inode.c 127.8 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22 23
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
24
#include <linux/jbd2.h>
25 26 27 28 29 30
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
31
#include <linux/pagevec.h>
32
#include <linux/mpage.h>
33
#include <linux/namei.h>
34 35
#include <linux/uio.h>
#include <linux/bio.h>
36
#include <linux/workqueue.h>
37
#include <linux/kernel.h>
38
#include <linux/printk.h>
39
#include <linux/slab.h>
40
#include <linux/ratelimit.h>
41

42
#include "ext4_jbd2.h"
43 44
#include "xattr.h"
#include "acl.h"
45
#include "ext4_extents.h"
46
#include "truncate.h"
47

48 49
#include <trace/events/ext4.h>

50 51
#define MPAGE_DA_EXTENT_TAIL 0x01

52 53 54
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
55
	trace_ext4_begin_ordered_truncate(inode, new_size);
56 57 58 59 60 61 62 63 64 65 66
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
67 68
}

69
static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 71 72 73 74 75
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76

77 78 79
/*
 * Test whether an inode is a fast symlink.
 */
80
static int ext4_inode_is_fast_symlink(struct inode *inode)
81
{
82
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
83 84 85 86 87 88 89 90 91 92
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
93
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94
				 int nblocks)
95
{
96 97 98
	int ret;

	/*
99
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
100 101 102 103
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
104
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
105
	jbd_debug(2, "restarting handle %p\n", handle);
106
	up_write(&EXT4_I(inode)->i_data_sem);
107
	ret = ext4_journal_restart(handle, nblocks);
108
	down_write(&EXT4_I(inode)->i_data_sem);
109
	ext4_discard_preallocations(inode);
110 111

	return ret;
112 113 114 115 116
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
117
void ext4_evict_inode(struct inode *inode)
118 119
{
	handle_t *handle;
120
	int err;
121

122
	trace_ext4_evict_inode(inode);
123 124 125 126 127 128

	mutex_lock(&inode->i_mutex);
	ext4_flush_completed_IO(inode);
	mutex_unlock(&inode->i_mutex);
	ext4_ioend_wait(inode);

A
Al Viro 已提交
129
	if (inode->i_nlink) {
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
157 158 159 160
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

161
	if (!is_bad_inode(inode))
162
		dquot_initialize(inode);
163

164 165
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
166 167 168 169 170
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

171
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
172
	if (IS_ERR(handle)) {
173
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
174 175 176 177 178
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
179
		ext4_orphan_del(NULL, inode);
180 181 182 183
		goto no_delete;
	}

	if (IS_SYNC(inode))
184
		ext4_handle_sync(handle);
185
	inode->i_size = 0;
186 187
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
188
		ext4_warning(inode->i_sb,
189 190 191
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
192
	if (inode->i_blocks)
193
		ext4_truncate(inode);
194 195 196 197 198 199 200

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
201
	if (!ext4_handle_has_enough_credits(handle, 3)) {
202 203 204 205
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
206
			ext4_warning(inode->i_sb,
207 208 209
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
210
			ext4_orphan_del(NULL, inode);
211 212 213 214
			goto no_delete;
		}
	}

215
	/*
216
	 * Kill off the orphan record which ext4_truncate created.
217
	 * AKPM: I think this can be inside the above `if'.
218
	 * Note that ext4_orphan_del() has to be able to cope with the
219
	 * deletion of a non-existent orphan - this is because we don't
220
	 * know if ext4_truncate() actually created an orphan record.
221 222
	 * (Well, we could do this if we need to, but heck - it works)
	 */
223 224
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
225 226 227 228 229 230 231 232

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
233
	if (ext4_mark_inode_dirty(handle, inode))
234
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
235
		ext4_clear_inode(inode);
236
	else
237 238
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
239 240
	return;
no_delete:
A
Al Viro 已提交
241
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
242 243
}

244 245
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
246
{
247
	return &EXT4_I(inode)->i_reserved_quota;
248
}
249
#endif
250

251 252
/*
 * Calculate the number of metadata blocks need to reserve
253
 * to allocate a block located at @lblock
254
 */
255
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
256
{
257
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
258
		return ext4_ext_calc_metadata_amount(inode, lblock);
259

260
	return ext4_ind_calc_metadata_amount(inode, lblock);
261 262
}

263 264 265 266
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
267 268
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
269 270
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
271 272 273
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
274
	trace_ext4_da_update_reserve_space(inode, used);
275 276 277 278 279 280 281 282
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
283

284 285 286
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
287 288
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
289
	ei->i_allocated_meta_blocks = 0;
290

291 292 293 294 295 296
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
297 298
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
299
		ei->i_reserved_meta_blocks = 0;
300
		ei->i_da_metadata_calc_len = 0;
301
	}
302
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
303

304 305
	/* Update quota subsystem for data blocks */
	if (quota_claim)
306
		dquot_claim_block(inode, used);
307
	else {
308 309 310
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
311
		 * not re-claim the quota for fallocated blocks.
312
		 */
313
		dquot_release_reservation_block(inode, used);
314
	}
315 316 317 318 319 320

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
321 322
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
323
		ext4_discard_preallocations(inode);
324 325
}

326
static int __check_block_validity(struct inode *inode, const char *func,
327 328
				unsigned int line,
				struct ext4_map_blocks *map)
329
{
330 331
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
332 333 334 335
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
336 337 338 339 340
		return -EIO;
	}
	return 0;
}

341
#define check_block_validity(inode, map)	\
342
	__check_block_validity((inode), __func__, __LINE__, (map))
343

344
/*
345 346
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
380 381 382 383 384 385 386 387 388
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
389 390 391 392 393
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
394 395
			if (num >= max_pages) {
				done = 1;
396
				break;
397
			}
398 399 400 401 402 403
		}
		pagevec_release(&pvec);
	}
	return num;
}

404
/*
405
 * The ext4_map_blocks() function tries to look up the requested blocks,
406
 * and returns if the blocks are already mapped.
407 408 409 410 411
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
412 413
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
414 415 416 417 418 419 420 421 422 423 424 425
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
426 427
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
428 429
{
	int retval;
430

431 432 433 434
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
435
	/*
436 437
	 * Try to see if we can get the block without requesting a new
	 * file system block.
438 439
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
440
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
441
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
442
	} else {
443
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
444
	}
445
	up_read((&EXT4_I(inode)->i_data_sem));
446

447
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
448
		int ret = check_block_validity(inode, map);
449 450 451 452
		if (ret != 0)
			return ret;
	}

453
	/* If it is only a block(s) look up */
454
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
455 456 457 458 459 460 461 462 463
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
464
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
465 466
		return retval;

467 468 469 470 471 472 473 474 475 476
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
477
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
478

479
	/*
480 481 482 483
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
484 485
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
486 487 488 489 490 491 492

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
493
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
494
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
495 496 497 498
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
499
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
500
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
501
	} else {
502
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
503

504
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
505 506 507 508 509
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
510
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
511
		}
512

513 514 515 516 517 518 519
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
520
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
521 522
			ext4_da_update_reserve_space(inode, retval, 1);
	}
523
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
524
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
525

526
	up_write((&EXT4_I(inode)->i_data_sem));
527
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
528
		int ret = check_block_validity(inode, map);
529 530 531
		if (ret != 0)
			return ret;
	}
532 533 534
	return retval;
}

535 536 537
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

538 539
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
540
{
541
	handle_t *handle = ext4_journal_current_handle();
542
	struct ext4_map_blocks map;
J
Jan Kara 已提交
543
	int ret = 0, started = 0;
544
	int dio_credits;
545

546 547 548 549
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
550
		/* Direct IO write... */
551 552 553
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
554
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
555
		if (IS_ERR(handle)) {
556
			ret = PTR_ERR(handle);
557
			return ret;
558
		}
J
Jan Kara 已提交
559
		started = 1;
560 561
	}

562
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
563
	if (ret > 0) {
564 565 566
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
567
		ret = 0;
568
	}
J
Jan Kara 已提交
569 570
	if (started)
		ext4_journal_stop(handle);
571 572 573
	return ret;
}

574 575 576 577 578 579 580
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

581 582 583
/*
 * `handle' can be NULL if create is zero
 */
584
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
585
				ext4_lblk_t block, int create, int *errp)
586
{
587 588
	struct ext4_map_blocks map;
	struct buffer_head *bh;
589 590 591 592
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

593 594 595 596
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
597

598 599 600 601 602 603 604 605 606 607
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
608
	}
609 610 611
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
612

613 614 615 616 617 618 619 620 621 622 623 624 625
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
626
		}
627 628 629 630 631 632 633
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
634
	}
635 636 637 638 639 640
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
641 642
}

643
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
644
			       ext4_lblk_t block, int create, int *err)
645
{
646
	struct buffer_head *bh;
647

648
	bh = ext4_getblk(handle, inode, block, create, err);
649 650 651 652 653 654 655 656 657 658 659 660 661
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

662 663 664 665 666 667 668
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
669 670 671 672 673 674 675
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

676 677
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
678
	     block_start = block_end, bh = next) {
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
696
 * close off a transaction and start a new one between the ext4_get_block()
697
 * and the commit_write().  So doing the jbd2_journal_start at the start of
698 699
 * prepare_write() is the right place.
 *
700 701
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
702 703 704 705
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
706
 * By accident, ext4 can be reentered when a transaction is open via
707 708 709 710 711 712
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
713
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
714 715 716 717 718
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
719
				       struct buffer_head *bh)
720
{
721 722 723
	int dirty = buffer_dirty(bh);
	int ret;

724 725
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
726
	/*
C
Christoph Hellwig 已提交
727
	 * __block_write_begin() could have dirtied some buffers. Clean
728 729
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
730
	 * by __block_write_begin() isn't a real problem here as we clear
731 732 733 734 735 736 737 738 739
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
740 741
}

742 743
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
744
static int ext4_write_begin(struct file *file, struct address_space *mapping,
745 746
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
747
{
748
	struct inode *inode = mapping->host;
749
	int ret, needed_blocks;
750 751
	handle_t *handle;
	int retries = 0;
752
	struct page *page;
753
	pgoff_t index;
754
	unsigned from, to;
N
Nick Piggin 已提交
755

756
	trace_ext4_write_begin(inode, pos, len, flags);
757 758 759 760 761
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
762
	index = pos >> PAGE_CACHE_SHIFT;
763 764
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
765 766

retry:
767 768 769 770
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
771
	}
772

773 774 775 776
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

777
	page = grab_cache_page_write_begin(mapping, index, flags);
778 779 780 781 782 783 784
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

785
	if (ext4_should_dioread_nolock(inode))
786
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
787
	else
788
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
789 790

	if (!ret && ext4_should_journal_data(inode)) {
791 792 793
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
794 795

	if (ret) {
796 797
		unlock_page(page);
		page_cache_release(page);
798
		/*
799
		 * __block_write_begin may have instantiated a few blocks
800 801
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
802 803 804
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
805
		 */
806
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
807 808 809 810
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
811
			ext4_truncate_failed_write(inode);
812
			/*
813
			 * If truncate failed early the inode might
814 815 816 817 818 819 820
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
821 822
	}

823
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
824
		goto retry;
825
out:
826 827 828
	return ret;
}

N
Nick Piggin 已提交
829 830
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
831 832 833 834
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
835
	return ext4_handle_dirty_metadata(handle, NULL, bh);
836 837
}

838
static int ext4_generic_write_end(struct file *file,
839 840 841
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

884 885 886 887
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
888
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
889 890
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
891
static int ext4_ordered_write_end(struct file *file,
892 893 894
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
895
{
896
	handle_t *handle = ext4_journal_current_handle();
897
	struct inode *inode = mapping->host;
898 899
	int ret = 0, ret2;

900
	trace_ext4_ordered_write_end(inode, pos, len, copied);
901
	ret = ext4_jbd2_file_inode(handle, inode);
902 903

	if (ret == 0) {
904
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
905
							page, fsdata);
906
		copied = ret2;
907
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
908 909 910 911 912
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
913 914
		if (ret2 < 0)
			ret = ret2;
915
	}
916
	ret2 = ext4_journal_stop(handle);
917 918
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
919

920
	if (pos + len > inode->i_size) {
921
		ext4_truncate_failed_write(inode);
922
		/*
923
		 * If truncate failed early the inode might still be
924 925 926 927 928 929 930 931
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
932
	return ret ? ret : copied;
933 934
}

N
Nick Piggin 已提交
935
static int ext4_writeback_write_end(struct file *file,
936 937 938
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
939
{
940
	handle_t *handle = ext4_journal_current_handle();
941
	struct inode *inode = mapping->host;
942 943
	int ret = 0, ret2;

944
	trace_ext4_writeback_write_end(inode, pos, len, copied);
945
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
946
							page, fsdata);
947
	copied = ret2;
948
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
949 950 951 952 953 954
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

955 956
	if (ret2 < 0)
		ret = ret2;
957

958
	ret2 = ext4_journal_stop(handle);
959 960
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
961

962
	if (pos + len > inode->i_size) {
963
		ext4_truncate_failed_write(inode);
964
		/*
965
		 * If truncate failed early the inode might still be
966 967 968 969 970 971 972
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
973
	return ret ? ret : copied;
974 975
}

N
Nick Piggin 已提交
976
static int ext4_journalled_write_end(struct file *file,
977 978 979
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
980
{
981
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
982
	struct inode *inode = mapping->host;
983 984
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
985
	unsigned from, to;
986
	loff_t new_i_size;
987

988
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
989 990 991
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

992 993
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
994 995 996 997 998
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
999 1000

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1001
				to, &partial, write_end_fn);
1002 1003
	if (!partial)
		SetPageUptodate(page);
1004 1005
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1006
		i_size_write(inode, pos+copied);
1007
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1008
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1009 1010
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1011
		ret2 = ext4_mark_inode_dirty(handle, inode);
1012 1013 1014
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1015

1016
	unlock_page(page);
1017
	page_cache_release(page);
1018
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1019 1020 1021 1022 1023 1024
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1025
	ret2 = ext4_journal_stop(handle);
1026 1027
	if (!ret)
		ret = ret2;
1028
	if (pos + len > inode->i_size) {
1029
		ext4_truncate_failed_write(inode);
1030
		/*
1031
		 * If truncate failed early the inode might still be
1032 1033 1034 1035 1036 1037
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1038 1039

	return ret ? ret : copied;
1040
}
1041

1042 1043 1044
/*
 * Reserve a single block located at lblock
 */
1045
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1046
{
A
Aneesh Kumar K.V 已提交
1047
	int retries = 0;
1048
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1049
	struct ext4_inode_info *ei = EXT4_I(inode);
1050
	unsigned long md_needed;
1051
	int ret;
1052 1053 1054 1055 1056 1057

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1058
repeat:
1059
	spin_lock(&ei->i_block_reservation_lock);
1060
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1061
	trace_ext4_da_reserve_space(inode, md_needed);
1062
	spin_unlock(&ei->i_block_reservation_lock);
1063

1064
	/*
1065 1066 1067
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1068
	 */
1069
	ret = dquot_reserve_block(inode, 1);
1070 1071
	if (ret)
		return ret;
1072 1073 1074 1075
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1076
	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1077
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1078 1079 1080 1081
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1082 1083
		return -ENOSPC;
	}
1084
	spin_lock(&ei->i_block_reservation_lock);
1085
	ei->i_reserved_data_blocks++;
1086 1087
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1088

1089 1090 1091
	return 0;       /* success */
}

1092
static void ext4_da_release_space(struct inode *inode, int to_free)
1093 1094
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1095
	struct ext4_inode_info *ei = EXT4_I(inode);
1096

1097 1098 1099
	if (!to_free)
		return;		/* Nothing to release, exit */

1100
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1101

L
Li Zefan 已提交
1102
	trace_ext4_da_release_space(inode, to_free);
1103
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1104
		/*
1105 1106 1107 1108
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1109
		 */
1110 1111 1112 1113 1114 1115
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1116
	}
1117
	ei->i_reserved_data_blocks -= to_free;
1118

1119 1120 1121 1122 1123 1124
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1125 1126
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1127
		ei->i_reserved_meta_blocks = 0;
1128
		ei->i_da_metadata_calc_len = 0;
1129
	}
1130

1131
	/* update fs dirty data blocks counter */
1132
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1133 1134

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1135

1136
	dquot_release_reservation_block(inode, to_free);
1137 1138 1139
}

static void ext4_da_page_release_reservation(struct page *page,
1140
					     unsigned long offset)
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1157
	ext4_da_release_space(page->mapping->host, to_release);
1158
}
1159

1160 1161 1162 1163 1164 1165
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1166
 * them with writepage() call back
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1177 1178
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1179
{
1180 1181 1182 1183 1184
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1185
	loff_t size = i_size_read(inode);
1186 1187
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1188
	int journal_data = ext4_should_journal_data(inode);
1189
	sector_t pblock = 0, cur_logical = 0;
1190
	struct ext4_io_submit io_submit;
1191 1192

	BUG_ON(mpd->next_page <= mpd->first_page);
1193
	memset(&io_submit, 0, sizeof(io_submit));
1194 1195 1196
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1197
	 * If we look at mpd->b_blocknr we would only be looking
1198 1199
	 * at the currently mapped buffer_heads.
	 */
1200 1201 1202
	index = mpd->first_page;
	end = mpd->next_page - 1;

1203
	pagevec_init(&pvec, 0);
1204
	while (index <= end) {
1205
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1206 1207 1208
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1209
			int commit_write = 0, skip_page = 0;
1210 1211
			struct page *page = pvec.pages[i];

1212 1213 1214
			index = page->index;
			if (index > end)
				break;
1215 1216 1217 1218 1219

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1220 1221 1222 1223 1224 1225
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1226 1227 1228 1229 1230
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1231
			/*
1232 1233
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1234
			 * __block_write_begin.  If this fails,
1235
			 * skip the page and move on.
1236
			 */
1237
			if (!page_has_buffers(page)) {
1238
				if (__block_write_begin(page, 0, len,
1239
						noalloc_get_block_write)) {
1240
				skip_page:
1241 1242 1243 1244 1245
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1246

1247 1248
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1249
			do {
1250
				if (!bh)
1251
					goto skip_page;
1252 1253 1254
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1255 1256 1257 1258
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1259 1260 1261 1262 1263 1264 1265
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1266

1267
				/* skip page if block allocation undone */
1268
				if (buffer_delay(bh) || buffer_unwritten(bh))
1269
					skip_page = 1;
1270 1271
				bh = bh->b_this_page;
				block_start += bh->b_size;
1272 1273
				cur_logical++;
				pblock++;
1274 1275
			} while (bh != page_bufs);

1276 1277
			if (skip_page)
				goto skip_page;
1278 1279 1280 1281 1282

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1283
			clear_page_dirty_for_io(page);
1284 1285 1286 1287 1288 1289
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1290
				err = __ext4_journalled_writepage(page, len);
1291
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1292 1293
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1294 1295 1296
			else
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1297 1298

			if (!err)
1299
				mpd->pages_written++;
1300 1301 1302 1303 1304 1305 1306 1307 1308
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1309
	ext4_io_submit(&io_submit);
1310 1311 1312
	return ret;
}

1313
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1314 1315 1316 1317 1318 1319 1320
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

1321 1322
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1323 1324 1325 1326 1327 1328
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1329
			if (page->index > end)
1330 1331 1332 1333 1334 1335 1336
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1337 1338
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1339 1340 1341 1342
	}
	return;
}

1343 1344 1345
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
1358 1359 1360
	return;
}

1361
/*
1362 1363
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1364
 *
1365
 * @mpd - bh describing space
1366 1367 1368 1369
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1370
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1371
{
1372
	int err, blks, get_blocks_flags;
1373
	struct ext4_map_blocks map, *mapp = NULL;
1374 1375 1376 1377
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1378 1379

	/*
1380 1381
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1382
	 */
1383 1384 1385 1386 1387
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1388 1389 1390 1391

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1392
	/*
1393
	 * Call ext4_map_blocks() to allocate any delayed allocation
1394 1395 1396 1397 1398 1399 1400 1401
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1402
	 * want to change *many* call functions, so ext4_map_blocks()
1403
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1404 1405 1406 1407 1408
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1409
	 */
1410 1411
	map.m_lblk = next;
	map.m_len = max_blocks;
1412
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1413 1414
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1415
	if (mpd->b_state & (1 << BH_Delay))
1416 1417
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1418
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1419
	if (blks < 0) {
1420 1421
		struct super_block *sb = mpd->inode->i_sb;

1422
		err = blks;
1423
		/*
1424
		 * If get block returns EAGAIN or ENOSPC and there
1425 1426
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1427 1428
		 */
		if (err == -EAGAIN)
1429
			goto submit_io;
1430 1431

		if (err == -ENOSPC &&
1432
		    ext4_count_free_blocks(sb)) {
1433
			mpd->retval = err;
1434
			goto submit_io;
1435 1436
		}

1437
		/*
1438 1439 1440 1441 1442
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1443
		 */
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1455
		}
1456
		/* invalidate all the pages */
1457
		ext4_da_block_invalidatepages(mpd);
1458 1459 1460

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1461
		return;
1462
	}
1463 1464
	BUG_ON(blks == 0);

1465
	mapp = &map;
1466 1467 1468
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1469

1470 1471 1472
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
1473

1474 1475 1476
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
1477 1478
			/* This only happens if the journal is aborted */
			return;
1479 1480 1481
	}

	/*
1482
	 * Update on-disk size along with block allocation.
1483 1484 1485 1486 1487 1488
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1489 1490 1491 1492 1493
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1494 1495
	}

1496
submit_io:
1497
	mpage_da_submit_io(mpd, mapp);
1498
	mpd->io_done = 1;
1499 1500
}

1501 1502
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1514 1515
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1516 1517
{
	sector_t next;
1518
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1519

1520 1521 1522 1523
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1524
	 * ext4_map_blocks() multiple times in a loop
1525 1526 1527 1528
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1529
	/* check if thereserved journal credits might overflow */
1530
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1551 1552 1553
	/*
	 * First block in the extent
	 */
1554 1555 1556 1557
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1558 1559 1560
		return;
	}

1561
	next = mpd->b_blocknr + nrblocks;
1562 1563 1564
	/*
	 * Can we merge the block to our big extent?
	 */
1565 1566
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1567 1568 1569
		return;
	}

1570
flush_it:
1571 1572 1573 1574
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1575
	mpage_da_map_and_submit(mpd);
1576
	return;
1577 1578
}

1579
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1580
{
1581
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1582 1583
}

1584
/*
1585 1586 1587
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1588 1589 1590 1591 1592 1593 1594
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1595 1596
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1597
				  struct buffer_head *bh, int create)
1598
{
1599
	struct ext4_map_blocks map;
1600
	int ret = 0;
1601 1602 1603 1604
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
1605 1606

	BUG_ON(create == 0);
1607 1608 1609 1610
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1611 1612 1613 1614 1615 1616

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1617 1618 1619 1620 1621 1622
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
1623
		/*
C
Christoph Hellwig 已提交
1624
		 * XXX: __block_write_begin() unmaps passed block, is it OK?
1625
		 */
1626
		ret = ext4_da_reserve_space(inode, iblock);
1627 1628 1629 1630
		if (ret)
			/* not enough space to reserve */
			return ret;

1631 1632 1633 1634
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
1635 1636
	}

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1648
		set_buffer_mapped(bh);
1649 1650
	}
	return 0;
1651
}
1652

1653 1654 1655
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1656
 * callback function for block_write_begin() and block_write_full_page().
1657
 * These functions should only try to map a single block at a time.
1658 1659 1660 1661 1662
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1663 1664 1665
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1666 1667
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1668 1669
				   struct buffer_head *bh_result, int create)
{
1670
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1671
	return _ext4_get_block(inode, iblock, bh_result, 0);
1672 1673
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1696
	ClearPageChecked(page);
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1710 1711
	BUG_ON(!ext4_handle_valid(handle));

1712 1713 1714 1715 1716 1717 1718
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1719
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1720 1721 1722 1723 1724
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1725
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1726 1727 1728 1729
out:
	return ret;
}

1730 1731 1732
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

1733
/*
1734 1735 1736 1737
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1738
 * we are writing back data modified via mmap(), no one guarantees in which
1739 1740 1741 1742
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1743 1744 1745 1746 1747
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1773
 */
1774
static int ext4_writepage(struct page *page,
1775
			  struct writeback_control *wbc)
1776
{
T
Theodore Ts'o 已提交
1777
	int ret = 0, commit_write = 0;
1778
	loff_t size;
1779
	unsigned int len;
1780
	struct buffer_head *page_bufs = NULL;
1781 1782
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
1783
	trace_ext4_writepage(page);
1784 1785 1786 1787 1788
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1789

T
Theodore Ts'o 已提交
1790 1791
	/*
	 * If the page does not have buffers (for whatever reason),
1792
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
1793 1794
	 * fails, redirty the page and move on.
	 */
1795
	if (!page_has_buffers(page)) {
1796
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
1797 1798
					noalloc_get_block_write)) {
		redirty_page:
1799 1800 1801 1802
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
1803 1804 1805 1806 1807
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
1808
		/*
1809 1810 1811 1812
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
1813
		 */
T
Theodore Ts'o 已提交
1814 1815 1816
		goto redirty_page;
	}
	if (commit_write)
1817
		/* now mark the buffer_heads as dirty and uptodate */
1818
		block_commit_write(page, 0, len);
1819

1820
	if (PageChecked(page) && ext4_should_journal_data(inode))
1821 1822 1823 1824
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
1825
		return __ext4_journalled_writepage(page, len);
1826

T
Theodore Ts'o 已提交
1827
	if (buffer_uninit(page_bufs)) {
1828 1829 1830 1831
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
1832 1833
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
1834 1835 1836 1837

	return ret;
}

1838
/*
1839
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
1840
 * calculate the total number of credits to reserve to fit
1841 1842 1843
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
1844
 */
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
1856
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1857 1858 1859 1860 1861
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
1862

1863 1864
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
1865
 * address space and accumulate pages that need writing, and call
1866 1867
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
1868 1869 1870
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
1871 1872
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
1873
{
1874
	struct buffer_head	*bh, *head;
1875
	struct inode		*inode = mapping->host;
1876 1877 1878 1879 1880 1881
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
1882

1883 1884 1885
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
1886 1887 1888 1889
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

1890
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1891 1892 1893 1894
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

1895
	*done_index = index;
1896
	while (index <= end) {
1897
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1898 1899
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
1900
			return 0;
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
1912 1913
			if (page->index > end)
				goto out;
1914

1915 1916
			*done_index = page->index + 1;

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

1927 1928 1929
			lock_page(page);

			/*
1930 1931 1932 1933 1934 1935
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
1936
			 */
1937 1938 1939 1940
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
1941 1942 1943 1944
				unlock_page(page);
				continue;
			}

1945
			wait_on_page_writeback(page);
1946 1947
			BUG_ON(PageWriteback(page));

1948
			if (mpd->next_page != page->index)
1949 1950 1951 1952 1953 1954
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
1955 1956
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
1957
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
1958 1959
				if (mpd->io_done)
					goto ret_extent_tail;
1960 1961
			} else {
				/*
1962 1963
				 * Page with regular buffer heads,
				 * just add all dirty ones
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
1979 1980
						if (mpd->io_done)
							goto ret_extent_tail;
1981 1982
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
1983 1984 1985 1986 1987 1988 1989 1990 1991
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
1992 1993 1994 1995 1996 1997
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
1998 1999 2000 2001 2002
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2003
				    wbc->sync_mode == WB_SYNC_NONE)
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2014
					goto out;
2015 2016 2017 2018 2019
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2020 2021 2022
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2023 2024 2025
out:
	pagevec_release(&pvec);
	cond_resched();
2026 2027 2028 2029
	return ret;
}


2030
static int ext4_da_writepages(struct address_space *mapping,
2031
			      struct writeback_control *wbc)
2032
{
2033 2034
	pgoff_t	index;
	int range_whole = 0;
2035
	handle_t *handle = NULL;
2036
	struct mpage_da_data mpd;
2037
	struct inode *inode = mapping->host;
2038
	int pages_written = 0;
2039
	unsigned int max_pages;
2040
	int range_cyclic, cycled = 1, io_done = 0;
2041 2042
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2043
	loff_t range_start = wbc->range_start;
2044
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2045
	pgoff_t done_index = 0;
2046
	pgoff_t end;
2047

2048
	trace_ext4_da_writepages(inode, wbc);
2049

2050 2051 2052 2053 2054
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2055
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2056
		return 0;
2057 2058 2059 2060 2061

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2062
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2063 2064 2065 2066 2067
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2068
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2069 2070
		return -EROFS;

2071 2072
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2073

2074 2075
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2076
		index = mapping->writeback_index;
2077 2078 2079 2080 2081
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2082 2083
		end = -1;
	} else {
2084
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2085 2086
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2087

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2105 2106 2107 2108 2109 2110
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2121
retry:
2122
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2123 2124
		tag_pages_for_writeback(mapping, index, end);

2125
	while (!ret && wbc->nr_to_write > 0) {
2126 2127 2128 2129 2130 2131 2132 2133

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2134
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2135

2136 2137 2138 2139
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2140
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2141
			       "%ld pages, ino %lu; err %d", __func__,
2142
				wbc->nr_to_write, inode->i_ino, ret);
2143 2144
			goto out_writepages;
		}
2145 2146

		/*
2147
		 * Now call write_cache_pages_da() to find the next
2148
		 * contiguous region of logical blocks that need
2149
		 * blocks to be allocated by ext4 and submit them.
2150
		 */
2151
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2152
		/*
2153
		 * If we have a contiguous extent of pages and we
2154 2155 2156 2157
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2158
			mpage_da_map_and_submit(&mpd);
2159 2160
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2161
		trace_ext4_da_write_pages(inode, &mpd);
2162
		wbc->nr_to_write -= mpd.pages_written;
2163

2164
		ext4_journal_stop(handle);
2165

2166
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2167 2168 2169 2170
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2171
			jbd2_journal_force_commit_nested(sbi->s_journal);
2172 2173
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2174 2175 2176 2177
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2178
			pages_written += mpd.pages_written;
2179
			ret = 0;
2180
			io_done = 1;
2181
		} else if (wbc->nr_to_write)
2182 2183 2184 2185 2186 2187
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2188
	}
2189 2190 2191 2192 2193 2194 2195
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2196 2197

	/* Update index */
2198
	wbc->range_cyclic = range_cyclic;
2199 2200 2201 2202 2203
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2204
		mapping->writeback_index = done_index;
2205

2206
out_writepages:
2207
	wbc->nr_to_write -= nr_to_writebump;
2208
	wbc->range_start = range_start;
2209
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2210
	return ret;
2211 2212
}

2213 2214 2215 2216 2217 2218 2219 2220 2221
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2222
	 * counters can get slightly wrong with percpu_counter_batch getting
2223 2224 2225 2226 2227 2228 2229 2230 2231
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
2232 2233
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2234 2235 2236
		 */
		return 1;
	}
2237 2238 2239 2240 2241 2242 2243
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

2244 2245 2246
	return 0;
}

2247
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2248 2249
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2250
{
2251
	int ret, retries = 0;
2252 2253 2254 2255 2256 2257
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2258 2259 2260 2261 2262 2263 2264

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2265
	trace_ext4_da_write_begin(inode, pos, len, flags);
2266
retry:
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2278 2279 2280
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2281

2282
	page = grab_cache_page_write_begin(mapping, index, flags);
2283 2284 2285 2286 2287
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2288 2289
	*pagep = page;

2290
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2291 2292 2293 2294
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2295 2296 2297 2298 2299 2300
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2301
			ext4_truncate_failed_write(inode);
2302 2303
	}

2304 2305
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2306 2307 2308 2309
out:
	return ret;
}

2310 2311 2312 2313 2314
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2315
					    unsigned long offset)
2316 2317 2318 2319 2320 2321 2322 2323 2324
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2325
	for (i = 0; i < idx; i++)
2326 2327
		bh = bh->b_this_page;

2328
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2329 2330 2331 2332
		return 0;
	return 1;
}

2333
static int ext4_da_write_end(struct file *file,
2334 2335 2336
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2337 2338 2339 2340 2341
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2342
	unsigned long start, end;
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2356

2357
	trace_ext4_da_write_end(inode, pos, len, copied);
2358
	start = pos & (PAGE_CACHE_SIZE - 1);
2359
	end = start + copied - 1;
2360 2361 2362 2363 2364 2365 2366 2367

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2379

2380 2381 2382
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2383 2384 2385 2386 2387
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2388
		}
2389
	}
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2411
	ext4_da_page_release_reservation(page, offset);
2412 2413 2414 2415 2416 2417 2418

out:
	ext4_invalidatepage(page, offset);

	return;
}

2419 2420 2421 2422 2423
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2424 2425
	trace_ext4_alloc_da_blocks(inode);

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2436
	 *
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2449
	 * the pages by calling redirty_page_for_writepage() but that
2450 2451
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2452
	 * simplifying them because we wouldn't actually intend to
2453 2454 2455
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2456
	 *
2457 2458 2459 2460 2461 2462
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2463

2464 2465 2466 2467 2468
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2469
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2470 2471 2472 2473 2474 2475 2476 2477
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2478
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2479 2480 2481 2482 2483
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2494 2495
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2507
		 * NB. EXT4_STATE_JDATA is not set on files other than
2508 2509 2510 2511 2512 2513
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2514
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2515
		journal = EXT4_JOURNAL(inode);
2516 2517 2518
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2519 2520 2521 2522 2523

		if (err)
			return 0;
	}

2524
	return generic_block_bmap(mapping, block, ext4_get_block);
2525 2526
}

2527
static int ext4_readpage(struct file *file, struct page *page)
2528
{
2529
	trace_ext4_readpage(page);
2530
	return mpage_readpage(page, ext4_get_block);
2531 2532 2533
}

static int
2534
ext4_readpages(struct file *file, struct address_space *mapping,
2535 2536
		struct list_head *pages, unsigned nr_pages)
{
2537
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2538 2539
}

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2560
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2561
{
2562
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2563

2564 2565
	trace_ext4_invalidatepage(page, offset);

2566 2567 2568 2569 2570
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2571 2572 2573 2574 2575 2576
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2577 2578 2579 2580
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2581 2582
}

2583
static int ext4_releasepage(struct page *page, gfp_t wait)
2584
{
2585
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2586

2587 2588
	trace_ext4_releasepage(page);

2589 2590 2591
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2592 2593 2594 2595
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2596 2597
}

2598 2599 2600 2601 2602
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2603
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2604 2605
		   struct buffer_head *bh_result, int create)
{
2606
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2607
		   inode->i_ino, create);
2608 2609
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2610 2611 2612
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2613 2614
			    ssize_t size, void *private, int ret,
			    bool is_async)
2615
{
2616
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2617 2618
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
2619 2620
	unsigned long flags;
	struct ext4_inode_info *ei;
2621

2622 2623
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2624
		goto out;
2625

2626 2627 2628 2629 2630 2631
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
2632
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2633 2634
		ext4_free_io_end(io_end);
		iocb->private = NULL;
2635 2636 2637
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2638
		inode_dio_done(inode);
2639
		return;
2640 2641
	}

2642 2643
	io_end->offset = offset;
	io_end->size = size;
2644 2645 2646 2647
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2648 2649
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

2650
	/* Add the io_end to per-inode completed aio dio list*/
2651 2652 2653 2654
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2655 2656 2657

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
2658
	iocb->private = NULL;
2659 2660 2661

	/* XXX: probably should move into the real I/O completion handler */
	inode_dio_done(inode);
2662
}
2663

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

2681
	io_end->flag = EXT4_IO_END_UNWRITTEN;
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2709
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2728 2729 2730 2731 2732
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2733
 * For holes, we fallocate those blocks, mark them as uninitialized
2734
 * If those blocks were preallocated, we mark sure they are splited, but
2735
 * still keep the range to write as uninitialized.
2736
 *
2737 2738
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2739
 * set up an end_io call back function, which will do the conversion
2740
 * when async direct IO completed.
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
2759 2760 2761
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
2762
 		 * to prevent parallel buffered read to expose the stale data
2763
 		 * before DIO complete the data IO.
2764 2765
		 *
 		 * As to previously fallocated extents, ext4 get_block
2766 2767 2768
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
2769 2770 2771 2772 2773 2774 2775 2776
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
2777
 		 */
2778 2779 2780
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
2781
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2782 2783 2784 2785
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
2786
			 * direct IO, so that later ext4_map_blocks()
2787 2788 2789 2790 2791 2792 2793
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

2794
		ret = __blockdev_direct_IO(rw, iocb, inode,
2795 2796
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
2797
					 ext4_get_block_write,
2798 2799 2800
					 ext4_end_io_dio,
					 NULL,
					 DIO_LOCKING | DIO_SKIP_HOLES);
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
2820 2821
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
2822
			int err;
2823 2824
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
2825
			 * completed, we could do the conversion right here
2826
			 */
2827 2828 2829 2830
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
2831
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2832
		}
2833 2834
		return ret;
	}
2835 2836

	/* for write the the end of file case, we fall back to old way */
2837 2838 2839 2840 2841 2842 2843 2844 2845
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
2846
	ssize_t ret;
2847

2848
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2849
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2850 2851 2852 2853 2854 2855
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
2856 2857
}

2858
/*
2859
 * Pages can be marked dirty completely asynchronously from ext4's journalling
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
2871
static int ext4_journalled_set_page_dirty(struct page *page)
2872 2873 2874 2875 2876
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

2877
static const struct address_space_operations ext4_ordered_aops = {
2878 2879
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2880
	.writepage		= ext4_writepage,
2881 2882 2883 2884 2885 2886 2887 2888
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2889
	.error_remove_page	= generic_error_remove_page,
2890 2891
};

2892
static const struct address_space_operations ext4_writeback_aops = {
2893 2894
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2895
	.writepage		= ext4_writepage,
2896 2897 2898 2899 2900 2901 2902 2903
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2904
	.error_remove_page	= generic_error_remove_page,
2905 2906
};

2907
static const struct address_space_operations ext4_journalled_aops = {
2908 2909
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2910
	.writepage		= ext4_writepage,
2911 2912 2913 2914 2915 2916 2917
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
2918
	.error_remove_page	= generic_error_remove_page,
2919 2920
};

2921
static const struct address_space_operations ext4_da_aops = {
2922 2923
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2924
	.writepage		= ext4_writepage,
2925 2926 2927 2928 2929 2930 2931 2932 2933
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2934
	.error_remove_page	= generic_error_remove_page,
2935 2936
};

2937
void ext4_set_aops(struct inode *inode)
2938
{
2939 2940 2941 2942
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
2943
		inode->i_mapping->a_ops = &ext4_ordered_aops;
2944 2945 2946
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
2947 2948
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
2949
	else
2950
		inode->i_mapping->a_ops = &ext4_journalled_aops;
2951 2952 2953
}

/*
2954
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2955 2956 2957 2958
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
2959
int ext4_block_truncate_page(handle_t *handle,
2960
		struct address_space *mapping, loff_t from)
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
{
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	unsigned length;
	unsigned blocksize;
	struct inode *inode = mapping->host;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));

	return ext4_block_zero_page_range(handle, mapping, from, length);
}

/*
 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
 * starting from file offset 'from'.  The range to be zero'd must
 * be contained with in one block.  If the specified range exceeds
 * the end of the block it will be shortened to end of the block
 * that cooresponds to 'from'
 */
int ext4_block_zero_page_range(handle_t *handle,
		struct address_space *mapping, loff_t from, loff_t length)
2982
{
2983
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2984
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2985
	unsigned blocksize, max, pos;
A
Aneesh Kumar K.V 已提交
2986
	ext4_lblk_t iblock;
2987 2988
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
2989
	struct page *page;
2990 2991
	int err = 0;

2992 2993
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
2994 2995 2996
	if (!page)
		return -EINVAL;

2997
	blocksize = inode->i_sb->s_blocksize;
2998 2999 3000 3001 3002 3003 3004 3005 3006
	max = blocksize - (offset & (blocksize - 1));

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the block
	 */
	if (length > max || length < 0)
		length = max;

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3029
		ext4_get_block(inode, iblock, bh, 0);
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3050
	if (ext4_should_journal_data(inode)) {
3051
		BUFFER_TRACE(bh, "get write access");
3052
		err = ext4_journal_get_write_access(handle, bh);
3053 3054 3055 3056
		if (err)
			goto unlock;
	}

3057
	zero_user(page, offset, length);
3058 3059 3060 3061

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3062
	if (ext4_should_journal_data(inode)) {
3063
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3064
	} else {
3065
		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3066
			err = ext4_jbd2_file_inode(handle, inode);
3067 3068 3069 3070 3071 3072 3073 3074 3075
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
		return -ENOTSUPP;

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
		return -ENOTSUPP;
	}

	return ext4_ext_punch_hole(file, offset, length);
}

3112
/*
3113
 * ext4_truncate()
3114
 *
3115 3116
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3133
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3134
 * that this inode's truncate did not complete and it will again call
3135 3136
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3137
 * that's fine - as long as they are linked from the inode, the post-crash
3138
 * ext4_truncate() run will find them and release them.
3139
 */
3140
void ext4_truncate(struct inode *inode)
3141
{
3142 3143
	trace_ext4_truncate_enter(inode);

3144
	if (!ext4_can_truncate(inode))
3145 3146
		return;

3147
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3148

3149
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3150
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3151

3152
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3153
		ext4_ext_truncate(inode);
3154 3155
	else
		ext4_ind_truncate(inode);
3156

3157
	trace_ext4_truncate_exit(inode);
3158 3159 3160
}

/*
3161
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3162 3163 3164 3165
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3166 3167
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3168
{
3169 3170 3171 3172 3173 3174
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3175
	iloc->bh = NULL;
3176 3177
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3178

3179 3180 3181
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3182 3183
		return -EIO;

3184 3185 3186
	/*
	 * Figure out the offset within the block group inode table
	 */
3187
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3188 3189 3190 3191 3192 3193
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3194
	if (!bh) {
3195 3196
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3197 3198 3199 3200
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3224
			int i, start;
3225

3226
			start = inode_offset & ~(inodes_per_block - 1);
3227

3228 3229
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3242
			for (i = start; i < start + inodes_per_block; i++) {
3243 3244
				if (i == inode_offset)
					continue;
3245
				if (ext4_test_bit(i, bitmap_bh->b_data))
3246 3247 3248
					break;
			}
			brelse(bitmap_bh);
3249
			if (i == start + inodes_per_block) {
3250 3251 3252 3253 3254 3255 3256 3257 3258
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3259 3260 3261 3262 3263 3264 3265 3266 3267
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3268
			/* s_inode_readahead_blks is always a power of 2 */
3269 3270 3271 3272 3273 3274 3275
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3276
				num -= ext4_itable_unused_count(sb, gdp);
3277 3278 3279 3280 3281 3282 3283
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3284 3285 3286 3287 3288
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3289
		trace_ext4_load_inode(inode);
3290 3291 3292 3293 3294
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3295 3296
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3297 3298 3299 3300 3301 3302 3303 3304 3305
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3306
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3307 3308
{
	/* We have all inode data except xattrs in memory here. */
3309
	return __ext4_get_inode_loc(inode, iloc,
3310
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3311 3312
}

3313
void ext4_set_inode_flags(struct inode *inode)
3314
{
3315
	unsigned int flags = EXT4_I(inode)->i_flags;
3316 3317

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3318
	if (flags & EXT4_SYNC_FL)
3319
		inode->i_flags |= S_SYNC;
3320
	if (flags & EXT4_APPEND_FL)
3321
		inode->i_flags |= S_APPEND;
3322
	if (flags & EXT4_IMMUTABLE_FL)
3323
		inode->i_flags |= S_IMMUTABLE;
3324
	if (flags & EXT4_NOATIME_FL)
3325
		inode->i_flags |= S_NOATIME;
3326
	if (flags & EXT4_DIRSYNC_FL)
3327 3328 3329
		inode->i_flags |= S_DIRSYNC;
}

3330 3331 3332
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3353
}
3354

3355
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3356
				  struct ext4_inode_info *ei)
3357 3358
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3359 3360
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3361 3362 3363 3364 3365 3366

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3367
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3368 3369 3370 3371 3372
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3373 3374 3375 3376
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3377

3378
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3379
{
3380 3381
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3382 3383
	struct ext4_inode_info *ei;
	struct inode *inode;
3384
	journal_t *journal = EXT4_SB(sb)->s_journal;
3385
	long ret;
3386 3387
	int block;

3388 3389 3390 3391 3392 3393 3394
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3395
	iloc.bh = NULL;
3396

3397 3398
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3399
		goto bad_inode;
3400
	raw_inode = ext4_raw_inode(&iloc);
3401 3402 3403
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3404
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3405 3406 3407 3408 3409
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

3410
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3411 3412 3413 3414 3415 3416 3417 3418 3419
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3420
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3421
			/* this inode is deleted */
3422
			ret = -ESTALE;
3423 3424 3425 3426 3427 3428 3429 3430
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3431
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3432
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3433
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3434 3435
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3436
	inode->i_size = ext4_isize(raw_inode);
3437
	ei->i_disksize = inode->i_size;
3438 3439 3440
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3441 3442
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3443
	ei->i_last_alloc_group = ~0;
3444 3445 3446 3447
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3448
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3449 3450 3451
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3463
		read_lock(&journal->j_state_lock);
3464 3465 3466 3467 3468 3469 3470 3471
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3472
		read_unlock(&journal->j_state_lock);
3473 3474 3475 3476
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3477
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3478
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3479
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3480
		    EXT4_INODE_SIZE(inode->i_sb)) {
3481
			ret = -EIO;
3482
			goto bad_inode;
3483
		}
3484 3485
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3486 3487
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3488 3489
		} else {
			__le32 *magic = (void *)raw_inode +
3490
					EXT4_GOOD_OLD_INODE_SIZE +
3491
					ei->i_extra_isize;
3492
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3493
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3494 3495 3496 3497
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
3498 3499 3500 3501 3502
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3503 3504 3505 3506 3507 3508 3509
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3510
	ret = 0;
3511
	if (ei->i_file_acl &&
3512
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3513 3514
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3515 3516
		ret = -EIO;
		goto bad_inode;
3517
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3518 3519 3520 3521 3522
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3523
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3524 3525
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3526
		/* Validate block references which are part of inode */
3527
		ret = ext4_ind_check_inode(inode);
3528
	}
3529
	if (ret)
3530
		goto bad_inode;
3531

3532
	if (S_ISREG(inode->i_mode)) {
3533 3534 3535
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3536
	} else if (S_ISDIR(inode->i_mode)) {
3537 3538
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3539
	} else if (S_ISLNK(inode->i_mode)) {
3540
		if (ext4_inode_is_fast_symlink(inode)) {
3541
			inode->i_op = &ext4_fast_symlink_inode_operations;
3542 3543 3544
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3545 3546
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3547
		}
3548 3549
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3550
		inode->i_op = &ext4_special_inode_operations;
3551 3552 3553 3554 3555 3556
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3557 3558
	} else {
		ret = -EIO;
3559
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3560
		goto bad_inode;
3561
	}
3562
	brelse(iloc.bh);
3563
	ext4_set_inode_flags(inode);
3564 3565
	unlock_new_inode(inode);
	return inode;
3566 3567

bad_inode:
3568
	brelse(iloc.bh);
3569 3570
	iget_failed(inode);
	return ERR_PTR(ret);
3571 3572
}

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3586
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3587
		raw_inode->i_blocks_high = 0;
3588
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3589 3590 3591 3592 3593 3594
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3595 3596 3597 3598
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3599
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3600
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3601
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3602
	} else {
3603
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3604 3605 3606 3607
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3608
	}
3609
	return 0;
3610 3611
}

3612 3613 3614 3615 3616 3617 3618
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3619
static int ext4_do_update_inode(handle_t *handle,
3620
				struct inode *inode,
3621
				struct ext4_iloc *iloc)
3622
{
3623 3624
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3625 3626 3627 3628 3629
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3630
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3631
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3632

3633
	ext4_get_inode_flags(ei);
3634
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3635
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3636 3637 3638 3639 3640 3641
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
3642
		if (!ei->i_dtime) {
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
3660 3661 3662 3663 3664 3665

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

3666 3667
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
3668
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3669
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3670 3671
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
3672 3673
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
3674
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
3691
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3692
			sb->s_dirt = 1;
3693
			ext4_handle_sync(handle);
3694
			err = ext4_handle_dirty_metadata(handle, NULL,
3695
					EXT4_SB(sb)->s_sbh);
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
3710 3711 3712
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
3713

3714 3715 3716 3717 3718
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
3719
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3720 3721
	}

3722
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3723
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3724 3725
	if (!err)
		err = rc;
3726
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3727

3728
	ext4_update_inode_fsync_trans(handle, inode, 0);
3729
out_brelse:
3730
	brelse(bh);
3731
	ext4_std_error(inode->i_sb, err);
3732 3733 3734 3735
	return err;
}

/*
3736
 * ext4_write_inode()
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
3753
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
3770
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
3771
{
3772 3773
	int err;

3774 3775 3776
	if (current->flags & PF_MEMALLOC)
		return 0;

3777 3778 3779 3780 3781 3782
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
3783

3784
		if (wbc->sync_mode != WB_SYNC_ALL)
3785 3786 3787 3788 3789
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
3790

3791
		err = __ext4_get_inode_loc(inode, &iloc, 0);
3792 3793
		if (err)
			return err;
3794
		if (wbc->sync_mode == WB_SYNC_ALL)
3795 3796
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
3797 3798
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
3799 3800
			err = -EIO;
		}
3801
		brelse(iloc.bh);
3802 3803
	}
	return err;
3804 3805 3806
}

/*
3807
 * ext4_setattr()
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
3821 3822 3823 3824 3825 3826 3827 3828
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
3829
 */
3830
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3831 3832 3833
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
3834
	int orphan = 0;
3835 3836 3837 3838 3839 3840
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

3841
	if (is_quota_modification(inode, attr))
3842
		dquot_initialize(inode);
3843 3844 3845 3846 3847 3848
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
3849
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3850
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
3851 3852 3853 3854
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
3855
		error = dquot_transfer(inode, attr);
3856
		if (error) {
3857
			ext4_journal_stop(handle);
3858 3859 3860 3861 3862 3863 3864 3865
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
3866 3867
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
3868 3869
	}

3870
	if (attr->ia_valid & ATTR_SIZE) {
3871 3872
		inode_dio_wait(inode);

3873
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3874 3875
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

3876 3877
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
3878 3879 3880
		}
	}

3881
	if (S_ISREG(inode->i_mode) &&
3882
	    attr->ia_valid & ATTR_SIZE &&
3883
	    (attr->ia_size < inode->i_size)) {
3884 3885
		handle_t *handle;

3886
		handle = ext4_journal_start(inode, 3);
3887 3888 3889 3890
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
3891 3892 3893 3894
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
3895 3896
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
3897 3898
		if (!error)
			error = rc;
3899
		ext4_journal_stop(handle);
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
3912
				orphan = 0;
3913 3914 3915 3916
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
3917 3918
	}

3919 3920 3921 3922 3923 3924 3925
	if (attr->ia_valid & ATTR_SIZE) {
		if (attr->ia_size != i_size_read(inode)) {
			truncate_setsize(inode, attr->ia_size);
			ext4_truncate(inode);
		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
			ext4_truncate(inode);
	}
3926

C
Christoph Hellwig 已提交
3927 3928 3929 3930 3931 3932 3933 3934 3935
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
3936
	if (orphan && inode->i_nlink)
3937
		ext4_orphan_del(NULL, inode);
3938 3939

	if (!rc && (ia_valid & ATTR_MODE))
3940
		rc = ext4_acl_chmod(inode);
3941 3942

err_out:
3943
	ext4_std_error(inode->i_sb, error);
3944 3945 3946 3947 3948
	if (!error)
		error = rc;
	return error;
}

3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
3973

3974 3975
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
3976
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3977
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
3978
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
3979
}
3980

3981
/*
3982 3983 3984
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
3985
 *
3986
 * If datablocks are discontiguous, they are possible to spread over
3987
 * different block groups too. If they are contiuguous, with flexbg,
3988
 * they could still across block group boundary.
3989
 *
3990 3991
 * Also account for superblock, inode, quota and xattr blocks
 */
3992
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3993
{
3994 3995
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4022 4023
	if (groups > ngroups)
		groups = ngroups;
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4037
 * Calculate the total number of credits to reserve to fit
4038 4039
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4040
 *
4041
 * This could be called via ext4_write_begin()
4042
 *
4043
 * We need to consider the worse case, when
4044
 * one new block per extent.
4045
 */
A
Alex Tomas 已提交
4046
int ext4_writepage_trans_blocks(struct inode *inode)
4047
{
4048
	int bpp = ext4_journal_blocks_per_page(inode);
4049 4050
	int ret;

4051
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4052

4053
	/* Account for data blocks for journalled mode */
4054
	if (ext4_should_journal_data(inode))
4055
		ret += bpp;
4056 4057
	return ret;
}
4058 4059 4060 4061 4062

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4063
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4064 4065 4066 4067 4068 4069 4070 4071 4072
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4073
/*
4074
 * The caller must have previously called ext4_reserve_inode_write().
4075 4076
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4077
int ext4_mark_iloc_dirty(handle_t *handle,
4078
			 struct inode *inode, struct ext4_iloc *iloc)
4079 4080 4081
{
	int err = 0;

4082 4083 4084
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4085 4086 4087
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4088
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4089
	err = ext4_do_update_inode(handle, inode, iloc);
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4100 4101
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4102
{
4103 4104 4105 4106 4107 4108 4109 4110 4111
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4112 4113
		}
	}
4114
	ext4_std_error(inode->i_sb, err);
4115 4116 4117
	return err;
}

4118 4119 4120 4121
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4122 4123 4124 4125
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4138 4139
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4172
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4173
{
4174
	struct ext4_iloc iloc;
4175 4176 4177
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4178 4179

	might_sleep();
4180
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4181
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4182 4183
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4184
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4198 4199
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4200 4201
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4202
					ext4_warning(inode->i_sb,
4203 4204 4205
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4206 4207
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4208 4209 4210 4211
				}
			}
		}
	}
4212
	if (!err)
4213
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4214 4215 4216 4217
	return err;
}

/*
4218
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4219 4220 4221 4222 4223
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4224
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4225 4226 4227 4228 4229 4230
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4231
void ext4_dirty_inode(struct inode *inode, int flags)
4232 4233 4234
{
	handle_t *handle;

4235
	handle = ext4_journal_start(inode, 2);
4236 4237
	if (IS_ERR(handle))
		goto out;
4238 4239 4240

	ext4_mark_inode_dirty(handle, inode);

4241
	ext4_journal_stop(handle);
4242 4243 4244 4245 4246 4247 4248 4249
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4250
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4251 4252 4253
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4254
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4255
{
4256
	struct ext4_iloc iloc;
4257 4258 4259

	int err = 0;
	if (handle) {
4260
		err = ext4_get_inode_loc(inode, &iloc);
4261 4262
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4263
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4264
			if (!err)
4265
				err = ext4_handle_dirty_metadata(handle,
4266
								 NULL,
4267
								 iloc.bh);
4268 4269 4270
			brelse(iloc.bh);
		}
	}
4271
	ext4_std_error(inode->i_sb, err);
4272 4273 4274 4275
	return err;
}
#endif

4276
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4292
	journal = EXT4_JOURNAL(inode);
4293 4294
	if (!journal)
		return 0;
4295
	if (is_journal_aborted(journal))
4296 4297
		return -EROFS;

4298 4299
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4310
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4311
	else
4312
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4313
	ext4_set_aops(inode);
4314

4315
	jbd2_journal_unlock_updates(journal);
4316 4317 4318

	/* Finally we can mark the inode as dirty. */

4319
	handle = ext4_journal_start(inode, 1);
4320 4321 4322
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4323
	err = ext4_mark_inode_dirty(handle, inode);
4324
	ext4_handle_sync(handle);
4325 4326
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4327 4328 4329

	return err;
}
4330 4331 4332 4333 4334 4335

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4336
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4337
{
4338
	struct page *page = vmf->page;
4339 4340
	loff_t size;
	unsigned long len;
4341
	int ret;
4342 4343 4344
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4345 4346 4347
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4348 4349

	/*
4350 4351
	 * This check is racy but catches the common case. We rely on
	 * __block_page_mkwrite() to do a reliable check.
4352
	 */
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4364
	}
4365 4366

	lock_page(page);
4367 4368 4369 4370 4371 4372
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4373
	}
4374 4375 4376 4377 4378

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4379
	/*
4380 4381
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4382
	 */
4383 4384
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4385
					ext4_bh_unmapped)) {
4386 4387 4388 4389
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4390
		}
4391
	}
4392
	unlock_page(page);
4393 4394 4395 4396 4397 4398 4399 4400
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4401
		ret = VM_FAULT_SIGBUS;
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4420 4421
	return ret;
}