inode.c 171.1 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/printk.h>
43
#include <linux/slab.h>
44
#include <linux/ratelimit.h>
45

46
#include "ext4_jbd2.h"
47 48
#include "xattr.h"
#include "acl.h"
49
#include "ext4_extents.h"
50

51 52
#include <trace/events/ext4.h>

53 54
#define MPAGE_DA_EXTENT_TAIL 0x01

55 56 57
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
58
	trace_ext4_begin_ordered_truncate(inode, new_size);
59 60 61 62 63 64 65 66 67 68 69
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
70 71
}

72
static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 74 75 76 77 78
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79

80 81 82
/*
 * Test whether an inode is a fast symlink.
 */
83
static int ext4_inode_is_fast_symlink(struct inode *inode)
84
{
85
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
86 87 88 89 90 91 92 93 94 95 96
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
97
	ext4_lblk_t needed;
98 99 100 101 102 103

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
104
	 * like a regular file for ext4 to try to delete it.  Things
105 106 107 108 109 110 111
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
112 113
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
114

115
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

132
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
133 134 135
	if (!IS_ERR(result))
		return result;

136
	ext4_std_error(inode->i_sb, PTR_ERR(result));
137 138 139 140 141 142 143 144 145 146 147
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
148 149 150
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151
		return 0;
152
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153 154 155 156 157 158 159 160 161
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
162
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163
				 int nblocks)
164
{
165 166 167
	int ret;

	/*
168
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169 170 171 172
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
173
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
174
	jbd_debug(2, "restarting handle %p\n", handle);
175
	up_write(&EXT4_I(inode)->i_data_sem);
176
	ret = ext4_journal_restart(handle, nblocks);
177
	down_write(&EXT4_I(inode)->i_data_sem);
178
	ext4_discard_preallocations(inode);
179 180

	return ret;
181 182 183 184 185
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
186
void ext4_evict_inode(struct inode *inode)
187 188
{
	handle_t *handle;
189
	int err;
190

191
	trace_ext4_evict_inode(inode);
A
Al Viro 已提交
192 193 194 195 196
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

197
	if (!is_bad_inode(inode))
198
		dquot_initialize(inode);
199

200 201
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
202 203 204 205 206
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

207
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208
	if (IS_ERR(handle)) {
209
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
210 211 212 213 214
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
215
		ext4_orphan_del(NULL, inode);
216 217 218 219
		goto no_delete;
	}

	if (IS_SYNC(inode))
220
		ext4_handle_sync(handle);
221
	inode->i_size = 0;
222 223
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
224
		ext4_warning(inode->i_sb,
225 226 227
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
228
	if (inode->i_blocks)
229
		ext4_truncate(inode);
230 231 232 233 234 235 236

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
237
	if (!ext4_handle_has_enough_credits(handle, 3)) {
238 239 240 241
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
242
			ext4_warning(inode->i_sb,
243 244 245
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
246
			ext4_orphan_del(NULL, inode);
247 248 249 250
			goto no_delete;
		}
	}

251
	/*
252
	 * Kill off the orphan record which ext4_truncate created.
253
	 * AKPM: I think this can be inside the above `if'.
254
	 * Note that ext4_orphan_del() has to be able to cope with the
255
	 * deletion of a non-existent orphan - this is because we don't
256
	 * know if ext4_truncate() actually created an orphan record.
257 258
	 * (Well, we could do this if we need to, but heck - it works)
	 */
259 260
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
261 262 263 264 265 266 267 268

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
269
	if (ext4_mark_inode_dirty(handle, inode))
270
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
271
		ext4_clear_inode(inode);
272
	else
273 274
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
275 276
	return;
no_delete:
A
Al Viro 已提交
277
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
293
 *	ext4_block_to_path - parse the block number into array of offsets
294 295 296
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
297 298
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
299
 *
300
 *	To store the locations of file's data ext4 uses a data structure common
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

323
static int ext4_block_to_path(struct inode *inode,
324 325
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
326
{
327 328 329
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
330 331 332 333 334
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

335
	if (i_block < direct_blocks) {
336 337
		offsets[n++] = i_block;
		final = direct_blocks;
338
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
339
		offsets[n++] = EXT4_IND_BLOCK;
340 341 342
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
343
		offsets[n++] = EXT4_DIND_BLOCK;
344 345 346 347
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348
		offsets[n++] = EXT4_TIND_BLOCK;
349 350 351 352 353
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
354
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355 356
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
357 358 359 360 361 362 363
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
364
 *	ext4_get_branch - read the chain of indirect blocks leading to data
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
389 390
 *
 *      Need to be called with
391
 *      down_read(&EXT4_I(inode)->i_data_sem)
392
 */
A
Aneesh Kumar K.V 已提交
393 394
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
395 396 397 398 399 400 401 402
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
403
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404 405 406
	if (!p->key)
		goto no_block;
	while (--depth) {
407 408
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
409
			goto failure;
410

411 412 413 414 415 416 417 418 419 420 421
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
422

423
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
424 425 426 427 428 429 430 431 432 433 434 435 436
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
437
 *	ext4_find_near - find a place for allocation with sufficient locality
438 439 440
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
441
 *	This function returns the preferred place for block allocation.
442 443 444 445 446 447 448 449 450 451 452 453 454 455
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
456
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
457
{
458
	struct ext4_inode_info *ei = EXT4_I(inode);
459
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
460
	__le32 *p;
461
	ext4_fsblk_t bg_start;
462
	ext4_fsblk_t last_block;
463
	ext4_grpblk_t colour;
464 465
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
481 482 483 484 485 486 487
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
488 489
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

490 491 492 493 494 495 496
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

497 498
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
499
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
500 501
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
502 503 504 505
	return bg_start + colour;
}

/**
506
 *	ext4_find_goal - find a preferred place for allocation.
507 508 509 510
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
511
 *	Normally this function find the preferred place for block allocation,
512
 *	returns it.
513 514
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
515
 */
A
Aneesh Kumar K.V 已提交
516
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
517
				   Indirect *partial)
518
{
519 520
	ext4_fsblk_t goal;

521
	/*
522
	 * XXX need to get goal block from mballoc's data structures
523 524
	 */

525 526 527
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
528 529 530
}

/**
T
Theodore Ts'o 已提交
531
 *	ext4_blks_to_allocate - Look up the block map and count the number
532 533 534 535 536 537 538 539 540 541
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
542
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
543
				 int blocks_to_boundary)
544
{
545
	unsigned int count = 0;
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
569
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
T
Theodore Ts'o 已提交
570 571 572 573
 *	@handle: handle for this transaction
 *	@inode: inode which needs allocated blocks
 *	@iblock: the logical block to start allocated at
 *	@goal: preferred physical block of allocation
574 575
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
T
Theodore Ts'o 已提交
576
 *	@blks: number of desired blocks
577 578
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
T
Theodore Ts'o 已提交
579 580 581 582
 *	@err: on return it will store the error code
 *
 *	This function will return the number of blocks allocated as
 *	requested by the passed-in parameters.
583
 */
584
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
585 586 587
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
588
{
589
	struct ext4_allocation_request ar;
590
	int target, i;
591
	unsigned long count = 0, blk_allocated = 0;
592
	int index = 0;
593
	ext4_fsblk_t current_block = 0;
594 595 596 597 598 599 600 601 602 603
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
604 605 606
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
607 608
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
609 610
		current_block = ext4_new_meta_blocks(handle, inode, goal,
						     0, &count, err);
611 612 613
		if (*err)
			goto failed_out;

614 615 616 617 618 619 620 621
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
622

623 624 625 626 627 628
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
629 630 631 632 633 634 635 636 637
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
638
			break;
639
		}
640 641
	}

642 643 644 645 646
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
647 648 649 650 651 652 653 654 655 656
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
657 658 659 660 661 662 663 664
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
665

666 667 668 669 670 671 672 673 674
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
675 676 677 678
			/*
			 * save the new block number
			 * for the first direct block
			 */
679 680
			new_blocks[index] = current_block;
		}
681
		blk_allocated += ar.len;
682 683
	}
allocated:
684
	/* total number of blocks allocated for direct blocks */
685
	ret = blk_allocated;
686 687 688
	*err = 0;
	return ret;
failed_out:
689
	for (i = 0; i < index; i++)
690
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
691 692 693 694
	return ret;
}

/**
695
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
T
Theodore Ts'o 已提交
696
 *	@handle: handle for this transaction
697 698 699
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
T
Theodore Ts'o 已提交
700
 *	@goal: preferred place for allocation
701 702 703 704 705 706 707
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
708
 *	the same format as ext4_get_branch() would do. We are calling it after
709 710
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
711
 *	picture as after the successful ext4_get_block(), except that in one
712 713 714 715 716 717
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
718
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
719 720
 *	as described above and return 0.
 */
721
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
722 723 724
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
725 726 727 728 729 730
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
731 732
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
733

734
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
750 751 752 753 754
		if (unlikely(!bh)) {
			err = -EIO;
			goto failed;
		}

755 756 757
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
758
		err = ext4_journal_get_create_access(handle, bh);
759
		if (err) {
760 761
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
762 763 764 765 766 767 768 769
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
770
		if (n == indirect_blks) {
771 772 773 774 775 776
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
777
			for (i = 1; i < num; i++)
778 779 780 781 782 783
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

784 785
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
786 787 788 789 790 791 792
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
793
	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
794
	for (i = 1; i <= n ; i++) {
795
		/*
796 797 798
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
799
		 */
800
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
801
				 EXT4_FREE_BLOCKS_FORGET);
802
	}
803
	for (i = n+1; i < indirect_blks; i++)
804
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
805

806
	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
807 808 809 810 811

	return err;
}

/**
812
 * ext4_splice_branch - splice the allocated branch onto inode.
T
Theodore Ts'o 已提交
813
 * @handle: handle for this transaction
814 815 816
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
817
 *	ext4_alloc_branch)
818 819 820 821 822 823 824 825
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
826
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
827 828
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
829 830 831
{
	int i;
	int err = 0;
832
	ext4_fsblk_t current_block;
833 834 835 836 837 838 839 840

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
841
		err = ext4_journal_get_write_access(handle, where->bh);
842 843 844 845 846 847 848 849 850 851 852 853 854 855
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
856
			*(where->p + i) = cpu_to_le32(current_block++);
857 858 859 860 861 862 863 864 865 866 867
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
868
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
869 870
		 */
		jbd_debug(5, "splicing indirect only\n");
871 872
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
873 874 875 876 877 878
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
879
		ext4_mark_inode_dirty(handle, inode);
880 881 882 883 884 885
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
886
		/*
887 888 889
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
890
		 */
891 892
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
893
	}
894
	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
895
			 blks, 0);
896 897 898 899 900

	return err;
}

/*
901
 * The ext4_ind_map_blocks() function handles non-extents inodes
902
 * (i.e., using the traditional indirect/double-indirect i_blocks
903
 * scheme) for ext4_map_blocks().
904
 *
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
921
 *
922 923 924 925 926
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
927
 */
928 929
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
930
			       int flags)
931 932
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
933
	ext4_lblk_t offsets[4];
934 935
	Indirect chain[4];
	Indirect *partial;
936
	ext4_fsblk_t goal;
937 938 939 940
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
941
	ext4_fsblk_t first_block = 0;
942

943
	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
944
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
945
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
946
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
947
				   &blocks_to_boundary);
948 949 950 951

	if (depth == 0)
		goto out;

952
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
953 954 955 956 957 958

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
959
		while (count < map->m_len && count <= blocks_to_boundary) {
960
			ext4_fsblk_t blk;
961 962 963 964 965 966 967 968

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
969
		goto got_it;
970 971 972
	}

	/* Next simple case - plain lookup or failed read of indirect block */
973
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
974 975 976
		goto cleanup;

	/*
977
	 * Okay, we need to do block allocation.
978
	*/
979
	goal = ext4_find_goal(inode, map->m_lblk, partial);
980 981 982 983 984 985 986 987

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
988
	count = ext4_blks_to_allocate(partial, indirect_blks,
989
				      map->m_len, blocks_to_boundary);
990
	/*
991
	 * Block out ext4_truncate while we alter the tree
992
	 */
993
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
994 995
				&count, goal,
				offsets + (partial - chain), partial);
996 997

	/*
998
	 * The ext4_splice_branch call will free and forget any buffers
999 1000 1001 1002 1003 1004
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1005
		err = ext4_splice_branch(handle, inode, map->m_lblk,
1006
					 partial, indirect_blks, count);
1007
	if (err)
1008 1009
		goto cleanup;

1010
	map->m_flags |= EXT4_MAP_NEW;
1011 1012

	ext4_update_inode_fsync_trans(handle, inode, 1);
1013
got_it:
1014 1015 1016
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1017
	if (count > blocks_to_boundary)
1018
		map->m_flags |= EXT4_MAP_BOUNDARY;
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
1029 1030
	trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
				map->m_pblk, map->m_len, err);
1031 1032 1033
	return err;
}

1034 1035
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1036
{
1037
	return &EXT4_I(inode)->i_reserved_quota;
1038
}
1039
#endif
1040

1041 1042
/*
 * Calculate the number of metadata blocks need to reserve
1043
 * to allocate a new block at @lblocks for non extent file based file
1044
 */
1045
static int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
1046
{
1047
	struct ext4_inode_info *ei = EXT4_I(inode);
1048
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1049
	int blk_bits;
1050

1051 1052
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1053

1054
	lblock -= EXT4_NDIR_BLOCKS;
1055

1056 1057 1058 1059 1060 1061 1062
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1063
	blk_bits = order_base_2(lblock);
1064
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1065 1066 1067 1068
}

/*
 * Calculate the number of metadata blocks need to reserve
1069
 * to allocate a block located at @lblock
1070
 */
1071
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1072
{
1073
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1074
		return ext4_ext_calc_metadata_amount(inode, lblock);
1075

1076
	return ext4_ind_calc_metadata_amount(inode, lblock);
1077 1078
}

1079 1080 1081 1082
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1083 1084
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1085 1086
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087 1088 1089
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1090
	trace_ext4_da_update_reserve_space(inode, used);
1091 1092 1093 1094 1095 1096 1097 1098
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1099

1100 1101 1102
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1103 1104
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1105
	ei->i_allocated_meta_blocks = 0;
1106

1107 1108 1109 1110 1111 1112
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1113 1114
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1115
		ei->i_reserved_meta_blocks = 0;
1116
		ei->i_da_metadata_calc_len = 0;
1117
	}
1118
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1119

1120 1121
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1122
		dquot_claim_block(inode, used);
1123
	else {
1124 1125 1126
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1127
		 * not re-claim the quota for fallocated blocks.
1128
		 */
1129
		dquot_release_reservation_block(inode, used);
1130
	}
1131 1132 1133 1134 1135 1136

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1137 1138
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1139
		ext4_discard_preallocations(inode);
1140 1141
}

1142
static int __check_block_validity(struct inode *inode, const char *func,
1143 1144
				unsigned int line,
				struct ext4_map_blocks *map)
1145
{
1146 1147
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
1148 1149 1150 1151
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
1152 1153 1154 1155 1156
		return -EIO;
	}
	return 0;
}

1157
#define check_block_validity(inode, map)	\
1158
	__check_block_validity((inode), __func__, __LINE__, (map))
1159

1160
/*
1161 1162
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1196 1197 1198 1199 1200 1201 1202 1203 1204
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1205 1206 1207 1208 1209
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
1210 1211
			if (num >= max_pages) {
				done = 1;
1212
				break;
1213
			}
1214 1215 1216 1217 1218 1219
		}
		pagevec_release(&pvec);
	}
	return num;
}

1220
/*
1221
 * The ext4_map_blocks() function tries to look up the requested blocks,
1222
 * and returns if the blocks are already mapped.
1223 1224 1225 1226 1227
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1228 1229
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1242 1243
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1244 1245
{
	int retval;
1246

1247 1248 1249 1250
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1251
	/*
1252 1253
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1254 1255
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1256
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1257
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1258
	} else {
1259
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1260
	}
1261
	up_read((&EXT4_I(inode)->i_data_sem));
1262

1263
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1264
		int ret = check_block_validity(inode, map);
1265 1266 1267 1268
		if (ret != 0)
			return ret;
	}

1269
	/* If it is only a block(s) look up */
1270
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1271 1272 1273 1274 1275 1276 1277 1278 1279
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1280
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1281 1282
		return retval;

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1293
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1294

1295
	/*
1296 1297 1298 1299
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1300 1301
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1302 1303 1304 1305 1306 1307 1308

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1309
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1310
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1311 1312 1313 1314
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1315
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1316
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1317
	} else {
1318
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1319

1320
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1321 1322 1323 1324 1325
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1326
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1327
		}
1328

1329 1330 1331 1332 1333 1334 1335
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1336
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1337 1338
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1339
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1340
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1341

1342
	up_write((&EXT4_I(inode)->i_data_sem));
1343
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1344
		int ret = check_block_validity(inode, map);
1345 1346 1347
		if (ret != 0)
			return ret;
	}
1348 1349 1350
	return retval;
}

1351 1352 1353
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1354 1355
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1356
{
1357
	handle_t *handle = ext4_journal_current_handle();
1358
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1359
	int ret = 0, started = 0;
1360
	int dio_credits;
1361

1362 1363 1364 1365
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1366
		/* Direct IO write... */
1367 1368 1369
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1370
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1371
		if (IS_ERR(handle)) {
1372
			ret = PTR_ERR(handle);
1373
			return ret;
1374
		}
J
Jan Kara 已提交
1375
		started = 1;
1376 1377
	}

1378
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1379
	if (ret > 0) {
1380 1381 1382
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1383
		ret = 0;
1384
	}
J
Jan Kara 已提交
1385 1386
	if (started)
		ext4_journal_stop(handle);
1387 1388 1389
	return ret;
}

1390 1391 1392 1393 1394 1395 1396
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1397 1398 1399
/*
 * `handle' can be NULL if create is zero
 */
1400
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1401
				ext4_lblk_t block, int create, int *errp)
1402
{
1403 1404
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1405 1406 1407 1408
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1409 1410 1411 1412
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1424
	}
1425 1426 1427
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1442
		}
1443 1444 1445 1446 1447 1448 1449
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1450
	}
1451 1452 1453 1454 1455 1456
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1457 1458
}

1459
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1460
			       ext4_lblk_t block, int create, int *err)
1461
{
1462
	struct buffer_head *bh;
1463

1464
	bh = ext4_getblk(handle, inode, block, create, err);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1478 1479 1480 1481 1482 1483 1484
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1485 1486 1487 1488 1489 1490 1491
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1492 1493
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1494
	     block_start = block_end, bh = next) {
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1512
 * close off a transaction and start a new one between the ext4_get_block()
1513
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1514 1515
 * prepare_write() is the right place.
 *
1516 1517
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1518 1519 1520 1521
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1522
 * By accident, ext4 can be reentered when a transaction is open via
1523 1524 1525 1526 1527 1528
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1529
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1530 1531 1532 1533 1534
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1535
				       struct buffer_head *bh)
1536
{
1537 1538 1539
	int dirty = buffer_dirty(bh);
	int ret;

1540 1541
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1542
	/*
C
Christoph Hellwig 已提交
1543
	 * __block_write_begin() could have dirtied some buffers. Clean
1544 1545
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
1546
	 * by __block_write_begin() isn't a real problem here as we clear
1547 1548 1549 1550 1551 1552 1553 1554 1555
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
1556 1557
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1568 1569
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1570
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1571 1572
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1573
{
1574
	struct inode *inode = mapping->host;
1575
	int ret, needed_blocks;
1576 1577
	handle_t *handle;
	int retries = 0;
1578
	struct page *page;
1579
	pgoff_t index;
1580
	unsigned from, to;
N
Nick Piggin 已提交
1581

1582
	trace_ext4_write_begin(inode, pos, len, flags);
1583 1584 1585 1586 1587
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1588
	index = pos >> PAGE_CACHE_SHIFT;
1589 1590
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1591 1592

retry:
1593 1594 1595 1596
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1597
	}
1598

1599 1600 1601 1602
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1603
	page = grab_cache_page_write_begin(mapping, index, flags);
1604 1605 1606 1607 1608 1609 1610
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1611
	if (ext4_should_dioread_nolock(inode))
1612
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1613
	else
1614
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1615 1616

	if (!ret && ext4_should_journal_data(inode)) {
1617 1618 1619
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1620 1621

	if (ret) {
1622 1623
		unlock_page(page);
		page_cache_release(page);
1624
		/*
1625
		 * __block_write_begin may have instantiated a few blocks
1626 1627
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1628 1629 1630
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1631
		 */
1632
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1633 1634 1635 1636
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1637
			ext4_truncate_failed_write(inode);
1638
			/*
1639
			 * If truncate failed early the inode might
1640 1641 1642 1643 1644 1645 1646
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1647 1648
	}

1649
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1650
		goto retry;
1651
out:
1652 1653 1654
	return ret;
}

N
Nick Piggin 已提交
1655 1656
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1657 1658 1659 1660
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1661
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1662 1663
}

1664
static int ext4_generic_write_end(struct file *file,
1665 1666 1667
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1710 1711 1712 1713
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1714
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1715 1716
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1717
static int ext4_ordered_write_end(struct file *file,
1718 1719 1720
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1721
{
1722
	handle_t *handle = ext4_journal_current_handle();
1723
	struct inode *inode = mapping->host;
1724 1725
	int ret = 0, ret2;

1726
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1727
	ret = ext4_jbd2_file_inode(handle, inode);
1728 1729

	if (ret == 0) {
1730
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1731
							page, fsdata);
1732
		copied = ret2;
1733
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1734 1735 1736 1737 1738
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1739 1740
		if (ret2 < 0)
			ret = ret2;
1741
	}
1742
	ret2 = ext4_journal_stop(handle);
1743 1744
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1745

1746
	if (pos + len > inode->i_size) {
1747
		ext4_truncate_failed_write(inode);
1748
		/*
1749
		 * If truncate failed early the inode might still be
1750 1751 1752 1753 1754 1755 1756 1757
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1758
	return ret ? ret : copied;
1759 1760
}

N
Nick Piggin 已提交
1761
static int ext4_writeback_write_end(struct file *file,
1762 1763 1764
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1765
{
1766
	handle_t *handle = ext4_journal_current_handle();
1767
	struct inode *inode = mapping->host;
1768 1769
	int ret = 0, ret2;

1770
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1771
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1772
							page, fsdata);
1773
	copied = ret2;
1774
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1775 1776 1777 1778 1779 1780
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1781 1782
	if (ret2 < 0)
		ret = ret2;
1783

1784
	ret2 = ext4_journal_stop(handle);
1785 1786
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1787

1788
	if (pos + len > inode->i_size) {
1789
		ext4_truncate_failed_write(inode);
1790
		/*
1791
		 * If truncate failed early the inode might still be
1792 1793 1794 1795 1796 1797 1798
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1799
	return ret ? ret : copied;
1800 1801
}

N
Nick Piggin 已提交
1802
static int ext4_journalled_write_end(struct file *file,
1803 1804 1805
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1806
{
1807
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1808
	struct inode *inode = mapping->host;
1809 1810
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1811
	unsigned from, to;
1812
	loff_t new_i_size;
1813

1814
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1815 1816 1817 1818 1819 1820 1821 1822
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1823 1824

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1825
				to, &partial, write_end_fn);
1826 1827
	if (!partial)
		SetPageUptodate(page);
1828 1829
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1830
		i_size_write(inode, pos+copied);
1831
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1832 1833
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1834
		ret2 = ext4_mark_inode_dirty(handle, inode);
1835 1836 1837
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1838

1839
	unlock_page(page);
1840
	page_cache_release(page);
1841
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1842 1843 1844 1845 1846 1847
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1848
	ret2 = ext4_journal_stop(handle);
1849 1850
	if (!ret)
		ret = ret2;
1851
	if (pos + len > inode->i_size) {
1852
		ext4_truncate_failed_write(inode);
1853
		/*
1854
		 * If truncate failed early the inode might still be
1855 1856 1857 1858 1859 1860
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1861 1862

	return ret ? ret : copied;
1863
}
1864

1865 1866 1867
/*
 * Reserve a single block located at lblock
 */
1868
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1869
{
A
Aneesh Kumar K.V 已提交
1870
	int retries = 0;
1871
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1872
	struct ext4_inode_info *ei = EXT4_I(inode);
1873
	unsigned long md_needed;
1874
	int ret;
1875 1876 1877 1878 1879 1880

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1881
repeat:
1882
	spin_lock(&ei->i_block_reservation_lock);
1883
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1884
	trace_ext4_da_reserve_space(inode, md_needed);
1885
	spin_unlock(&ei->i_block_reservation_lock);
1886

1887
	/*
1888 1889 1890
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1891
	 */
1892
	ret = dquot_reserve_block(inode, 1);
1893 1894
	if (ret)
		return ret;
1895 1896 1897 1898
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1899
	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1900
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1901 1902 1903 1904
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1905 1906
		return -ENOSPC;
	}
1907
	spin_lock(&ei->i_block_reservation_lock);
1908
	ei->i_reserved_data_blocks++;
1909 1910
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1911

1912 1913 1914
	return 0;       /* success */
}

1915
static void ext4_da_release_space(struct inode *inode, int to_free)
1916 1917
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1918
	struct ext4_inode_info *ei = EXT4_I(inode);
1919

1920 1921 1922
	if (!to_free)
		return;		/* Nothing to release, exit */

1923
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1924

L
Li Zefan 已提交
1925
	trace_ext4_da_release_space(inode, to_free);
1926
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1927
		/*
1928 1929 1930 1931
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1932
		 */
1933 1934 1935 1936 1937 1938
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1939
	}
1940
	ei->i_reserved_data_blocks -= to_free;
1941

1942 1943 1944 1945 1946 1947
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1948 1949
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1950
		ei->i_reserved_meta_blocks = 0;
1951
		ei->i_da_metadata_calc_len = 0;
1952
	}
1953

1954
	/* update fs dirty data blocks counter */
1955
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1956 1957

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1958

1959
	dquot_release_reservation_block(inode, to_free);
1960 1961 1962
}

static void ext4_da_page_release_reservation(struct page *page,
1963
					     unsigned long offset)
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1980
	ext4_da_release_space(page->mapping->host, to_release);
1981
}
1982

1983 1984 1985 1986 1987 1988
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1989
 * them with writepage() call back
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
2000 2001
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
2002
{
2003 2004 2005 2006 2007
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2008
	loff_t size = i_size_read(inode);
2009 2010
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
2011
	int journal_data = ext4_should_journal_data(inode);
2012
	sector_t pblock = 0, cur_logical = 0;
2013
	struct ext4_io_submit io_submit;
2014 2015

	BUG_ON(mpd->next_page <= mpd->first_page);
2016
	memset(&io_submit, 0, sizeof(io_submit));
2017 2018 2019
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
2020
	 * If we look at mpd->b_blocknr we would only be looking
2021 2022
	 * at the currently mapped buffer_heads.
	 */
2023 2024 2025
	index = mpd->first_page;
	end = mpd->next_page - 1;

2026
	pagevec_init(&pvec, 0);
2027
	while (index <= end) {
2028
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2029 2030 2031
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
2032
			int commit_write = 0, skip_page = 0;
2033 2034
			struct page *page = pvec.pages[i];

2035 2036 2037
			index = page->index;
			if (index > end)
				break;
2038 2039 2040 2041 2042

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
2043 2044 2045 2046 2047 2048
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
2049 2050 2051 2052 2053
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2054
			/*
2055 2056
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
2057
			 * __block_write_begin.  If this fails,
2058
			 * skip the page and move on.
2059
			 */
2060
			if (!page_has_buffers(page)) {
2061
				if (__block_write_begin(page, 0, len,
2062
						noalloc_get_block_write)) {
2063
				skip_page:
2064 2065 2066 2067 2068
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
2069

2070 2071
			bh = page_bufs = page_buffers(page);
			block_start = 0;
2072
			do {
2073
				if (!bh)
2074
					goto skip_page;
2075 2076 2077
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
2078 2079 2080 2081
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
2082 2083 2084 2085 2086 2087 2088
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
2089

2090
				/* skip page if block allocation undone */
2091
				if (buffer_delay(bh) || buffer_unwritten(bh))
2092
					skip_page = 1;
2093 2094
				bh = bh->b_this_page;
				block_start += bh->b_size;
2095 2096
				cur_logical++;
				pblock++;
2097 2098
			} while (bh != page_bufs);

2099 2100
			if (skip_page)
				goto skip_page;
2101 2102 2103 2104 2105

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

2106
			clear_page_dirty_for_io(page);
2107 2108 2109 2110 2111 2112
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
2113
				err = __ext4_journalled_writepage(page, len);
2114
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2115 2116
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
2117 2118 2119
			else
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
2120 2121

			if (!err)
2122
				mpd->pages_written++;
2123 2124 2125 2126 2127 2128 2129 2130 2131
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
2132
	ext4_io_submit(&io_submit);
2133 2134 2135
	return ret;
}

2136
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2137 2138 2139 2140 2141 2142 2143
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

2144 2145
	index = mpd->first_page;
	end   = mpd->next_page - 1;
2146 2147 2148 2149 2150 2151
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2152
			if (page->index > end)
2153 2154 2155 2156 2157 2158 2159
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2160 2161
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2162 2163 2164 2165
	}
	return;
}

2166 2167 2168
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2181 2182 2183
	return;
}

2184
/*
2185 2186
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
2187
 *
2188
 * @mpd - bh describing space
2189 2190 2191 2192
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2193
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2194
{
2195
	int err, blks, get_blocks_flags;
2196
	struct ext4_map_blocks map, *mapp = NULL;
2197 2198 2199 2200
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2201 2202

	/*
2203 2204
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
2205
	 */
2206 2207 2208 2209 2210
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
2211 2212 2213 2214

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2215
	/*
2216
	 * Call ext4_map_blocks() to allocate any delayed allocation
2217 2218 2219 2220 2221 2222 2223 2224
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
2225
	 * want to change *many* call functions, so ext4_map_blocks()
2226
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2227 2228 2229 2230 2231
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2232
	 */
2233 2234
	map.m_lblk = next;
	map.m_len = max_blocks;
2235
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2236 2237
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2238
	if (mpd->b_state & (1 << BH_Delay))
2239 2240
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2241
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2242
	if (blks < 0) {
2243 2244
		struct super_block *sb = mpd->inode->i_sb;

2245
		err = blks;
2246
		/*
2247
		 * If get block returns EAGAIN or ENOSPC and there
2248 2249
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
2250 2251
		 */
		if (err == -EAGAIN)
2252
			goto submit_io;
2253 2254

		if (err == -ENOSPC &&
2255
		    ext4_count_free_blocks(sb)) {
2256
			mpd->retval = err;
2257
			goto submit_io;
2258 2259
		}

2260
		/*
2261 2262 2263 2264 2265
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2266
		 */
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2278
		}
2279
		/* invalidate all the pages */
2280
		ext4_da_block_invalidatepages(mpd);
2281 2282 2283

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
2284
		return;
2285
	}
2286 2287
	BUG_ON(blks == 0);

2288
	mapp = &map;
2289 2290 2291
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2292

2293 2294 2295
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2296

2297 2298 2299
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
2300 2301
			/* This only happens if the journal is aborted */
			return;
2302 2303 2304
	}

	/*
2305
	 * Update on-disk size along with block allocation.
2306 2307 2308 2309 2310 2311
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
2312 2313 2314 2315 2316
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
2317 2318
	}

2319
submit_io:
2320
	mpage_da_submit_io(mpd, mapp);
2321
	mpd->io_done = 1;
2322 2323
}

2324 2325
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2337 2338
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2339 2340
{
	sector_t next;
2341
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2342

2343 2344 2345 2346
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
2347
	 * ext4_map_blocks() multiple times in a loop
2348 2349 2350 2351
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2352
	/* check if thereserved journal credits might overflow */
2353
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2374 2375 2376
	/*
	 * First block in the extent
	 */
2377 2378 2379 2380
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2381 2382 2383
		return;
	}

2384
	next = mpd->b_blocknr + nrblocks;
2385 2386 2387
	/*
	 * Can we merge the block to our big extent?
	 */
2388 2389
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2390 2391 2392
		return;
	}

2393
flush_it:
2394 2395 2396 2397
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2398
	mpage_da_map_and_submit(mpd);
2399
	return;
2400 2401
}

2402
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2403
{
2404
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2405 2406
}

2407
/*
2408 2409 2410
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2411 2412 2413 2414 2415 2416 2417
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2418 2419
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2420
				  struct buffer_head *bh, int create)
2421
{
2422
	struct ext4_map_blocks map;
2423
	int ret = 0;
2424 2425 2426 2427
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2428 2429

	BUG_ON(create == 0);
2430 2431 2432 2433
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2434 2435 2436 2437 2438 2439

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2440 2441 2442 2443 2444 2445
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2446
		/*
C
Christoph Hellwig 已提交
2447
		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2448
		 */
2449
		ret = ext4_da_reserve_space(inode, iblock);
2450 2451 2452 2453
		if (ret)
			/* not enough space to reserve */
			return ret;

2454 2455 2456 2457
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2458 2459
	}

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
2471
		set_buffer_mapped(bh);
2472 2473
	}
	return 0;
2474
}
2475

2476 2477 2478
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
2479
 * callback function for block_write_begin() and block_write_full_page().
2480
 * These functions should only try to map a single block at a time.
2481 2482 2483 2484 2485
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2486 2487 2488
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2489 2490
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2491 2492
				   struct buffer_head *bh_result, int create)
{
2493
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2494
	return _ext4_get_block(inode, iblock, bh_result, 0);
2495 2496
}

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2519
	ClearPageChecked(page);
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2545
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2546 2547 2548 2549
out:
	return ret;
}

2550 2551 2552
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2553
/*
2554 2555 2556 2557
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
2558
 * we are writing back data modified via mmap(), no one guarantees in which
2559 2560 2561 2562
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2563 2564 2565 2566 2567
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2593
 */
2594
static int ext4_writepage(struct page *page,
2595
			  struct writeback_control *wbc)
2596
{
T
Theodore Ts'o 已提交
2597
	int ret = 0, commit_write = 0;
2598
	loff_t size;
2599
	unsigned int len;
2600
	struct buffer_head *page_bufs = NULL;
2601 2602
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
2603
	trace_ext4_writepage(page);
2604 2605 2606 2607 2608
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2609

T
Theodore Ts'o 已提交
2610 2611
	/*
	 * If the page does not have buffers (for whatever reason),
2612
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
2613 2614
	 * fails, redirty the page and move on.
	 */
2615
	if (!page_has_buffers(page)) {
2616
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2617 2618
					noalloc_get_block_write)) {
		redirty_page:
2619 2620 2621 2622
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2623 2624 2625 2626 2627
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2628
		/*
2629 2630 2631 2632
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
2633
		 */
T
Theodore Ts'o 已提交
2634 2635 2636
		goto redirty_page;
	}
	if (commit_write)
2637
		/* now mark the buffer_heads as dirty and uptodate */
2638
		block_commit_write(page, 0, len);
2639

2640
	if (PageChecked(page) && ext4_should_journal_data(inode))
2641 2642 2643 2644
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2645
		return __ext4_journalled_writepage(page, len);
2646

T
Theodore Ts'o 已提交
2647
	if (buffer_uninit(page_bufs)) {
2648 2649 2650 2651
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2652 2653
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2654 2655 2656 2657

	return ret;
}

2658
/*
2659
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2660
 * calculate the total number of credits to reserve to fit
2661 2662 2663
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2664
 */
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2676
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2677 2678 2679 2680 2681
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2682

2683 2684
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2685
 * address space and accumulate pages that need writing, and call
2686 2687
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2688 2689 2690
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2691 2692
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2693
{
2694
	struct buffer_head	*bh, *head;
2695
	struct inode		*inode = mapping->host;
2696 2697 2698 2699 2700 2701
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2702

2703 2704 2705
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2706 2707 2708 2709
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2710 2711 2712 2713 2714
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2715
	*done_index = index;
2716
	while (index <= end) {
2717
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2718 2719
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2720
			return 0;
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2732 2733
			if (page->index > end)
				goto out;
2734

2735 2736
			*done_index = page->index + 1;

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2747 2748 2749
			lock_page(page);

			/*
2750 2751 2752 2753 2754 2755
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2756
			 */
2757 2758 2759 2760
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2761 2762 2763 2764
				unlock_page(page);
				continue;
			}

2765
			wait_on_page_writeback(page);
2766 2767
			BUG_ON(PageWriteback(page));

2768
			if (mpd->next_page != page->index)
2769 2770 2771 2772 2773 2774
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2775 2776
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2777
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2778 2779
				if (mpd->io_done)
					goto ret_extent_tail;
2780 2781
			} else {
				/*
2782 2783
				 * Page with regular buffer heads,
				 * just add all dirty ones
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2799 2800
						if (mpd->io_done)
							goto ret_extent_tail;
2801 2802
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2803 2804 2805 2806 2807 2808 2809 2810 2811
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2812 2813 2814 2815 2816 2817
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2818 2819 2820 2821 2822
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2823
				    wbc->sync_mode == WB_SYNC_NONE)
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2834
					goto out;
2835 2836 2837 2838 2839
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2840 2841 2842
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2843 2844 2845
out:
	pagevec_release(&pvec);
	cond_resched();
2846 2847 2848 2849
	return ret;
}


2850
static int ext4_da_writepages(struct address_space *mapping,
2851
			      struct writeback_control *wbc)
2852
{
2853 2854
	pgoff_t	index;
	int range_whole = 0;
2855
	handle_t *handle = NULL;
2856
	struct mpage_da_data mpd;
2857
	struct inode *inode = mapping->host;
2858
	int pages_written = 0;
2859
	unsigned int max_pages;
2860
	int range_cyclic, cycled = 1, io_done = 0;
2861 2862
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2863
	loff_t range_start = wbc->range_start;
2864
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2865
	pgoff_t done_index = 0;
2866
	pgoff_t end;
2867

2868
	trace_ext4_da_writepages(inode, wbc);
2869

2870 2871 2872 2873 2874
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2875
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2876
		return 0;
2877 2878 2879 2880 2881

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2882
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2883 2884 2885 2886 2887
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2888
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2889 2890
		return -EROFS;

2891 2892
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2893

2894 2895
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2896
		index = mapping->writeback_index;
2897 2898 2899 2900 2901
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2902 2903
		end = -1;
	} else {
2904
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2905 2906
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2907

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2925 2926 2927 2928 2929 2930
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2941
retry:
2942 2943 2944
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);

2945
	while (!ret && wbc->nr_to_write > 0) {
2946 2947 2948 2949 2950 2951 2952 2953

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2954
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2955

2956 2957 2958 2959
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2960
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2961
			       "%ld pages, ino %lu; err %d", __func__,
2962
				wbc->nr_to_write, inode->i_ino, ret);
2963 2964
			goto out_writepages;
		}
2965 2966

		/*
2967
		 * Now call write_cache_pages_da() to find the next
2968
		 * contiguous region of logical blocks that need
2969
		 * blocks to be allocated by ext4 and submit them.
2970
		 */
2971
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2972
		/*
2973
		 * If we have a contiguous extent of pages and we
2974 2975 2976 2977
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2978
			mpage_da_map_and_submit(&mpd);
2979 2980
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2981
		trace_ext4_da_write_pages(inode, &mpd);
2982
		wbc->nr_to_write -= mpd.pages_written;
2983

2984
		ext4_journal_stop(handle);
2985

2986
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2987 2988 2989 2990
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2991
			jbd2_journal_force_commit_nested(sbi->s_journal);
2992 2993
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2994 2995 2996 2997
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2998
			pages_written += mpd.pages_written;
2999
			ret = 0;
3000
			io_done = 1;
3001
		} else if (wbc->nr_to_write)
3002 3003 3004 3005 3006 3007
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3008
	}
3009 3010 3011 3012 3013 3014 3015
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3016 3017

	/* Update index */
3018
	wbc->range_cyclic = range_cyclic;
3019 3020 3021 3022 3023
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
3024
		mapping->writeback_index = done_index;
3025

3026
out_writepages:
3027
	wbc->nr_to_write -= nr_to_writebump;
3028
	wbc->range_start = range_start;
3029
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3030
	return ret;
3031 3032
}

3033 3034 3035 3036 3037 3038 3039 3040 3041
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3042
	 * counters can get slightly wrong with percpu_counter_batch getting
3043 3044 3045 3046 3047 3048 3049 3050 3051
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3052 3053
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3054 3055 3056
		 */
		return 1;
	}
3057 3058 3059 3060 3061 3062 3063
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3064 3065 3066
	return 0;
}

3067
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3068 3069
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3070
{
3071
	int ret, retries = 0;
3072 3073 3074 3075 3076 3077
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3078 3079 3080 3081 3082 3083 3084

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3085
	trace_ext4_da_write_begin(inode, pos, len, flags);
3086
retry:
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3098 3099 3100
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3101

3102
	page = grab_cache_page_write_begin(mapping, index, flags);
3103 3104 3105 3106 3107
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3108 3109
	*pagep = page;

3110
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3111 3112 3113 3114
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3115 3116 3117 3118 3119 3120
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3121
			ext4_truncate_failed_write(inode);
3122 3123
	}

3124 3125
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3126 3127 3128 3129
out:
	return ret;
}

3130 3131 3132 3133 3134
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3135
					    unsigned long offset)
3136 3137 3138 3139 3140 3141 3142 3143 3144
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3145
	for (i = 0; i < idx; i++)
3146 3147
		bh = bh->b_this_page;

3148
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3149 3150 3151 3152
		return 0;
	return 1;
}

3153
static int ext4_da_write_end(struct file *file,
3154 3155 3156
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3157 3158 3159 3160 3161
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3162
	unsigned long start, end;
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3176

3177
	trace_ext4_da_write_end(inode, pos, len, copied);
3178
	start = pos & (PAGE_CACHE_SIZE - 1);
3179
	end = start + copied - 1;
3180 3181 3182 3183 3184 3185 3186 3187

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3199

3200 3201 3202
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3203 3204 3205 3206 3207
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3208
		}
3209
	}
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3231
	ext4_da_page_release_reservation(page, offset);
3232 3233 3234 3235 3236 3237 3238

out:
	ext4_invalidatepage(page, offset);

	return;
}

3239 3240 3241 3242 3243
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3244 3245
	trace_ext4_alloc_da_blocks(inode);

3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3256
	 *
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
3269
	 * the pages by calling redirty_page_for_writepage() but that
3270 3271
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
3272
	 * simplifying them because we wouldn't actually intend to
3273 3274 3275
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3276
	 *
3277 3278 3279 3280 3281 3282
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3283

3284 3285 3286 3287 3288
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3289
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3290 3291 3292 3293 3294 3295 3296 3297
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3298
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3299 3300 3301 3302 3303
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3314 3315
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3327
		 * NB. EXT4_STATE_JDATA is not set on files other than
3328 3329 3330 3331 3332 3333
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3334
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3335
		journal = EXT4_JOURNAL(inode);
3336 3337 3338
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3339 3340 3341 3342 3343

		if (err)
			return 0;
	}

3344
	return generic_block_bmap(mapping, block, ext4_get_block);
3345 3346
}

3347
static int ext4_readpage(struct file *file, struct page *page)
3348
{
3349
	trace_ext4_readpage(page);
3350
	return mpage_readpage(page, ext4_get_block);
3351 3352 3353
}

static int
3354
ext4_readpages(struct file *file, struct address_space *mapping,
3355 3356
		struct list_head *pages, unsigned nr_pages)
{
3357
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3358 3359
}

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3380
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3381
{
3382
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3383

3384 3385
	trace_ext4_invalidatepage(page, offset);

3386 3387 3388 3389 3390
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3391 3392 3393 3394 3395 3396
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3397 3398 3399 3400
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3401 3402
}

3403
static int ext4_releasepage(struct page *page, gfp_t wait)
3404
{
3405
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3406

3407 3408
	trace_ext4_releasepage(page);

3409 3410 3411
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3412 3413 3414 3415
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3416 3417 3418
}

/*
3419 3420
 * O_DIRECT for ext3 (or indirect map) based files
 *
3421 3422 3423 3424 3425
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3426 3427
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3428
 */
3429
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3430 3431
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3432 3433 3434
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3435
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3436
	handle_t *handle;
3437 3438 3439
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3440
	int retries = 0;
3441 3442 3443 3444 3445

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3446 3447 3448 3449 3450 3451
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3452
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3453 3454 3455 3456
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3457 3458
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3459
			ext4_journal_stop(handle);
3460 3461 3462
		}
	}

3463
retry:
3464
	if (rw == READ && ext4_should_dioread_nolock(inode))
3465
		ret = __blockdev_direct_IO(rw, iocb, inode,
3466 3467
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3468 3469
				 ext4_get_block, NULL, NULL, 0);
	else {
3470 3471
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3472
				 offset, nr_segs,
3473
				 ext4_get_block, NULL);
3474 3475 3476 3477 3478 3479

		if (unlikely((rw & WRITE) && ret < 0)) {
			loff_t isize = i_size_read(inode);
			loff_t end = offset + iov_length(iov, nr_segs);

			if (end > isize)
3480
				ext4_truncate_failed_write(inode);
3481 3482
		}
	}
3483 3484
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3485

J
Jan Kara 已提交
3486
	if (orphan) {
3487 3488
		int err;

J
Jan Kara 已提交
3489 3490 3491 3492 3493 3494 3495
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3496 3497 3498
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3499 3500 3501
			goto out;
		}
		if (inode->i_nlink)
3502
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3503
		if (ret > 0) {
3504 3505 3506 3507 3508 3509 3510 3511
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3512
				 * ext4_mark_inode_dirty() to userspace.  So
3513 3514
				 * ignore it.
				 */
3515
				ext4_mark_inode_dirty(handle, inode);
3516 3517
			}
		}
3518
		err = ext4_journal_stop(handle);
3519 3520 3521 3522 3523 3524 3525
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3526 3527 3528 3529 3530
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3531
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3532 3533
		   struct buffer_head *bh_result, int create)
{
3534
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3535
		   inode->i_ino, create);
3536 3537
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3538 3539 3540
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3541 3542
			    ssize_t size, void *private, int ret,
			    bool is_async)
3543 3544 3545
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3546 3547
	unsigned long flags;
	struct ext4_inode_info *ei;
3548

3549 3550
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3551
		goto out;
3552

3553 3554 3555 3556 3557 3558
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3559
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3560 3561
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3562 3563 3564 3565
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3566 3567
	}

3568 3569
	io_end->offset = offset;
	io_end->size = size;
3570 3571 3572 3573
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3574 3575
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3576
	/* Add the io_end to per-inode completed aio dio list*/
3577 3578 3579 3580
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3581 3582 3583

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
3584 3585
	iocb->private = NULL;
}
3586

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

3604
	io_end->flag = EXT4_IO_END_UNWRITTEN;
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
3632
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3651 3652 3653 3654 3655
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
3656
 * For holes, we fallocate those blocks, mark them as uninitialized
3657
 * If those blocks were preallocated, we mark sure they are splited, but
3658
 * still keep the range to write as uninitialized.
3659
 *
3660 3661
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
3662
 * set up an end_io call back function, which will do the conversion
3663
 * when async direct IO completed.
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3682 3683 3684
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
3685
 		 * to prevent parallel buffered read to expose the stale data
3686
 		 * before DIO complete the data IO.
3687 3688
		 *
 		 * As to previously fallocated extents, ext4 get_block
3689 3690 3691
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3692 3693 3694 3695 3696 3697 3698 3699
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3700
 		 */
3701 3702 3703
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3704
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3705 3706 3707 3708
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
3709
			 * direct IO, so that later ext4_map_blocks()
3710 3711 3712 3713 3714 3715 3716
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3717 3718 3719
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3720
					 ext4_get_block_write,
3721
					 ext4_end_io_dio);
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3741 3742
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3743
			int err;
3744 3745
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
3746
			 * completed, we could do the conversion right here
3747
			 */
3748 3749 3750 3751
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3752
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3753
		}
3754 3755
		return ret;
	}
3756 3757

	/* for write the the end of file case, we fall back to old way */
3758 3759 3760 3761 3762 3763 3764 3765 3766
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3767
	ssize_t ret;
3768

3769
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3770
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3771 3772 3773 3774 3775 3776
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3777 3778
}

3779
/*
3780
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3792
static int ext4_journalled_set_page_dirty(struct page *page)
3793 3794 3795 3796 3797
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3798
static const struct address_space_operations ext4_ordered_aops = {
3799 3800
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3801
	.writepage		= ext4_writepage,
3802 3803 3804 3805 3806 3807 3808 3809
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3810
	.error_remove_page	= generic_error_remove_page,
3811 3812
};

3813
static const struct address_space_operations ext4_writeback_aops = {
3814 3815
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3816
	.writepage		= ext4_writepage,
3817 3818 3819 3820 3821 3822 3823 3824
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3825
	.error_remove_page	= generic_error_remove_page,
3826 3827
};

3828
static const struct address_space_operations ext4_journalled_aops = {
3829 3830
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3831
	.writepage		= ext4_writepage,
3832 3833 3834 3835 3836 3837 3838
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3839
	.error_remove_page	= generic_error_remove_page,
3840 3841
};

3842
static const struct address_space_operations ext4_da_aops = {
3843 3844
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3845
	.writepage		= ext4_writepage,
3846 3847 3848 3849 3850 3851 3852 3853 3854
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3855
	.error_remove_page	= generic_error_remove_page,
3856 3857
};

3858
void ext4_set_aops(struct inode *inode)
3859
{
3860 3861 3862 3863
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3864
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3865 3866 3867
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3868 3869
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3870
	else
3871
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3872 3873 3874
}

/*
3875
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3876 3877 3878 3879
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3880
int ext4_block_truncate_page(handle_t *handle,
3881
		struct address_space *mapping, loff_t from)
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
{
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	unsigned length;
	unsigned blocksize;
	struct inode *inode = mapping->host;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));

	return ext4_block_zero_page_range(handle, mapping, from, length);
}

/*
 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
 * starting from file offset 'from'.  The range to be zero'd must
 * be contained with in one block.  If the specified range exceeds
 * the end of the block it will be shortened to end of the block
 * that cooresponds to 'from'
 */
int ext4_block_zero_page_range(handle_t *handle,
		struct address_space *mapping, loff_t from, loff_t length)
3903
{
3904
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3905
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3906
	unsigned blocksize, max, pos;
A
Aneesh Kumar K.V 已提交
3907
	ext4_lblk_t iblock;
3908 3909
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3910
	struct page *page;
3911 3912
	int err = 0;

3913 3914
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3915 3916 3917
	if (!page)
		return -EINVAL;

3918
	blocksize = inode->i_sb->s_blocksize;
3919 3920 3921 3922 3923 3924 3925 3926 3927
	max = blocksize - (offset & (blocksize - 1));

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the block
	 */
	if (length > max || length < 0)
		length = max;

3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3950
		ext4_get_block(inode, iblock, bh, 0);
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3971
	if (ext4_should_journal_data(inode)) {
3972
		BUFFER_TRACE(bh, "get write access");
3973
		err = ext4_journal_get_write_access(handle, bh);
3974 3975 3976 3977
		if (err)
			goto unlock;
	}

3978
	zero_user(page, offset, length);
3979 3980 3981 3982

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3983
	if (ext4_should_journal_data(inode)) {
3984
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3985
	} else {
3986
		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3987
			err = ext4_jbd2_file_inode(handle, inode);
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4011
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4012 4013
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4014
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4015 4016 4017
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4018
 *	This is a helper function used by ext4_truncate().
4019 4020 4021
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
L
Lucas De Marchi 已提交
4022
 *	partially truncated if some data below the new i_size is referred
4023 4024 4025
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4026
 *	past the truncation point is possible until ext4_truncate()
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4045
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4046 4047
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4048 4049 4050 4051 4052
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4053
	/* Make k index the deepest non-null offset + 1 */
4054 4055
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4056
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4067
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4079
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4080 4081 4082 4083 4084 4085
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4086
	while (partial > p) {
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
4101 4102 4103
 *
 * Return 0 on success, 1 on invalid block range
 * and < 0 on fatal error.
4104
 */
4105 4106 4107 4108 4109
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4110 4111
{
	__le32 *p;
4112
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4113
	int	err;
4114 4115 4116

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4117

4118 4119
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4120 4121 4122
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4123 4124 4125
		return 1;
	}

4126 4127
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4128
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4129
			err = ext4_handle_dirty_metadata(handle, inode, bh);
4130 4131
			if (unlikely(err))
				goto out_err;
4132 4133
		}
		err = ext4_mark_inode_dirty(handle, inode);
4134 4135
		if (unlikely(err))
			goto out_err;
4136 4137
		err = ext4_truncate_restart_trans(handle, inode,
						  blocks_for_truncate(inode));
4138 4139
		if (unlikely(err))
			goto out_err;
4140 4141
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4142 4143 4144
			err = ext4_journal_get_write_access(handle, bh);
			if (unlikely(err))
				goto out_err;
4145 4146 4147
		}
	}

4148 4149
	for (p = first; p < last; p++)
		*p = 0;
4150

4151
	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4152
	return 0;
4153 4154 4155
out_err:
	ext4_std_error(inode->i_sb, err);
	return err;
4156 4157 4158
}

/**
4159
 * ext4_free_data - free a list of data blocks
4160 4161 4162 4163 4164 4165
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
L
Lucas De Marchi 已提交
4166
 * We are freeing all blocks referred from that array (numbers are stored as
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4177
static void ext4_free_data(handle_t *handle, struct inode *inode,
4178 4179 4180
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4181
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4182 4183 4184 4185
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4186
	ext4_fsblk_t nr;		    /* Current block # */
4187 4188
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
4189
	int err = 0;
4190 4191 4192

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4193
		err = ext4_journal_get_write_access(handle, this_bh);
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4211 4212 4213 4214
				err = ext4_clear_blocks(handle, inode, this_bh,
						        block_to_free, count,
						        block_to_free_p, p);
				if (err)
4215
					break;
4216 4217 4218 4219 4220 4221 4222
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

4223 4224 4225 4226 4227 4228
	if (!err && count > 0)
		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
					count, block_to_free_p, p);
	if (err < 0)
		/* fatal error */
		return;
4229 4230

	if (this_bh) {
4231
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4232 4233 4234 4235 4236 4237 4238

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4239
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4240
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4241
		else
4242 4243 4244 4245
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4246 4247 4248 4249
	}
}

/**
4250
 *	ext4_free_branches - free an array of branches
4251 4252 4253 4254 4255 4256 4257
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
L
Lucas De Marchi 已提交
4258
 *	We are freeing all blocks referred from these branches (numbers are
4259 4260 4261
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4262
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4263 4264 4265
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4266
	ext4_fsblk_t nr;
4267 4268
	__le32 *p;

4269
	if (ext4_handle_is_aborted(handle))
4270 4271 4272 4273
		return;

	if (depth--) {
		struct buffer_head *bh;
4274
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4275 4276 4277 4278 4279 4280
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4281 4282
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4283 4284 4285 4286
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4287 4288 4289
				break;
			}

4290 4291 4292 4293 4294 4295 4296 4297
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4298 4299
				EXT4_ERROR_INODE_BLOCK(inode, nr,
						       "Read failure");
4300 4301 4302 4303 4304
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4305
			ext4_free_branches(handle, inode, bh,
4306 4307 4308
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4309
			brelse(bh);
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4327
			if (ext4_handle_is_aborted(handle))
4328 4329
				return;
			if (try_to_extend_transaction(handle, inode)) {
4330
				ext4_mark_inode_dirty(handle, inode);
4331 4332
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4333 4334
			}

4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
			/*
			 * The forget flag here is critical because if
			 * we are journaling (and not doing data
			 * journaling), we have to make sure a revoke
			 * record is written to prevent the journal
			 * replay from overwriting the (former)
			 * indirect block if it gets reallocated as a
			 * data block.  This must happen in the same
			 * transaction where the data blocks are
			 * actually freed.
			 */
4346
			ext4_free_blocks(handle, inode, NULL, nr, 1,
4347 4348
					 EXT4_FREE_BLOCKS_METADATA|
					 EXT4_FREE_BLOCKS_FORGET);
4349 4350 4351 4352 4353 4354 4355

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4356
				if (!ext4_journal_get_write_access(handle,
4357 4358 4359
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4360 4361 4362 4363
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4364 4365 4366 4367 4368 4369
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4370
		ext4_free_data(handle, inode, parent_bh, first, last);
4371 4372 4373
	}
}

4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
		return -ENOTSUPP;

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
		return -ENOTSUPP;
	}

	return ext4_ext_punch_hole(file, offset, length);
}

4410
/*
4411
 * ext4_truncate()
4412
 *
4413 4414
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4431
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4432
 * that this inode's truncate did not complete and it will again call
4433 4434
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4435
 * that's fine - as long as they are linked from the inode, the post-crash
4436
 * ext4_truncate() run will find them and release them.
4437
 */
4438
void ext4_truncate(struct inode *inode)
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
{
	trace_ext4_truncate_enter(inode);

	if (!ext4_can_truncate(inode))
		return;

	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);

	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);

	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		ext4_ext_truncate(inode);
	else
		ext4_ind_truncate(inode);

	trace_ext4_truncate_exit(inode);
}

void ext4_ind_truncate(struct inode *inode)
4459 4460
{
	handle_t *handle;
4461
	struct ext4_inode_info *ei = EXT4_I(inode);
4462
	__le32 *i_data = ei->i_data;
4463
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4464
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4465
	ext4_lblk_t offsets[4];
4466 4467 4468
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
4469 4470
	int n = 0;
	ext4_lblk_t last_block, max_block;
4471 4472 4473
	unsigned blocksize = inode->i_sb->s_blocksize;

	handle = start_transaction(inode);
4474
	if (IS_ERR(handle))
4475 4476 4477
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4478
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4479 4480
	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4481

4482 4483 4484
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4485

4486 4487 4488 4489 4490
	if (last_block != max_block) {
		n = ext4_block_to_path(inode, last_block, offsets, NULL);
		if (n == 0)
			goto out_stop;	/* error */
	}
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4501
	if (ext4_orphan_add(handle, inode))
4502 4503
		goto out_stop;

4504 4505 4506 4507 4508
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4509

4510
	ext4_discard_preallocations(inode);
4511

4512 4513 4514 4515 4516
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4517
	 * ext4 *really* writes onto the disk inode.
4518 4519 4520
	 */
	ei->i_disksize = inode->i_size;

4521 4522 4523 4524 4525 4526 4527
	if (last_block == max_block) {
		/*
		 * It is unnecessary to free any data blocks if last_block is
		 * equal to the indirect block limit.
		 */
		goto out_unlock;
	} else if (n == 1) {		/* direct blocks */
4528 4529
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4530 4531 4532
		goto do_indirects;
	}

4533
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4534 4535 4536 4537
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4538
			ext4_free_branches(handle, inode, NULL,
4539 4540 4541 4542 4543 4544 4545 4546 4547
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4548
			ext4_free_branches(handle, inode, partial->bh,
4549 4550 4551 4552 4553 4554
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4555
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4556 4557 4558
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4559
		brelse(partial->bh);
4560 4561 4562 4563 4564 4565
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4566
		nr = i_data[EXT4_IND_BLOCK];
4567
		if (nr) {
4568 4569
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4570
		}
4571 4572
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4573
		if (nr) {
4574 4575
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4576
		}
4577 4578
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4579
		if (nr) {
4580 4581
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4582
		}
4583
	case EXT4_TIND_BLOCK:
4584 4585 4586
		;
	}

4587
out_unlock:
4588
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4589
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4590
	ext4_mark_inode_dirty(handle, inode);
4591 4592 4593 4594 4595 4596

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4597
		ext4_handle_sync(handle);
4598 4599 4600 4601 4602
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4603
	 * ext4_delete_inode(), and we allow that function to clean up the
4604 4605 4606
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4607
		ext4_orphan_del(handle, inode);
4608

4609
	ext4_journal_stop(handle);
4610
	trace_ext4_truncate_exit(inode);
4611 4612 4613
}

/*
4614
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4615 4616 4617 4618
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4619 4620
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4621
{
4622 4623 4624 4625 4626 4627
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4628
	iloc->bh = NULL;
4629 4630
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4631

4632 4633 4634
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4635 4636
		return -EIO;

4637 4638 4639
	/*
	 * Figure out the offset within the block group inode table
	 */
4640
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4641 4642 4643 4644 4645 4646
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4647
	if (!bh) {
4648 4649
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
4650 4651 4652 4653
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4677
			int i, start;
4678

4679
			start = inode_offset & ~(inodes_per_block - 1);
4680

4681 4682
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4695
			for (i = start; i < start + inodes_per_block; i++) {
4696 4697
				if (i == inode_offset)
					continue;
4698
				if (ext4_test_bit(i, bitmap_bh->b_data))
4699 4700 4701
					break;
			}
			brelse(bitmap_bh);
4702
			if (i == start + inodes_per_block) {
4703 4704 4705 4706 4707 4708 4709 4710 4711
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4712 4713 4714 4715 4716 4717 4718 4719 4720
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4721
			/* s_inode_readahead_blks is always a power of 2 */
4722 4723 4724 4725 4726 4727 4728
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4729
				num -= ext4_itable_unused_count(sb, gdp);
4730 4731 4732 4733 4734 4735 4736
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4737 4738 4739 4740 4741
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
4742
		trace_ext4_load_inode(inode);
4743 4744 4745 4746 4747
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4748 4749
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4750 4751 4752 4753 4754 4755 4756 4757 4758
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4759
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4760 4761
{
	/* We have all inode data except xattrs in memory here. */
4762
	return __ext4_get_inode_loc(inode, iloc,
4763
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4764 4765
}

4766
void ext4_set_inode_flags(struct inode *inode)
4767
{
4768
	unsigned int flags = EXT4_I(inode)->i_flags;
4769 4770

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4771
	if (flags & EXT4_SYNC_FL)
4772
		inode->i_flags |= S_SYNC;
4773
	if (flags & EXT4_APPEND_FL)
4774
		inode->i_flags |= S_APPEND;
4775
	if (flags & EXT4_IMMUTABLE_FL)
4776
		inode->i_flags |= S_IMMUTABLE;
4777
	if (flags & EXT4_NOATIME_FL)
4778
		inode->i_flags |= S_NOATIME;
4779
	if (flags & EXT4_DIRSYNC_FL)
4780 4781 4782
		inode->i_flags |= S_DIRSYNC;
}

4783 4784 4785
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4806
}
4807

4808
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4809
				  struct ext4_inode_info *ei)
4810 4811
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4812 4813
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4814 4815 4816 4817 4818 4819

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4820
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4821 4822 4823 4824 4825
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4826 4827 4828 4829
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4830

4831
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4832
{
4833 4834
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4835 4836
	struct ext4_inode_info *ei;
	struct inode *inode;
4837
	journal_t *journal = EXT4_SB(sb)->s_journal;
4838
	long ret;
4839 4840
	int block;

4841 4842 4843 4844 4845 4846 4847
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4848
	iloc.bh = NULL;
4849

4850 4851
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4852
		goto bad_inode;
4853
	raw_inode = ext4_raw_inode(&iloc);
4854 4855 4856
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4857
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4858 4859 4860 4861 4862
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

4863
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4864 4865 4866 4867 4868 4869 4870 4871 4872
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4873
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4874
			/* this inode is deleted */
4875
			ret = -ESTALE;
4876 4877 4878 4879 4880 4881 4882 4883
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4884
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4885
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4886
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4887 4888
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4889
	inode->i_size = ext4_isize(raw_inode);
4890
	ei->i_disksize = inode->i_size;
4891 4892 4893
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4894 4895
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4896
	ei->i_last_alloc_group = ~0;
4897 4898 4899 4900
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4901
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4902 4903 4904
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4916
		read_lock(&journal->j_state_lock);
4917 4918 4919 4920 4921 4922 4923 4924
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4925
		read_unlock(&journal->j_state_lock);
4926 4927 4928 4929
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4930
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4931
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4932
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4933
		    EXT4_INODE_SIZE(inode->i_sb)) {
4934
			ret = -EIO;
4935
			goto bad_inode;
4936
		}
4937 4938
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4939 4940
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4941 4942
		} else {
			__le32 *magic = (void *)raw_inode +
4943
					EXT4_GOOD_OLD_INODE_SIZE +
4944
					ei->i_extra_isize;
4945
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4946
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4947 4948 4949 4950
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4951 4952 4953 4954 4955
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4956 4957 4958 4959 4960 4961 4962
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4963
	ret = 0;
4964
	if (ei->i_file_acl &&
4965
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4966 4967
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4968 4969
		ret = -EIO;
		goto bad_inode;
4970
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4971 4972 4973 4974 4975
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4976
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4977 4978
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4979
		/* Validate block references which are part of inode */
4980
		ret = ext4_ind_check_inode(inode);
4981
	}
4982
	if (ret)
4983
		goto bad_inode;
4984

4985
	if (S_ISREG(inode->i_mode)) {
4986 4987 4988
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4989
	} else if (S_ISDIR(inode->i_mode)) {
4990 4991
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4992
	} else if (S_ISLNK(inode->i_mode)) {
4993
		if (ext4_inode_is_fast_symlink(inode)) {
4994
			inode->i_op = &ext4_fast_symlink_inode_operations;
4995 4996 4997
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4998 4999
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5000
		}
5001 5002
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5003
		inode->i_op = &ext4_special_inode_operations;
5004 5005 5006 5007 5008 5009
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5010 5011
	} else {
		ret = -EIO;
5012
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5013
		goto bad_inode;
5014
	}
5015
	brelse(iloc.bh);
5016
	ext4_set_inode_flags(inode);
5017 5018
	unlock_new_inode(inode);
	return inode;
5019 5020

bad_inode:
5021
	brelse(iloc.bh);
5022 5023
	iget_failed(inode);
	return ERR_PTR(ret);
5024 5025
}

5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5039
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5040
		raw_inode->i_blocks_high = 0;
5041
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5042 5043 5044 5045 5046 5047
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5048 5049 5050 5051
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5052
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5053
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5054
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5055
	} else {
5056
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5057 5058 5059 5060
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5061
	}
5062
	return 0;
5063 5064
}

5065 5066 5067 5068 5069 5070 5071
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5072
static int ext4_do_update_inode(handle_t *handle,
5073
				struct inode *inode,
5074
				struct ext4_iloc *iloc)
5075
{
5076 5077
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5078 5079 5080 5081 5082
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5083
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5084
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5085

5086
	ext4_get_inode_flags(ei);
5087
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5088
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5089 5090 5091 5092 5093 5094
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5095
		if (!ei->i_dtime) {
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5113 5114 5115 5116 5117 5118

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5119 5120
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5121
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5122
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5123 5124
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5125 5126
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5127
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5144
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5145
			sb->s_dirt = 1;
5146
			ext4_handle_sync(handle);
5147
			err = ext4_handle_dirty_metadata(handle, NULL,
5148
					EXT4_SB(sb)->s_sbh);
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5163 5164 5165
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5166

5167 5168 5169 5170 5171
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5172
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5173 5174
	}

5175
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5176
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5177 5178
	if (!err)
		err = rc;
5179
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5180

5181
	ext4_update_inode_fsync_trans(handle, inode, 0);
5182
out_brelse:
5183
	brelse(bh);
5184
	ext4_std_error(inode->i_sb, err);
5185 5186 5187 5188
	return err;
}

/*
5189
 * ext4_write_inode()
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5206
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5223
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5224
{
5225 5226
	int err;

5227 5228 5229
	if (current->flags & PF_MEMALLOC)
		return 0;

5230 5231 5232 5233 5234 5235
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5236

5237
		if (wbc->sync_mode != WB_SYNC_ALL)
5238 5239 5240 5241 5242
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5243

5244
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5245 5246
		if (err)
			return err;
5247
		if (wbc->sync_mode == WB_SYNC_ALL)
5248 5249
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5250 5251
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
5252 5253
			err = -EIO;
		}
5254
		brelse(iloc.bh);
5255 5256
	}
	return err;
5257 5258 5259
}

/*
5260
 * ext4_setattr()
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5274 5275 5276 5277 5278 5279 5280 5281
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5282
 */
5283
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5284 5285 5286
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
5287
	int orphan = 0;
5288 5289 5290 5291 5292 5293
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5294
	if (is_quota_modification(inode, attr))
5295
		dquot_initialize(inode);
5296 5297 5298 5299 5300 5301
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5302
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5303
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5304 5305 5306 5307
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5308
		error = dquot_transfer(inode, attr);
5309
		if (error) {
5310
			ext4_journal_stop(handle);
5311 5312 5313 5314 5315 5316 5317 5318
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5319 5320
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5321 5322
	}

5323
	if (attr->ia_valid & ATTR_SIZE) {
5324
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5325 5326
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

5327 5328
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
5329 5330 5331
		}
	}

5332
	if (S_ISREG(inode->i_mode) &&
5333
	    attr->ia_valid & ATTR_SIZE &&
5334
	    (attr->ia_size < inode->i_size)) {
5335 5336
		handle_t *handle;

5337
		handle = ext4_journal_start(inode, 3);
5338 5339 5340 5341
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5342 5343 5344 5345
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
5346 5347
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5348 5349
		if (!error)
			error = rc;
5350
		ext4_journal_stop(handle);
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
5363
				orphan = 0;
5364 5365 5366 5367
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5368 5369
	}

5370 5371 5372 5373 5374 5375 5376
	if (attr->ia_valid & ATTR_SIZE) {
		if (attr->ia_size != i_size_read(inode)) {
			truncate_setsize(inode, attr->ia_size);
			ext4_truncate(inode);
		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
			ext4_truncate(inode);
	}
5377

C
Christoph Hellwig 已提交
5378 5379 5380 5381 5382 5383 5384 5385 5386
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
5387
	if (orphan && inode->i_nlink)
5388
		ext4_orphan_del(NULL, inode);
5389 5390

	if (!rc && (ia_valid & ATTR_MODE))
5391
		rc = ext4_acl_chmod(inode);
5392 5393

err_out:
5394
	ext4_std_error(inode->i_sb, error);
5395 5396 5397 5398 5399
	if (!error)
		error = rc;
	return error;
}

5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5424

5425
static int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5426 5427 5428 5429 5430 5431
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
5432 5433 5434
		 * With N contiguous data blocks, we need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
		 * 2 dindirect blocks, and 1 tindirect block
5435
		 */
5436 5437
		return DIV_ROUND_UP(nrblocks,
				    EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5450
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5451
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
5452
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5453
}
5454

5455
/*
5456 5457 5458
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5459
 *
5460
 * If datablocks are discontiguous, they are possible to spread over
5461
 * different block groups too. If they are contiuguous, with flexbg,
5462
 * they could still across block group boundary.
5463
 *
5464 5465
 * Also account for superblock, inode, quota and xattr blocks
 */
5466
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5467
{
5468 5469
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5496 5497
	if (groups > ngroups)
		groups = ngroups;
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
5511
 * Calculate the total number of credits to reserve to fit
5512 5513
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5514
 *
5515
 * This could be called via ext4_write_begin()
5516
 *
5517
 * We need to consider the worse case, when
5518
 * one new block per extent.
5519
 */
A
Alex Tomas 已提交
5520
int ext4_writepage_trans_blocks(struct inode *inode)
5521
{
5522
	int bpp = ext4_journal_blocks_per_page(inode);
5523 5524
	int ret;

5525
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5526

5527
	/* Account for data blocks for journalled mode */
5528
	if (ext4_should_journal_data(inode))
5529
		ret += bpp;
5530 5531
	return ret;
}
5532 5533 5534 5535 5536

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5537
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5538 5539 5540 5541 5542 5543 5544 5545 5546
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5547
/*
5548
 * The caller must have previously called ext4_reserve_inode_write().
5549 5550
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5551
int ext4_mark_iloc_dirty(handle_t *handle,
5552
			 struct inode *inode, struct ext4_iloc *iloc)
5553 5554 5555
{
	int err = 0;

5556 5557 5558
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5559 5560 5561
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5562
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5563
	err = ext4_do_update_inode(handle, inode, iloc);
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5574 5575
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5576
{
5577 5578 5579 5580 5581 5582 5583 5584 5585
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5586 5587
		}
	}
5588
	ext4_std_error(inode->i_sb, err);
5589 5590 5591
	return err;
}

5592 5593 5594 5595
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5596 5597 5598 5599
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5612 5613
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5646
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5647
{
5648
	struct ext4_iloc iloc;
5649 5650 5651
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5652 5653

	might_sleep();
5654
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5655
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5656 5657
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5658
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5672 5673
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5674 5675
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5676
					ext4_warning(inode->i_sb,
5677 5678 5679
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5680 5681
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5682 5683 5684 5685
				}
			}
		}
	}
5686
	if (!err)
5687
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5688 5689 5690 5691
	return err;
}

/*
5692
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5693 5694 5695 5696 5697
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5698
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5699 5700 5701 5702 5703 5704
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5705
void ext4_dirty_inode(struct inode *inode, int flags)
5706 5707 5708
{
	handle_t *handle;

5709
	handle = ext4_journal_start(inode, 2);
5710 5711
	if (IS_ERR(handle))
		goto out;
5712 5713 5714

	ext4_mark_inode_dirty(handle, inode);

5715
	ext4_journal_stop(handle);
5716 5717 5718 5719 5720 5721 5722 5723
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5724
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5725 5726 5727
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5728
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5729
{
5730
	struct ext4_iloc iloc;
5731 5732 5733

	int err = 0;
	if (handle) {
5734
		err = ext4_get_inode_loc(inode, &iloc);
5735 5736
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5737
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5738
			if (!err)
5739
				err = ext4_handle_dirty_metadata(handle,
5740
								 NULL,
5741
								 iloc.bh);
5742 5743 5744
			brelse(iloc.bh);
		}
	}
5745
	ext4_std_error(inode->i_sb, err);
5746 5747 5748 5749
	return err;
}
#endif

5750
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5766
	journal = EXT4_JOURNAL(inode);
5767 5768
	if (!journal)
		return 0;
5769
	if (is_journal_aborted(journal))
5770 5771
		return -EROFS;

5772 5773
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5784
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5785
	else
5786
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5787
	ext4_set_aops(inode);
5788

5789
	jbd2_journal_unlock_updates(journal);
5790 5791 5792

	/* Finally we can mark the inode as dirty. */

5793
	handle = ext4_journal_start(inode, 1);
5794 5795 5796
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5797
	err = ext4_mark_inode_dirty(handle, inode);
5798
	ext4_handle_sync(handle);
5799 5800
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5801 5802 5803

	return err;
}
5804 5805 5806 5807 5808 5809

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5810
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5811
{
5812
	struct page *page = vmf->page;
5813 5814 5815
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5816
	void *fsdata;
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
5833 5834 5835 5836 5837 5838 5839

	lock_page(page);
	wait_on_page_writeback(page);
	if (PageMappedToDisk(page)) {
		up_read(&inode->i_alloc_sem);
		return VM_FAULT_LOCKED;
	}
5840 5841 5842 5843 5844 5845

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5846 5847 5848 5849 5850 5851
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5852 5853
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5854
					ext4_bh_unmapped)) {
5855 5856
			up_read(&inode->i_alloc_sem);
			return VM_FAULT_LOCKED;
5857
		}
5858
	}
5859
	unlock_page(page);
5860 5861 5862 5863 5864 5865 5866 5867
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5868
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5869 5870 5871
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5872
			len, len, page, fsdata);
5873 5874 5875
	if (ret < 0)
		goto out_unlock;
	ret = 0;
5876 5877 5878 5879 5880 5881 5882 5883 5884 5885

	/*
	 * write_begin/end might have created a dirty page and someone
	 * could wander in and start the IO.  Make sure that hasn't
	 * happened.
	 */
	lock_page(page);
	wait_on_page_writeback(page);
	up_read(&inode->i_alloc_sem);
	return VM_FAULT_LOCKED;
5886
out_unlock:
5887 5888
	if (ret)
		ret = VM_FAULT_SIGBUS;
5889 5890 5891
	up_read(&inode->i_alloc_sem);
	return ret;
}