inode.c 173.5 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45 46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49 50
#include <trace/events/ext4.h>

51 52
#define MPAGE_DA_EXTENT_TAIL 0x01

53 54 55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56 57 58 59
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
60 61
}

62 63
static void ext4_invalidatepage(struct page *page, unsigned long offset);

64 65 66
/*
 * Test whether an inode is a fast symlink.
 */
67
static int ext4_inode_is_fast_symlink(struct inode *inode)
68
{
69
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
70 71 72 73 74 75 76 77 78 79 80
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
81
	ext4_lblk_t needed;
82 83 84 85 86 87

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
88
	 * like a regular file for ext4 to try to delete it.  Things
89 90 91 92 93 94 95
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
96 97
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
98

99
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

116
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
117 118 119
	if (!IS_ERR(result))
		return result;

120
	ext4_std_error(inode->i_sb, PTR_ERR(result));
121 122 123 124 125 126 127 128 129 130 131
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
132 133 134
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135
		return 0;
136
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137 138 139 140 141 142 143 144 145
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
146
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147
				 int nblocks)
148
{
149 150 151
	int ret;

	/*
152
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
153 154 155 156
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
157
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
158
	jbd_debug(2, "restarting handle %p\n", handle);
159 160 161
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
162
	ext4_discard_preallocations(inode);
163 164

	return ret;
165 166 167 168 169
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
170
void ext4_delete_inode(struct inode *inode)
171 172
{
	handle_t *handle;
173
	int err;
174

175
	if (!is_bad_inode(inode))
176
		dquot_initialize(inode);
177

178 179
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
180 181 182 183 184
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

185
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186
	if (IS_ERR(handle)) {
187
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
188 189 190 191 192
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
193
		ext4_orphan_del(NULL, inode);
194 195 196 197
		goto no_delete;
	}

	if (IS_SYNC(inode))
198
		ext4_handle_sync(handle);
199
	inode->i_size = 0;
200 201
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
202
		ext4_warning(inode->i_sb,
203 204 205
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
206
	if (inode->i_blocks)
207
		ext4_truncate(inode);
208 209 210 211 212 213 214

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
215
	if (!ext4_handle_has_enough_credits(handle, 3)) {
216 217 218 219
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
220
			ext4_warning(inode->i_sb,
221 222 223
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
224
			ext4_orphan_del(NULL, inode);
225 226 227 228
			goto no_delete;
		}
	}

229
	/*
230
	 * Kill off the orphan record which ext4_truncate created.
231
	 * AKPM: I think this can be inside the above `if'.
232
	 * Note that ext4_orphan_del() has to be able to cope with the
233
	 * deletion of a non-existent orphan - this is because we don't
234
	 * know if ext4_truncate() actually created an orphan record.
235 236
	 * (Well, we could do this if we need to, but heck - it works)
	 */
237 238
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
239 240 241 242 243 244 245 246

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
247
	if (ext4_mark_inode_dirty(handle, inode))
248 249 250
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
251 252
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
271
 *	ext4_block_to_path - parse the block number into array of offsets
272 273 274
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
275 276
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
277
 *
278
 *	To store the locations of file's data ext4 uses a data structure common
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

301
static int ext4_block_to_path(struct inode *inode,
302 303
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
304
{
305 306 307
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
308 309 310 311 312
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

313
	if (i_block < direct_blocks) {
314 315
		offsets[n++] = i_block;
		final = direct_blocks;
316
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
317
		offsets[n++] = EXT4_IND_BLOCK;
318 319 320
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
321
		offsets[n++] = EXT4_DIND_BLOCK;
322 323 324 325
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
326
		offsets[n++] = EXT4_TIND_BLOCK;
327 328 329 330 331
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
332
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
333 334
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
335 336 337 338 339 340
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

341 342
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
343 344
				 __le32 *p, unsigned int max)
{
345
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
346
	__le32 *bref = p;
347 348
	unsigned int blk;

349
	while (bref < p+max) {
350
		blk = le32_to_cpu(*bref++);
351 352
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
353
						    blk, 1))) {
354
			es->s_last_error_block = cpu_to_le64(blk);
355 356
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
357 358 359 360
			return -EIO;
		}
	}
	return 0;
361 362 363 364
}


#define ext4_check_indirect_blockref(inode, bh)                         \
365 366
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
367 368 369
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
370 371
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
372 373
			      EXT4_NDIR_BLOCKS)

374
/**
375
 *	ext4_get_branch - read the chain of indirect blocks leading to data
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
400 401
 *
 *      Need to be called with
402
 *      down_read(&EXT4_I(inode)->i_data_sem)
403
 */
A
Aneesh Kumar K.V 已提交
404 405
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
406 407 408 409 410 411 412 413
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
414
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
415 416 417
	if (!p->key)
		goto no_block;
	while (--depth) {
418 419
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
420
			goto failure;
421

422 423 424 425 426 427 428 429 430 431 432
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
433

434
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
435 436 437 438 439 440 441 442 443 444 445 446 447
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
448
 *	ext4_find_near - find a place for allocation with sufficient locality
449 450 451
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
452
 *	This function returns the preferred place for block allocation.
453 454 455 456 457 458 459 460 461 462 463 464 465 466
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
467
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
468
{
469
	struct ext4_inode_info *ei = EXT4_I(inode);
470
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
471
	__le32 *p;
472
	ext4_fsblk_t bg_start;
473
	ext4_fsblk_t last_block;
474
	ext4_grpblk_t colour;
475 476
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
492 493 494 495 496 497 498
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
499 500
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

501 502 503 504 505 506 507
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

508 509
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
510
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
511 512
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
513 514 515 516
	return bg_start + colour;
}

/**
517
 *	ext4_find_goal - find a preferred place for allocation.
518 519 520 521
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
522
 *	Normally this function find the preferred place for block allocation,
523
 *	returns it.
524 525
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
526
 */
A
Aneesh Kumar K.V 已提交
527
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
528
				   Indirect *partial)
529
{
530 531
	ext4_fsblk_t goal;

532
	/*
533
	 * XXX need to get goal block from mballoc's data structures
534 535
	 */

536 537 538
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
539 540 541
}

/**
542
 *	ext4_blks_to_allocate: Look up the block map and count the number
543 544 545 546 547 548 549 550 551 552
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
553
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
554
				 int blocks_to_boundary)
555
{
556
	unsigned int count = 0;
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
580
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
581 582 583 584 585 586 587 588
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
589
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
590 591 592
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
593
{
594
	struct ext4_allocation_request ar;
595
	int target, i;
596
	unsigned long count = 0, blk_allocated = 0;
597
	int index = 0;
598
	ext4_fsblk_t current_block = 0;
599 600 601 602 603 604 605 606 607 608
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
609 610 611
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
612 613
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
614 615
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
616 617 618
		if (*err)
			goto failed_out;

619 620 621 622 623 624 625 626
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
627

628 629 630 631 632 633
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
634 635 636 637 638 639 640 641 642
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
643
			break;
644
		}
645 646
	}

647 648 649 650 651
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
652 653 654 655 656 657 658 659 660 661
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
662 663 664 665 666 667 668 669
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
670

671 672 673 674 675 676 677 678 679
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
680 681 682 683
			/*
			 * save the new block number
			 * for the first direct block
			 */
684 685
			new_blocks[index] = current_block;
		}
686
		blk_allocated += ar.len;
687 688
	}
allocated:
689
	/* total number of blocks allocated for direct blocks */
690
	ret = blk_allocated;
691 692 693
	*err = 0;
	return ret;
failed_out:
694
	for (i = 0; i < index; i++)
695
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
696 697 698 699
	return ret;
}

/**
700
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
701 702 703 704 705 706 707 708 709 710
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
711
 *	the same format as ext4_get_branch() would do. We are calling it after
712 713
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
714
 *	picture as after the successful ext4_get_block(), except that in one
715 716 717 718 719 720
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
721
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
722 723
 *	as described above and return 0.
 */
724
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
725 726 727
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
728 729 730 731 732 733
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
734 735
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
736

737
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
756
		err = ext4_journal_get_create_access(handle, bh);
757
		if (err) {
758 759
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
760 761 762 763 764 765 766 767
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
768
		if (n == indirect_blks) {
769 770 771 772 773 774
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
775
			for (i = 1; i < num; i++)
776 777 778 779 780 781
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

782 783
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
784 785 786 787 788 789 790
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
791
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
792
	for (i = 1; i <= n ; i++) {
793
		/*
794 795 796
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
797
		 */
798 799
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
800
	}
801 802
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
803

804
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
805 806 807 808 809

	return err;
}

/**
810
 * ext4_splice_branch - splice the allocated branch onto inode.
811 812 813
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
814
 *	ext4_alloc_branch)
815 816 817 818 819 820 821 822
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
823
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
824 825
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
826 827 828
{
	int i;
	int err = 0;
829
	ext4_fsblk_t current_block;
830 831 832 833 834 835 836 837

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
838
		err = ext4_journal_get_write_access(handle, where->bh);
839 840 841 842 843 844 845 846 847 848 849 850 851 852
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
853
			*(where->p + i) = cpu_to_le32(current_block++);
854 855 856 857 858 859 860 861 862 863 864
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
865
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
866 867
		 */
		jbd_debug(5, "splicing indirect only\n");
868 869
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
870 871 872 873 874 875
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
876
		ext4_mark_inode_dirty(handle, inode);
877 878 879 880 881 882
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
883
		/*
884 885 886
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
887
		 */
888 889
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
890
	}
891 892
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
893 894 895 896 897

	return err;
}

/*
898
 * The ext4_ind_map_blocks() function handles non-extents inodes
899
 * (i.e., using the traditional indirect/double-indirect i_blocks
900
 * scheme) for ext4_map_blocks().
901
 *
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
918
 *
919 920 921 922 923
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
924
 */
925 926
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
927
			       int flags)
928 929
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
930
	ext4_lblk_t offsets[4];
931 932
	Indirect chain[4];
	Indirect *partial;
933
	ext4_fsblk_t goal;
934 935 936 937
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
938
	ext4_fsblk_t first_block = 0;
939

940
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
941
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
942
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
943
				   &blocks_to_boundary);
944 945 946 947

	if (depth == 0)
		goto out;

948
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
949 950 951 952 953 954

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
955
		while (count < map->m_len && count <= blocks_to_boundary) {
956
			ext4_fsblk_t blk;
957 958 959 960 961 962 963 964

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
965
		goto got_it;
966 967 968
	}

	/* Next simple case - plain lookup or failed read of indirect block */
969
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
970 971 972
		goto cleanup;

	/*
973
	 * Okay, we need to do block allocation.
974
	*/
975
	goal = ext4_find_goal(inode, map->m_lblk, partial);
976 977 978 979 980 981 982 983

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
984
	count = ext4_blks_to_allocate(partial, indirect_blks,
985
				      map->m_len, blocks_to_boundary);
986
	/*
987
	 * Block out ext4_truncate while we alter the tree
988
	 */
989
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
990 991
				&count, goal,
				offsets + (partial - chain), partial);
992 993

	/*
994
	 * The ext4_splice_branch call will free and forget any buffers
995 996 997 998 999 1000
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1001
		err = ext4_splice_branch(handle, inode, map->m_lblk,
1002
					 partial, indirect_blks, count);
1003
	if (err)
1004 1005
		goto cleanup;

1006
	map->m_flags |= EXT4_MAP_NEW;
1007 1008

	ext4_update_inode_fsync_trans(handle, inode, 1);
1009
got_it:
1010 1011 1012
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1013
	if (count > blocks_to_boundary)
1014
		map->m_flags |= EXT4_MAP_BOUNDARY;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
	return err;
}

1028 1029
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1030
{
1031
	return &EXT4_I(inode)->i_reserved_quota;
1032
}
1033
#endif
1034

1035 1036
/*
 * Calculate the number of metadata blocks need to reserve
1037
 * to allocate a new block at @lblocks for non extent file based file
1038
 */
1039 1040
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1041
{
1042
	struct ext4_inode_info *ei = EXT4_I(inode);
1043
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1044
	int blk_bits;
1045

1046 1047
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1048

1049
	lblock -= EXT4_NDIR_BLOCKS;
1050

1051 1052 1053 1054 1055 1056 1057
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1058
	blk_bits = order_base_2(lblock);
1059
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1060 1061 1062 1063
}

/*
 * Calculate the number of metadata blocks need to reserve
1064
 * to allocate a block located at @lblock
1065
 */
1066
static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1067
{
1068
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1069
		return ext4_ext_calc_metadata_amount(inode, lblock);
1070

1071
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1072 1073
}

1074 1075 1076 1077
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1078 1079
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1080 1081
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082 1083 1084
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1085
	trace_ext4_da_update_reserve_space(inode, used);
1086 1087 1088 1089 1090 1091 1092 1093
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1094

1095 1096 1097
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1098 1099
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1100
	ei->i_allocated_meta_blocks = 0;
1101

1102 1103 1104 1105 1106 1107
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1108 1109
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1110
		ei->i_reserved_meta_blocks = 0;
1111
		ei->i_da_metadata_calc_len = 0;
1112
	}
1113
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1114

1115 1116
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1117
		dquot_claim_block(inode, used);
1118
	else {
1119 1120 1121
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1122
		 * not re-claim the quota for fallocated blocks.
1123
		 */
1124
		dquot_release_reservation_block(inode, used);
1125
	}
1126 1127 1128 1129 1130 1131

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1132 1133
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1134
		ext4_discard_preallocations(inode);
1135 1136
}

1137
static int __check_block_validity(struct inode *inode, const char *func,
1138 1139
				unsigned int line,
				struct ext4_map_blocks *map)
1140
{
1141 1142
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
1143 1144 1145 1146
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
1147 1148 1149 1150 1151
		return -EIO;
	}
	return 0;
}

1152
#define check_block_validity(inode, map)	\
1153
	__check_block_validity((inode), __func__, __LINE__, (map))
1154

1155
/*
1156 1157
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1191 1192 1193 1194 1195 1196 1197 1198 1199
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
			if (num >= max_pages)
				break;
		}
		pagevec_release(&pvec);
	}
	return num;
}

1213
/*
1214
 * The ext4_map_blocks() function tries to look up the requested blocks,
1215
 * and returns if the blocks are already mapped.
1216 1217 1218 1219 1220
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1221 1222
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1235 1236
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1237 1238
{
	int retval;
1239

1240 1241 1242 1243
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1244
	/*
1245 1246
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1247 1248
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1249
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1250
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1251
	} else {
1252
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1253
	}
1254
	up_read((&EXT4_I(inode)->i_data_sem));
1255

1256
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1257
		int ret = check_block_validity(inode, map);
1258 1259 1260 1261
		if (ret != 0)
			return ret;
	}

1262
	/* If it is only a block(s) look up */
1263
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1264 1265 1266 1267 1268 1269 1270 1271 1272
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1273
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1274 1275
		return retval;

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1286
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1287

1288
	/*
1289 1290 1291 1292
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1293 1294
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1295 1296 1297 1298 1299 1300 1301

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1302
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1303
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1304 1305 1306 1307
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1308
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1309
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1310
	} else {
1311
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1312

1313
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1314 1315 1316 1317 1318
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1319
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1320
		}
1321

1322 1323 1324 1325 1326 1327 1328
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1329
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1330 1331
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1332
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1333
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1334

1335
	up_write((&EXT4_I(inode)->i_data_sem));
1336
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1337
		int ret = check_block_validity(inode, map);
1338 1339 1340
		if (ret != 0)
			return ret;
	}
1341 1342 1343
	return retval;
}

1344 1345 1346
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1347 1348
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1349
{
1350
	handle_t *handle = ext4_journal_current_handle();
1351
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1352
	int ret = 0, started = 0;
1353
	int dio_credits;
1354

1355 1356 1357 1358
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1359
		/* Direct IO write... */
1360 1361 1362
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1363
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1364
		if (IS_ERR(handle)) {
1365
			ret = PTR_ERR(handle);
1366
			return ret;
1367
		}
J
Jan Kara 已提交
1368
		started = 1;
1369 1370
	}

1371
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1372
	if (ret > 0) {
1373 1374 1375
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1376
		ret = 0;
1377
	}
J
Jan Kara 已提交
1378 1379
	if (started)
		ext4_journal_stop(handle);
1380 1381 1382
	return ret;
}

1383 1384 1385 1386 1387 1388 1389
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1390 1391 1392
/*
 * `handle' can be NULL if create is zero
 */
1393
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1394
				ext4_lblk_t block, int create, int *errp)
1395
{
1396 1397
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1398 1399 1400 1401
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1402 1403 1404 1405
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1417
	}
1418 1419 1420
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1421

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1435
		}
1436 1437 1438 1439 1440 1441 1442
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1443
	}
1444 1445 1446 1447 1448 1449
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1450 1451
}

1452
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1453
			       ext4_lblk_t block, int create, int *err)
1454
{
1455
	struct buffer_head *bh;
1456

1457
	bh = ext4_getblk(handle, inode, block, create, err);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1471 1472 1473 1474 1475 1476 1477
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1478 1479 1480 1481 1482 1483 1484
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1485 1486
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1487
	     block_start = block_end, bh = next) {
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1505
 * close off a transaction and start a new one between the ext4_get_block()
1506
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1507 1508
 * prepare_write() is the right place.
 *
1509 1510
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1511 1512 1513 1514
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1515
 * By accident, ext4 can be reentered when a transaction is open via
1516 1517 1518 1519 1520 1521
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1522
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1523 1524 1525 1526 1527
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1528
				       struct buffer_head *bh)
1529 1530 1531
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1532
	return ext4_journal_get_write_access(handle, bh);
1533 1534
}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1545 1546
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1547
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1548 1549
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1550
{
1551
	struct inode *inode = mapping->host;
1552
	int ret, needed_blocks;
1553 1554
	handle_t *handle;
	int retries = 0;
1555
	struct page *page;
1556
	pgoff_t index;
1557
	unsigned from, to;
N
Nick Piggin 已提交
1558

1559
	trace_ext4_write_begin(inode, pos, len, flags);
1560 1561 1562 1563 1564
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1565
	index = pos >> PAGE_CACHE_SHIFT;
1566 1567
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1568 1569

retry:
1570 1571 1572 1573
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1574
	}
1575

1576 1577 1578 1579
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1580
	page = grab_cache_page_write_begin(mapping, index, flags);
1581 1582 1583 1584 1585 1586 1587
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1588 1589 1590 1591 1592 1593
	if (ext4_should_dioread_nolock(inode))
		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
				fsdata, ext4_get_block_write);
	else
		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
				fsdata, ext4_get_block);
N
Nick Piggin 已提交
1594 1595

	if (!ret && ext4_should_journal_data(inode)) {
1596 1597 1598
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1599 1600

	if (ret) {
1601 1602
		unlock_page(page);
		page_cache_release(page);
1603 1604 1605 1606
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1607 1608 1609
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1610
		 */
1611
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1612 1613 1614 1615
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1616
			ext4_truncate_failed_write(inode);
1617
			/*
1618
			 * If truncate failed early the inode might
1619 1620 1621 1622 1623 1624 1625
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1626 1627
	}

1628
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1629
		goto retry;
1630
out:
1631 1632 1633
	return ret;
}

N
Nick Piggin 已提交
1634 1635
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1636 1637 1638 1639
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1640
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1641 1642
}

1643
static int ext4_generic_write_end(struct file *file,
1644 1645 1646
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1689 1690 1691 1692
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1693
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1694 1695
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1696
static int ext4_ordered_write_end(struct file *file,
1697 1698 1699
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1700
{
1701
	handle_t *handle = ext4_journal_current_handle();
1702
	struct inode *inode = mapping->host;
1703 1704
	int ret = 0, ret2;

1705
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1706
	ret = ext4_jbd2_file_inode(handle, inode);
1707 1708

	if (ret == 0) {
1709
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1710
							page, fsdata);
1711
		copied = ret2;
1712
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1713 1714 1715 1716 1717
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1718 1719
		if (ret2 < 0)
			ret = ret2;
1720
	}
1721
	ret2 = ext4_journal_stop(handle);
1722 1723
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1724

1725
	if (pos + len > inode->i_size) {
1726
		ext4_truncate_failed_write(inode);
1727
		/*
1728
		 * If truncate failed early the inode might still be
1729 1730 1731 1732 1733 1734 1735 1736
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1737
	return ret ? ret : copied;
1738 1739
}

N
Nick Piggin 已提交
1740
static int ext4_writeback_write_end(struct file *file,
1741 1742 1743
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1744
{
1745
	handle_t *handle = ext4_journal_current_handle();
1746
	struct inode *inode = mapping->host;
1747 1748
	int ret = 0, ret2;

1749
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1750
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1751
							page, fsdata);
1752
	copied = ret2;
1753
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1754 1755 1756 1757 1758 1759
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1760 1761
	if (ret2 < 0)
		ret = ret2;
1762

1763
	ret2 = ext4_journal_stop(handle);
1764 1765
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1766

1767
	if (pos + len > inode->i_size) {
1768
		ext4_truncate_failed_write(inode);
1769
		/*
1770
		 * If truncate failed early the inode might still be
1771 1772 1773 1774 1775 1776 1777
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1778
	return ret ? ret : copied;
1779 1780
}

N
Nick Piggin 已提交
1781
static int ext4_journalled_write_end(struct file *file,
1782 1783 1784
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1785
{
1786
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1787
	struct inode *inode = mapping->host;
1788 1789
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1790
	unsigned from, to;
1791
	loff_t new_i_size;
1792

1793
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1794 1795 1796 1797 1798 1799 1800 1801
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1802 1803

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1804
				to, &partial, write_end_fn);
1805 1806
	if (!partial)
		SetPageUptodate(page);
1807 1808
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1809
		i_size_write(inode, pos+copied);
1810
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1811 1812
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1813
		ret2 = ext4_mark_inode_dirty(handle, inode);
1814 1815 1816
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1817

1818
	unlock_page(page);
1819
	page_cache_release(page);
1820
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1821 1822 1823 1824 1825 1826
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1827
	ret2 = ext4_journal_stop(handle);
1828 1829
	if (!ret)
		ret = ret2;
1830
	if (pos + len > inode->i_size) {
1831
		ext4_truncate_failed_write(inode);
1832
		/*
1833
		 * If truncate failed early the inode might still be
1834 1835 1836 1837 1838 1839
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1840 1841

	return ret ? ret : copied;
1842
}
1843

1844 1845 1846 1847
/*
 * Reserve a single block located at lblock
 */
static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1848
{
A
Aneesh Kumar K.V 已提交
1849
	int retries = 0;
1850
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1851
	struct ext4_inode_info *ei = EXT4_I(inode);
1852
	unsigned long md_needed;
1853
	int ret;
1854 1855 1856 1857 1858 1859

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1860
repeat:
1861
	spin_lock(&ei->i_block_reservation_lock);
1862
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1863
	trace_ext4_da_reserve_space(inode, md_needed);
1864
	spin_unlock(&ei->i_block_reservation_lock);
1865

1866
	/*
1867 1868 1869
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1870
	 */
1871
	ret = dquot_reserve_block(inode, 1);
1872 1873
	if (ret)
		return ret;
1874 1875 1876 1877
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1878
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1879
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1880 1881 1882 1883
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1884 1885
		return -ENOSPC;
	}
1886
	spin_lock(&ei->i_block_reservation_lock);
1887
	ei->i_reserved_data_blocks++;
1888 1889
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1890

1891 1892 1893
	return 0;       /* success */
}

1894
static void ext4_da_release_space(struct inode *inode, int to_free)
1895 1896
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1897
	struct ext4_inode_info *ei = EXT4_I(inode);
1898

1899 1900 1901
	if (!to_free)
		return;		/* Nothing to release, exit */

1902
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1903

L
Li Zefan 已提交
1904
	trace_ext4_da_release_space(inode, to_free);
1905
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1906
		/*
1907 1908 1909 1910
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1911
		 */
1912 1913 1914 1915 1916 1917
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1918
	}
1919
	ei->i_reserved_data_blocks -= to_free;
1920

1921 1922 1923 1924 1925 1926
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1927 1928
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1929
		ei->i_reserved_meta_blocks = 0;
1930
		ei->i_da_metadata_calc_len = 0;
1931
	}
1932

1933
	/* update fs dirty data blocks counter */
1934
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1935 1936

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1937

1938
	dquot_release_reservation_block(inode, to_free);
1939 1940 1941
}

static void ext4_da_page_release_reservation(struct page *page,
1942
					     unsigned long offset)
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1959
	ext4_da_release_space(page->mapping->host, to_release);
1960
}
1961

1962 1963 1964 1965 1966 1967
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1968
 * them with writepage() call back
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1981
	long pages_skipped;
1982 1983 1984 1985 1986
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1987 1988

	BUG_ON(mpd->next_page <= mpd->first_page);
1989 1990 1991
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1992
	 * If we look at mpd->b_blocknr we would only be looking
1993 1994
	 * at the currently mapped buffer_heads.
	 */
1995 1996 1997
	index = mpd->first_page;
	end = mpd->next_page - 1;

1998
	pagevec_init(&pvec, 0);
1999
	while (index <= end) {
2000
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2001 2002 2003 2004 2005
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

2006 2007 2008 2009 2010 2011 2012 2013
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2014
			pages_skipped = mpd->wbc->pages_skipped;
2015
			err = mapping->a_ops->writepage(page, mpd->wbc);
2016 2017 2018 2019 2020
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
2021
				mpd->pages_written++;
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * the function goes through all passed space and put actual disk
2039
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2040
 */
2041 2042
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
				 struct ext4_map_blocks *map)
2043 2044 2045
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2046 2047
	int blocks = map->m_len;
	sector_t pblock = map->m_pblk, cur_logical;
2048
	struct buffer_head *head, *bh;
2049
	pgoff_t index, end;
2050 2051 2052
	struct pagevec pvec;
	int nr_pages, i;

2053 2054
	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
2081
				if (cur_logical >= map->m_lblk)
2082 2083 2084 2085 2086
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
2087
				if (cur_logical >= map->m_lblk + blocks)
2088
					break;
2089

2090
				if (buffer_delay(bh) || buffer_unwritten(bh)) {
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2106
				} else if (buffer_mapped(bh))
2107 2108
					BUG_ON(bh->b_blocknr != pblock);

2109
				if (map->m_flags & EXT4_MAP_UNINIT)
2110
					set_buffer_uninit(bh);
2111 2112 2113 2114 2115 2116 2117 2118 2119
				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2138
			if (page->index > end)
2139 2140 2141 2142 2143 2144 2145
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2146 2147
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2148 2149 2150 2151
	}
	return;
}

2152 2153 2154
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2167 2168 2169
	return;
}

2170 2171 2172
/*
 * mpage_da_map_blocks - go through given space
 *
2173
 * @mpd - bh describing space
2174 2175 2176 2177
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2178
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2179
{
2180
	int err, blks, get_blocks_flags;
2181
	struct ext4_map_blocks map;
2182 2183 2184 2185
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2186 2187 2188 2189

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2190
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2191 2192
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2193
		return 0;
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2204
	/*
2205
	 * Call ext4_map_blocks() to allocate any delayed allocation
2206 2207 2208 2209 2210 2211 2212 2213
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
2214
	 * want to change *many* call functions, so ext4_map_blocks()
2215 2216 2217 2218 2219 2220
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2221
	 */
2222 2223
	map.m_lblk = next;
	map.m_len = max_blocks;
2224
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2225 2226
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2227
	if (mpd->b_state & (1 << BH_Delay))
2228 2229
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2230
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2231
	if (blks < 0) {
2232 2233
		struct super_block *sb = mpd->inode->i_sb;

2234
		err = blks;
2235 2236 2237 2238
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2239 2240 2241
		 */
		if (err == -EAGAIN)
			return 0;
2242 2243

		if (err == -ENOSPC &&
2244
		    ext4_count_free_blocks(sb)) {
2245 2246 2247 2248
			mpd->retval = err;
			return 0;
		}

2249
		/*
2250 2251 2252 2253 2254
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2255
		 */
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2267
		}
2268
		/* invalidate all the pages */
2269
		ext4_da_block_invalidatepages(mpd, next,
2270
				mpd->b_size >> mpd->inode->i_blkbits);
2271 2272
		return err;
	}
2273 2274
	BUG_ON(blks == 0);

2275 2276 2277
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2278

2279 2280 2281
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2282

2283 2284 2285 2286
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2287 2288
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2289
		mpage_put_bnr_to_bhs(mpd, &map);
2290

2291 2292 2293 2294 2295 2296 2297
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2298
	 * Update on-disk size along with block allocation.
2299 2300 2301 2302 2303 2304 2305 2306 2307
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2308
	return 0;
2309 2310
}

2311 2312
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2324 2325
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2326 2327
{
	sector_t next;
2328
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2329

2330 2331 2332 2333
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
2334
	 * ext4_map_blocks() multiple times in a loop
2335 2336 2337 2338
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2339
	/* check if thereserved journal credits might overflow */
2340
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2361 2362 2363
	/*
	 * First block in the extent
	 */
2364 2365 2366 2367
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2368 2369 2370
		return;
	}

2371
	next = mpd->b_blocknr + nrblocks;
2372 2373 2374
	/*
	 * Can we merge the block to our big extent?
	 */
2375 2376
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2377 2378 2379
		return;
	}

2380
flush_it:
2381 2382 2383 2384
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2385 2386
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2387 2388
	mpd->io_done = 1;
	return;
2389 2390
}

2391
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2392
{
2393
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2394 2395
}

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2410
	struct buffer_head *bh, *head;
2411 2412 2413 2414 2415 2416 2417 2418
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2419
		 * and start IO on them using writepage()
2420 2421
		 */
		if (mpd->next_page != mpd->first_page) {
2422 2423
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2424 2425 2426 2427 2428 2429 2430
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2441 2442 2443
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2444 2445 2446 2447 2448 2449 2450
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2451 2452
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2453 2454
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2455 2456 2457 2458 2459 2460 2461 2462
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2463 2464 2465 2466
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2467
			 * with the page in ext4_writepage
2468
			 */
2469
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2470 2471 2472
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2473 2474
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2475 2476 2477 2478 2479 2480 2481 2482 2483
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2484 2485
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2486
			}
2487 2488 2489 2490 2491 2492 2493 2494
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2495 2496 2497
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2498 2499 2500 2501 2502 2503 2504
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2505 2506
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2507
				  struct buffer_head *bh, int create)
2508
{
2509
	struct ext4_map_blocks map;
2510
	int ret = 0;
2511 2512 2513 2514
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2515 2516

	BUG_ON(create == 0);
2517 2518 2519 2520
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2521 2522 2523 2524 2525 2526

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2527 2528 2529 2530 2531 2532
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2533 2534 2535 2536
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2537
		ret = ext4_da_reserve_space(inode, iblock);
2538 2539 2540 2541
		if (ret)
			/* not enough space to reserve */
			return ret;

2542 2543 2544 2545
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2546 2547
	}

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
		set_buffer_mapped(bh);
	}
	return 0;
2562
}
2563

2564 2565 2566
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
2567 2568
 * callback function for block_prepare_write() and block_write_full_page().
 * These functions should only try to map a single block at a time.
2569 2570 2571 2572 2573
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2574 2575 2576
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2577 2578
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2579 2580
				   struct buffer_head *bh_result, int create)
{
2581
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2582
	return _ext4_get_block(inode, iblock, bh_result, 0);
2583 2584
}

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2632
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2633 2634 2635 2636
out:
	return ret;
}

2637 2638 2639
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2640
/*
2641 2642 2643 2644 2645 2646 2647 2648 2649
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2650 2651 2652 2653 2654
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2680
 */
2681
static int ext4_writepage(struct page *page,
2682
			  struct writeback_control *wbc)
2683 2684
{
	int ret = 0;
2685
	loff_t size;
2686
	unsigned int len;
2687
	struct buffer_head *page_bufs = NULL;
2688 2689
	struct inode *inode = page->mapping->host;

2690
	trace_ext4_writepage(inode, page);
2691 2692 2693 2694 2695
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2696

2697
	if (page_has_buffers(page)) {
2698
		page_bufs = page_buffers(page);
2699
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2700
					ext4_bh_delay_or_unwritten)) {
2701
			/*
2702 2703
			 * We don't want to do  block allocation
			 * So redirty the page and return
2704 2705 2706
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2727
		ret = block_prepare_write(page, 0, len,
2728
					  noalloc_get_block_write);
2729 2730 2731 2732
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2733
						ext4_bh_delay_or_unwritten)) {
2734 2735 2736 2737 2738 2739 2740 2741 2742
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2743 2744 2745 2746 2747
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2748
		/* now mark the buffer_heads as dirty and uptodate */
2749
		block_commit_write(page, 0, len);
2750 2751
	}

2752 2753 2754 2755 2756 2757
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
2758
		return __ext4_journalled_writepage(page, len);
2759 2760
	}

2761
	if (page_bufs && buffer_uninit(page_bufs)) {
2762 2763 2764 2765
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2766 2767
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2768 2769 2770 2771

	return ret;
}

2772
/*
2773 2774 2775 2776 2777
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2778
 */
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2790
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2791 2792 2793 2794 2795
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2796

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
 * address space and call the callback function (which usually writes
 * the pages).
 *
 * This is a forked version of write_cache_pages().  Differences:
 *	Range cyclic is ignored.
 *	no_nrwrite_index_update is always presumed true
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
				struct mpage_da_data *mpd)
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	long nr_to_write = wbc->nr_to_write;

	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

	while (!done && (index <= end)) {
		int i;

		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
			      PAGECACHE_TAG_DIRTY,
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				done = 1;
				break;
			}

			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

			ret = __mpage_da_writepage(page, wbc, mpd);
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					done = 1;
					break;
				}
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
				    wbc->sync_mode == WB_SYNC_NONE) {
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
					done = 1;
					break;
				}
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	return ret;
}


2915
static int ext4_da_writepages(struct address_space *mapping,
2916
			      struct writeback_control *wbc)
2917
{
2918 2919
	pgoff_t	index;
	int range_whole = 0;
2920
	handle_t *handle = NULL;
2921
	struct mpage_da_data mpd;
2922
	struct inode *inode = mapping->host;
2923 2924
	int pages_written = 0;
	long pages_skipped;
2925
	unsigned int max_pages;
2926
	int range_cyclic, cycled = 1, io_done = 0;
2927 2928
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2929
	loff_t range_start = wbc->range_start;
2930
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2931

2932
	trace_ext4_da_writepages(inode, wbc);
2933

2934 2935 2936 2937 2938
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2939
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2940
		return 0;
2941 2942 2943 2944 2945

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2946
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2947 2948 2949 2950 2951
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2952
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2953 2954
		return -EROFS;

2955 2956
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2957

2958 2959
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2960
		index = mapping->writeback_index;
2961 2962 2963 2964 2965 2966
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2967
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2968

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
	if (!range_cyclic && range_whole)
		desired_nr_to_write = wbc->nr_to_write * 8;
	else
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2999 3000 3001
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

3002 3003
	pages_skipped = wbc->pages_skipped;

3004
retry:
3005
	while (!ret && wbc->nr_to_write > 0) {
3006 3007 3008 3009 3010 3011 3012 3013

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
3014
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3015

3016 3017 3018 3019
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
3020
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3021
			       "%ld pages, ino %lu; err %d", __func__,
3022
				wbc->nr_to_write, inode->i_ino, ret);
3023 3024
			goto out_writepages;
		}
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
3043
		ret = write_cache_pages_da(mapping, wbc, &mpd);
3044
		/*
3045
		 * If we have a contiguous extent of pages and we
3046 3047 3048 3049 3050 3051 3052 3053 3054
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3055
		trace_ext4_da_write_pages(inode, &mpd);
3056
		wbc->nr_to_write -= mpd.pages_written;
3057

3058
		ext4_journal_stop(handle);
3059

3060
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3061 3062 3063 3064
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3065
			jbd2_journal_force_commit_nested(sbi->s_journal);
3066 3067 3068
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3069 3070 3071 3072
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3073 3074
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
3075
			ret = 0;
3076
			io_done = 1;
3077
		} else if (wbc->nr_to_write)
3078 3079 3080 3081 3082 3083
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3084
	}
3085 3086 3087 3088 3089 3090 3091
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3092
	if (pages_skipped != wbc->pages_skipped)
3093 3094
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
3095
			 "with nr_to_write = %ld ret = %d",
3096
			 __func__, wbc->nr_to_write, ret);
3097 3098 3099

	/* Update index */
	index += pages_written;
3100
	wbc->range_cyclic = range_cyclic;
3101 3102 3103 3104 3105 3106
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
3107

3108
out_writepages:
3109
	wbc->nr_to_write -= nr_to_writebump;
3110
	wbc->range_start = range_start;
3111
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3112
	return ret;
3113 3114
}

3115 3116 3117 3118 3119 3120 3121 3122 3123
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3124
	 * counters can get slightly wrong with percpu_counter_batch getting
3125 3126 3127 3128 3129 3130 3131 3132 3133
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3134 3135
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3136 3137 3138
		 */
		return 1;
	}
3139 3140 3141 3142 3143 3144 3145
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3146 3147 3148
	return 0;
}

3149
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3150 3151
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3152
{
3153
	int ret, retries = 0;
3154 3155 3156 3157 3158 3159
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3160 3161 3162 3163 3164 3165 3166

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3167
	trace_ext4_da_write_begin(inode, pos, len, flags);
3168
retry:
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3180 3181 3182
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3183

3184
	page = grab_cache_page_write_begin(mapping, index, flags);
3185 3186 3187 3188 3189
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3190 3191 3192
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3193
				ext4_da_get_block_prep);
3194 3195 3196 3197
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3198 3199 3200 3201 3202 3203
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3204
			ext4_truncate_failed_write(inode);
3205 3206
	}

3207 3208
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3209 3210 3211 3212
out:
	return ret;
}

3213 3214 3215 3216 3217
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3218
					    unsigned long offset)
3219 3220 3221 3222 3223 3224 3225 3226 3227
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3228
	for (i = 0; i < idx; i++)
3229 3230
		bh = bh->b_this_page;

3231
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3232 3233 3234 3235
		return 0;
	return 1;
}

3236
static int ext4_da_write_end(struct file *file,
3237 3238 3239
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3240 3241 3242 3243 3244
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3245
	unsigned long start, end;
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3259

3260
	trace_ext4_da_write_end(inode, pos, len, copied);
3261
	start = pos & (PAGE_CACHE_SIZE - 1);
3262
	end = start + copied - 1;
3263 3264 3265 3266 3267 3268 3269 3270

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3282

3283 3284 3285
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3286 3287 3288 3289 3290
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3291
		}
3292
	}
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3314
	ext4_da_page_release_reservation(page, offset);
3315 3316 3317 3318 3319 3320 3321

out:
	ext4_invalidatepage(page, offset);

	return;
}

3322 3323 3324 3325 3326
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3327 3328
	trace_ext4_alloc_da_blocks(inode);

3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3339
	 *
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3359
	 *
3360 3361 3362 3363 3364 3365
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3366

3367 3368 3369 3370 3371
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3372
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3373 3374 3375 3376 3377 3378 3379 3380
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3381
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3382 3383 3384 3385 3386
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3397 3398
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3410
		 * NB. EXT4_STATE_JDATA is not set on files other than
3411 3412 3413 3414 3415 3416
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3417
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3418
		journal = EXT4_JOURNAL(inode);
3419 3420 3421
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3422 3423 3424 3425 3426

		if (err)
			return 0;
	}

3427
	return generic_block_bmap(mapping, block, ext4_get_block);
3428 3429
}

3430
static int ext4_readpage(struct file *file, struct page *page)
3431
{
3432
	return mpage_readpage(page, ext4_get_block);
3433 3434 3435
}

static int
3436
ext4_readpages(struct file *file, struct address_space *mapping,
3437 3438
		struct list_head *pages, unsigned nr_pages)
{
3439
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3440 3441
}

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
static void ext4_free_io_end(ext4_io_end_t *io)
{
	BUG_ON(!io);
	if (io->page)
		put_page(io->page);
	iput(io->inode);
	kfree(io);
}

static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3471
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3472
{
3473
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3474

3475 3476 3477 3478 3479
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3480 3481 3482 3483 3484 3485
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3486 3487 3488 3489
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3490 3491
}

3492
static int ext4_releasepage(struct page *page, gfp_t wait)
3493
{
3494
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3495 3496 3497 3498

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3499 3500 3501 3502
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3503 3504 3505
}

/*
3506 3507
 * O_DIRECT for ext3 (or indirect map) based files
 *
3508 3509 3510 3511 3512
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3513 3514
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3515
 */
3516
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3517 3518
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3519 3520 3521
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3522
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3523
	handle_t *handle;
3524 3525 3526
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3527
	int retries = 0;
3528 3529 3530 3531 3532

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3533 3534 3535 3536 3537 3538
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3539
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3540 3541 3542 3543
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3544 3545
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3546
			ext4_journal_stop(handle);
3547 3548 3549
		}
	}

3550
retry:
3551 3552 3553 3554 3555 3556 3557 3558
	if (rw == READ && ext4_should_dioread_nolock(inode))
		ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
				 ext4_get_block, NULL);
	else
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3559
				 offset, nr_segs,
3560
				 ext4_get_block, NULL);
3561 3562
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3563

J
Jan Kara 已提交
3564
	if (orphan) {
3565 3566
		int err;

J
Jan Kara 已提交
3567 3568 3569 3570 3571 3572 3573
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3574 3575 3576
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3577 3578 3579
			goto out;
		}
		if (inode->i_nlink)
3580
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3581
		if (ret > 0) {
3582 3583 3584 3585 3586 3587 3588 3589
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3590
				 * ext4_mark_inode_dirty() to userspace.  So
3591 3592
				 * ignore it.
				 */
3593
				ext4_mark_inode_dirty(handle, inode);
3594 3595
			}
		}
3596
		err = ext4_journal_stop(handle);
3597 3598 3599 3600 3601 3602 3603
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3604 3605 3606 3607 3608
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3609
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3610 3611
		   struct buffer_head *bh_result, int create)
{
3612
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3613
		   inode->i_ino, create);
3614 3615
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3616 3617
}

3618
static void dump_completed_IO(struct inode * inode)
3619 3620 3621 3622
{
#ifdef	EXT4_DEBUG
	struct list_head *cur, *before, *after;
	ext4_io_end_t *io, *io0, *io1;
3623
	unsigned long flags;
3624

3625 3626
	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3627 3628 3629
		return;
	}

3630
	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3631
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3632
	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3633 3634 3635 3636 3637 3638 3639 3640 3641
		cur = &io->list;
		before = cur->prev;
		io0 = container_of(before, ext4_io_end_t, list);
		after = cur->next;
		io1 = container_of(after, ext4_io_end_t, list);

		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
			    io, inode->i_ino, io0, io1);
	}
3642
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3643 3644
#endif
}
3645 3646 3647 3648

/*
 * check a range of space and convert unwritten extents to written.
 */
3649
static int ext4_end_io_nolock(ext4_io_end_t *io)
3650 3651 3652
{
	struct inode *inode = io->inode;
	loff_t offset = io->offset;
3653
	ssize_t size = io->size;
3654 3655
	int ret = 0;

3656
	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3657 3658 3659 3660 3661 3662
		   "list->prev 0x%p\n",
	           io, inode->i_ino, io->list.next, io->list.prev);

	if (list_empty(&io->list))
		return ret;

3663
	if (io->flag != EXT4_IO_UNWRITTEN)
3664 3665
		return ret;

3666
	ret = ext4_convert_unwritten_extents(inode, offset, size);
3667
	if (ret < 0) {
3668
		printk(KERN_EMERG "%s: failed to convert unwritten"
3669 3670 3671 3672 3673
			"extents to written extents, error is %d"
			" io is still on inode %lu aio dio list\n",
                       __func__, ret, inode->i_ino);
		return ret;
	}
3674

3675 3676
	if (io->iocb)
		aio_complete(io->iocb, io->result, 0);
3677 3678 3679
	/* clear the DIO AIO unwritten flag */
	io->flag = 0;
	return ret;
3680
}
3681

3682 3683 3684
/*
 * work on completed aio dio IO, to convert unwritten extents to extents
 */
3685
static void ext4_end_io_work(struct work_struct *work)
3686
{
3687 3688 3689 3690 3691
	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
	struct inode		*inode = io->inode;
	struct ext4_inode_info	*ei = EXT4_I(inode);
	unsigned long		flags;
	int			ret;
3692

3693
	mutex_lock(&inode->i_mutex);
3694
	ret = ext4_end_io_nolock(io);
3695 3696 3697
	if (ret < 0) {
		mutex_unlock(&inode->i_mutex);
		return;
3698
	}
3699 3700 3701 3702 3703

	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	if (!list_empty(&io->list))
		list_del_init(&io->list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3704
	mutex_unlock(&inode->i_mutex);
3705
	ext4_free_io_end(io);
3706
}
3707

3708 3709 3710
/*
 * This function is called from ext4_sync_file().
 *
3711 3712
 * When IO is completed, the work to convert unwritten extents to
 * written is queued on workqueue but may not get immediately
3713 3714
 * scheduled. When fsync is called, we need to ensure the
 * conversion is complete before fsync returns.
3715 3716 3717 3718 3719
 * The inode keeps track of a list of pending/completed IO that
 * might needs to do the conversion. This function walks through
 * the list and convert the related unwritten extents for completed IO
 * to written.
 * The function return the number of pending IOs on success.
3720
 */
3721
int flush_completed_IO(struct inode *inode)
3722 3723
{
	ext4_io_end_t *io;
3724 3725
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned long flags;
3726 3727 3728
	int ret = 0;
	int ret2 = 0;

3729
	if (list_empty(&ei->i_completed_io_list))
3730 3731
		return ret;

3732
	dump_completed_IO(inode);
3733 3734 3735
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	while (!list_empty(&ei->i_completed_io_list)){
		io = list_entry(ei->i_completed_io_list.next,
3736 3737
				ext4_io_end_t, list);
		/*
3738
		 * Calling ext4_end_io_nolock() to convert completed
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
		 * IO to written.
		 *
		 * When ext4_sync_file() is called, run_queue() may already
		 * about to flush the work corresponding to this io structure.
		 * It will be upset if it founds the io structure related
		 * to the work-to-be schedule is freed.
		 *
		 * Thus we need to keep the io structure still valid here after
		 * convertion finished. The io structure has a flag to
		 * avoid double converting from both fsync and background work
		 * queue work.
		 */
3751
		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3752
		ret = ext4_end_io_nolock(io);
3753
		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3754 3755 3756 3757 3758
		if (ret < 0)
			ret2 = ret;
		else
			list_del_init(&io->list);
	}
3759
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3760 3761 3762
	return (ret2 < 0) ? ret2 : 0;
}

3763
static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3764 3765 3766
{
	ext4_io_end_t *io = NULL;

3767
	io = kmalloc(sizeof(*io), flags);
3768 3769

	if (io) {
3770
		igrab(inode);
3771
		io->inode = inode;
3772
		io->flag = 0;
3773 3774
		io->offset = 0;
		io->size = 0;
3775
		io->page = NULL;
3776 3777
		io->iocb = NULL;
		io->result = 0;
3778
		INIT_WORK(&io->work, ext4_end_io_work);
3779
		INIT_LIST_HEAD(&io->list);
3780 3781 3782 3783 3784 3785
	}

	return io;
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3786 3787
			    ssize_t size, void *private, int ret,
			    bool is_async)
3788 3789 3790
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3791 3792
	unsigned long flags;
	struct ext4_inode_info *ei;
3793

3794 3795
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3796
		goto out;
3797

3798 3799 3800 3801 3802 3803
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3804
	if (io_end->flag != EXT4_IO_UNWRITTEN){
3805 3806
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3807 3808 3809 3810
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3811 3812
	}

3813 3814
	io_end->offset = offset;
	io_end->size = size;
3815 3816 3817 3818
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3819 3820
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3821
	/* queue the work to convert unwritten extents to written */
3822 3823
	queue_work(wq, &io_end->work);

3824
	/* Add the io_end to per-inode completed aio dio list*/
3825 3826 3827 3828
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3829 3830
	iocb->private = NULL;
}
3831

3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

	io_end->flag = EXT4_IO_UNWRITTEN;
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
		if (printk_ratelimit())
			printk(KERN_WARNING "%s: allocation fail\n", __func__);
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3897 3898 3899 3900 3901 3902 3903 3904 3905
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3906 3907 3908 3909
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3928 3929 3930
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3931 3932
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3933 3934
		 *
 		 * As to previously fallocated extents, ext4 get_block
3935 3936 3937
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3938 3939 3940 3941 3942 3943 3944 3945
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3946
 		 */
3947 3948 3949
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3950
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3951 3952 3953 3954
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
3955
			 * direct IO, so that later ext4_map_blocks()
3956 3957 3958 3959 3960 3961 3962
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3963 3964 3965
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3966
					 ext4_get_block_write,
3967
					 ext4_end_io_dio);
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3987 3988
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3989
			int err;
3990 3991 3992 3993
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3994 3995 3996 3997
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3998
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3999
		}
4000 4001
		return ret;
	}
4002 4003

	/* for write the the end of file case, we fall back to old way */
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

4014
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4015 4016 4017 4018 4019
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

4020
/*
4021
 * Pages can be marked dirty completely asynchronously from ext4's journalling
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
4033
static int ext4_journalled_set_page_dirty(struct page *page)
4034 4035 4036 4037 4038
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

4039
static const struct address_space_operations ext4_ordered_aops = {
4040 4041
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4042
	.writepage		= ext4_writepage,
4043 4044 4045 4046 4047 4048 4049 4050 4051
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4052
	.error_remove_page	= generic_error_remove_page,
4053 4054
};

4055
static const struct address_space_operations ext4_writeback_aops = {
4056 4057
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4058
	.writepage		= ext4_writepage,
4059 4060 4061 4062 4063 4064 4065 4066 4067
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4068
	.error_remove_page	= generic_error_remove_page,
4069 4070
};

4071
static const struct address_space_operations ext4_journalled_aops = {
4072 4073
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4074
	.writepage		= ext4_writepage,
4075 4076 4077 4078 4079 4080 4081 4082
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
4083
	.error_remove_page	= generic_error_remove_page,
4084 4085
};

4086
static const struct address_space_operations ext4_da_aops = {
4087 4088
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4089
	.writepage		= ext4_writepage,
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4100
	.error_remove_page	= generic_error_remove_page,
4101 4102
};

4103
void ext4_set_aops(struct inode *inode)
4104
{
4105 4106 4107 4108
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
4109
		inode->i_mapping->a_ops = &ext4_ordered_aops;
4110 4111 4112
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
4113 4114
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
4115
	else
4116
		inode->i_mapping->a_ops = &ext4_journalled_aops;
4117 4118 4119
}

/*
4120
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4121 4122 4123 4124
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
4125
int ext4_block_truncate_page(handle_t *handle,
4126 4127
		struct address_space *mapping, loff_t from)
{
4128
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4129
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
4130 4131
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
4132 4133
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
4134
	struct page *page;
4135 4136
	int err = 0;

4137 4138
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4139 4140 4141
	if (!page)
		return -EINVAL;

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4166
		ext4_get_block(inode, iblock, bh, 0);
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4187
	if (ext4_should_journal_data(inode)) {
4188
		BUFFER_TRACE(bh, "get write access");
4189
		err = ext4_journal_get_write_access(handle, bh);
4190 4191 4192 4193
		if (err)
			goto unlock;
	}

4194
	zero_user(page, offset, length);
4195 4196 4197 4198

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4199
	if (ext4_should_journal_data(inode)) {
4200
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4201
	} else {
4202
		if (ext4_should_order_data(inode))
4203
			err = ext4_jbd2_file_inode(handle, inode);
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4227
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4228 4229
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4230
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4231 4232 4233
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4234
 *	This is a helper function used by ext4_truncate().
4235 4236 4237 4238 4239 4240 4241
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4242
 *	past the truncation point is possible until ext4_truncate()
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4261
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4262 4263
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4264 4265 4266 4267 4268
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4269
	/* Make k index the deepest non-null offset + 1 */
4270 4271
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4272
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4283
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4295
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4296 4297 4298 4299 4300 4301
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4302
	while (partial > p) {
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4318 4319 4320 4321 4322
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4323 4324
{
	__le32 *p;
4325
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4326 4327 4328

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4329

4330 4331
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4332 4333 4334
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4335 4336 4337
		return 1;
	}

4338 4339
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4340 4341
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4342
		}
4343
		ext4_mark_inode_dirty(handle, inode);
4344 4345
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4346 4347
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4348
			ext4_journal_get_write_access(handle, bh);
4349 4350 4351
		}
	}

4352 4353
	for (p = first; p < last; p++)
		*p = 0;
4354

4355
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4356
	return 0;
4357 4358 4359
}

/**
4360
 * ext4_free_data - free a list of data blocks
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4378
static void ext4_free_data(handle_t *handle, struct inode *inode,
4379 4380 4381
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4382
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4383 4384 4385 4386
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4387
	ext4_fsblk_t nr;		    /* Current block # */
4388 4389 4390 4391 4392 4393
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4394
		err = ext4_journal_get_write_access(handle, this_bh);
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4412 4413 4414 4415
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4416 4417 4418 4419 4420 4421 4422 4423
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4424
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4425 4426 4427
				  count, block_to_free_p, p);

	if (this_bh) {
4428
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4429 4430 4431 4432 4433 4434 4435

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4436
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4437
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4438
		else
4439 4440 4441 4442
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4443 4444 4445 4446
	}
}

/**
4447
 *	ext4_free_branches - free an array of branches
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4459
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4460 4461 4462
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4463
	ext4_fsblk_t nr;
4464 4465
	__le32 *p;

4466
	if (ext4_handle_is_aborted(handle))
4467 4468 4469 4470
		return;

	if (depth--) {
		struct buffer_head *bh;
4471
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4472 4473 4474 4475 4476 4477
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4478 4479
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4480 4481 4482 4483
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4484 4485 4486
				break;
			}

4487 4488 4489 4490 4491 4492 4493 4494
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4495 4496
				EXT4_ERROR_INODE_BLOCK(inode, nr,
						       "Read failure");
4497 4498 4499 4500 4501
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4502
			ext4_free_branches(handle, inode, bh,
4503 4504 4505
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4523
			if (ext4_handle_is_aborted(handle))
4524 4525
				return;
			if (try_to_extend_transaction(handle, inode)) {
4526
				ext4_mark_inode_dirty(handle, inode);
4527 4528
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4529 4530
			}

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
			/*
			 * The forget flag here is critical because if
			 * we are journaling (and not doing data
			 * journaling), we have to make sure a revoke
			 * record is written to prevent the journal
			 * replay from overwriting the (former)
			 * indirect block if it gets reallocated as a
			 * data block.  This must happen in the same
			 * transaction where the data blocks are
			 * actually freed.
			 */
4542
			ext4_free_blocks(handle, inode, 0, nr, 1,
4543 4544
					 EXT4_FREE_BLOCKS_METADATA|
					 EXT4_FREE_BLOCKS_FORGET);
4545 4546 4547 4548 4549 4550 4551

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4552
				if (!ext4_journal_get_write_access(handle,
4553 4554 4555
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4556 4557 4558 4559
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4560 4561 4562 4563 4564 4565
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4566
		ext4_free_data(handle, inode, parent_bh, first, last);
4567 4568 4569
	}
}

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4583
/*
4584
 * ext4_truncate()
4585
 *
4586 4587
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4604
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4605
 * that this inode's truncate did not complete and it will again call
4606 4607
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4608
 * that's fine - as long as they are linked from the inode, the post-crash
4609
 * ext4_truncate() run will find them and release them.
4610
 */
4611
void ext4_truncate(struct inode *inode)
4612 4613
{
	handle_t *handle;
4614
	struct ext4_inode_info *ei = EXT4_I(inode);
4615
	__le32 *i_data = ei->i_data;
4616
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4617
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4618
	ext4_lblk_t offsets[4];
4619 4620 4621 4622
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4623
	ext4_lblk_t last_block;
4624 4625
	unsigned blocksize = inode->i_sb->s_blocksize;

4626
	if (!ext4_can_truncate(inode))
4627 4628
		return;

4629
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4630

4631
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4632
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4633

4634
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4635
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4636 4637
		return;
	}
A
Alex Tomas 已提交
4638

4639
	handle = start_transaction(inode);
4640
	if (IS_ERR(handle))
4641 4642 4643
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4644
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4645

4646 4647 4648
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4649

4650
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4663
	if (ext4_orphan_add(handle, inode))
4664 4665
		goto out_stop;

4666 4667 4668 4669 4670
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4671

4672
	ext4_discard_preallocations(inode);
4673

4674 4675 4676 4677 4678
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4679
	 * ext4 *really* writes onto the disk inode.
4680 4681 4682 4683
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4684 4685
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4686 4687 4688
		goto do_indirects;
	}

4689
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4690 4691 4692 4693
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4694
			ext4_free_branches(handle, inode, NULL,
4695 4696 4697 4698 4699 4700 4701 4702 4703
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4704
			ext4_free_branches(handle, inode, partial->bh,
4705 4706 4707 4708 4709 4710
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4711
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4712 4713 4714
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4715
		brelse(partial->bh);
4716 4717 4718 4719 4720 4721
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4722
		nr = i_data[EXT4_IND_BLOCK];
4723
		if (nr) {
4724 4725
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4726
		}
4727 4728
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4729
		if (nr) {
4730 4731
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4732
		}
4733 4734
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4735
		if (nr) {
4736 4737
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4738
		}
4739
	case EXT4_TIND_BLOCK:
4740 4741 4742
		;
	}

4743
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4744
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4745
	ext4_mark_inode_dirty(handle, inode);
4746 4747 4748 4749 4750 4751

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4752
		ext4_handle_sync(handle);
4753 4754 4755 4756 4757
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4758
	 * ext4_delete_inode(), and we allow that function to clean up the
4759 4760 4761
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4762
		ext4_orphan_del(handle, inode);
4763

4764
	ext4_journal_stop(handle);
4765 4766 4767
}

/*
4768
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4769 4770 4771 4772
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4773 4774
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4775
{
4776 4777 4778 4779 4780 4781
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4782
	iloc->bh = NULL;
4783 4784
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4785

4786 4787 4788
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4789 4790
		return -EIO;

4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4801
	if (!bh) {
4802 4803
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
4804 4805 4806 4807
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4831
			int i, start;
4832

4833
			start = inode_offset & ~(inodes_per_block - 1);
4834

4835 4836
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4849
			for (i = start; i < start + inodes_per_block; i++) {
4850 4851
				if (i == inode_offset)
					continue;
4852
				if (ext4_test_bit(i, bitmap_bh->b_data))
4853 4854 4855
					break;
			}
			brelse(bitmap_bh);
4856
			if (i == start + inodes_per_block) {
4857 4858 4859 4860 4861 4862 4863 4864 4865
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4866 4867 4868 4869 4870 4871 4872 4873 4874
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4875
			/* s_inode_readahead_blks is always a power of 2 */
4876 4877 4878 4879 4880 4881 4882
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4883
				num -= ext4_itable_unused_count(sb, gdp);
4884 4885 4886 4887 4888 4889 4890
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4901 4902
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4903 4904 4905 4906 4907 4908 4909 4910 4911
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4912
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4913 4914
{
	/* We have all inode data except xattrs in memory here. */
4915
	return __ext4_get_inode_loc(inode, iloc,
4916
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4917 4918
}

4919
void ext4_set_inode_flags(struct inode *inode)
4920
{
4921
	unsigned int flags = EXT4_I(inode)->i_flags;
4922 4923

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4924
	if (flags & EXT4_SYNC_FL)
4925
		inode->i_flags |= S_SYNC;
4926
	if (flags & EXT4_APPEND_FL)
4927
		inode->i_flags |= S_APPEND;
4928
	if (flags & EXT4_IMMUTABLE_FL)
4929
		inode->i_flags |= S_IMMUTABLE;
4930
	if (flags & EXT4_NOATIME_FL)
4931
		inode->i_flags |= S_NOATIME;
4932
	if (flags & EXT4_DIRSYNC_FL)
4933 4934 4935
		inode->i_flags |= S_DIRSYNC;
}

4936 4937 4938
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4959
}
4960

4961
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4962
				  struct ext4_inode_info *ei)
4963 4964
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4965 4966
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4967 4968 4969 4970 4971 4972

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4973
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4974 4975 4976 4977 4978
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4979 4980 4981 4982
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4983

4984
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4985
{
4986 4987
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4988 4989
	struct ext4_inode_info *ei;
	struct inode *inode;
4990
	journal_t *journal = EXT4_SB(sb)->s_journal;
4991
	long ret;
4992 4993
	int block;

4994 4995 4996 4997 4998 4999 5000
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
5001
	iloc.bh = 0;
5002

5003 5004
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
5005
		goto bad_inode;
5006
	raw_inode = ext4_raw_inode(&iloc);
5007 5008 5009
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5010
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5011 5012 5013 5014 5015
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

5016
	ei->i_state_flags = 0;
5017 5018 5019 5020 5021 5022 5023 5024 5025
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
5026
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5027
			/* this inode is deleted */
5028
			ret = -ESTALE;
5029 5030 5031 5032 5033 5034 5035 5036
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5037
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5038
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5039
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
5040 5041
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5042
	inode->i_size = ext4_isize(raw_inode);
5043
	ei->i_disksize = inode->i_size;
5044 5045 5046
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
5047 5048
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
5049
	ei->i_last_alloc_group = ~0;
5050 5051 5052 5053
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
5054
	for (block = 0; block < EXT4_N_BLOCKS; block++)
5055 5056 5057
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

5069
		read_lock(&journal->j_state_lock);
5070 5071 5072 5073 5074 5075 5076 5077
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
5078
		read_unlock(&journal->j_state_lock);
5079 5080 5081 5082
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

5083
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5084
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5085
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5086
		    EXT4_INODE_SIZE(inode->i_sb)) {
5087
			ret = -EIO;
5088
			goto bad_inode;
5089
		}
5090 5091
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
5092 5093
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
5094 5095
		} else {
			__le32 *magic = (void *)raw_inode +
5096
					EXT4_GOOD_OLD_INODE_SIZE +
5097
					ei->i_extra_isize;
5098
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5099
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5100 5101 5102 5103
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
5104 5105 5106 5107 5108
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

5109 5110 5111 5112 5113 5114 5115
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

5116
	ret = 0;
5117
	if (ei->i_file_acl &&
5118
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5119 5120
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
5121 5122
		ret = -EIO;
		goto bad_inode;
5123
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5124 5125 5126 5127 5128
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
5129
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5130 5131
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
5132
		/* Validate block references which are part of inode */
5133 5134
		ret = ext4_check_inode_blockref(inode);
	}
5135
	if (ret)
5136
		goto bad_inode;
5137

5138
	if (S_ISREG(inode->i_mode)) {
5139 5140 5141
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
5142
	} else if (S_ISDIR(inode->i_mode)) {
5143 5144
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
5145
	} else if (S_ISLNK(inode->i_mode)) {
5146
		if (ext4_inode_is_fast_symlink(inode)) {
5147
			inode->i_op = &ext4_fast_symlink_inode_operations;
5148 5149 5150
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
5151 5152
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5153
		}
5154 5155
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5156
		inode->i_op = &ext4_special_inode_operations;
5157 5158 5159 5160 5161 5162
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5163 5164
	} else {
		ret = -EIO;
5165
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5166
		goto bad_inode;
5167
	}
5168
	brelse(iloc.bh);
5169
	ext4_set_inode_flags(inode);
5170 5171
	unlock_new_inode(inode);
	return inode;
5172 5173

bad_inode:
5174
	brelse(iloc.bh);
5175 5176
	iget_failed(inode);
	return ERR_PTR(ret);
5177 5178
}

5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5192
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5193
		raw_inode->i_blocks_high = 0;
5194
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5195 5196 5197 5198 5199 5200
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5201 5202 5203 5204
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5205
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5206
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5207
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5208
	} else {
5209
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5210 5211 5212 5213
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5214
	}
5215
	return 0;
5216 5217
}

5218 5219 5220 5221 5222 5223 5224
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5225
static int ext4_do_update_inode(handle_t *handle,
5226
				struct inode *inode,
5227
				struct ext4_iloc *iloc)
5228
{
5229 5230
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5231 5232 5233 5234 5235
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5236
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5237
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5238

5239
	ext4_get_inode_flags(ei);
5240
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5241
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5242 5243 5244 5245 5246 5247
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5248
		if (!ei->i_dtime) {
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5266 5267 5268 5269 5270 5271

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5272 5273
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5274
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5275
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5276 5277
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5278 5279
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5280
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5297
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5298
			sb->s_dirt = 1;
5299
			ext4_handle_sync(handle);
5300
			err = ext4_handle_dirty_metadata(handle, NULL,
5301
					EXT4_SB(sb)->s_sbh);
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5316 5317 5318
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5319

5320 5321 5322 5323 5324
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5325
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5326 5327
	}

5328
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5329
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5330 5331
	if (!err)
		err = rc;
5332
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5333

5334
	ext4_update_inode_fsync_trans(handle, inode, 0);
5335
out_brelse:
5336
	brelse(bh);
5337
	ext4_std_error(inode->i_sb, err);
5338 5339 5340 5341
	return err;
}

/*
5342
 * ext4_write_inode()
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5359
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5376
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5377
{
5378 5379
	int err;

5380 5381 5382
	if (current->flags & PF_MEMALLOC)
		return 0;

5383 5384 5385 5386 5387 5388
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5389

5390
		if (wbc->sync_mode != WB_SYNC_ALL)
5391 5392 5393 5394 5395
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5396

5397
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5398 5399
		if (err)
			return err;
5400
		if (wbc->sync_mode == WB_SYNC_ALL)
5401 5402
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5403 5404
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
5405 5406
			err = -EIO;
		}
5407
		brelse(iloc.bh);
5408 5409
	}
	return err;
5410 5411 5412
}

/*
5413
 * ext4_setattr()
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5427 5428 5429 5430 5431 5432 5433 5434
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5435
 */
5436
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5437 5438 5439 5440 5441 5442 5443 5444 5445
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5446
	if (is_quota_modification(inode, attr))
5447
		dquot_initialize(inode);
5448 5449 5450 5451 5452 5453
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5454
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5455
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5456 5457 5458 5459
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5460
		error = dquot_transfer(inode, attr);
5461
		if (error) {
5462
			ext4_journal_stop(handle);
5463 5464 5465 5466 5467 5468 5469 5470
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5471 5472
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5473 5474
	}

5475
	if (attr->ia_valid & ATTR_SIZE) {
5476
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5477 5478
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

5479 5480
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
5481 5482 5483
		}
	}

5484
	if (S_ISREG(inode->i_mode) &&
5485 5486
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
5487
	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5488 5489
		handle_t *handle;

5490
		handle = ext4_journal_start(inode, 3);
5491 5492 5493 5494 5495
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

5496 5497 5498
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5499 5500
		if (!error)
			error = rc;
5501
		ext4_journal_stop(handle);
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5518
		/* ext4_truncate will clear the flag */
5519
		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5520
			ext4_truncate(inode);
5521 5522 5523 5524
	}

	rc = inode_setattr(inode, attr);

5525
	/* If inode_setattr's call to ext4_truncate failed to get a
5526 5527 5528
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
5529
		ext4_orphan_del(NULL, inode);
5530 5531

	if (!rc && (ia_valid & ATTR_MODE))
5532
		rc = ext4_acl_chmod(inode);
5533 5534

err_out:
5535
	ext4_std_error(inode->i_sb, error);
5536 5537 5538 5539 5540
	if (!error)
		error = rc;
	return error;
}

5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5567

5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5595
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5596 5597
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5598
}
5599

5600
/*
5601 5602 5603
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5604
 *
5605
 * If datablocks are discontiguous, they are possible to spread over
5606
 * different block groups too. If they are contiuguous, with flexbg,
5607
 * they could still across block group boundary.
5608
 *
5609 5610 5611 5612
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5613 5614
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5641 5642
	if (groups > ngroups)
		groups = ngroups;
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5657 5658
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5659
 *
5660
 * This could be called via ext4_write_begin()
5661
 *
5662
 * We need to consider the worse case, when
5663
 * one new block per extent.
5664
 */
A
Alex Tomas 已提交
5665
int ext4_writepage_trans_blocks(struct inode *inode)
5666
{
5667
	int bpp = ext4_journal_blocks_per_page(inode);
5668 5669
	int ret;

5670
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5671

5672
	/* Account for data blocks for journalled mode */
5673
	if (ext4_should_journal_data(inode))
5674
		ret += bpp;
5675 5676
	return ret;
}
5677 5678 5679 5680 5681

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5682
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5683 5684 5685 5686 5687 5688 5689 5690 5691
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5692
/*
5693
 * The caller must have previously called ext4_reserve_inode_write().
5694 5695
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5696
int ext4_mark_iloc_dirty(handle_t *handle,
5697
			 struct inode *inode, struct ext4_iloc *iloc)
5698 5699 5700
{
	int err = 0;

5701 5702 5703
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5704 5705 5706
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5707
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5708
	err = ext4_do_update_inode(handle, inode, iloc);
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5719 5720
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5721
{
5722 5723 5724 5725 5726 5727 5728 5729 5730
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5731 5732
		}
	}
5733
	ext4_std_error(inode->i_sb, err);
5734 5735 5736
	return err;
}

5737 5738 5739 5740
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5741 5742 5743 5744
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5757 5758
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5791
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5792
{
5793
	struct ext4_iloc iloc;
5794 5795 5796
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5797 5798

	might_sleep();
5799
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5800 5801
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5802
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5816 5817
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5818 5819
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5820
					ext4_warning(inode->i_sb,
5821 5822 5823
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5824 5825
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5826 5827 5828 5829
				}
			}
		}
	}
5830
	if (!err)
5831
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5832 5833 5834 5835
	return err;
}

/*
5836
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5837 5838 5839 5840 5841
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5842
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5843 5844 5845 5846 5847 5848
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5849
void ext4_dirty_inode(struct inode *inode)
5850 5851 5852
{
	handle_t *handle;

5853
	handle = ext4_journal_start(inode, 2);
5854 5855
	if (IS_ERR(handle))
		goto out;
5856 5857 5858

	ext4_mark_inode_dirty(handle, inode);

5859
	ext4_journal_stop(handle);
5860 5861 5862 5863 5864 5865 5866 5867
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5868
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5869 5870 5871
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5872
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5873
{
5874
	struct ext4_iloc iloc;
5875 5876 5877

	int err = 0;
	if (handle) {
5878
		err = ext4_get_inode_loc(inode, &iloc);
5879 5880
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5881
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5882
			if (!err)
5883
				err = ext4_handle_dirty_metadata(handle,
5884
								 NULL,
5885
								 iloc.bh);
5886 5887 5888
			brelse(iloc.bh);
		}
	}
5889
	ext4_std_error(inode->i_sb, err);
5890 5891 5892 5893
	return err;
}
#endif

5894
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5910
	journal = EXT4_JOURNAL(inode);
5911 5912
	if (!journal)
		return 0;
5913
	if (is_journal_aborted(journal))
5914 5915
		return -EROFS;

5916 5917
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5928
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5929
	else
5930
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5931
	ext4_set_aops(inode);
5932

5933
	jbd2_journal_unlock_updates(journal);
5934 5935 5936

	/* Finally we can mark the inode as dirty. */

5937
	handle = ext4_journal_start(inode, 1);
5938 5939 5940
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5941
	err = ext4_mark_inode_dirty(handle, inode);
5942
	ext4_handle_sync(handle);
5943 5944
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5945 5946 5947

	return err;
}
5948 5949 5950 5951 5952 5953

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5954
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5955
{
5956
	struct page *page = vmf->page;
5957 5958 5959
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5960
	void *fsdata;
5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5985 5986 5987 5988 5989 5990 5991
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5992 5993
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5994 5995
					ext4_bh_unmapped)) {
			unlock_page(page);
5996
			goto out_unlock;
5997
		}
5998
	}
5999
	unlock_page(page);
6000 6001 6002 6003 6004 6005 6006 6007
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6008
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6009 6010 6011
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6012
			len, len, page, fsdata);
6013 6014 6015 6016
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
6017 6018
	if (ret)
		ret = VM_FAULT_SIGBUS;
6019 6020 6021
	up_read(&inode->i_alloc_sem);
	return ret;
}