inode.c 132.2 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36 37 38
#include <linux/mpage.h>
#include <linux/uio.h>
#include <linux/bio.h>
39
#include "ext4_jbd2.h"
40 41
#include "xattr.h"
#include "acl.h"
42
#include "ext4_extents.h"
43

44 45 46 47 48 49 50
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
	return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
						   new_size);
}

51 52
static void ext4_invalidatepage(struct page *page, unsigned long offset);

53 54 55
/*
 * Test whether an inode is a fast symlink.
 */
56
static int ext4_inode_is_fast_symlink(struct inode *inode)
57
{
58
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
59 60 61 62 63 64
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
65
 * The ext4 forget function must perform a revoke if we are freeing data
66 67 68 69 70 71 72
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
 */
73 74
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

92 93
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
94
		if (bh) {
95
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
96
			return ext4_journal_forget(handle, bh);
97 98 99 100 101 102 103
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
104 105
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
106
	if (err)
107
		ext4_abort(inode->i_sb, __func__,
108 109 110 111 112 113 114 115 116 117 118
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
119
	ext4_lblk_t needed;
120 121 122 123 124 125

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
126
	 * like a regular file for ext4 to try to delete it.  Things
127 128 129 130 131 132 133
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
134 135
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
136

137
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

154
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
155 156 157
	if (!IS_ERR(result))
		return result;

158
	ext4_std_error(inode->i_sb, PTR_ERR(result));
159 160 161 162 163 164 165 166 167 168 169
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
170
	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
171
		return 0;
172
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
173 174 175 176 177 178 179 180 181
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
182
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
183 184
{
	jbd_debug(2, "restarting handle %p\n", handle);
185
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
186 187 188 189 190
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
191
void ext4_delete_inode (struct inode * inode)
192 193 194
{
	handle_t *handle;

195 196
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
197 198 199 200 201 202 203 204 205 206 207 208
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
209
		ext4_orphan_del(NULL, inode);
210 211 212 213 214 215 216
		goto no_delete;
	}

	if (IS_SYNC(inode))
		handle->h_sync = 1;
	inode->i_size = 0;
	if (inode->i_blocks)
217
		ext4_truncate(inode);
218
	/*
219
	 * Kill off the orphan record which ext4_truncate created.
220
	 * AKPM: I think this can be inside the above `if'.
221
	 * Note that ext4_orphan_del() has to be able to cope with the
222
	 * deletion of a non-existent orphan - this is because we don't
223
	 * know if ext4_truncate() actually created an orphan record.
224 225
	 * (Well, we could do this if we need to, but heck - it works)
	 */
226 227
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
228 229 230 231 232 233 234 235

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
236
	if (ext4_mark_inode_dirty(handle, inode))
237 238 239
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
240 241
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
260
 *	ext4_block_to_path - parse the block number into array of offsets
261 262 263
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
264 265
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
266
 *
267
 *	To store the locations of file's data ext4 uses a data structure common
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

290
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
291 292
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
293
{
294 295 296
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
297 298 299 300 301 302
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
303
		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
304 305 306 307
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
308
		offsets[n++] = EXT4_IND_BLOCK;
309 310 311
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
312
		offsets[n++] = EXT4_DIND_BLOCK;
313 314 315 316
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
317
		offsets[n++] = EXT4_TIND_BLOCK;
318 319 320 321 322
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
323
		ext4_warning(inode->i_sb, "ext4_block_to_path",
324
				"block %lu > max",
325 326
				i_block + direct_blocks +
				indirect_blocks + double_blocks);
327 328 329 330 331 332 333
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
334
 *	ext4_get_branch - read the chain of indirect blocks leading to data
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
359 360
 *
 *      Need to be called with
361
 *      down_read(&EXT4_I(inode)->i_data_sem)
362
 */
A
Aneesh Kumar K.V 已提交
363 364
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
365 366 367 368 369 370 371 372
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
373
	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
394
 *	ext4_find_near - find a place for allocation with sufficient locality
395 396 397
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
398
 *	This function returns the preferred place for block allocation.
399 400 401 402 403 404 405 406 407 408 409 410 411 412
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
413
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
414
{
415
	struct ext4_inode_info *ei = EXT4_I(inode);
416 417
	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
	__le32 *p;
418
	ext4_fsblk_t bg_start;
419
	ext4_fsblk_t last_block;
420
	ext4_grpblk_t colour;
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
436
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
437 438 439 440
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
441
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
442 443
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
444 445 446 447
	return bg_start + colour;
}

/**
448
 *	ext4_find_goal - find a preferred place for allocation.
449 450 451 452
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
453
 *	Normally this function find the preferred place for block allocation,
454
 *	returns it.
455
 */
A
Aneesh Kumar K.V 已提交
456
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
457
		Indirect *partial)
458
{
459
	struct ext4_block_alloc_info *block_i;
460

461
	block_i =  EXT4_I(inode)->i_block_alloc_info;
462 463 464 465 466 467 468 469 470 471

	/*
	 * try the heuristic for sequential allocation,
	 * failing that at least try to get decent locality.
	 */
	if (block_i && (block == block_i->last_alloc_logical_block + 1)
		&& (block_i->last_alloc_physical_block != 0)) {
		return block_i->last_alloc_physical_block + 1;
	}

472
	return ext4_find_near(inode, partial);
473 474 475
}

/**
476
 *	ext4_blks_to_allocate: Look up the block map and count the number
477 478 479 480 481 482 483 484 485 486
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
487
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		int blocks_to_boundary)
{
	unsigned long count = 0;

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
514
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
515 516 517 518 519 520 521 522
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
523
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
524 525 526
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
527 528
{
	int target, i;
529
	unsigned long count = 0, blk_allocated = 0;
530
	int index = 0;
531
	ext4_fsblk_t current_block = 0;
532 533 534 535 536 537 538 539 540 541
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
542 543 544
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
545 546
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
547 548
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
549 550 551 552 553 554 555 556 557
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
558 559 560 561 562 563 564 565 566
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
567
			break;
568
		}
569 570
	}

571 572 573 574 575 576
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
	count = target;
A
Aneesh Kumar K.V 已提交
577
	/* allocating blocks for data blocks */
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	current_block = ext4_new_blocks(handle, inode, iblock,
						goal, &count, err);
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
		blk_allocated += count;
	}
allocated:
598
	/* total number of blocks allocated for direct blocks */
599
	ret = blk_allocated;
600 601 602 603
	*err = 0;
	return ret;
failed_out:
	for (i = 0; i <index; i++)
604
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
605 606 607 608
	return ret;
}

/**
609
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
610 611 612 613 614 615 616 617 618 619
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
620
 *	the same format as ext4_get_branch() would do. We are calling it after
621 622
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
623
 *	picture as after the successful ext4_get_block(), except that in one
624 625 626 627 628 629
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
630
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
631 632
 *	as described above and return 0.
 */
633
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
634 635 636
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
637 638 639 640 641 642
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
643 644
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
645

646
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
665
		err = ext4_journal_get_create_access(handle, bh);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
		if ( n == indirect_blks) {
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

690 691
		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, bh);
692 693 694 695 696 697 698 699
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
700
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
701
		ext4_journal_forget(handle, branch[i].bh);
702 703
	}
	for (i = 0; i <indirect_blks; i++)
704
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
705

706
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
707 708 709 710 711

	return err;
}

/**
712
 * ext4_splice_branch - splice the allocated branch onto inode.
713 714 715
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
716
 *	ext4_alloc_branch)
717 718 719 720 721 722 723 724
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
725
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
726
			ext4_lblk_t block, Indirect *where, int num, int blks)
727 728 729
{
	int i;
	int err = 0;
730 731
	struct ext4_block_alloc_info *block_i;
	ext4_fsblk_t current_block;
732

733
	block_i = EXT4_I(inode)->i_block_alloc_info;
734 735 736 737 738 739 740
	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
741
		err = ext4_journal_get_write_access(handle, where->bh);
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
			*(where->p + i ) = cpu_to_le32(current_block++);
	}

	/*
	 * update the most recently allocated logical & physical block
	 * in i_block_alloc_info, to assist find the proper goal block for next
	 * allocation
	 */
	if (block_i) {
		block_i->last_alloc_logical_block = block + blks - 1;
		block_i->last_alloc_physical_block =
				le32_to_cpu(where[num].key) + blks - 1;
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
772
	inode->i_ctime = ext4_current_time(inode);
773
	ext4_mark_inode_dirty(handle, inode);
774 775 776 777 778 779 780 781 782

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
783
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
784 785
		 */
		jbd_debug(5, "splicing indirect only\n");
786 787
		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, where->bh);
788 789 790 791 792 793 794 795 796 797 798 799 800
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
801
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
802
		ext4_journal_forget(handle, where[i].bh);
803 804
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
805
	}
806
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
828 829 830
 *
 *
 * Need to be called with
831 832
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
833
 */
834
int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
835
		ext4_lblk_t iblock, unsigned long maxblocks,
836 837 838 839
		struct buffer_head *bh_result,
		int create, int extend_disksize)
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
840
	ext4_lblk_t offsets[4];
841 842
	Indirect chain[4];
	Indirect *partial;
843
	ext4_fsblk_t goal;
844 845 846
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
847
	struct ext4_inode_info *ei = EXT4_I(inode);
848
	int count = 0;
849
	ext4_fsblk_t first_block = 0;
850
	loff_t disksize;
851 852


A
Alex Tomas 已提交
853
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
854
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
855 856
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
857 858 859 860

	if (depth == 0)
		goto out;

861
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
862 863 864 865 866 867 868 869

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
870
			ext4_fsblk_t blk;
871 872 873 874 875 876 877 878

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
879
		goto got_it;
880 881 882 883 884 885 886 887 888 889 890
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
	 * Okay, we need to do block allocation.  Lazily initialize the block
	 * allocation info here if necessary
	*/
	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
891
		ext4_init_block_alloc_info(inode);
892

893
	goal = ext4_find_goal(inode, iblock, partial);
894 895 896 897 898 899 900 901

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
902
	count = ext4_blks_to_allocate(partial, indirect_blks,
903 904
					maxblocks, blocks_to_boundary);
	/*
905
	 * Block out ext4_truncate while we alter the tree
906
	 */
907 908 909
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
910 911

	/*
912
	 * The ext4_splice_branch call will free and forget any buffers
913 914 915 916 917 918
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
919
		err = ext4_splice_branch(handle, inode, iblock,
920 921
					partial, indirect_blks, count);
	/*
922
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
923
	 * protect it if you're about to implement concurrent
924
	 * ext4_get_block() -bzzz
925
	*/
926 927 928 929 930 931 932
	if (!err && extend_disksize) {
		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > ei->i_disksize)
			ei->i_disksize = disksize;
	}
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

J
Jan Kara 已提交
955 956 957 958 959 960 961 962 963 964
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096
/*
 * Number of credits we need for writing DIO_MAX_BLOCKS:
 * We need sb + group descriptor + bitmap + inode -> 4
 * For B blocks with A block pointers per block we need:
 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
 */
#define DIO_CREDITS 25
965

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989

/*
 *
 *
 * ext4_ext4 get_block() wrapper function
 * It will do a look up first, and returns if the blocks already mapped.
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
990 991
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
			unsigned long max_blocks, struct buffer_head *bh,
992
			int create, int extend_disksize, int flag)
993 994
{
	int retval;
995 996 997

	clear_buffer_mapped(bh);

998 999 1000 1001 1002 1003 1004 1005
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, 0, 0);
1006
	} else {
1007 1008
		retval = ext4_get_blocks_handle(handle,
				inode, block, max_blocks, bh, 0, 0);
1009
	}
1010
	up_read((&EXT4_I(inode)->i_data_sem));
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

	/* If it is only a block(s) look up */
	if (!create)
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1024 1025 1026
		return retval;

	/*
1027 1028 1029 1030
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1031 1032
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1033 1034 1035 1036 1037 1038 1039 1040 1041

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
	if (flag)
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1042 1043 1044 1045
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1046 1047 1048 1049 1050 1051
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1062
	}
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

	if (flag) {
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
		/*
		 * Update reserved blocks/metadata blocks
		 * after successful block allocation
		 * which were deferred till now
		 */
		if ((retval > 0) && buffer_delay(bh))
			ext4_da_release_space(inode, retval, 0);
	}

1075
	up_write((&EXT4_I(inode)->i_data_sem));
1076 1077 1078
	return retval;
}

1079
static int ext4_get_block(struct inode *inode, sector_t iblock,
1080 1081
			struct buffer_head *bh_result, int create)
{
1082
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1083
	int ret = 0, started = 0;
1084 1085
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

J
Jan Kara 已提交
1086 1087 1088 1089 1090 1091 1092
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
		handle = ext4_journal_start(inode, DIO_CREDITS +
			      2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
		if (IS_ERR(handle)) {
1093
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1094
			goto out;
1095
		}
J
Jan Kara 已提交
1096
		started = 1;
1097 1098
	}

J
Jan Kara 已提交
1099
	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1100
					max_blocks, bh_result, create, 0, 0);
J
Jan Kara 已提交
1101 1102 1103
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1104
	}
J
Jan Kara 已提交
1105 1106 1107
	if (started)
		ext4_journal_stop(handle);
out:
1108 1109 1110 1111 1112 1113
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1114
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1115
				ext4_lblk_t block, int create, int *errp)
1116 1117 1118 1119 1120 1121 1122 1123 1124
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1125
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1126
					&dummy, create, 1, 0);
1127
	/*
1128
	 * ext4_get_blocks_handle() returns number of blocks
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1146
			J_ASSERT(handle != NULL);
1147 1148 1149 1150 1151

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1152
			 * writes use ext4_get_block instead, so it's not a
1153 1154 1155 1156
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1157
			fatal = ext4_journal_get_create_access(handle, bh);
1158 1159 1160 1161 1162
			if (!fatal && !buffer_uptodate(bh)) {
				memset(bh->b_data,0,inode->i_sb->s_blocksize);
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1163 1164
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			err = ext4_journal_dirty_metadata(handle, bh);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1181
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1182
			       ext4_lblk_t block, int create, int *err)
1183 1184 1185
{
	struct buffer_head * bh;

1186
	bh = ext4_getblk(handle, inode, block, create, err);
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

static int walk_page_buffers(	handle_t *handle,
				struct buffer_head *head,
				unsigned from,
				unsigned to,
				int *partial,
				int (*fn)(	handle_t *handle,
						struct buffer_head *bh))
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

	for (	bh = head, block_start = 0;
		ret == 0 && (bh != head || !block_start);
		block_start = block_end, bh = next)
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1235
 * close off a transaction and start a new one between the ext4_get_block()
1236
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1237 1238
 * prepare_write() is the right place.
 *
1239 1240
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1241 1242 1243 1244
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1245
 * By accident, ext4 can be reentered when a transaction is open via
1246 1247 1248 1249 1250 1251
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1252
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1253 1254 1255 1256 1257 1258 1259 1260 1261
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1262
	return ext4_journal_get_write_access(handle, bh);
1263 1264
}

N
Nick Piggin 已提交
1265 1266 1267
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1268
{
N
Nick Piggin 已提交
1269
 	struct inode *inode = mapping->host;
1270
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1271 1272
	handle_t *handle;
	int retries = 0;
N
Nick Piggin 已提交
1273 1274 1275 1276 1277 1278 1279
 	struct page *page;
 	pgoff_t index;
 	unsigned from, to;

 	index = pos >> PAGE_CACHE_SHIFT;
 	from = pos & (PAGE_CACHE_SIZE - 1);
 	to = from + len;
1280 1281

retry:
N
Nick Piggin 已提交
1282 1283 1284 1285
  	handle = ext4_journal_start(inode, needed_blocks);
  	if (IS_ERR(handle)) {
  		ret = PTR_ERR(handle);
  		goto out;
1286
	}
1287

1288 1289 1290 1291 1292 1293 1294 1295
	page = __grab_cache_page(mapping, index);
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1296 1297 1298 1299
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_get_block);

	if (!ret && ext4_should_journal_data(inode)) {
1300 1301 1302
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1303 1304 1305

	if (ret) {
 		unlock_page(page);
1306
		ext4_journal_stop(handle);
N
Nick Piggin 已提交
1307 1308 1309
 		page_cache_release(page);
	}

1310
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1311
		goto retry;
1312
out:
1313 1314 1315
	return ret;
}

N
Nick Piggin 已提交
1316 1317
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1318 1319 1320 1321
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1322
	return ext4_journal_dirty_metadata(handle, bh);
1323 1324 1325 1326 1327 1328
}

/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1329
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1330 1331
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1332 1333 1334 1335
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1336
{
1337
	handle_t *handle = ext4_journal_current_handle();
1338
	struct inode *inode = mapping->host;
N
Nick Piggin 已提交
1339
	unsigned from, to;
1340 1341
	int ret = 0, ret2;

N
Nick Piggin 已提交
1342 1343 1344
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1345
	ret = ext4_jbd2_file_inode(handle, inode);
1346 1347 1348

	if (ret == 0) {
		/*
N
Nick Piggin 已提交
1349
		 * generic_write_end() will run mark_inode_dirty() if i_size
1350 1351 1352 1353 1354
		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
		 * into that.
		 */
		loff_t new_i_size;

N
Nick Piggin 已提交
1355
		new_i_size = pos + copied;
1356 1357
		if (new_i_size > EXT4_I(inode)->i_disksize)
			EXT4_I(inode)->i_disksize = new_i_size;
1358
		ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1359
							page, fsdata);
1360 1361 1362
		copied = ret2;
		if (ret2 < 0)
			ret = ret2;
1363
	}
1364
	ret2 = ext4_journal_stop(handle);
1365 1366
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1367 1368

	return ret ? ret : copied;
1369 1370
}

N
Nick Piggin 已提交
1371 1372 1373 1374
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1375
{
1376
	handle_t *handle = ext4_journal_current_handle();
1377
	struct inode *inode = mapping->host;
1378 1379 1380
	int ret = 0, ret2;
	loff_t new_i_size;

N
Nick Piggin 已提交
1381
	new_i_size = pos + copied;
1382 1383
	if (new_i_size > EXT4_I(inode)->i_disksize)
		EXT4_I(inode)->i_disksize = new_i_size;
1384

1385
	ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1386
							page, fsdata);
1387 1388 1389
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
1390

1391
	ret2 = ext4_journal_stop(handle);
1392 1393
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1394 1395

	return ret ? ret : copied;
1396 1397
}

N
Nick Piggin 已提交
1398 1399 1400 1401
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1402
{
1403
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1404
	struct inode *inode = mapping->host;
1405 1406
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1407
	unsigned from, to;
1408

N
Nick Piggin 已提交
1409 1410 1411 1412 1413 1414 1415 1416
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1417 1418

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1419
				to, &partial, write_end_fn);
1420 1421
	if (!partial)
		SetPageUptodate(page);
N
Nick Piggin 已提交
1422 1423
	if (pos+copied > inode->i_size)
		i_size_write(inode, pos+copied);
1424 1425 1426 1427
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	if (inode->i_size > EXT4_I(inode)->i_disksize) {
		EXT4_I(inode)->i_disksize = inode->i_size;
		ret2 = ext4_mark_inode_dirty(handle, inode);
1428 1429 1430
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1431

1432
	unlock_page(page);
1433
	ret2 = ext4_journal_stop(handle);
1434 1435
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1436 1437 1438
	page_cache_release(page);

	return ret ? ret : copied;
1439
}
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
       struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
       unsigned long md_needed, mdblocks, total = 0;

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

	if (ext4_has_free_blocks(sbi, total) < total) {
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return -ENOSPC;
	}

	/* reduce fs free blocks counter */
	percpu_counter_sub(&sbi->s_freeblocks_counter, total);

	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

void ext4_da_release_space(struct inode *inode, int used, int to_free)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used - to_free;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	/* Account for allocated meta_blocks */
	mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

	release = to_free + mdb_free;

	/* update fs free blocks counter for truncate case */
	percpu_counter_add(&sbi->s_freeblocks_counter, release);

	/* update per-inode reservations */
	BUG_ON(used + to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= (used + to_free);

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	EXT4_I(inode)->i_allocated_meta_blocks = 0;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
}

static void ext4_da_page_release_reservation(struct page *page,
						unsigned long offset)
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
	ext4_da_release_space(page->mapping->host, 0, to_release);
}
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
	struct buffer_head lbh;			/* extent of blocks */
	unsigned long first_page, next_page;	/* extent of pages */
	get_block_t *get_block;
	struct writeback_control *wbc;
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
 * them with __mpage_writepage()
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 * @mpd->get_block: the filesystem's block mapper function
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
	struct address_space *mapping = mpd->inode->i_mapping;
	struct mpage_data mpd_pp = {
		.bio = NULL,
		.last_block_in_bio = 0,
		.get_block = mpd->get_block,
		.use_writepage = 1,
	};
	int ret = 0, err, nr_pages, i;
	unsigned long index, end;
	struct pagevec pvec;

	BUG_ON(mpd->next_page <= mpd->first_page);

	pagevec_init(&pvec, 0);
	index = mpd->first_page;
	end = mpd->next_page - 1;

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			err = __mpage_writepage(page, mpd->wbc, &mpd_pp);

			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	if (mpd_pp.bio)
		mpage_bio_submit(WRITE, mpd_pp.bio);

	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
 * block numbers into buffer heads, dropping BH_Delay
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
	unsigned long index, end;
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
				if (buffer_delay(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_delay(bh);
1695
				} else if (buffer_mapped(bh))
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

/*
 * mpage_da_map_blocks - go through given space
 *
 * @mpd->lbh - bh describing space
 * @mpd->get_block - the filesystem's block mapper function
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 * The function ignores errors ->get_block() returns, thus real
 * error handling is postponed to __mpage_writepage()
 */
static void mpage_da_map_blocks(struct mpage_da_data *mpd)
{
	struct buffer_head *lbh = &mpd->lbh;
	int err = 0, remain = lbh->b_size;
	sector_t next = lbh->b_blocknr;
	struct buffer_head new;

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
	if (buffer_mapped(lbh) && !buffer_delay(lbh))
		return;

	while (remain) {
		new.b_state = lbh->b_state;
		new.b_blocknr = 0;
		new.b_size = remain;
		err = mpd->get_block(mpd->inode, next, &new, 1);
		if (err) {
			/*
			 * Rather than implement own error handling
			 * here, we just leave remaining blocks
			 * unallocated and try again with ->writepage()
			 */
			break;
		}
		BUG_ON(new.b_size == 0);

		if (buffer_new(&new))
			__unmap_underlying_blocks(mpd->inode, &new);

		/*
		 * If blocks are delayed marked, we need to
		 * put actual blocknr and drop delayed bit
		 */
		if (buffer_delay(lbh))
			mpage_put_bnr_to_bhs(mpd, next, &new);

1771 1772 1773 1774
		/* go for the remaining blocks */
		next += new.b_size >> mpd->inode->i_blkbits;
		remain -= new.b_size;
	}
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
}

#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay))

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
				   sector_t logical, struct buffer_head *bh)
{
	struct buffer_head *lbh = &mpd->lbh;
	sector_t next;

	next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);

	/*
	 * First block in the extent
	 */
	if (lbh->b_size == 0) {
		lbh->b_blocknr = logical;
		lbh->b_size = bh->b_size;
		lbh->b_state = bh->b_state & BH_FLAGS;
		return;
	}

	/*
	 * Can we merge the block to our big extent?
	 */
	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
		lbh->b_size += bh->b_size;
		return;
	}

	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
	mpage_da_map_blocks(mpd);

	/*
	 * Now start a new extent
	 */
	lbh->b_size = bh->b_size;
	lbh->b_state = bh->b_state & BH_FLAGS;
	lbh->b_blocknr = logical;
}

/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
	struct buffer_head *bh, *head, fake;
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
		 * and start IO on them using __mpage_writepage()
		 */
		if (mpd->next_page != mpd->first_page) {
			mpage_da_map_blocks(mpd);
			mpage_da_submit_io(mpd);
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
		mpd->lbh.b_size = 0;
		mpd->lbh.b_state = 0;
		mpd->lbh.b_blocknr = 0;
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
		/*
		 * There is no attached buffer heads yet (mmap?)
		 * we treat the page asfull of dirty blocks
		 */
		bh = &fake;
		bh->b_size = PAGE_CACHE_SIZE;
		bh->b_state = 0;
		set_buffer_dirty(bh);
		set_buffer_uptodate(bh);
		mpage_add_bh_to_extent(mpd, logical, bh);
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
			if (buffer_dirty(bh))
				mpage_add_bh_to_extent(mpd, logical, bh);
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
 * mpage_da_writepages - walk the list of dirty pages of the given
 * address space, allocates non-allocated blocks, maps newly-allocated
 * blocks to existing bhs and issue IO them
 *
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 * @get_block: the filesystem's block mapper function.
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 *
 * In order to avoid duplication of logic that deals with partial pages,
 * multiple bio per page, etc, we find non-allocated blocks, allocate
 * them with minimal calls to ->get_block() and re-use __mpage_writepage()
 *
 * It's important that we call __mpage_writepage() only once for each
 * involved page, otherwise we'd have to implement more complicated logic
 * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
 *
 * See comments to mpage_writepages()
 */
static int mpage_da_writepages(struct address_space *mapping,
			       struct writeback_control *wbc,
			       get_block_t get_block)
{
	struct mpage_da_data mpd;
	int ret;

	if (!get_block)
		return generic_writepages(mapping, wbc);

	mpd.wbc = wbc;
	mpd.inode = mapping->host;
	mpd.lbh.b_size = 0;
	mpd.lbh.b_state = 0;
	mpd.lbh.b_blocknr = 0;
	mpd.first_page = 0;
	mpd.next_page = 0;
	mpd.get_block = get_block;

	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);

	/*
	 * Handle last extent of pages
	 */
	if (mpd.next_page != mpd.first_page) {
		mpage_da_map_blocks(&mpd);
		mpage_da_submit_io(&mpd);
	}

	return ret;
}

/*
 * this is a special callback for ->write_begin() only
 * it's intention is to return mapped block or reserve space
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1974 1975 1976
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
1977 1978 1979 1980
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
1981 1982 1983 1984 1985
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
		map_bh(bh_result, inode->i_sb, 0);
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}

	return ret;
}
1996
#define		EXT4_DELALLOC_RSVED	1
1997 1998 1999
static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
2000
	int ret;
2001 2002 2003 2004
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	loff_t disksize = EXT4_I(inode)->i_disksize;
	handle_t *handle = NULL;

2005
	handle = ext4_journal_current_handle();
2006 2007 2008 2009 2010 2011
	if (!handle) {
		ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
				   bh_result, 0, 0, 0);
		BUG_ON(!ret);
	} else {
		ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2012
				   bh_result, create, 0, EXT4_DELALLOC_RSVED);
2013 2014
	}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);

		/*
		 * Update on-disk size along with block allocation
		 * we don't use 'extend_disksize' as size may change
		 * within already allocated block -bzzz
		 */
		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > EXT4_I(inode)->i_disksize) {
			/*
			 * XXX: replace with spinlock if seen contended -bzzz
			 */
			down_write(&EXT4_I(inode)->i_data_sem);
			if (disksize > EXT4_I(inode)->i_disksize)
				EXT4_I(inode)->i_disksize = disksize;
			up_write(&EXT4_I(inode)->i_data_sem);

			if (EXT4_I(inode)->i_disksize == disksize) {
2036 2037
				ret = ext4_mark_inode_dirty(handle, inode);
				return ret;
2038 2039 2040 2041 2042 2043
			}
		}
		ret = 0;
	}
	return ret;
}
2044 2045 2046

static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
{
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	/*
	 * unmapped buffer is possible for holes.
	 * delay buffer is possible with delayed allocation
	 */
	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
}

static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
				   bh_result, 0, 0, 0);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2071 2072 2073
}

/*
2074 2075 2076 2077
 * get called vi ext4_da_writepages after taking page lock (have journal handle)
 * get called via journal_submit_inode_data_buffers (no journal handle)
 * get called via shrink_page_list via pdflush (no journal handle)
 * or grab_page_cache when doing write_begin (have journal handle)
2078
 */
2079 2080 2081 2082
static int ext4_da_writepage(struct page *page,
				struct writeback_control *wbc)
{
	int ret = 0;
2083 2084 2085 2086 2087
	loff_t size;
	unsigned long len;
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2088 2089 2090 2091 2092
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2093

2094
	if (page_has_buffers(page)) {
2095
		page_bufs = page_buffers(page);
2096 2097
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
					ext4_bh_unmapped_or_delay)) {
2098
			/*
2099 2100
			 * We don't want to do  block allocation
			 * So redirty the page and return
2101 2102 2103
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
						ext4_normal_get_block_write);
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
						ext4_bh_unmapped_or_delay)) {
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2140 2141 2142 2143 2144
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2145 2146 2147
	}

	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2148
		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2149
	else
2150 2151 2152
		ret = block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2153 2154 2155 2156

	return ret;
}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
/*
 * For now just follow the DIO way to estimate the max credits
 * needed to write out EXT4_MAX_WRITEBACK_PAGES.
 * todo: need to calculate the max credits need for
 * extent based files, currently the DIO credits is based on
 * indirect-blocks mapping way.
 *
 * Probably should have a generic way to calculate credits
 * for DIO, writepages, and truncate
 */
#define EXT4_MAX_WRITEBACK_PAGES      DIO_MAX_BLOCKS
#define EXT4_MAX_WRITEBACK_CREDITS    DIO_CREDITS

2170 2171 2172
static int ext4_da_writepages(struct address_space *mapping,
				struct writeback_control *wbc)
{
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	struct inode *inode = mapping->host;
	handle_t *handle = NULL;
	int needed_blocks;
	int ret = 0;
	long to_write;
	loff_t range_start = 0;

	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
	if (!mapping->nrpages)
		return 0;

	/*
2189
	 * Estimate the worse case needed credits to write out
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	 * EXT4_MAX_BUF_BLOCKS pages
	 */
	needed_blocks = EXT4_MAX_WRITEBACK_CREDITS;

	to_write = wbc->nr_to_write;
	if (!wbc->range_cyclic) {
		/*
		 * If range_cyclic is not set force range_cont
		 * and save the old writeback_index
		 */
		wbc->range_cont = 1;
		range_start =  wbc->range_start;
	}

	while (!ret && to_write) {
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
			goto out_writepages;
		}
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
		if (ext4_should_order_data(inode)) {
			/*
			 * With ordered mode we need to add
			 * the inode to the journal handle
			 * when we do block allocation.
			 */
			ret = ext4_jbd2_file_inode(handle, inode);
			if (ret) {
				ext4_journal_stop(handle);
				goto out_writepages;
			}

		}
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
		/*
		 * set the max dirty pages could be write at a time
		 * to fit into the reserved transaction credits
		 */
		if (wbc->nr_to_write > EXT4_MAX_WRITEBACK_PAGES)
			wbc->nr_to_write = EXT4_MAX_WRITEBACK_PAGES;

		to_write -= wbc->nr_to_write;
		ret = mpage_da_writepages(mapping, wbc,
						ext4_da_get_block_write);
		ext4_journal_stop(handle);
		if (wbc->nr_to_write) {
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			to_write += wbc->nr_to_write;
			break;
		}
		wbc->nr_to_write = to_write;
	}

out_writepages:
	wbc->nr_to_write = to_write;
	if (range_start)
		wbc->range_start = range_start;
	return ret;
2252 2253 2254 2255 2256 2257
}

static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
2258
	int ret, retries = 0;
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

2269
retry:
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	page = __grab_cache_page(mapping, index);
	if (!page)
		return -ENOMEM;
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_da_get_block_prep);
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
	}

2295 2296
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2297 2298 2299 2300
out:
	return ret;
}

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
					 unsigned long offset)
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

	for (i=0; i < idx; i++)
		bh = bh->b_this_page;

	if (!buffer_mapped(bh) || (buffer_delay(bh)))
		return 0;
	return 1;
}

2324 2325 2326 2327 2328 2329 2330 2331 2332
static int ext4_da_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2333 2334 2335 2336
	unsigned long start, end;

	start = pos & (PAGE_CACHE_SIZE - 1);
	end = start + copied -1;
2337 2338 2339 2340 2341 2342 2343 2344

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2356

2357 2358 2359
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2360
		}
2361
	}
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2383
	ext4_da_page_release_reservation(page, offset);
2384 2385 2386 2387 2388 2389 2390 2391

out:
	ext4_invalidatepage(page, offset);

	return;
}


2392 2393 2394 2395 2396
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2397
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2398 2399 2400 2401 2402 2403 2404 2405
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2406
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2407 2408 2409 2410 2411
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2422
	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2434
		 * NB. EXT4_STATE_JDATA is not set on files other than
2435 2436 2437 2438 2439 2440
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2441 2442
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
2443 2444 2445
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2446 2447 2448 2449 2450

		if (err)
			return 0;
	}

2451
	return generic_block_bmap(mapping,block,ext4_get_block);
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

/*
2467 2468 2469 2470 2471 2472 2473 2474
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
2475
 *
2476
 * In all journaling modes block_write_full_page() will start the I/O.
2477 2478 2479
 *
 * Problem:
 *
2480 2481
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
2482 2483 2484
 *
 * Similar for:
 *
2485
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2486
 *
2487
 * Same applies to ext4_get_block().  We will deadlock on various things like
2488
 * lock_journal and i_data_sem
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 */
2519
static int __ext4_normal_writepage(struct page *page,
2520 2521 2522 2523 2524
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;

	if (test_opt(inode->i_sb, NOBH))
2525 2526
		return nobh_writepage(page,
					ext4_normal_get_block_write, wbc);
2527
	else
2528 2529 2530
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2531 2532
}

2533
static int ext4_normal_writepage(struct page *page,
2534 2535 2536
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
2537 2538 2539 2540 2541 2542 2543 2544
	loff_t size = i_size_read(inode);
	loff_t len;

	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
2559 2560

	if (!ext4_journal_current_handle())
2561
		return __ext4_normal_writepage(page, wbc);
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				struct writeback_control *wbc)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
2574 2575 2576 2577
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2578 2579
	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
					ext4_normal_get_block_write);
2580 2581 2582 2583 2584 2585 2586 2587 2588
	if (ret != 0)
		goto out_unlock;

	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
								bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
2589

2590
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2591 2592
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
2593
		goto out;
2594 2595
	}

2596 2597
	ret = walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2598

2599 2600 2601 2602
	err = walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, write_end_fn);
	if (ret == 0)
		ret = err;
2603
	err = ext4_journal_stop(handle);
2604 2605 2606
	if (!ret)
		ret = err;

2607 2608 2609 2610 2611 2612
	walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	goto out;

out_unlock:
2613
	unlock_page(page);
2614
out:
2615 2616 2617
	return ret;
}

2618
static int ext4_journalled_writepage(struct page *page,
2619 2620 2621
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
2622 2623
	loff_t size = i_size_read(inode);
	loff_t len;
2624

2625 2626 2627 2628 2629
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
2644

2645
	if (ext4_journal_current_handle())
2646 2647
		goto no_write;

2648
	if (PageChecked(page)) {
2649 2650 2651 2652 2653
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
2654
		return __ext4_journalled_writepage(page, wbc);
2655 2656 2657 2658 2659 2660
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
2661 2662 2663
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2664 2665 2666 2667
	}
no_write:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
2668
	return 0;
2669 2670
}

2671
static int ext4_readpage(struct file *file, struct page *page)
2672
{
2673
	return mpage_readpage(page, ext4_get_block);
2674 2675 2676
}

static int
2677
ext4_readpages(struct file *file, struct address_space *mapping,
2678 2679
		struct list_head *pages, unsigned nr_pages)
{
2680
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2681 2682
}

2683
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2684
{
2685
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2686 2687 2688 2689 2690 2691 2692

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2693
	jbd2_journal_invalidatepage(journal, page, offset);
2694 2695
}

2696
static int ext4_releasepage(struct page *page, gfp_t wait)
2697
{
2698
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2699 2700 2701 2702

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2703
	return jbd2_journal_try_to_free_buffers(journal, page, wait);
2704 2705 2706 2707 2708 2709 2710 2711
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
2712 2713
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
2714
 */
2715
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2716 2717 2718 2719 2720
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
2721
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
2722
	handle_t *handle;
2723 2724 2725 2726 2727 2728 2729 2730
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
2731 2732 2733 2734 2735 2736
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
2737
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
2738 2739 2740 2741
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
2742 2743
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
2744
			ext4_journal_stop(handle);
2745 2746 2747 2748 2749
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
2750
				 ext4_get_block, NULL);
2751

J
Jan Kara 已提交
2752
	if (orphan) {
2753 2754
		int err;

J
Jan Kara 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
2765
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
2766
		if (ret > 0) {
2767 2768 2769 2770 2771 2772 2773 2774
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
2775
				 * ext4_mark_inode_dirty() to userspace.  So
2776 2777
				 * ignore it.
				 */
2778
				ext4_mark_inode_dirty(handle, inode);
2779 2780
			}
		}
2781
		err = ext4_journal_stop(handle);
2782 2783 2784 2785 2786 2787 2788 2789
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
2790
 * Pages can be marked dirty completely asynchronously from ext4's journalling
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
2802
static int ext4_journalled_set_page_dirty(struct page *page)
2803 2804 2805 2806 2807
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

2808
static const struct address_space_operations ext4_ordered_aops = {
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2821 2822
};

2823
static const struct address_space_operations ext4_writeback_aops = {
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2836 2837
};

2838
static const struct address_space_operations ext4_journalled_aops = {
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_journalled_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
2850 2851
};

2852
static const struct address_space_operations ext4_da_aops = {
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_da_writepage,
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2866 2867
};

2868
void ext4_set_aops(struct inode *inode)
2869
{
2870 2871 2872 2873
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
2874
		inode->i_mapping->a_ops = &ext4_ordered_aops;
2875 2876 2877
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
2878 2879
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
2880
	else
2881
		inode->i_mapping->a_ops = &ext4_journalled_aops;
2882 2883 2884
}

/*
2885
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2886 2887 2888 2889
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
2890
int ext4_block_truncate_page(handle_t *handle,
2891 2892
		struct address_space *mapping, loff_t from)
{
2893
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2894
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
2895 2896
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
2897 2898
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
2899
	struct page *page;
2900 2901
	int err = 0;

2902 2903 2904 2905
	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
	if (!page)
		return -EINVAL;

2906 2907 2908 2909 2910 2911 2912 2913 2914
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
2915
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
2916
		zero_user(page, offset, length);
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
2941
		ext4_get_block(inode, iblock, bh, 0);
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

2962
	if (ext4_should_journal_data(inode)) {
2963
		BUFFER_TRACE(bh, "get write access");
2964
		err = ext4_journal_get_write_access(handle, bh);
2965 2966 2967 2968
		if (err)
			goto unlock;
	}

2969
	zero_user(page, offset, length);
2970 2971 2972 2973

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
2974 2975
	if (ext4_should_journal_data(inode)) {
		err = ext4_journal_dirty_metadata(handle, bh);
2976
	} else {
2977
		if (ext4_should_order_data(inode))
2978
			err = ext4_jbd2_file_inode(handle, inode);
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3002
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3003 3004
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3005
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3006 3007 3008
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3009
 *	This is a helper function used by ext4_truncate().
3010 3011 3012 3013 3014 3015 3016
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3017
 *	past the truncation point is possible until ext4_truncate()
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3036
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
3037
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3038 3039 3040 3041 3042 3043 3044 3045
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3046
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3069
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

	while(partial > p) {
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3092 3093
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3094 3095 3096 3097 3098
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3099 3100
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			ext4_journal_dirty_metadata(handle, bh);
3101
		}
3102 3103
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3104 3105
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3106
			ext4_journal_get_write_access(handle, bh);
3107 3108 3109 3110 3111
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
3112
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3113
	 * on them.  We've already detached each block from the file, so
3114
	 * bforget() in jbd2_journal_forget() should be safe.
3115
	 *
3116
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3117 3118 3119 3120
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3121
			struct buffer_head *tbh;
3122 3123

			*p = 0;
A
Aneesh Kumar K.V 已提交
3124 3125
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3126 3127 3128
		}
	}

3129
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3130 3131 3132
}

/**
3133
 * ext4_free_data - free a list of data blocks
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3151
static void ext4_free_data(handle_t *handle, struct inode *inode,
3152 3153 3154
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3155
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3156 3157 3158 3159
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3160
	ext4_fsblk_t nr;		    /* Current block # */
3161 3162 3163 3164 3165 3166
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3167
		err = ext4_journal_get_write_access(handle, this_bh);
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3185
				ext4_clear_blocks(handle, inode, this_bh,
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3196
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3197 3198 3199
				  count, block_to_free_p, p);

	if (this_bh) {
3200
		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
		if (bh2jh(this_bh))
			ext4_journal_dirty_metadata(handle, this_bh);
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3216 3217 3218 3219
	}
}

/**
3220
 *	ext4_free_branches - free an array of branches
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3232
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3233 3234 3235
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3236
	ext4_fsblk_t nr;
3237 3238 3239 3240 3241 3242 3243
	__le32 *p;

	if (is_handle_aborted(handle))
		return;

	if (depth--) {
		struct buffer_head *bh;
3244
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3259
				ext4_error(inode->i_sb, "ext4_free_branches",
3260
					   "Read failure, inode=%lu, block=%llu",
3261 3262 3263 3264 3265 3266
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3267
			ext4_free_branches(handle, inode, bh,
3268 3269 3270 3271 3272 3273 3274 3275
					   (__le32*)bh->b_data,
					   (__le32*)bh->b_data + addr_per_block,
					   depth);

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3276
			 * jbd2_journal_revoke().
3277 3278 3279
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3280
			 * transaction then jbd2_journal_forget() will simply
3281
			 * brelse() it.  That means that if the underlying
3282
			 * block is reallocated in ext4_get_block(),
3283 3284 3285 3286 3287 3288 3289 3290
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3291
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
			if (is_handle_aborted(handle))
				return;
			if (try_to_extend_transaction(handle, inode)) {
3312 3313
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
3314 3315
			}

3316
			ext4_free_blocks(handle, inode, nr, 1, 1);
3317 3318 3319 3320 3321 3322 3323

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
3324
				if (!ext4_journal_get_write_access(handle,
3325 3326 3327
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
3328 3329
					"call ext4_journal_dirty_metadata");
					ext4_journal_dirty_metadata(handle,
3330 3331 3332 3333 3334 3335 3336
								    parent_bh);
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
3337
		ext4_free_data(handle, inode, parent_bh, first, last);
3338 3339 3340
	}
}

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3354
/*
3355
 * ext4_truncate()
3356
 *
3357 3358
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3375
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3376
 * that this inode's truncate did not complete and it will again call
3377 3378
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3379
 * that's fine - as long as they are linked from the inode, the post-crash
3380
 * ext4_truncate() run will find them and release them.
3381
 */
3382
void ext4_truncate(struct inode *inode)
3383 3384
{
	handle_t *handle;
3385
	struct ext4_inode_info *ei = EXT4_I(inode);
3386
	__le32 *i_data = ei->i_data;
3387
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3388
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
3389
	ext4_lblk_t offsets[4];
3390 3391 3392 3393
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
3394
	ext4_lblk_t last_block;
3395 3396
	unsigned blocksize = inode->i_sb->s_blocksize;

3397
	if (!ext4_can_truncate(inode))
3398 3399
		return;

A
Aneesh Kumar K.V 已提交
3400
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3401
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
3402 3403
		return;
	}
A
Alex Tomas 已提交
3404

3405
	handle = start_transaction(inode);
3406
	if (IS_ERR(handle))
3407 3408 3409
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
3410
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3411

3412 3413 3414
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
3415

3416
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
3429
	if (ext4_orphan_add(handle, inode))
3430 3431
		goto out_stop;

3432 3433 3434 3435 3436
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
3437 3438 3439 3440 3441
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
3442
	 * ext4 *really* writes onto the disk inode.
3443 3444 3445 3446
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
3447 3448
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
3449 3450 3451
		goto do_indirects;
	}

3452
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3453 3454 3455 3456
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
3457
			ext4_free_branches(handle, inode, NULL,
3458 3459 3460 3461 3462 3463 3464 3465 3466
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
3467
			ext4_free_branches(handle, inode, partial->bh,
3468 3469 3470 3471 3472 3473
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
3474
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
3485
		nr = i_data[EXT4_IND_BLOCK];
3486
		if (nr) {
3487 3488
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
3489
		}
3490 3491
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
3492
		if (nr) {
3493 3494
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
3495
		}
3496 3497
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
3498
		if (nr) {
3499 3500
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
3501
		}
3502
	case EXT4_TIND_BLOCK:
3503 3504 3505
		;
	}

3506
	ext4_discard_reservation(inode);
3507

3508
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
3509
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3510
	ext4_mark_inode_dirty(handle, inode);
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
		handle->h_sync = 1;
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
3523
	 * ext4_delete_inode(), and we allow that function to clean up the
3524 3525 3526
	 * orphan info for us.
	 */
	if (inode->i_nlink)
3527
		ext4_orphan_del(handle, inode);
3528

3529
	ext4_journal_stop(handle);
3530 3531
}

3532 3533
static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
		unsigned long ino, struct ext4_iloc *iloc)
3534
{
3535
	ext4_group_t block_group;
3536
	unsigned long offset;
3537
	ext4_fsblk_t block;
A
Akinobu Mita 已提交
3538
	struct ext4_group_desc *gdp;
3539

3540
	if (!ext4_valid_inum(sb, ino)) {
3541 3542 3543 3544 3545 3546 3547 3548
		/*
		 * This error is already checked for in namei.c unless we are
		 * looking at an NFS filehandle, in which case no error
		 * report is needed
		 */
		return 0;
	}

3549
	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
A
Akinobu Mita 已提交
3550 3551
	gdp = ext4_get_group_desc(sb, block_group, NULL);
	if (!gdp)
3552 3553 3554 3555 3556
		return 0;

	/*
	 * Figure out the offset within the block group inode table
	 */
3557 3558
	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
		EXT4_INODE_SIZE(sb);
3559 3560
	block = ext4_inode_table(sb, gdp) +
		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
3561 3562

	iloc->block_group = block_group;
3563
	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3564 3565 3566 3567
	return block;
}

/*
3568
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3569 3570 3571 3572
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3573 3574
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3575
{
3576
	ext4_fsblk_t block;
3577 3578
	struct buffer_head *bh;

3579
	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3580 3581 3582 3583 3584
	if (!block)
		return -EIO;

	bh = sb_getblk(inode->i_sb, block);
	if (!bh) {
3585
		ext4_error (inode->i_sb, "ext4_get_inode_loc",
3586
				"unable to read inode block - "
3587
				"inode=%lu, block=%llu",
3588 3589 3590 3591 3592
				 inode->i_ino, block);
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3616
			struct ext4_group_desc *desc;
3617 3618
			int inodes_per_buffer;
			int inode_offset, i;
3619
			ext4_group_t block_group;
3620 3621 3622
			int start;

			block_group = (inode->i_ino - 1) /
3623
					EXT4_INODES_PER_GROUP(inode->i_sb);
3624
			inodes_per_buffer = bh->b_size /
3625
				EXT4_INODE_SIZE(inode->i_sb);
3626
			inode_offset = ((inode->i_ino - 1) %
3627
					EXT4_INODES_PER_GROUP(inode->i_sb));
3628 3629 3630
			start = inode_offset & ~(inodes_per_buffer - 1);

			/* Is the inode bitmap in cache? */
3631
			desc = ext4_get_group_desc(inode->i_sb,
3632 3633 3634 3635 3636
						block_group, NULL);
			if (!desc)
				goto make_io;

			bitmap_bh = sb_getblk(inode->i_sb,
3637
				ext4_inode_bitmap(inode->i_sb, desc));
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
			for (i = start; i < start + inodes_per_buffer; i++) {
				if (i == inode_offset)
					continue;
3653
				if (ext4_test_bit(i, bitmap_bh->b_data))
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
					break;
			}
			brelse(bitmap_bh);
			if (i == start + inodes_per_buffer) {
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3677
			ext4_error(inode->i_sb, "ext4_get_inode_loc",
3678
					"unable to read inode block - "
3679
					"inode=%lu, block=%llu",
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
					inode->i_ino, block);
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3690
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3691 3692
{
	/* We have all inode data except xattrs in memory here. */
3693 3694
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3695 3696
}

3697
void ext4_set_inode_flags(struct inode *inode)
3698
{
3699
	unsigned int flags = EXT4_I(inode)->i_flags;
3700 3701

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3702
	if (flags & EXT4_SYNC_FL)
3703
		inode->i_flags |= S_SYNC;
3704
	if (flags & EXT4_APPEND_FL)
3705
		inode->i_flags |= S_APPEND;
3706
	if (flags & EXT4_IMMUTABLE_FL)
3707
		inode->i_flags |= S_IMMUTABLE;
3708
	if (flags & EXT4_NOATIME_FL)
3709
		inode->i_flags |= S_NOATIME;
3710
	if (flags & EXT4_DIRSYNC_FL)
3711 3712 3713
		inode->i_flags |= S_DIRSYNC;
}

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
3732 3733 3734 3735
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3736 3737
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3738 3739 3740 3741 3742 3743

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
3744 3745 3746 3747 3748 3749
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3750 3751 3752 3753
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3754

3755
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3756
{
3757 3758
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3759
	struct ext4_inode_info *ei;
3760
	struct buffer_head *bh;
3761 3762
	struct inode *inode;
	long ret;
3763 3764
	int block;

3765 3766 3767 3768 3769 3770 3771
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3772 3773 3774
#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3775 3776 3777
#endif
	ei->i_block_alloc_info = NULL;

3778 3779
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3780 3781
		goto bad_inode;
	bh = iloc.bh;
3782
	raw_inode = ext4_raw_inode(&iloc);
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
	if(!(test_opt (inode->i_sb, NO_UID32))) {
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3802
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3803 3804
			/* this inode is deleted */
			brelse (bh);
3805
			ret = -ESTALE;
3806 3807 3808 3809 3810 3811 3812 3813
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3814
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3815
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3816
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3817
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
3818 3819
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3820
	}
3821
	inode->i_size = ext4_isize(raw_inode);
3822 3823 3824 3825 3826 3827 3828
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3829
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3830 3831 3832
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3833
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3834
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3835
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3836 3837
		    EXT4_INODE_SIZE(inode->i_sb)) {
			brelse (bh);
3838
			ret = -EIO;
3839
			goto bad_inode;
3840
		}
3841 3842
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3843 3844
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3845 3846
		} else {
			__le32 *magic = (void *)raw_inode +
3847
					EXT4_GOOD_OLD_INODE_SIZE +
3848
					ei->i_extra_isize;
3849 3850
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
3851 3852 3853 3854
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
3855 3856 3857 3858 3859
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3860 3861 3862 3863 3864 3865 3866
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3867
	if (S_ISREG(inode->i_mode)) {
3868 3869 3870
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3871
	} else if (S_ISDIR(inode->i_mode)) {
3872 3873
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3874
	} else if (S_ISLNK(inode->i_mode)) {
3875 3876
		if (ext4_inode_is_fast_symlink(inode))
			inode->i_op = &ext4_fast_symlink_inode_operations;
3877
		else {
3878 3879
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3880 3881
		}
	} else {
3882
		inode->i_op = &ext4_special_inode_operations;
3883 3884 3885 3886 3887 3888 3889 3890
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
	brelse (iloc.bh);
3891
	ext4_set_inode_flags(inode);
3892 3893
	unlock_new_inode(inode);
	return inode;
3894 3895

bad_inode:
3896 3897
	iget_failed(inode);
	return ERR_PTR(ret);
3898 3899
}

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;
	int err = 0;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3914
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3915
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
3916
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
	} else if (i_blocks <= 0xffffffffffffULL) {
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		/* i_block is stored in the split  48 bit fields */
A
Aneesh Kumar K.V 已提交
3927
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3928
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
3929
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3930
	} else {
A
Aneesh Kumar K.V 已提交
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
		/*
		 * i_blocks should be represented in a 48 bit variable
		 * as multiple of  file system block size
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3944 3945 3946 3947 3948
	}
err_out:
	return err;
}

3949 3950 3951 3952 3953 3954 3955
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3956
static int ext4_do_update_inode(handle_t *handle,
3957
				struct inode *inode,
3958
				struct ext4_iloc *iloc)
3959
{
3960 3961
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3962 3963 3964 3965 3966
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3967 3968
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3969

3970
	ext4_get_inode_flags(ei);
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
	if(!(test_opt(inode->i_sb, NO_UID32))) {
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
		if(!ei->i_dtime) {
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
3997 3998 3999 4000 4001 4002

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4003 4004
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4005
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4006 4007
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4008 4009
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4010 4011
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4012
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4029
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4030 4031 4032 4033
			sb->s_dirt = 1;
			handle->h_sync = 1;
			err = ext4_journal_dirty_metadata(handle,
					EXT4_SB(sb)->s_sbh);
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4048
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4049 4050
		raw_inode->i_block[block] = ei->i_data[block];

4051 4052 4053 4054 4055
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4056
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4057 4058
	}

4059

4060 4061
	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
	rc = ext4_journal_dirty_metadata(handle, bh);
4062 4063
	if (!err)
		err = rc;
4064
	ei->i_state &= ~EXT4_STATE_NEW;
4065 4066 4067

out_brelse:
	brelse (bh);
4068
	ext4_std_error(inode->i_sb, err);
4069 4070 4071 4072
	return err;
}

/*
4073
 * ext4_write_inode()
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4090
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4107
int ext4_write_inode(struct inode *inode, int wait)
4108 4109 4110 4111
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4112
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4113
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4114 4115 4116 4117 4118 4119 4120
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4121
	return ext4_force_commit(inode->i_sb);
4122 4123 4124
}

/*
4125
 * ext4_setattr()
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4139 4140 4141 4142 4143 4144 4145 4146
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4147
 */
4148
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4164 4165
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4166 4167 4168 4169 4170 4171
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
		if (error) {
4172
			ext4_journal_stop(handle);
4173 4174 4175 4176 4177 4178 4179 4180
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4181 4182
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4183 4184
	}

4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4196 4197 4198 4199
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4200
		handle = ext4_journal_start(inode, 3);
4201 4202 4203 4204 4205
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4206 4207 4208
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4209 4210
		if (!error)
			error = rc;
4211
		ext4_journal_stop(handle);
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4228 4229 4230 4231
	}

	rc = inode_setattr(inode, attr);

4232
	/* If inode_setattr's call to ext4_truncate failed to get a
4233 4234 4235
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4236
		ext4_orphan_del(NULL, inode);
4237 4238

	if (!rc && (ia_valid & ATTR_MODE))
4239
		rc = ext4_acl_chmod(inode);
4240 4241

err_out:
4242
	ext4_std_error(inode->i_sb, error);
4243 4244 4245 4246 4247
	if (!error)
		error = rc;
	return error;
}

4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286

/*
 * How many blocks doth make a writepage()?
 *
 * With N blocks per page, it may be:
 * N data blocks
 * 2 indirect block
 * 2 dindirect
 * 1 tindirect
 * N+5 bitmap blocks (from the above)
 * N+5 group descriptor summary blocks
 * 1 inode block
 * 1 superblock.
4287
 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
4288
 *
4289
 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
 *
 * With ordered or writeback data it's the same, less the N data blocks.
 *
 * If the inode's direct blocks can hold an integral number of pages then a
 * page cannot straddle two indirect blocks, and we can only touch one indirect
 * and dindirect block, and the "5" above becomes "3".
 *
 * This still overestimates under most circumstances.  If we were to pass the
 * start and end offsets in here as well we could do block_to_path() on each
 * block and work out the exact number of indirects which are touched.  Pah.
 */

A
Alex Tomas 已提交
4302
int ext4_writepage_trans_blocks(struct inode *inode)
4303
{
4304 4305
	int bpp = ext4_journal_blocks_per_page(inode);
	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
4306 4307
	int ret;

A
Alex Tomas 已提交
4308 4309 4310
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_writepage_trans_blocks(inode, bpp);

4311
	if (ext4_should_journal_data(inode))
4312 4313 4314 4315 4316 4317 4318
		ret = 3 * (bpp + indirects) + 2;
	else
		ret = 2 * (bpp + indirects) + 2;

#ifdef CONFIG_QUOTA
	/* We know that structure was already allocated during DQUOT_INIT so
	 * we will be updating only the data blocks + inodes */
4319
	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
4320 4321 4322 4323 4324 4325
#endif

	return ret;
}

/*
4326
 * The caller must have previously called ext4_reserve_inode_write().
4327 4328
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4329 4330
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
4331 4332 4333
{
	int err = 0;

4334 4335 4336
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4337 4338 4339
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4340
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4341
	err = ext4_do_update_inode(handle, inode, iloc);
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4352 4353
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4354 4355 4356
{
	int err = 0;
	if (handle) {
4357
		err = ext4_get_inode_loc(inode, iloc);
4358 4359
		if (!err) {
			BUFFER_TRACE(iloc->bh, "get_write_access");
4360
			err = ext4_journal_get_write_access(handle, iloc->bh);
4361 4362 4363 4364 4365 4366
			if (err) {
				brelse(iloc->bh);
				iloc->bh = NULL;
			}
		}
	}
4367
	ext4_std_error(inode->i_sb, err);
4368 4369 4370
	return err;
}

4371 4372 4373 4374
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4375 4376 4377 4378
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4427
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4428
{
4429
	struct ext4_iloc iloc;
4430 4431 4432
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4433 4434

	might_sleep();
4435
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
4452 4453
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4454
					ext4_warning(inode->i_sb, __func__,
4455 4456 4457
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4458 4459
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4460 4461 4462 4463
				}
			}
		}
	}
4464
	if (!err)
4465
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4466 4467 4468 4469
	return err;
}

/*
4470
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4483
void ext4_dirty_inode(struct inode *inode)
4484
{
4485
	handle_t *current_handle = ext4_journal_current_handle();
4486 4487
	handle_t *handle;

4488
	handle = ext4_journal_start(inode, 2);
4489 4490 4491 4492 4493 4494
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
4495
		       __func__);
4496 4497 4498
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
4499
		ext4_mark_inode_dirty(handle, inode);
4500
	}
4501
	ext4_journal_stop(handle);
4502 4503 4504 4505 4506 4507 4508 4509
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4510
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4511 4512 4513
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4514
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4515
{
4516
	struct ext4_iloc iloc;
4517 4518 4519

	int err = 0;
	if (handle) {
4520
		err = ext4_get_inode_loc(inode, &iloc);
4521 4522
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4523
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4524
			if (!err)
4525
				err = ext4_journal_dirty_metadata(handle,
4526 4527 4528 4529
								  iloc.bh);
			brelse(iloc.bh);
		}
	}
4530
	ext4_std_error(inode->i_sb, err);
4531 4532 4533 4534
	return err;
}
#endif

4535
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4551
	journal = EXT4_JOURNAL(inode);
4552
	if (is_journal_aborted(journal))
4553 4554
		return -EROFS;

4555 4556
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4567
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4568
	else
4569 4570
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
4571

4572
	jbd2_journal_unlock_updates(journal);
4573 4574 4575

	/* Finally we can mark the inode as dirty. */

4576
	handle = ext4_journal_start(inode, 1);
4577 4578 4579
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4580
	err = ext4_mark_inode_dirty(handle, inode);
4581
	handle->h_sync = 1;
4582 4583
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4584 4585 4586

	return err;
}
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
{
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
			len, len, page, NULL);
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
	up_read(&inode->i_alloc_sem);
	return ret;
}