4324 4325 4326 4327
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4328 4329
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4330 4331
		if (!error)
			error = rc;
4332
		ext4_journal_stop(handle);
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4345
				orphan = 0;
4346 4347 4348 4349
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4350 4351
	}

4352
	if (attr->ia_valid & ATTR_SIZE) {
4353
		if (attr->ia_size != i_size_read(inode)) {
4354
			truncate_setsize(inode, attr->ia_size);
4355 4356 4357 4358 4359
			/* Inode size will be reduced, wait for dio in flight.
			 * Temporarily disable dioread_nolock to prevent
			 * livelock. */
			if (orphan) {
				ext4_inode_block_unlocked_dio(inode);
4360
				inode_dio_wait(inode);
4361 4362
				ext4_inode_resume_unlocked_dio(inode);
			}
4363
		}
4364
		ext4_truncate(inode);
4365
	}
4366

C
Christoph Hellwig 已提交
4367 4368 4369 4370 4371 4372 4373 4374 4375
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4376
	if (orphan && inode->i_nlink)
4377
		ext4_orphan_del(NULL, inode);
4378 4379

	if (!rc && (ia_valid & ATTR_MODE))
4380
		rc = ext4_acl_chmod(inode);
4381 4382

err_out:
4383
	ext4_std_error(inode->i_sb, error);
4384 4385 4386 4387 4388
	if (!error)
		error = rc;
	return error;
}

4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4408 4409
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4410 4411 4412 4413

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4414

4415 4416
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4417
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4418
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4419
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4420
}
4421

4422
/*
4423 4424 4425
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4426
 *
4427
 * If datablocks are discontiguous, they are possible to spread over
4428
 * different block groups too. If they are contiguous, with flexbg,
4429
 * they could still across block group boundary.
4430
 *
4431 4432
 * Also account for superblock, inode, quota and xattr blocks
 */
4433
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4434
{
4435 4436
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4463 4464
	if (groups > ngroups)
		groups = ngroups;
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4478
 * Calculate the total number of credits to reserve to fit
4479 4480
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4481
 *
4482
 * This could be called via ext4_write_begin()
4483
 *
4484
 * We need to consider the worse case, when
4485
 * one new block per extent.
4486
 */
A
Alex Tomas 已提交
4487
int ext4_writepage_trans_blocks(struct inode *inode)
4488
{
4489
	int bpp = ext4_journal_blocks_per_page(inode);
4490 4491
	int ret;

4492
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4493

4494
	/* Account for data blocks for journalled mode */
4495
	if (ext4_should_journal_data(inode))
4496
		ret += bpp;
4497 4498
	return ret;
}
4499 4500 4501 4502 4503

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4504
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4505 4506 4507 4508 4509 4510 4511 4512 4513
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4514
/*
4515
 * The caller must have previously called ext4_reserve_inode_write().
4516 4517
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4518
int ext4_mark_iloc_dirty(handle_t *handle,
4519
			 struct inode *inode, struct ext4_iloc *iloc)
4520 4521 4522
{
	int err = 0;

4523
	if (IS_I_VERSION(inode))
4524 4525
		inode_inc_iversion(inode);

4526 4527 4528
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4529
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4530
	err = ext4_do_update_inode(handle, inode, iloc);
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4541 4542
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4543
{
4544 4545 4546 4547 4548 4549 4550 4551 4552
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4553 4554
		}
	}
4555
	ext4_std_error(inode->i_sb, err);
4556 4557 4558
	return err;
}

4559 4560 4561 4562
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4563 4564 4565 4566
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4579 4580
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4605
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4606
{
4607
	struct ext4_iloc iloc;
4608 4609 4610
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4611 4612

	might_sleep();
4613
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4614
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4615 4616
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4617
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4631 4632
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4633 4634
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4635
					ext4_warning(inode->i_sb,
4636 4637 4638
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4639 4640
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4641 4642 4643 4644
				}
			}
		}
	}
4645
	if (!err)
4646
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4647 4648 4649 4650
	return err;
}

/*
4651
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4652 4653 4654 4655 4656
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4657
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4658 4659 4660 4661 4662 4663
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4664
void ext4_dirty_inode(struct inode *inode, int flags)
4665 4666 4667
{
	handle_t *handle;

4668
	handle = ext4_journal_start(inode, 2);
4669 4670
	if (IS_ERR(handle))
		goto out;
4671 4672 4673

	ext4_mark_inode_dirty(handle, inode);

4674
	ext4_journal_stop(handle);
4675 4676 4677 4678 4679 4680 4681 4682
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4683
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4684 4685 4686
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4687
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4688
{
4689
	struct ext4_iloc iloc;
4690 4691 4692

	int err = 0;
	if (handle) {
4693
		err = ext4_get_inode_loc(inode, &iloc);
4694 4695
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4696
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4697
			if (!err)
4698
				err = ext4_handle_dirty_metadata(handle,
4699
								 NULL,
4700
								 iloc.bh);
4701 4702 4703
			brelse(iloc.bh);
		}
	}
4704
	ext4_std_error(inode->i_sb, err);
4705 4706 4707 4708
	return err;
}
#endif

4709
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4725
	journal = EXT4_JOURNAL(inode);
4726 4727
	if (!journal)
		return 0;
4728
	if (is_journal_aborted(journal))
4729
		return -EROFS;
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4741

4742 4743 4744 4745
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4746
	jbd2_journal_lock_updates(journal);
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4757
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4758 4759
	else {
		jbd2_journal_flush(journal);
4760
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4761
	}
4762
	ext4_set_aops(inode);
4763

4764
	jbd2_journal_unlock_updates(journal);
4765
	ext4_inode_resume_unlocked_dio(inode);
4766 4767 4768

	/* Finally we can mark the inode as dirty. */

4769
	handle = ext4_journal_start(inode, 1);
4770 4771 4772
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4773
	err = ext4_mark_inode_dirty(handle, inode);
4774
	ext4_handle_sync(handle);
4775 4776
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4777 4778 4779

	return err;
}
4780 4781 4782 4783 4784 4785

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4786
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4787
{
4788
	struct page *page = vmf->page;
4789 4790
	loff_t size;
	unsigned long len;
4791
	int ret;
4792 4793 4794
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4795 4796 4797
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4798

4799
	sb_start_pagefault(inode->i_sb);
4800
	file_update_time(vma->vm_file);
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4811
	}
4812 4813

	lock_page(page);
4814 4815 4816 4817 4818 4819
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4820
	}
4821 4822 4823 4824 4825

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4826
	/*
4827 4828
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4829
	 */
4830 4831
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4832
					ext4_bh_unmapped)) {
4833 4834 4835 4836
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4837
		}
4838
	}
4839
	unlock_page(page);
4840 4841 4842 4843 4844 4845 4846 4847
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4848
		ret = VM_FAULT_SIGBUS;
4849 4850 4851 4852 4853 4854 4855 4856
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4857
			ext4_journal_stop(handle);
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4868
	sb_end_pagefault(inode->i_sb);
4869 4870
	return ret;
}