inode.c 138.8 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22 23
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
24
#include <linux/jbd2.h>
25 26 27 28 29 30
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
31
#include <linux/pagevec.h>
32
#include <linux/mpage.h>
33
#include <linux/namei.h>
34 35
#include <linux/uio.h>
#include <linux/bio.h>
36
#include <linux/workqueue.h>
37
#include <linux/kernel.h>
38
#include <linux/printk.h>
39
#include <linux/slab.h>
40
#include <linux/ratelimit.h>
41

42
#include "ext4_jbd2.h"
43 44
#include "xattr.h"
#include "acl.h"
45
#include "truncate.h"
46

47 48
#include <trace/events/ext4.h>

49 50
#define MPAGE_DA_EXTENT_TAIL 0x01

51 52 53
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
54
	trace_ext4_begin_ordered_truncate(inode, new_size);
55 56 57 58 59 60 61 62 63 64 65
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
66 67
}

68
static void ext4_invalidatepage(struct page *page, unsigned long offset);
69 70 71 72 73 74
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
75

76 77 78
/*
 * Test whether an inode is a fast symlink.
 */
79
static int ext4_inode_is_fast_symlink(struct inode *inode)
80
{
81
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
82 83 84 85 86 87 88 89 90 91
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
92
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
93
				 int nblocks)
94
{
95 96 97
	int ret;

	/*
98
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
99 100 101 102
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
103
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
104
	jbd_debug(2, "restarting handle %p\n", handle);
105
	up_write(&EXT4_I(inode)->i_data_sem);
106
	ret = ext4_journal_restart(handle, nblocks);
107
	down_write(&EXT4_I(inode)->i_data_sem);
108
	ext4_discard_preallocations(inode);
109 110

	return ret;
111 112 113 114 115
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
116
void ext4_evict_inode(struct inode *inode)
117 118
{
	handle_t *handle;
119
	int err;
120

121
	trace_ext4_evict_inode(inode);
122 123 124

	ext4_ioend_wait(inode);

A
Al Viro 已提交
125
	if (inode->i_nlink) {
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
153 154 155 156
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

157
	if (!is_bad_inode(inode))
158
		dquot_initialize(inode);
159

160 161
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
162 163 164 165 166
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

167
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168
	if (IS_ERR(handle)) {
169
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
170 171 172 173 174
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
175
		ext4_orphan_del(NULL, inode);
176 177 178 179
		goto no_delete;
	}

	if (IS_SYNC(inode))
180
		ext4_handle_sync(handle);
181
	inode->i_size = 0;
182 183
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
184
		ext4_warning(inode->i_sb,
185 186 187
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
188
	if (inode->i_blocks)
189
		ext4_truncate(inode);
190 191 192 193 194 195 196

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
197
	if (!ext4_handle_has_enough_credits(handle, 3)) {
198 199 200 201
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
202
			ext4_warning(inode->i_sb,
203 204 205
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
206
			ext4_orphan_del(NULL, inode);
207 208 209 210
			goto no_delete;
		}
	}

211
	/*
212
	 * Kill off the orphan record which ext4_truncate created.
213
	 * AKPM: I think this can be inside the above `if'.
214
	 * Note that ext4_orphan_del() has to be able to cope with the
215
	 * deletion of a non-existent orphan - this is because we don't
216
	 * know if ext4_truncate() actually created an orphan record.
217 218
	 * (Well, we could do this if we need to, but heck - it works)
	 */
219 220
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
221 222 223 224 225 226 227 228

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
229
	if (ext4_mark_inode_dirty(handle, inode))
230
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
231
		ext4_clear_inode(inode);
232
	else
233 234
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
235 236
	return;
no_delete:
A
Al Viro 已提交
237
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
238 239
}

240 241
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
242
{
243
	return &EXT4_I(inode)->i_reserved_quota;
244
}
245
#endif
246

247 248
/*
 * Calculate the number of metadata blocks need to reserve
249
 * to allocate a block located at @lblock
250
 */
251
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252
{
253
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254
		return ext4_ext_calc_metadata_amount(inode, lblock);
255

256
	return ext4_ind_calc_metadata_amount(inode, lblock);
257 258
}

259 260 261 262
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
263 264
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
265 266
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267 268 269
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
270
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271 272 273 274 275 276 277 278
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
279

280 281 282
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
283
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
284
			   used + ei->i_allocated_meta_blocks);
285
	ei->i_allocated_meta_blocks = 0;
286

287 288 289 290 291 292
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
293
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294
				   ei->i_reserved_meta_blocks);
295
		ei->i_reserved_meta_blocks = 0;
296
		ei->i_da_metadata_calc_len = 0;
297
	}
298
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
299

300 301
	/* Update quota subsystem for data blocks */
	if (quota_claim)
302
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
303
	else {
304 305 306
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
307
		 * not re-claim the quota for fallocated blocks.
308
		 */
309
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
310
	}
311 312 313 314 315 316

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
317 318
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
319
		ext4_discard_preallocations(inode);
320 321
}

322
static int __check_block_validity(struct inode *inode, const char *func,
323 324
				unsigned int line,
				struct ext4_map_blocks *map)
325
{
326 327
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
328 329 330 331
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
332 333 334 335 336
		return -EIO;
	}
	return 0;
}

337
#define check_block_validity(inode, map)	\
338
	__check_block_validity((inode), __func__, __LINE__, (map))
339

340
/*
341 342
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
376 377 378 379 380 381 382 383 384
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
385 386 387 388 389
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
390 391
			if (num >= max_pages) {
				done = 1;
392
				break;
393
			}
394 395 396 397 398 399
		}
		pagevec_release(&pvec);
	}
	return num;
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/*
 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 */
static void set_buffers_da_mapped(struct inode *inode,
				   struct ext4_map_blocks *map)
{
	struct address_space *mapping = inode->i_mapping;
	struct pagevec pvec;
	int i, nr_pages;
	pgoff_t index, end;

	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + map->m_len - 1) >>
		(PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index,
					  min(end - index + 1,
					      (pgoff_t)PAGEVEC_SIZE));
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page))
				break;

			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					set_buffer_da_mapped(bh);
					bh = bh->b_this_page;
				} while (bh != head);
			}
			index++;
		}
		pagevec_release(&pvec);
	}
}

443
/*
444
 * The ext4_map_blocks() function tries to look up the requested blocks,
445
 * and returns if the blocks are already mapped.
446 447 448 449 450
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
451 452
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453 454 455 456 457 458 459 460
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
461
 * that case, buffer head is unmapped
462 463 464
 *
 * It returns the error in case of allocation failure.
 */
465 466
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
467 468
{
	int retval;
469

470 471 472 473
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
474
	/*
475 476
	 * Try to see if we can get the block without requesting a new
	 * file system block.
477 478
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
479
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
480 481
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
482
	} else {
483 484
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
485
	}
486
	up_read((&EXT4_I(inode)->i_data_sem));
487

488
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
489
		int ret = check_block_validity(inode, map);
490 491 492 493
		if (ret != 0)
			return ret;
	}

494
	/* If it is only a block(s) look up */
495
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
496 497 498 499 500 501
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
502
	 * ext4_ext_get_block() returns the create = 0
503 504
	 * with buffer head unmapped.
	 */
505
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
506 507
		return retval;

508 509 510 511 512 513 514 515 516 517
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
518
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
519

520
	/*
521 522 523 524
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
525 526
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
527 528 529 530 531 532 533

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
534
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
535
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
536 537 538 539
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
540
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
541
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
542
	} else {
543
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
544

545
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
546 547 548 549 550
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
551
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
552
		}
553

554 555 556 557 558 559 560
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
561
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
562 563
			ext4_da_update_reserve_space(inode, retval, 1);
	}
564
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
565
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
566

567 568 569 570 571 572 573 574
		/* If we have successfully mapped the delayed allocated blocks,
		 * set the BH_Da_Mapped bit on them. Its important to do this
		 * under the protection of i_data_sem.
		 */
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
			set_buffers_da_mapped(inode, map);
	}

575
	up_write((&EXT4_I(inode)->i_data_sem));
576
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577
		int ret = check_block_validity(inode, map);
578 579 580
		if (ret != 0)
			return ret;
	}
581 582 583
	return retval;
}

584 585 586
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

587 588
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
589
{
590
	handle_t *handle = ext4_journal_current_handle();
591
	struct ext4_map_blocks map;
J
Jan Kara 已提交
592
	int ret = 0, started = 0;
593
	int dio_credits;
594

595 596 597 598
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
599
		/* Direct IO write... */
600 601 602
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
603
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
604
		if (IS_ERR(handle)) {
605
			ret = PTR_ERR(handle);
606
			return ret;
607
		}
J
Jan Kara 已提交
608
		started = 1;
609 610
	}

611
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
612
	if (ret > 0) {
613 614 615
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
616
		ret = 0;
617
	}
J
Jan Kara 已提交
618 619
	if (started)
		ext4_journal_stop(handle);
620 621 622
	return ret;
}

623 624 625 626 627 628 629
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

630 631 632
/*
 * `handle' can be NULL if create is zero
 */
633
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
634
				ext4_lblk_t block, int create, int *errp)
635
{
636 637
	struct ext4_map_blocks map;
	struct buffer_head *bh;
638 639 640 641
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

642 643 644 645
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
646

647 648 649 650 651 652 653 654 655 656
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
657
	}
658 659 660
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
661

662 663 664 665 666 667 668 669 670 671 672 673 674
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
675
		}
676 677 678 679 680 681 682
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
683
	}
684 685 686 687 688 689
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
690 691
}

692
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
693
			       ext4_lblk_t block, int create, int *err)
694
{
695
	struct buffer_head *bh;
696

697
	bh = ext4_getblk(handle, inode, block, create, err);
698 699 700 701 702 703 704 705 706 707 708 709 710
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

711 712 713 714 715 716 717
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
718 719 720 721 722 723 724
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

725 726
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
727
	     block_start = block_end, bh = next) {
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
745
 * close off a transaction and start a new one between the ext4_get_block()
746
 * and the commit_write().  So doing the jbd2_journal_start at the start of
747 748
 * prepare_write() is the right place.
 *
749 750
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
751 752 753 754
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
755
 * By accident, ext4 can be reentered when a transaction is open via
756 757 758 759 760 761
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
762
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
763 764 765 766 767
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
768
				       struct buffer_head *bh)
769
{
770 771 772
	int dirty = buffer_dirty(bh);
	int ret;

773 774
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
775
	/*
C
Christoph Hellwig 已提交
776
	 * __block_write_begin() could have dirtied some buffers. Clean
777 778
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
779
	 * by __block_write_begin() isn't a real problem here as we clear
780 781 782 783 784 785 786 787 788
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
789 790
}

791 792
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
793
static int ext4_write_begin(struct file *file, struct address_space *mapping,
794 795
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
796
{
797
	struct inode *inode = mapping->host;
798
	int ret, needed_blocks;
799 800
	handle_t *handle;
	int retries = 0;
801
	struct page *page;
802
	pgoff_t index;
803
	unsigned from, to;
N
Nick Piggin 已提交
804

805
	trace_ext4_write_begin(inode, pos, len, flags);
806 807 808 809 810
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
811
	index = pos >> PAGE_CACHE_SHIFT;
812 813
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
814 815

retry:
816 817 818 819
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
820
	}
821

822 823 824 825
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

826
	page = grab_cache_page_write_begin(mapping, index, flags);
827 828 829 830 831 832 833
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

834
	if (ext4_should_dioread_nolock(inode))
835
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
836
	else
837
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
838 839

	if (!ret && ext4_should_journal_data(inode)) {
840 841 842
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
843 844

	if (ret) {
845 846
		unlock_page(page);
		page_cache_release(page);
847
		/*
848
		 * __block_write_begin may have instantiated a few blocks
849 850
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
851 852 853
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
854
		 */
855
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
856 857 858 859
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
860
			ext4_truncate_failed_write(inode);
861
			/*
862
			 * If truncate failed early the inode might
863 864 865 866 867 868 869
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
870 871
	}

872
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
873
		goto retry;
874
out:
875 876 877
	return ret;
}

N
Nick Piggin 已提交
878 879
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
880 881 882 883
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
884
	return ext4_handle_dirty_metadata(handle, NULL, bh);
885 886
}

887
static int ext4_generic_write_end(struct file *file,
888 889 890
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

933 934 935 936
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
937
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
938 939
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
940
static int ext4_ordered_write_end(struct file *file,
941 942 943
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
944
{
945
	handle_t *handle = ext4_journal_current_handle();
946
	struct inode *inode = mapping->host;
947 948
	int ret = 0, ret2;

949
	trace_ext4_ordered_write_end(inode, pos, len, copied);
950
	ret = ext4_jbd2_file_inode(handle, inode);
951 952

	if (ret == 0) {
953
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
954
							page, fsdata);
955
		copied = ret2;
956
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
957 958 959 960 961
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
962 963
		if (ret2 < 0)
			ret = ret2;
964 965 966
	} else {
		unlock_page(page);
		page_cache_release(page);
967
	}
968

969
	ret2 = ext4_journal_stop(handle);
970 971
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
972

973
	if (pos + len > inode->i_size) {
974
		ext4_truncate_failed_write(inode);
975
		/*
976
		 * If truncate failed early the inode might still be
977 978 979 980 981 982 983 984
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
985
	return ret ? ret : copied;
986 987
}

N
Nick Piggin 已提交
988
static int ext4_writeback_write_end(struct file *file,
989 990 991
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
992
{
993
	handle_t *handle = ext4_journal_current_handle();
994
	struct inode *inode = mapping->host;
995 996
	int ret = 0, ret2;

997
	trace_ext4_writeback_write_end(inode, pos, len, copied);
998
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
999
							page, fsdata);
1000
	copied = ret2;
1001
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1002 1003 1004 1005 1006 1007
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1008 1009
	if (ret2 < 0)
		ret = ret2;
1010

1011
	ret2 = ext4_journal_stop(handle);
1012 1013
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1014

1015
	if (pos + len > inode->i_size) {
1016
		ext4_truncate_failed_write(inode);
1017
		/*
1018
		 * If truncate failed early the inode might still be
1019 1020 1021 1022 1023 1024 1025
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1026
	return ret ? ret : copied;
1027 1028
}

N
Nick Piggin 已提交
1029
static int ext4_journalled_write_end(struct file *file,
1030 1031 1032
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1033
{
1034
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1035
	struct inode *inode = mapping->host;
1036 1037
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1038
	unsigned from, to;
1039
	loff_t new_i_size;
1040

1041
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1042 1043 1044
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1045 1046
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
1047 1048 1049 1050 1051
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1052 1053

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1054
				to, &partial, write_end_fn);
1055 1056
	if (!partial)
		SetPageUptodate(page);
1057 1058
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1059
		i_size_write(inode, pos+copied);
1060
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1061
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1062 1063
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1064
		ret2 = ext4_mark_inode_dirty(handle, inode);
1065 1066 1067
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1068

1069
	unlock_page(page);
1070
	page_cache_release(page);
1071
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1072 1073 1074 1075 1076 1077
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1078
	ret2 = ext4_journal_stop(handle);
1079 1080
	if (!ret)
		ret = ret2;
1081
	if (pos + len > inode->i_size) {
1082
		ext4_truncate_failed_write(inode);
1083
		/*
1084
		 * If truncate failed early the inode might still be
1085 1086 1087 1088 1089 1090
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1091 1092

	return ret ? ret : copied;
1093
}
1094

1095
/*
1096
 * Reserve a single cluster located at lblock
1097
 */
1098
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1099
{
A
Aneesh Kumar K.V 已提交
1100
	int retries = 0;
1101
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1102
	struct ext4_inode_info *ei = EXT4_I(inode);
1103
	unsigned int md_needed;
1104
	int ret;
1105 1106 1107 1108 1109 1110

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1111
repeat:
1112
	spin_lock(&ei->i_block_reservation_lock);
1113 1114
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1115
	trace_ext4_da_reserve_space(inode, md_needed);
1116
	spin_unlock(&ei->i_block_reservation_lock);
1117

1118
	/*
1119 1120 1121
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1122
	 */
1123
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1124 1125
	if (ret)
		return ret;
1126 1127 1128 1129
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1130
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1131
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
A
Aneesh Kumar K.V 已提交
1132 1133 1134 1135
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1136 1137
		return -ENOSPC;
	}
1138
	spin_lock(&ei->i_block_reservation_lock);
1139
	ei->i_reserved_data_blocks++;
1140 1141
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1142

1143 1144 1145
	return 0;       /* success */
}

1146
static void ext4_da_release_space(struct inode *inode, int to_free)
1147 1148
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1149
	struct ext4_inode_info *ei = EXT4_I(inode);
1150

1151 1152 1153
	if (!to_free)
		return;		/* Nothing to release, exit */

1154
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1155

L
Li Zefan 已提交
1156
	trace_ext4_da_release_space(inode, to_free);
1157
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1158
		/*
1159 1160 1161 1162
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1163
		 */
1164 1165 1166 1167 1168 1169
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1170
	}
1171
	ei->i_reserved_data_blocks -= to_free;
1172

1173 1174 1175 1176 1177
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1178 1179
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1180
		 */
1181
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1182
				   ei->i_reserved_meta_blocks);
1183
		ei->i_reserved_meta_blocks = 0;
1184
		ei->i_da_metadata_calc_len = 0;
1185
	}
1186

1187
	/* update fs dirty data blocks counter */
1188
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1189 1190

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1191

1192
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1193 1194 1195
}

static void ext4_da_page_release_reservation(struct page *page,
1196
					     unsigned long offset)
1197 1198 1199 1200
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1201 1202 1203
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1204 1205 1206 1207 1208 1209 1210 1211 1212

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
1213
			clear_buffer_da_mapped(bh);
1214 1215 1216
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		ext4_fsblk_t lblk;
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
		    !ext4_find_delalloc_cluster(inode, lblk, 1))
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1231
}
1232

1233 1234 1235 1236 1237 1238
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1239
 * them with writepage() call back
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1250 1251
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1252
{
1253 1254 1255 1256 1257
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1258
	loff_t size = i_size_read(inode);
1259 1260
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1261
	int journal_data = ext4_should_journal_data(inode);
1262
	sector_t pblock = 0, cur_logical = 0;
1263
	struct ext4_io_submit io_submit;
1264 1265

	BUG_ON(mpd->next_page <= mpd->first_page);
1266
	memset(&io_submit, 0, sizeof(io_submit));
1267 1268 1269
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1270
	 * If we look at mpd->b_blocknr we would only be looking
1271 1272
	 * at the currently mapped buffer_heads.
	 */
1273 1274 1275
	index = mpd->first_page;
	end = mpd->next_page - 1;

1276
	pagevec_init(&pvec, 0);
1277
	while (index <= end) {
1278
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1279 1280 1281
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1282
			int commit_write = 0, skip_page = 0;
1283 1284
			struct page *page = pvec.pages[i];

1285 1286 1287
			index = page->index;
			if (index > end)
				break;
1288 1289 1290 1291 1292

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1293 1294 1295 1296 1297 1298
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1299 1300 1301 1302 1303
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1304
			/*
1305 1306
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1307
			 * __block_write_begin.  If this fails,
1308
			 * skip the page and move on.
1309
			 */
1310
			if (!page_has_buffers(page)) {
1311
				if (__block_write_begin(page, 0, len,
1312
						noalloc_get_block_write)) {
1313
				skip_page:
1314 1315 1316 1317 1318
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1319

1320 1321
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1322
			do {
1323
				if (!bh)
1324
					goto skip_page;
1325 1326 1327
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1328 1329 1330 1331
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1332 1333
					if (buffer_da_mapped(bh))
						clear_buffer_da_mapped(bh);
1334 1335 1336 1337 1338 1339 1340
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1341

1342
				/* skip page if block allocation undone */
1343
				if (buffer_delay(bh) || buffer_unwritten(bh))
1344
					skip_page = 1;
1345 1346
				bh = bh->b_this_page;
				block_start += bh->b_size;
1347 1348
				cur_logical++;
				pblock++;
1349 1350
			} while (bh != page_bufs);

1351 1352
			if (skip_page)
				goto skip_page;
1353 1354 1355 1356 1357

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1358
			clear_page_dirty_for_io(page);
1359 1360 1361 1362 1363 1364
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1365
				err = __ext4_journalled_writepage(page, len);
1366
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1367 1368
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1369 1370 1371 1372 1373 1374
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1375 1376
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1377 1378

			if (!err)
1379
				mpd->pages_written++;
1380 1381 1382 1383 1384 1385 1386 1387 1388
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1389
	ext4_io_submit(&io_submit);
1390 1391 1392
	return ret;
}

1393
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1394 1395 1396 1397 1398 1399 1400
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

1401 1402
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1403 1404 1405 1406 1407 1408
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1409
			if (page->index > end)
1410 1411 1412 1413 1414 1415 1416
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1417 1418
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1419 1420 1421 1422
	}
	return;
}

1423 1424 1425
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1426
	printk(KERN_CRIT "Total free blocks count %lld\n",
1427 1428
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1429 1430
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
1431 1432
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1433
	printk(KERN_CRIT "dirty_blocks=%lld\n",
1434 1435
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1436 1437 1438 1439 1440
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
1441 1442 1443
	return;
}

1444
/*
1445 1446
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1447
 *
1448
 * @mpd - bh describing space
1449 1450 1451 1452
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1453
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1454
{
1455
	int err, blks, get_blocks_flags;
1456
	struct ext4_map_blocks map, *mapp = NULL;
1457 1458 1459 1460
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1461 1462

	/*
1463 1464
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1465
	 */
1466 1467 1468 1469 1470
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1471 1472 1473 1474

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1475
	/*
1476
	 * Call ext4_map_blocks() to allocate any delayed allocation
1477 1478 1479 1480 1481 1482 1483 1484
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1485
	 * want to change *many* call functions, so ext4_map_blocks()
1486
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1487 1488 1489 1490 1491
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1492
	 */
1493 1494
	map.m_lblk = next;
	map.m_len = max_blocks;
1495
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1496 1497
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1498
	if (mpd->b_state & (1 << BH_Delay))
1499 1500
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1501
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1502
	if (blks < 0) {
1503 1504
		struct super_block *sb = mpd->inode->i_sb;

1505
		err = blks;
1506
		/*
1507
		 * If get block returns EAGAIN or ENOSPC and there
1508 1509
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1510 1511
		 */
		if (err == -EAGAIN)
1512
			goto submit_io;
1513

1514
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1515
			mpd->retval = err;
1516
			goto submit_io;
1517 1518
		}

1519
		/*
1520 1521 1522 1523 1524
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1525
		 */
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1537
		}
1538
		/* invalidate all the pages */
1539
		ext4_da_block_invalidatepages(mpd);
1540 1541 1542

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1543
		return;
1544
	}
1545 1546
	BUG_ON(blks == 0);

1547
	mapp = &map;
1548 1549 1550
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1551

1552 1553
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1554

1555 1556
		if (ext4_should_order_data(mpd->inode)) {
			err = ext4_jbd2_file_inode(handle, mpd->inode);
1557
			if (err) {
1558
				/* Only if the journal is aborted */
1559 1560 1561
				mpd->retval = err;
				goto submit_io;
			}
1562
		}
1563 1564 1565
	}

	/*
1566
	 * Update on-disk size along with block allocation.
1567 1568 1569 1570 1571 1572
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1573 1574 1575 1576 1577
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1578 1579
	}

1580
submit_io:
1581
	mpage_da_submit_io(mpd, mapp);
1582
	mpd->io_done = 1;
1583 1584
}

1585 1586
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1598 1599
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1600 1601
{
	sector_t next;
1602
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1603

1604 1605 1606 1607
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1608
	 * ext4_map_blocks() multiple times in a loop
1609 1610 1611 1612
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1613
	/* check if thereserved journal credits might overflow */
1614
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1635 1636 1637
	/*
	 * First block in the extent
	 */
1638 1639 1640 1641
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1642 1643 1644
		return;
	}

1645
	next = mpd->b_blocknr + nrblocks;
1646 1647 1648
	/*
	 * Can we merge the block to our big extent?
	 */
1649 1650
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1651 1652 1653
		return;
	}

1654
flush_it:
1655 1656 1657 1658
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1659
	mpage_da_map_and_submit(mpd);
1660
	return;
1661 1662
}

1663
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1664
{
1665
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1666 1667
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1728
/*
1729 1730 1731
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1732 1733 1734 1735 1736 1737 1738
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1739 1740
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1741
				  struct buffer_head *bh, int create)
1742
{
1743
	struct ext4_map_blocks map;
1744 1745 1746
	int ret = 0;

	BUG_ON(create == 0);
1747 1748 1749 1750
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1751 1752 1753 1754 1755 1756

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1757 1758
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1759
		return ret;
1760

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1772
		set_buffer_mapped(bh);
1773 1774
	}
	return 0;
1775
}
1776

1777 1778 1779
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1780
 * callback function for block_write_begin() and block_write_full_page().
1781
 * These functions should only try to map a single block at a time.
1782 1783 1784 1785 1786
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1787 1788 1789
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1790 1791
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1792 1793
				   struct buffer_head *bh_result, int create)
{
1794
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1795
	return _ext4_get_block(inode, iblock, bh_result, 0);
1796 1797
}

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1820
	ClearPageChecked(page);
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1834 1835
	BUG_ON(!ext4_handle_valid(handle));

1836 1837 1838 1839 1840 1841 1842
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1843
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1844 1845 1846 1847 1848
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1849
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1850 1851 1852 1853
out:
	return ret;
}

1854 1855 1856
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

1857
/*
1858 1859 1860 1861
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1862
 * we are writing back data modified via mmap(), no one guarantees in which
1863 1864 1865 1866
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1867 1868 1869 1870 1871
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1897
 */
1898
static int ext4_writepage(struct page *page,
1899
			  struct writeback_control *wbc)
1900
{
T
Theodore Ts'o 已提交
1901
	int ret = 0, commit_write = 0;
1902
	loff_t size;
1903
	unsigned int len;
1904
	struct buffer_head *page_bufs = NULL;
1905 1906
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
1907
	trace_ext4_writepage(page);
1908 1909 1910 1911 1912
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1913

T
Theodore Ts'o 已提交
1914 1915
	/*
	 * If the page does not have buffers (for whatever reason),
1916
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
1917 1918
	 * fails, redirty the page and move on.
	 */
1919
	if (!page_has_buffers(page)) {
1920
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
1921 1922
					noalloc_get_block_write)) {
		redirty_page:
1923 1924 1925 1926
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
1927 1928 1929 1930 1931
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
1932
		/*
1933 1934 1935 1936
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
1937
		 */
T
Theodore Ts'o 已提交
1938 1939 1940
		goto redirty_page;
	}
	if (commit_write)
1941
		/* now mark the buffer_heads as dirty and uptodate */
1942
		block_commit_write(page, 0, len);
1943

1944
	if (PageChecked(page) && ext4_should_journal_data(inode))
1945 1946 1947 1948
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
1949
		return __ext4_journalled_writepage(page, len);
1950

T
Theodore Ts'o 已提交
1951
	if (buffer_uninit(page_bufs)) {
1952 1953 1954 1955
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
1956 1957
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
1958 1959 1960 1961

	return ret;
}

1962
/*
1963
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
1964
 * calculate the total number of credits to reserve to fit
1965 1966 1967
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
1968
 */
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
1980
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1981 1982 1983 1984 1985
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
1986

1987 1988
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
1989
 * address space and accumulate pages that need writing, and call
1990 1991
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
1992 1993 1994
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
1995 1996
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
1997
{
1998
	struct buffer_head	*bh, *head;
1999
	struct inode		*inode = mapping->host;
2000 2001 2002 2003 2004 2005
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2006

2007 2008 2009
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2010 2011 2012 2013
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2014
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2015 2016 2017 2018
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2019
	*done_index = index;
2020
	while (index <= end) {
2021
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2022 2023
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2024
			return 0;
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2036 2037
			if (page->index > end)
				goto out;
2038

2039 2040
			*done_index = page->index + 1;

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2051 2052 2053
			lock_page(page);

			/*
2054 2055 2056 2057 2058 2059
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2060
			 */
2061 2062 2063 2064
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2065 2066 2067 2068
				unlock_page(page);
				continue;
			}

2069
			wait_on_page_writeback(page);
2070 2071
			BUG_ON(PageWriteback(page));

2072
			if (mpd->next_page != page->index)
2073 2074 2075 2076 2077 2078
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2079 2080
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2081
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2082 2083
				if (mpd->io_done)
					goto ret_extent_tail;
2084 2085
			} else {
				/*
2086 2087
				 * Page with regular buffer heads,
				 * just add all dirty ones
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2103 2104
						if (mpd->io_done)
							goto ret_extent_tail;
2105 2106
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2107 2108 2109 2110 2111 2112 2113 2114 2115
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2116 2117 2118 2119 2120 2121
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2122 2123 2124 2125 2126
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2127
				    wbc->sync_mode == WB_SYNC_NONE)
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2138
					goto out;
2139 2140 2141 2142 2143
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2144 2145 2146
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2147 2148 2149
out:
	pagevec_release(&pvec);
	cond_resched();
2150 2151 2152 2153
	return ret;
}


2154
static int ext4_da_writepages(struct address_space *mapping,
2155
			      struct writeback_control *wbc)
2156
{
2157 2158
	pgoff_t	index;
	int range_whole = 0;
2159
	handle_t *handle = NULL;
2160
	struct mpage_da_data mpd;
2161
	struct inode *inode = mapping->host;
2162
	int pages_written = 0;
2163
	unsigned int max_pages;
2164
	int range_cyclic, cycled = 1, io_done = 0;
2165 2166
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2167
	loff_t range_start = wbc->range_start;
2168
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2169
	pgoff_t done_index = 0;
2170
	pgoff_t end;
S
Shaohua Li 已提交
2171
	struct blk_plug plug;
2172

2173
	trace_ext4_da_writepages(inode, wbc);
2174

2175 2176 2177 2178 2179
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2180
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2181
		return 0;
2182 2183 2184 2185 2186

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2187
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2188 2189 2190 2191 2192
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2193
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2194 2195
		return -EROFS;

2196 2197
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2198

2199 2200
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2201
		index = mapping->writeback_index;
2202 2203 2204 2205 2206
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2207 2208
		end = -1;
	} else {
2209
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2210 2211
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2212

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2230 2231 2232 2233 2234 2235
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2246
retry:
2247
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2248 2249
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2250
	blk_start_plug(&plug);
2251
	while (!ret && wbc->nr_to_write > 0) {
2252 2253 2254 2255 2256 2257 2258 2259

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2260
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2261

2262 2263 2264 2265
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2266
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2267
			       "%ld pages, ino %lu; err %d", __func__,
2268
				wbc->nr_to_write, inode->i_ino, ret);
2269 2270
			goto out_writepages;
		}
2271 2272

		/*
2273
		 * Now call write_cache_pages_da() to find the next
2274
		 * contiguous region of logical blocks that need
2275
		 * blocks to be allocated by ext4 and submit them.
2276
		 */
2277
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2278
		/*
2279
		 * If we have a contiguous extent of pages and we
2280 2281 2282 2283
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2284
			mpage_da_map_and_submit(&mpd);
2285 2286
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2287
		trace_ext4_da_write_pages(inode, &mpd);
2288
		wbc->nr_to_write -= mpd.pages_written;
2289

2290
		ext4_journal_stop(handle);
2291

2292
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2293 2294 2295 2296
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2297
			jbd2_journal_force_commit_nested(sbi->s_journal);
2298 2299
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2300
			/*
2301 2302 2303
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2304
			 */
2305
			pages_written += mpd.pages_written;
2306
			ret = mpd.retval;
2307
			io_done = 1;
2308
		} else if (wbc->nr_to_write)
2309 2310 2311 2312 2313 2314
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2315
	}
S
Shaohua Li 已提交
2316
	blk_finish_plug(&plug);
2317 2318 2319 2320 2321 2322 2323
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2324 2325

	/* Update index */
2326
	wbc->range_cyclic = range_cyclic;
2327 2328 2329 2330 2331
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2332
		mapping->writeback_index = done_index;
2333

2334
out_writepages:
2335
	wbc->nr_to_write -= nr_to_writebump;
2336
	wbc->range_start = range_start;
2337
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2338
	return ret;
2339 2340
}

2341 2342 2343 2344 2345 2346 2347 2348 2349
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2350
	 * counters can get slightly wrong with percpu_counter_batch getting
2351 2352 2353 2354
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2355 2356 2357
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2358
	if (2 * free_blocks < 3 * dirty_blocks ||
2359
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2360
		/*
2361 2362
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2363 2364 2365
		 */
		return 1;
	}
2366 2367 2368 2369 2370 2371 2372
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

2373 2374 2375
	return 0;
}

2376
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2377 2378
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2379
{
2380
	int ret, retries = 0;
2381 2382 2383 2384
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;
2385
	loff_t page_len;
2386 2387

	index = pos >> PAGE_CACHE_SHIFT;
2388 2389 2390 2391 2392 2393 2394

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2395
	trace_ext4_da_write_begin(inode, pos, len, flags);
2396
retry:
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2408 2409 2410
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2411

2412
	page = grab_cache_page_write_begin(mapping, index, flags);
2413 2414 2415 2416 2417
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2418 2419
	*pagep = page;

2420
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2421 2422 2423 2424
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2425 2426 2427 2428 2429 2430
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2431
			ext4_truncate_failed_write(inode);
2432 2433 2434 2435 2436 2437 2438
	} else {
		page_len = pos & (PAGE_CACHE_SIZE - 1);
		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers_no_lock(handle,
				inode, page, pos - page_len, page_len,
				EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
		}
2439 2440
	}

2441 2442
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2443 2444 2445 2446
out:
	return ret;
}

2447 2448 2449 2450 2451
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2452
					    unsigned long offset)
2453 2454 2455 2456 2457 2458 2459 2460 2461
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2462
	for (i = 0; i < idx; i++)
2463 2464
		bh = bh->b_this_page;

2465
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2466 2467 2468 2469
		return 0;
	return 1;
}

2470
static int ext4_da_write_end(struct file *file,
2471 2472 2473
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2474 2475 2476 2477 2478
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2479
	unsigned long start, end;
2480
	int write_mode = (int)(unsigned long)fsdata;
2481
	loff_t page_len;
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2494

2495
	trace_ext4_da_write_end(inode, pos, len, copied);
2496
	start = pos & (PAGE_CACHE_SIZE - 1);
2497
	end = start + copied - 1;
2498 2499 2500 2501 2502 2503 2504 2505

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2517

2518 2519 2520
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2521 2522 2523 2524 2525
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2526
		}
2527
	}
2528 2529
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

	page_len = PAGE_CACHE_SIZE -
			((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));

	if (page_len > 0) {
		ret = ext4_discard_partial_page_buffers_no_lock(handle,
			inode, page, pos + copied - 1, page_len,
			EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
	}

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2559
	ext4_da_page_release_reservation(page, offset);
2560 2561 2562 2563 2564 2565 2566

out:
	ext4_invalidatepage(page, offset);

	return;
}

2567 2568 2569 2570 2571
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2572 2573
	trace_ext4_alloc_da_blocks(inode);

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2584
	 *
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2597
	 * the pages by calling redirty_page_for_writepage() but that
2598 2599
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2600
	 * simplifying them because we wouldn't actually intend to
2601 2602 2603
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2604
	 *
2605 2606 2607 2608 2609 2610
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2611

2612 2613 2614 2615 2616
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2617
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2618 2619 2620 2621 2622 2623 2624 2625
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2626
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2627 2628 2629 2630 2631
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2642 2643
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2655
		 * NB. EXT4_STATE_JDATA is not set on files other than
2656 2657 2658 2659 2660 2661
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2662
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2663
		journal = EXT4_JOURNAL(inode);
2664 2665 2666
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2667 2668 2669 2670 2671

		if (err)
			return 0;
	}

2672
	return generic_block_bmap(mapping, block, ext4_get_block);
2673 2674
}

2675
static int ext4_readpage(struct file *file, struct page *page)
2676
{
2677
	trace_ext4_readpage(page);
2678
	return mpage_readpage(page, ext4_get_block);
2679 2680 2681
}

static int
2682
ext4_readpages(struct file *file, struct address_space *mapping,
2683 2684
		struct list_head *pages, unsigned nr_pages)
{
2685
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2686 2687
}

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2708
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2709
{
2710
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2711

2712 2713
	trace_ext4_invalidatepage(page, offset);

2714 2715 2716 2717 2718
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2719 2720 2721 2722 2723 2724
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2725 2726 2727 2728
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2729 2730
}

2731
static int ext4_releasepage(struct page *page, gfp_t wait)
2732
{
2733
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2734

2735 2736
	trace_ext4_releasepage(page);

2737 2738 2739
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2740 2741 2742 2743
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2744 2745
}

2746 2747 2748 2749 2750
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2751
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2752 2753
		   struct buffer_head *bh_result, int create)
{
2754
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2755
		   inode->i_ino, create);
2756 2757
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2758 2759 2760
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2761 2762
			    ssize_t size, void *private, int ret,
			    bool is_async)
2763
{
2764
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2765 2766
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
2767 2768
	unsigned long flags;
	struct ext4_inode_info *ei;
2769

2770 2771
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2772
		goto out;
2773

2774 2775 2776 2777 2778 2779
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
2780
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2781 2782
		ext4_free_io_end(io_end);
		iocb->private = NULL;
2783 2784 2785
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2786
		inode_dio_done(inode);
2787
		return;
2788 2789
	}

2790 2791
	io_end->offset = offset;
	io_end->size = size;
2792 2793 2794 2795
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2796 2797
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

2798
	/* Add the io_end to per-inode completed aio dio list*/
2799 2800 2801 2802
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2803 2804 2805

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
2806
	iocb->private = NULL;
2807 2808 2809

	/* XXX: probably should move into the real I/O completion handler */
	inode_dio_done(inode);
2810
}
2811

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

2829 2830 2831 2832
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2833
	inode = io_end->inode;
2834 2835 2836 2837
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
		io_end->flag |= EXT4_IO_END_UNWRITTEN;
		atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
	}
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2864
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2883 2884 2885 2886 2887
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2888
 * For holes, we fallocate those blocks, mark them as uninitialized
2889
 * If those blocks were preallocated, we mark sure they are splited, but
2890
 * still keep the range to write as uninitialized.
2891
 *
2892 2893
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2894
 * set up an end_io call back function, which will do the conversion
2895
 * when async direct IO completed.
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
2914 2915 2916
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
2917
 		 * to prevent parallel buffered read to expose the stale data
2918
 		 * before DIO complete the data IO.
2919 2920
		 *
 		 * As to previously fallocated extents, ext4 get_block
2921 2922 2923
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
2924 2925 2926 2927 2928 2929 2930 2931
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
2932
 		 */
2933 2934 2935
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
2936
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2937 2938 2939 2940
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
2941
			 * direct IO, so that later ext4_map_blocks()
2942 2943 2944 2945 2946 2947 2948
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

2949
		ret = __blockdev_direct_IO(rw, iocb, inode,
2950 2951
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
2952
					 ext4_get_block_write,
2953 2954 2955
					 ext4_end_io_dio,
					 NULL,
					 DIO_LOCKING | DIO_SKIP_HOLES);
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
2975 2976
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
2977
			int err;
2978 2979
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
2980
			 * completed, we could do the conversion right here
2981
			 */
2982 2983 2984 2985
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
2986
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2987
		}
2988 2989
		return ret;
	}
2990 2991

	/* for write the the end of file case, we fall back to old way */
2992 2993 2994 2995 2996 2997 2998 2999 3000
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3001
	ssize_t ret;
3002

3003 3004 3005 3006 3007 3008
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

3009
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3010
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3011 3012 3013 3014 3015 3016
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3017 3018
}

3019
/*
3020
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3032
static int ext4_journalled_set_page_dirty(struct page *page)
3033 3034 3035 3036 3037
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3038
static const struct address_space_operations ext4_ordered_aops = {
3039 3040
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3041
	.writepage		= ext4_writepage,
3042 3043 3044 3045 3046 3047 3048 3049
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3050
	.error_remove_page	= generic_error_remove_page,
3051 3052
};

3053
static const struct address_space_operations ext4_writeback_aops = {
3054 3055
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3056
	.writepage		= ext4_writepage,
3057 3058 3059 3060 3061 3062 3063 3064
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3065
	.error_remove_page	= generic_error_remove_page,
3066 3067
};

3068
static const struct address_space_operations ext4_journalled_aops = {
3069 3070
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3071
	.writepage		= ext4_writepage,
3072 3073 3074 3075 3076 3077
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
3078
	.direct_IO		= ext4_direct_IO,
3079
	.is_partially_uptodate  = block_is_partially_uptodate,
3080
	.error_remove_page	= generic_error_remove_page,
3081 3082
};

3083
static const struct address_space_operations ext4_da_aops = {
3084 3085
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3086
	.writepage		= ext4_writepage,
3087 3088 3089 3090 3091 3092 3093 3094 3095
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3096
	.error_remove_page	= generic_error_remove_page,
3097 3098
};

3099
void ext4_set_aops(struct inode *inode)
3100
{
3101 3102 3103 3104
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3105
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3106 3107 3108
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3109 3110
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3111
	else
3112
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3113 3114
}

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
		return -EINVAL;

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
 * from:   The starting byte offset (from the begining of the file)
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
 *         for updateing the contents of a page whose blocks may
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
 * Returns zero on sucess or negative on failure.
 */
int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	unsigned int end_of_block, range_to_discard;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page)) {
		/*
		 * If the range to be discarded covers a partial block
		 * we need to get the page buffers.  This is because
		 * partial blocks cannot be released and the page needs
		 * to be updated with the contents of the block before
		 * we write the zeros on top of it.
		 */
		if (!(from & (blocksize - 1)) ||
		    !((from + length) & (blocksize - 1))) {
			create_empty_buffers(page, blocksize, 0);
		} else {
			/*
			 * If there are no partial blocks,
			 * there is nothing to update,
			 * so we can return now
			 */
			return 0;
		}
	}

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3322
		} else
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3335
/*
3336
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3337 3338 3339 3340
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3341
int ext4_block_truncate_page(handle_t *handle,
3342
		struct address_space *mapping, loff_t from)
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
{
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	unsigned length;
	unsigned blocksize;
	struct inode *inode = mapping->host;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));

	return ext4_block_zero_page_range(handle, mapping, from, length);
}

/*
 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
 * starting from file offset 'from'.  The range to be zero'd must
 * be contained with in one block.  If the specified range exceeds
 * the end of the block it will be shortened to end of the block
 * that cooresponds to 'from'
 */
int ext4_block_zero_page_range(handle_t *handle,
		struct address_space *mapping, loff_t from, loff_t length)
3364
{
3365
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3366
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3367
	unsigned blocksize, max, pos;
A
Aneesh Kumar K.V 已提交
3368
	ext4_lblk_t iblock;
3369 3370
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3371
	struct page *page;
3372 3373
	int err = 0;

3374 3375
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3376 3377 3378
	if (!page)
		return -EINVAL;

3379
	blocksize = inode->i_sb->s_blocksize;
3380 3381 3382 3383 3384 3385 3386 3387 3388
	max = blocksize - (offset & (blocksize - 1));

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the block
	 */
	if (length > max || length < 0)
		length = max;

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3411
		ext4_get_block(inode, iblock, bh, 0);
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3432
	if (ext4_should_journal_data(inode)) {
3433
		BUFFER_TRACE(bh, "get write access");
3434
		err = ext4_journal_get_write_access(handle, bh);
3435 3436 3437 3438
		if (err)
			goto unlock;
	}

3439
	zero_user(page, offset, length);
3440 3441 3442 3443

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3444
	if (ext4_should_journal_data(inode)) {
3445
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3446
	} else
3447 3448 3449 3450 3451 3452 3453 3454
		mark_buffer_dirty(bh);

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
		return -ENOTSUPP;

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
		return -ENOTSUPP;
	}

3488 3489 3490 3491 3492
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
		return -ENOTSUPP;
	}

3493 3494 3495
	return ext4_ext_punch_hole(file, offset, length);
}

3496
/*
3497
 * ext4_truncate()
3498
 *
3499 3500
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3517
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3518
 * that this inode's truncate did not complete and it will again call
3519 3520
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3521
 * that's fine - as long as they are linked from the inode, the post-crash
3522
 * ext4_truncate() run will find them and release them.
3523
 */
3524
void ext4_truncate(struct inode *inode)
3525
{
3526 3527
	trace_ext4_truncate_enter(inode);

3528
	if (!ext4_can_truncate(inode))
3529 3530
		return;

3531
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3532

3533
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3534
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3535

3536
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3537
		ext4_ext_truncate(inode);
3538 3539
	else
		ext4_ind_truncate(inode);
3540

3541
	trace_ext4_truncate_exit(inode);
3542 3543 3544
}

/*
3545
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3546 3547 3548 3549
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3550 3551
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3552
{
3553 3554 3555 3556 3557 3558
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3559
	iloc->bh = NULL;
3560 3561
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3562

3563 3564 3565
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3566 3567
		return -EIO;

3568 3569 3570
	/*
	 * Figure out the offset within the block group inode table
	 */
3571
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3572 3573 3574 3575 3576 3577
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3578
	if (!bh) {
3579 3580
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3581 3582 3583 3584
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3608
			int i, start;
3609

3610
			start = inode_offset & ~(inodes_per_block - 1);
3611

3612 3613
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3626
			for (i = start; i < start + inodes_per_block; i++) {
3627 3628
				if (i == inode_offset)
					continue;
3629
				if (ext4_test_bit(i, bitmap_bh->b_data))
3630 3631 3632
					break;
			}
			brelse(bitmap_bh);
3633
			if (i == start + inodes_per_block) {
3634 3635 3636 3637 3638 3639 3640 3641 3642
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3643 3644 3645 3646 3647 3648 3649 3650 3651
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3652
			/* s_inode_readahead_blks is always a power of 2 */
3653 3654 3655 3656 3657 3658 3659
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3660
				num -= ext4_itable_unused_count(sb, gdp);
3661 3662 3663 3664 3665 3666 3667
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3668 3669 3670 3671 3672
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3673
		trace_ext4_load_inode(inode);
3674 3675 3676 3677 3678
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3679 3680
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3681 3682 3683 3684 3685 3686 3687 3688 3689
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3690
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3691 3692
{
	/* We have all inode data except xattrs in memory here. */
3693
	return __ext4_get_inode_loc(inode, iloc,
3694
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3695 3696
}

3697
void ext4_set_inode_flags(struct inode *inode)
3698
{
3699
	unsigned int flags = EXT4_I(inode)->i_flags;
3700 3701

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3702
	if (flags & EXT4_SYNC_FL)
3703
		inode->i_flags |= S_SYNC;
3704
	if (flags & EXT4_APPEND_FL)
3705
		inode->i_flags |= S_APPEND;
3706
	if (flags & EXT4_IMMUTABLE_FL)
3707
		inode->i_flags |= S_IMMUTABLE;
3708
	if (flags & EXT4_NOATIME_FL)
3709
		inode->i_flags |= S_NOATIME;
3710
	if (flags & EXT4_DIRSYNC_FL)
3711 3712 3713
		inode->i_flags |= S_DIRSYNC;
}

3714 3715 3716
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3737
}
3738

3739
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3740
				  struct ext4_inode_info *ei)
3741 3742
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3743 3744
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3745 3746 3747 3748 3749 3750

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3751
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3752 3753 3754 3755 3756
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3757 3758 3759 3760
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3761

3762
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3763
{
3764 3765
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3766 3767
	struct ext4_inode_info *ei;
	struct inode *inode;
3768
	journal_t *journal = EXT4_SB(sb)->s_journal;
3769
	long ret;
3770 3771
	int block;

3772 3773 3774 3775 3776 3777 3778
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3779
	iloc.bh = NULL;
3780

3781 3782
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3783
		goto bad_inode;
3784
	raw_inode = ext4_raw_inode(&iloc);
3785 3786 3787
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3788
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3789 3790 3791 3792 3793
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

3794
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3795 3796 3797 3798 3799 3800 3801 3802 3803
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3804
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3805
			/* this inode is deleted */
3806
			ret = -ESTALE;
3807 3808 3809 3810 3811 3812 3813 3814
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3815
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3816
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3817
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3818 3819
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3820
	inode->i_size = ext4_isize(raw_inode);
3821
	ei->i_disksize = inode->i_size;
3822 3823 3824
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3825 3826
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3827
	ei->i_last_alloc_group = ~0;
3828 3829 3830 3831
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3832
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3833 3834 3835
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3847
		read_lock(&journal->j_state_lock);
3848 3849 3850 3851 3852 3853 3854 3855
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3856
		read_unlock(&journal->j_state_lock);
3857 3858 3859 3860
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3861
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3862
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3863
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3864
		    EXT4_INODE_SIZE(inode->i_sb)) {
3865
			ret = -EIO;
3866
			goto bad_inode;
3867
		}
3868 3869
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3870 3871
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3872 3873
		} else {
			__le32 *magic = (void *)raw_inode +
3874
					EXT4_GOOD_OLD_INODE_SIZE +
3875
					ei->i_extra_isize;
3876
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3877
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3878 3879 3880 3881
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
3882 3883 3884 3885 3886
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3887 3888 3889 3890 3891 3892 3893
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3894
	ret = 0;
3895
	if (ei->i_file_acl &&
3896
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3897 3898
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3899 3900
		ret = -EIO;
		goto bad_inode;
3901
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3902 3903 3904 3905 3906
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3907
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3908 3909
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3910
		/* Validate block references which are part of inode */
3911
		ret = ext4_ind_check_inode(inode);
3912
	}
3913
	if (ret)
3914
		goto bad_inode;
3915

3916
	if (S_ISREG(inode->i_mode)) {
3917 3918 3919
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3920
	} else if (S_ISDIR(inode->i_mode)) {
3921 3922
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3923
	} else if (S_ISLNK(inode->i_mode)) {
3924
		if (ext4_inode_is_fast_symlink(inode)) {
3925
			inode->i_op = &ext4_fast_symlink_inode_operations;
3926 3927 3928
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3929 3930
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3931
		}
3932 3933
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3934
		inode->i_op = &ext4_special_inode_operations;
3935 3936 3937 3938 3939 3940
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3941 3942
	} else {
		ret = -EIO;
3943
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3944
		goto bad_inode;
3945
	}
3946
	brelse(iloc.bh);
3947
	ext4_set_inode_flags(inode);
3948 3949
	unlock_new_inode(inode);
	return inode;
3950 3951

bad_inode:
3952
	brelse(iloc.bh);
3953 3954
	iget_failed(inode);
	return ERR_PTR(ret);
3955 3956
}

3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3970
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3971
		raw_inode->i_blocks_high = 0;
3972
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3973 3974 3975 3976 3977 3978
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3979 3980 3981 3982
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3983
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3984
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3985
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3986
	} else {
3987
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3988 3989 3990 3991
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3992
	}
3993
	return 0;
3994 3995
}

3996 3997 3998 3999 4000 4001 4002
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4003
static int ext4_do_update_inode(handle_t *handle,
4004
				struct inode *inode,
4005
				struct ext4_iloc *iloc)
4006
{
4007 4008
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4009 4010 4011 4012 4013
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4014
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4015
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4016

4017
	ext4_get_inode_flags(ei);
4018
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4019
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4020 4021 4022 4023 4024 4025
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4026
		if (!ei->i_dtime) {
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4044 4045 4046 4047 4048 4049

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4050 4051
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4052
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4053
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4054 4055
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4056 4057
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4058
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4075
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4076
			sb->s_dirt = 1;
4077
			ext4_handle_sync(handle);
4078
			err = ext4_handle_dirty_metadata(handle, NULL,
4079
					EXT4_SB(sb)->s_sbh);
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4094 4095 4096
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4097

4098 4099 4100 4101 4102
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4103
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4104 4105
	}

4106
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4107
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4108 4109
	if (!err)
		err = rc;
4110
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4111

4112
	ext4_update_inode_fsync_trans(handle, inode, 0);
4113
out_brelse:
4114
	brelse(bh);
4115
	ext4_std_error(inode->i_sb, err);
4116 4117 4118 4119
	return err;
}

/*
4120
 * ext4_write_inode()
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4137
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4154
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4155
{
4156 4157
	int err;

4158 4159 4160
	if (current->flags & PF_MEMALLOC)
		return 0;

4161 4162 4163 4164 4165 4166
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4167

4168
		if (wbc->sync_mode != WB_SYNC_ALL)
4169 4170 4171 4172 4173
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4174

4175
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4176 4177
		if (err)
			return err;
4178
		if (wbc->sync_mode == WB_SYNC_ALL)
4179 4180
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4181 4182
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4183 4184
			err = -EIO;
		}
4185
		brelse(iloc.bh);
4186 4187
	}
	return err;
4188 4189 4190
}

/*
4191
 * ext4_setattr()
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4205 4206 4207 4208 4209 4210 4211 4212
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4213
 */
4214
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4215 4216 4217
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4218
	int orphan = 0;
4219 4220 4221 4222 4223 4224
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4225
	if (is_quota_modification(inode, attr))
4226
		dquot_initialize(inode);
4227 4228 4229 4230 4231 4232
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4233
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4234
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4235 4236 4237 4238
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4239
		error = dquot_transfer(inode, attr);
4240
		if (error) {
4241
			ext4_journal_stop(handle);
4242 4243 4244 4245 4246 4247 4248 4249
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4250 4251
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4252 4253
	}

4254
	if (attr->ia_valid & ATTR_SIZE) {
4255 4256
		inode_dio_wait(inode);

4257
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4258 4259
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4260 4261
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4262 4263 4264
		}
	}

4265
	if (S_ISREG(inode->i_mode) &&
4266
	    attr->ia_valid & ATTR_SIZE &&
4267
	    (attr->ia_size < inode->i_size)) {
4268 4269
		handle_t *handle;

4270
		handle = ext4_journal_start(inode, 3);
4271 4272 4273 4274
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4275 4276 4277 4278
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4279 4280
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4281 4282
		if (!error)
			error = rc;
4283
		ext4_journal_stop(handle);
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4296
				orphan = 0;
4297 4298 4299 4300
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4301 4302
	}

4303 4304 4305 4306 4307 4308 4309
	if (attr->ia_valid & ATTR_SIZE) {
		if (attr->ia_size != i_size_read(inode)) {
			truncate_setsize(inode, attr->ia_size);
			ext4_truncate(inode);
		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
			ext4_truncate(inode);
	}
4310

C
Christoph Hellwig 已提交
4311 4312 4313 4314 4315 4316 4317 4318 4319
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4320
	if (orphan && inode->i_nlink)
4321
		ext4_orphan_del(NULL, inode);
4322 4323

	if (!rc && (ia_valid & ATTR_MODE))
4324
		rc = ext4_acl_chmod(inode);
4325 4326

err_out:
4327
	ext4_std_error(inode->i_sb, error);
4328 4329 4330 4331 4332
	if (!error)
		error = rc;
	return error;
}

4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4357

4358 4359
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4360
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4361
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4362
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4363
}
4364

4365
/*
4366 4367 4368
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4369
 *
4370
 * If datablocks are discontiguous, they are possible to spread over
4371
 * different block groups too. If they are contiuguous, with flexbg,
4372
 * they could still across block group boundary.
4373
 *
4374 4375
 * Also account for superblock, inode, quota and xattr blocks
 */
4376
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4377
{
4378 4379
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4406 4407
	if (groups > ngroups)
		groups = ngroups;
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4421
 * Calculate the total number of credits to reserve to fit
4422 4423
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4424
 *
4425
 * This could be called via ext4_write_begin()
4426
 *
4427
 * We need to consider the worse case, when
4428
 * one new block per extent.
4429
 */
A
Alex Tomas 已提交
4430
int ext4_writepage_trans_blocks(struct inode *inode)
4431
{
4432
	int bpp = ext4_journal_blocks_per_page(inode);
4433 4434
	int ret;

4435
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4436

4437
	/* Account for data blocks for journalled mode */
4438
	if (ext4_should_journal_data(inode))
4439
		ret += bpp;
4440 4441
	return ret;
}
4442 4443 4444 4445 4446

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4447
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4448 4449 4450 4451 4452 4453 4454 4455 4456
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4457
/*
4458
 * The caller must have previously called ext4_reserve_inode_write().
4459 4460
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4461
int ext4_mark_iloc_dirty(handle_t *handle,
4462
			 struct inode *inode, struct ext4_iloc *iloc)
4463 4464 4465
{
	int err = 0;

4466 4467 4468
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4469 4470 4471
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4472
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4473
	err = ext4_do_update_inode(handle, inode, iloc);
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4484 4485
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4486
{
4487 4488 4489 4490 4491 4492 4493 4494 4495
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4496 4497
		}
	}
4498
	ext4_std_error(inode->i_sb, err);
4499 4500 4501
	return err;
}

4502 4503 4504 4505
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4506 4507 4508 4509
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4522 4523
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4556
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4557
{
4558
	struct ext4_iloc iloc;
4559 4560 4561
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4562 4563

	might_sleep();
4564
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4565
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4566 4567
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4568
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4582 4583
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4584 4585
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4586
					ext4_warning(inode->i_sb,
4587 4588 4589
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4590 4591
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4592 4593 4594 4595
				}
			}
		}
	}
4596
	if (!err)
4597
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4598 4599 4600 4601
	return err;
}

/*
4602
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4603 4604 4605 4606 4607
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4608
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4609 4610 4611 4612 4613 4614
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4615
void ext4_dirty_inode(struct inode *inode, int flags)
4616 4617 4618
{
	handle_t *handle;

4619
	handle = ext4_journal_start(inode, 2);
4620 4621
	if (IS_ERR(handle))
		goto out;
4622 4623 4624

	ext4_mark_inode_dirty(handle, inode);

4625
	ext4_journal_stop(handle);
4626 4627 4628 4629 4630 4631 4632 4633
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4634
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4635 4636 4637
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4638
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4639
{
4640
	struct ext4_iloc iloc;
4641 4642 4643

	int err = 0;
	if (handle) {
4644
		err = ext4_get_inode_loc(inode, &iloc);
4645 4646
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4647
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4648
			if (!err)
4649
				err = ext4_handle_dirty_metadata(handle,
4650
								 NULL,
4651
								 iloc.bh);
4652 4653 4654
			brelse(iloc.bh);
		}
	}
4655
	ext4_std_error(inode->i_sb, err);
4656 4657 4658 4659
	return err;
}
#endif

4660
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4676
	journal = EXT4_JOURNAL(inode);
4677 4678
	if (!journal)
		return 0;
4679
	if (is_journal_aborted(journal))
4680 4681
		return -EROFS;

4682 4683
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4694
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4695
	else
4696
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4697
	ext4_set_aops(inode);
4698

4699
	jbd2_journal_unlock_updates(journal);
4700 4701 4702

	/* Finally we can mark the inode as dirty. */

4703
	handle = ext4_journal_start(inode, 1);
4704 4705 4706
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4707
	err = ext4_mark_inode_dirty(handle, inode);
4708
	ext4_handle_sync(handle);
4709 4710
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4711 4712 4713

	return err;
}
4714 4715 4716 4717 4718 4719

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4720
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4721
{
4722
	struct page *page = vmf->page;
4723 4724
	loff_t size;
	unsigned long len;
4725
	int ret;
4726 4727 4728
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4729 4730 4731
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4732 4733

	/*
4734 4735
	 * This check is racy but catches the common case. We rely on
	 * __block_page_mkwrite() to do a reliable check.
4736
	 */
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4748
	}
4749 4750

	lock_page(page);
4751 4752 4753 4754 4755 4756
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4757
	}
4758 4759 4760 4761 4762

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4763
	/*
4764 4765
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4766
	 */
4767 4768
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4769
					ext4_bh_unmapped)) {
4770 4771 4772 4773
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4774
		}
4775
	}
4776
	unlock_page(page);
4777 4778 4779 4780 4781 4782 4783 4784
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4785
		ret = VM_FAULT_SIGBUS;
4786 4787 4788 4789 4790 4791 4792 4793
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4794
			ext4_journal_stop(handle);
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4805 4806
	return ret;
}