inode.c 138.8 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136 137 138 139 140
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
141 142 143
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
144

145 146 147
/*
 * Test whether an inode is a fast symlink.
 */
148
static int ext4_inode_is_fast_symlink(struct inode *inode)
149
{
150
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 152 153 154 155 156 157 158 159 160
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
161
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162
				 int nblocks)
163
{
164 165 166
	int ret;

	/*
167
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 169 170 171
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
172
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173
	jbd_debug(2, "restarting handle %p\n", handle);
174
	up_write(&EXT4_I(inode)->i_data_sem);
175
	ret = ext4_journal_restart(handle, nblocks);
176
	down_write(&EXT4_I(inode)->i_data_sem);
177
	ext4_discard_preallocations(inode);
178 179

	return ret;
180 181 182 183 184
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
185
void ext4_evict_inode(struct inode *inode)
186 187
{
	handle_t *handle;
188
	int err;
189

190
	trace_ext4_evict_inode(inode);
191 192 193

	ext4_ioend_wait(inode);

A
Al Viro 已提交
194
	if (inode->i_nlink) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
222 223 224 225
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

226
	if (!is_bad_inode(inode))
227
		dquot_initialize(inode);
228

229 230
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
231 232 233 234 235
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

236 237 238 239 240
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
241
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242
	if (IS_ERR(handle)) {
243
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 245 246 247 248
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
249
		ext4_orphan_del(NULL, inode);
250
		sb_end_intwrite(inode->i_sb);
251 252 253 254
		goto no_delete;
	}

	if (IS_SYNC(inode))
255
		ext4_handle_sync(handle);
256
	inode->i_size = 0;
257 258
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
259
		ext4_warning(inode->i_sb,
260 261 262
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
263
	if (inode->i_blocks)
264
		ext4_truncate(inode);
265 266 267 268 269 270 271

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
272
	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 274 275 276
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
277
			ext4_warning(inode->i_sb,
278 279 280
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
281
			ext4_orphan_del(NULL, inode);
282
			sb_end_intwrite(inode->i_sb);
283 284 285 286
			goto no_delete;
		}
	}

287
	/*
288
	 * Kill off the orphan record which ext4_truncate created.
289
	 * AKPM: I think this can be inside the above `if'.
290
	 * Note that ext4_orphan_del() has to be able to cope with the
291
	 * deletion of a non-existent orphan - this is because we don't
292
	 * know if ext4_truncate() actually created an orphan record.
293 294
	 * (Well, we could do this if we need to, but heck - it works)
	 */
295 296
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
297 298 299 300 301 302 303 304

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
305
	if (ext4_mark_inode_dirty(handle, inode))
306
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
307
		ext4_clear_inode(inode);
308
	else
309 310
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
311
	sb_end_intwrite(inode->i_sb);
312 313
	return;
no_delete:
A
Al Viro 已提交
314
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 316
}

317 318
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
319
{
320
	return &EXT4_I(inode)->i_reserved_quota;
321
}
322
#endif
323

324 325
/*
 * Calculate the number of metadata blocks need to reserve
326
 * to allocate a block located at @lblock
327
 */
328
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329
{
330
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331
		return ext4_ext_calc_metadata_amount(inode, lblock);
332

333
	return ext4_ind_calc_metadata_amount(inode, lblock);
334 335
}

336 337 338 339
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
340 341
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
342 343
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 345 346
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
347
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 349
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350
			 "with only %d reserved data blocks",
351 352 353 354 355
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
356

357 358 359 360 361 362 363 364 365
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
			 "with only %d reserved metadata blocks\n", __func__,
			 inode->i_ino, ei->i_allocated_meta_blocks,
			 ei->i_reserved_meta_blocks);
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

366 367 368
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370
			   used + ei->i_allocated_meta_blocks);
371
	ei->i_allocated_meta_blocks = 0;
372

373 374 375 376 377 378
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
379
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380
				   ei->i_reserved_meta_blocks);
381
		ei->i_reserved_meta_blocks = 0;
382
		ei->i_da_metadata_calc_len = 0;
383
	}
384
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385

386 387
	/* Update quota subsystem for data blocks */
	if (quota_claim)
388
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389
	else {
390 391 392
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
393
		 * not re-claim the quota for fallocated blocks.
394
		 */
395
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396
	}
397 398 399 400 401 402

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
403 404
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
405
		ext4_discard_preallocations(inode);
406 407
}

408
static int __check_block_validity(struct inode *inode, const char *func,
409 410
				unsigned int line,
				struct ext4_map_blocks *map)
411
{
412 413
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
414 415 416 417
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
418 419 420 421 422
		return -EIO;
	}
	return 0;
}

423
#define check_block_validity(inode, map)	\
424
	__check_block_validity((inode), __func__, __LINE__, (map))
425

426
/*
427 428
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
462 463 464 465 466 467 468 469 470
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
471 472 473 474 475
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
476 477
			if (num >= max_pages) {
				done = 1;
478
				break;
479
			}
480 481 482 483 484 485
		}
		pagevec_release(&pvec);
	}
	return num;
}

486
/*
487
 * The ext4_map_blocks() function tries to look up the requested blocks,
488
 * and returns if the blocks are already mapped.
489 490 491 492 493
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
494 495
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
496 497 498 499 500 501 502 503
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
504
 * that case, buffer head is unmapped
505 506 507
 *
 * It returns the error in case of allocation failure.
 */
508 509
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
510 511
{
	int retval;
512

513 514 515 516
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
517
	/*
518 519
	 * Try to see if we can get the block without requesting a new
	 * file system block.
520
	 */
521 522
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
523
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
524 525
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
526
	} else {
527 528
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
529
	}
530 531
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
532

533
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
534 535 536 537 538 539 540 541 542 543
		int ret;
		if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
			/* delayed alloc may be allocated by fallocate and
			 * coverted to initialized by directIO.
			 * we need to handle delayed extent here.
			 */
			down_write((&EXT4_I(inode)->i_data_sem));
			goto delayed_mapped;
		}
		ret = check_block_validity(inode, map);
544 545 546 547
		if (ret != 0)
			return ret;
	}

548
	/* If it is only a block(s) look up */
549
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
550 551 552 553 554 555
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
556
	 * ext4_ext_get_block() returns the create = 0
557 558
	 * with buffer head unmapped.
	 */
559
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
560 561
		return retval;

562 563 564 565 566 567 568 569 570 571
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
572
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
573

574
	/*
575 576 577 578
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
579 580
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
581 582 583 584 585 586 587

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
588
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
589
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
590 591 592 593
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
594
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
595
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
596
	} else {
597
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
598

599
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
600 601 602 603 604
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
605
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
606
		}
607

608 609 610 611 612 613 614
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
615
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
616 617
			ext4_da_update_reserve_space(inode, retval, 1);
	}
618
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
619
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
620

621 622 623 624 625 626 627 628 629
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
			int ret;
delayed_mapped:
			/* delayed allocation blocks has been allocated */
			ret = ext4_es_remove_extent(inode, map->m_lblk,
						    map->m_len);
			if (ret < 0)
				retval = ret;
		}
630 631
	}

632
	up_write((&EXT4_I(inode)->i_data_sem));
633
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
634
		int ret = check_block_validity(inode, map);
635 636 637
		if (ret != 0)
			return ret;
	}
638 639 640
	return retval;
}

641 642 643
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

644 645
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
646
{
647
	handle_t *handle = ext4_journal_current_handle();
648
	struct ext4_map_blocks map;
J
Jan Kara 已提交
649
	int ret = 0, started = 0;
650
	int dio_credits;
651

652 653 654
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

655
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
656
		/* Direct IO write... */
657 658 659
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
660
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
661
		if (IS_ERR(handle)) {
662
			ret = PTR_ERR(handle);
663
			return ret;
664
		}
J
Jan Kara 已提交
665
		started = 1;
666 667
	}

668
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
669
	if (ret > 0) {
670 671 672
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
673
		ret = 0;
674
	}
J
Jan Kara 已提交
675 676
	if (started)
		ext4_journal_stop(handle);
677 678 679
	return ret;
}

680 681 682 683 684 685 686
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

687 688 689
/*
 * `handle' can be NULL if create is zero
 */
690
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
691
				ext4_lblk_t block, int create, int *errp)
692
{
693 694
	struct ext4_map_blocks map;
	struct buffer_head *bh;
695 696 697 698
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

699 700 701 702
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
703

704 705 706
	/* ensure we send some value back into *errp */
	*errp = 0;

707 708 709 710 711 712 713 714 715
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
716
	}
717 718 719
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
720

721 722 723 724 725 726 727 728 729 730 731 732 733
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
734
		}
735 736 737 738 739 740 741
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
742
	}
743 744 745 746 747 748
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
749 750
}

751
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
752
			       ext4_lblk_t block, int create, int *err)
753
{
754
	struct buffer_head *bh;
755

756
	bh = ext4_getblk(handle, inode, block, create, err);
757 758 759 760
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
761
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
762 763 764 765 766 767 768 769
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

770 771 772 773 774 775 776
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
777 778 779 780 781 782 783
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

784 785
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
786
	     block_start = block_end, bh = next) {
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
804
 * close off a transaction and start a new one between the ext4_get_block()
805
 * and the commit_write().  So doing the jbd2_journal_start at the start of
806 807
 * prepare_write() is the right place.
 *
808 809
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
810 811 812 813
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
814
 * By accident, ext4 can be reentered when a transaction is open via
815 816 817 818 819 820
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
821
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
822 823 824 825 826
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
827
				       struct buffer_head *bh)
828
{
829 830 831
	int dirty = buffer_dirty(bh);
	int ret;

832 833
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
834
	/*
C
Christoph Hellwig 已提交
835
	 * __block_write_begin() could have dirtied some buffers. Clean
836 837
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
838
	 * by __block_write_begin() isn't a real problem here as we clear
839 840 841 842 843 844 845 846 847
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
848 849
}

850 851
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
852 853
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
854
static int ext4_write_begin(struct file *file, struct address_space *mapping,
855 856
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
857
{
858
	struct inode *inode = mapping->host;
859
	int ret, needed_blocks;
860 861
	handle_t *handle;
	int retries = 0;
862
	struct page *page;
863
	pgoff_t index;
864
	unsigned from, to;
N
Nick Piggin 已提交
865

866
	trace_ext4_write_begin(inode, pos, len, flags);
867 868 869 870 871
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
872
	index = pos >> PAGE_CACHE_SHIFT;
873 874
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
875 876

retry:
877 878 879 880
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
881
	}
882

883 884 885 886
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

887
	page = grab_cache_page_write_begin(mapping, index, flags);
888 889 890 891 892 893 894
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

895
	if (ext4_should_dioread_nolock(inode))
896
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
897
	else
898
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
899 900

	if (!ret && ext4_should_journal_data(inode)) {
901 902 903
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
904 905

	if (ret) {
906 907
		unlock_page(page);
		page_cache_release(page);
908
		/*
909
		 * __block_write_begin may have instantiated a few blocks
910 911
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
912 913 914
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
915
		 */
916
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
917 918 919 920
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
921
			ext4_truncate_failed_write(inode);
922
			/*
923
			 * If truncate failed early the inode might
924 925 926 927 928 929 930
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
931 932
	}

933
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
934
		goto retry;
935
out:
936 937 938
	return ret;
}

N
Nick Piggin 已提交
939 940
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
941 942 943 944
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
945
	return ext4_handle_dirty_metadata(handle, NULL, bh);
946 947
}

948
static int ext4_generic_write_end(struct file *file,
949 950 951
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

994 995 996 997
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
998
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
999 1000
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1001
static int ext4_ordered_write_end(struct file *file,
1002 1003 1004
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1005
{
1006
	handle_t *handle = ext4_journal_current_handle();
1007
	struct inode *inode = mapping->host;
1008 1009
	int ret = 0, ret2;

1010
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1011
	ret = ext4_jbd2_file_inode(handle, inode);
1012 1013

	if (ret == 0) {
1014
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1015
							page, fsdata);
1016
		copied = ret2;
1017
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1018 1019 1020 1021 1022
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1023 1024
		if (ret2 < 0)
			ret = ret2;
1025 1026 1027
	} else {
		unlock_page(page);
		page_cache_release(page);
1028
	}
1029

1030
	ret2 = ext4_journal_stop(handle);
1031 1032
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1033

1034
	if (pos + len > inode->i_size) {
1035
		ext4_truncate_failed_write(inode);
1036
		/*
1037
		 * If truncate failed early the inode might still be
1038 1039 1040 1041 1042 1043 1044 1045
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1046
	return ret ? ret : copied;
1047 1048
}

N
Nick Piggin 已提交
1049
static int ext4_writeback_write_end(struct file *file,
1050 1051 1052
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1053
{
1054
	handle_t *handle = ext4_journal_current_handle();
1055
	struct inode *inode = mapping->host;
1056 1057
	int ret = 0, ret2;

1058
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1059
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1060
							page, fsdata);
1061
	copied = ret2;
1062
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1063 1064 1065 1066 1067 1068
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1069 1070
	if (ret2 < 0)
		ret = ret2;
1071

1072
	ret2 = ext4_journal_stop(handle);
1073 1074
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1075

1076
	if (pos + len > inode->i_size) {
1077
		ext4_truncate_failed_write(inode);
1078
		/*
1079
		 * If truncate failed early the inode might still be
1080 1081 1082 1083 1084 1085 1086
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1087
	return ret ? ret : copied;
1088 1089
}

N
Nick Piggin 已提交
1090
static int ext4_journalled_write_end(struct file *file,
1091 1092 1093
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1094
{
1095
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1096
	struct inode *inode = mapping->host;
1097 1098
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1099
	unsigned from, to;
1100
	loff_t new_i_size;
1101

1102
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1103 1104 1105
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1106 1107
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
1108 1109 1110 1111 1112
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1113 1114

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1115
				to, &partial, write_end_fn);
1116 1117
	if (!partial)
		SetPageUptodate(page);
1118 1119
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1120
		i_size_write(inode, pos+copied);
1121
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1122
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1123 1124
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1125
		ret2 = ext4_mark_inode_dirty(handle, inode);
1126 1127 1128
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1129

1130
	unlock_page(page);
1131
	page_cache_release(page);
1132
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1133 1134 1135 1136 1137 1138
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1139
	ret2 = ext4_journal_stop(handle);
1140 1141
	if (!ret)
		ret = ret2;
1142
	if (pos + len > inode->i_size) {
1143
		ext4_truncate_failed_write(inode);
1144
		/*
1145
		 * If truncate failed early the inode might still be
1146 1147 1148 1149 1150 1151
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1152 1153

	return ret ? ret : copied;
1154
}
1155

1156
/*
1157
 * Reserve a single cluster located at lblock
1158
 */
1159
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1160
{
A
Aneesh Kumar K.V 已提交
1161
	int retries = 0;
1162
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1163
	struct ext4_inode_info *ei = EXT4_I(inode);
1164
	unsigned int md_needed;
1165
	int ret;
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1177 1178 1179 1180 1181 1182

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1183
repeat:
1184
	spin_lock(&ei->i_block_reservation_lock);
1185 1186 1187 1188 1189 1190
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1191 1192
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1193
	trace_ext4_da_reserve_space(inode, md_needed);
1194

1195 1196 1197 1198
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1199
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1200 1201 1202
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1203 1204 1205 1206
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1207
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1208 1209
		return -ENOSPC;
	}
1210
	ei->i_reserved_data_blocks++;
1211 1212
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1213

1214 1215 1216
	return 0;       /* success */
}

1217
static void ext4_da_release_space(struct inode *inode, int to_free)
1218 1219
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1220
	struct ext4_inode_info *ei = EXT4_I(inode);
1221

1222 1223 1224
	if (!to_free)
		return;		/* Nothing to release, exit */

1225
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1226

L
Li Zefan 已提交
1227
	trace_ext4_da_release_space(inode, to_free);
1228
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1229
		/*
1230 1231 1232 1233
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1234
		 */
1235 1236
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
1237
			 "data blocks", inode->i_ino, to_free,
1238 1239 1240
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1241
	}
1242
	ei->i_reserved_data_blocks -= to_free;
1243

1244 1245 1246 1247 1248
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1249 1250
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1251
		 */
1252
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1253
				   ei->i_reserved_meta_blocks);
1254
		ei->i_reserved_meta_blocks = 0;
1255
		ei->i_da_metadata_calc_len = 0;
1256
	}
1257

1258
	/* update fs dirty data blocks counter */
1259
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1260 1261

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1262

1263
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1264 1265 1266
}

static void ext4_da_page_release_reservation(struct page *page,
1267
					     unsigned long offset)
1268 1269 1270 1271
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1272 1273 1274
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1275
	ext4_fsblk_t lblk;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1288

1289 1290 1291 1292 1293
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1294 1295 1296 1297 1298 1299 1300
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1301
		    !ext4_find_delalloc_cluster(inode, lblk))
1302 1303 1304 1305
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1306
}
1307

1308 1309 1310 1311 1312 1313
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1314
 * them with writepage() call back
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1325 1326
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1327
{
1328 1329 1330 1331 1332
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1333
	loff_t size = i_size_read(inode);
1334 1335
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1336
	int journal_data = ext4_should_journal_data(inode);
1337
	sector_t pblock = 0, cur_logical = 0;
1338
	struct ext4_io_submit io_submit;
1339 1340

	BUG_ON(mpd->next_page <= mpd->first_page);
1341
	memset(&io_submit, 0, sizeof(io_submit));
1342 1343 1344
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1345
	 * If we look at mpd->b_blocknr we would only be looking
1346 1347
	 * at the currently mapped buffer_heads.
	 */
1348 1349 1350
	index = mpd->first_page;
	end = mpd->next_page - 1;

1351
	pagevec_init(&pvec, 0);
1352
	while (index <= end) {
1353
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1354 1355 1356
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1357
			int commit_write = 0, skip_page = 0;
1358 1359
			struct page *page = pvec.pages[i];

1360 1361 1362
			index = page->index;
			if (index > end)
				break;
1363 1364 1365 1366 1367

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1368 1369 1370 1371 1372 1373
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1374 1375 1376 1377 1378
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1379
			/*
1380 1381
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1382
			 * __block_write_begin.  If this fails,
1383
			 * skip the page and move on.
1384
			 */
1385
			if (!page_has_buffers(page)) {
1386
				if (__block_write_begin(page, 0, len,
1387
						noalloc_get_block_write)) {
1388
				skip_page:
1389 1390 1391 1392 1393
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1394

1395 1396
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1397
			do {
1398
				if (!bh)
1399
					goto skip_page;
1400 1401 1402
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1403 1404 1405 1406
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1407 1408 1409 1410 1411 1412 1413
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1414

1415 1416 1417 1418 1419
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1420
					skip_page = 1;
1421 1422
				bh = bh->b_this_page;
				block_start += bh->b_size;
1423 1424
				cur_logical++;
				pblock++;
1425 1426
			} while (bh != page_bufs);

1427 1428
			if (skip_page)
				goto skip_page;
1429 1430 1431 1432 1433

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1434
			clear_page_dirty_for_io(page);
1435 1436 1437 1438 1439 1440
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1441
				err = __ext4_journalled_writepage(page, len);
1442
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1443 1444
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1445 1446 1447 1448 1449 1450
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1451 1452
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1453 1454

			if (!err)
1455
				mpd->pages_written++;
1456 1457 1458 1459 1460 1461 1462 1463 1464
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1465
	ext4_io_submit(&io_submit);
1466 1467 1468
	return ret;
}

1469
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1470 1471 1472 1473 1474 1475
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1476
	ext4_lblk_t start, last;
1477

1478 1479
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1480 1481 1482 1483 1484

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1485
	pagevec_init(&pvec, 0);
1486 1487 1488 1489 1490 1491
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1492
			if (page->index > end)
1493 1494 1495 1496 1497 1498 1499
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1500 1501
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1502 1503 1504 1505
	}
	return;
}

1506 1507 1508
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1509 1510 1511
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1512 1513
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1514 1515
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1516 1517
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1518
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1519 1520
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1521 1522 1523 1524
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1525
	       EXT4_I(inode)->i_reserved_meta_blocks);
1526 1527 1528
	return;
}

1529
/*
1530 1531
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1532
 *
1533
 * @mpd - bh describing space
1534 1535 1536 1537
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1538
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1539
{
1540
	int err, blks, get_blocks_flags;
1541
	struct ext4_map_blocks map, *mapp = NULL;
1542 1543 1544 1545
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1546 1547

	/*
1548 1549
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1550
	 */
1551 1552 1553 1554 1555
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1556 1557 1558 1559

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1560
	/*
1561
	 * Call ext4_map_blocks() to allocate any delayed allocation
1562 1563 1564 1565 1566 1567 1568 1569
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1570
	 * want to change *many* call functions, so ext4_map_blocks()
1571
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1572 1573 1574 1575 1576
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1577
	 */
1578 1579
	map.m_lblk = next;
	map.m_len = max_blocks;
1580
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1581 1582
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1583
	if (mpd->b_state & (1 << BH_Delay))
1584 1585
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1586
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1587
	if (blks < 0) {
1588 1589
		struct super_block *sb = mpd->inode->i_sb;

1590
		err = blks;
1591
		/*
1592
		 * If get block returns EAGAIN or ENOSPC and there
1593 1594
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1595 1596
		 */
		if (err == -EAGAIN)
1597
			goto submit_io;
1598

1599
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1600
			mpd->retval = err;
1601
			goto submit_io;
1602 1603
		}

1604
		/*
1605 1606 1607 1608 1609
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1610
		 */
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1622
		}
1623
		/* invalidate all the pages */
1624
		ext4_da_block_invalidatepages(mpd);
1625 1626 1627

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1628
		return;
1629
	}
1630 1631
	BUG_ON(blks == 0);

1632
	mapp = &map;
1633 1634 1635
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1636

1637 1638
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1639 1640 1641
	}

	/*
1642
	 * Update on-disk size along with block allocation.
1643 1644 1645 1646 1647 1648
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1649 1650 1651 1652 1653
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1654 1655
	}

1656
submit_io:
1657
	mpage_da_submit_io(mpd, mapp);
1658
	mpd->io_done = 1;
1659 1660
}

1661 1662
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1674 1675
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1676 1677
{
	sector_t next;
1678
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1679

1680 1681 1682 1683
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1684
	 * ext4_map_blocks() multiple times in a loop
1685 1686 1687 1688
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1689
	/* check if thereserved journal credits might overflow */
1690
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1711 1712 1713
	/*
	 * First block in the extent
	 */
1714 1715 1716 1717
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1718 1719 1720
		return;
	}

1721
	next = mpd->b_blocknr + nrblocks;
1722 1723 1724
	/*
	 * Can we merge the block to our big extent?
	 */
1725 1726
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1727 1728 1729
		return;
	}

1730
flush_it:
1731 1732 1733 1734
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1735
	mpage_da_map_and_submit(mpd);
1736
	return;
1737 1738
}

1739
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1740
{
1741
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1742 1743
}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

1788 1789 1790 1791
		retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
		if (retval)
			goto out_unlock;

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1808
/*
1809 1810 1811
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1812 1813 1814 1815 1816 1817 1818
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1819 1820
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1821
				  struct buffer_head *bh, int create)
1822
{
1823
	struct ext4_map_blocks map;
1824 1825 1826
	int ret = 0;

	BUG_ON(create == 0);
1827 1828 1829 1830
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1831 1832 1833 1834 1835 1836

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1837 1838
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1839
		return ret;
1840

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1852
		set_buffer_mapped(bh);
1853 1854
	}
	return 0;
1855
}
1856

1857 1858 1859
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1860
 * callback function for block_write_begin() and block_write_full_page().
1861
 * These functions should only try to map a single block at a time.
1862 1863 1864 1865 1866
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1867 1868 1869
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1870 1871
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1872 1873
				   struct buffer_head *bh_result, int create)
{
1874
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1875
	return _ext4_get_block(inode, iblock, bh_result, 0);
1876 1877
}

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1900
	ClearPageChecked(page);
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1914 1915
	BUG_ON(!ext4_handle_valid(handle));

1916 1917 1918 1919 1920 1921 1922
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1923
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1924 1925 1926 1927 1928
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1929
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1930 1931 1932 1933
out:
	return ret;
}

1934
/*
1935 1936 1937 1938
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1939
 * we are writing back data modified via mmap(), no one guarantees in which
1940 1941 1942 1943
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1944 1945 1946
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
1947
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1948
 *   - grab_page_cache when doing write_begin (have journal handle)
1949 1950 1951 1952 1953 1954 1955 1956 1957
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1958
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1974
 */
1975
static int ext4_writepage(struct page *page,
1976
			  struct writeback_control *wbc)
1977
{
T
Theodore Ts'o 已提交
1978
	int ret = 0, commit_write = 0;
1979
	loff_t size;
1980
	unsigned int len;
1981
	struct buffer_head *page_bufs = NULL;
1982 1983
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
1984
	trace_ext4_writepage(page);
1985 1986 1987 1988 1989
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1990

T
Theodore Ts'o 已提交
1991 1992
	/*
	 * If the page does not have buffers (for whatever reason),
1993
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
1994 1995
	 * fails, redirty the page and move on.
	 */
1996
	if (!page_has_buffers(page)) {
1997
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
1998 1999
					noalloc_get_block_write)) {
		redirty_page:
2000 2001 2002 2003
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2004 2005 2006 2007 2008
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2009
		/*
2010 2011 2012
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
2013 2014 2015
		 * We can also reach here via shrink_page_list but it
		 * should never be for direct reclaim so warn if that
		 * happens
2016
		 */
2017 2018
		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
								PF_MEMALLOC);
T
Theodore Ts'o 已提交
2019 2020 2021
		goto redirty_page;
	}
	if (commit_write)
2022
		/* now mark the buffer_heads as dirty and uptodate */
2023
		block_commit_write(page, 0, len);
2024

2025
	if (PageChecked(page) && ext4_should_journal_data(inode))
2026 2027 2028 2029
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2030
		return __ext4_journalled_writepage(page, len);
2031

T
Theodore Ts'o 已提交
2032
	if (buffer_uninit(page_bufs)) {
2033 2034 2035 2036
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2037 2038
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2039 2040 2041 2042

	return ret;
}

2043
/*
2044
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2045
 * calculate the total number of credits to reserve to fit
2046 2047 2048
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2049
 */
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2061
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2062 2063 2064 2065 2066
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2067

2068 2069
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2070
 * address space and accumulate pages that need writing, and call
2071 2072
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2073 2074 2075
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2076 2077
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2078
{
2079
	struct buffer_head	*bh, *head;
2080
	struct inode		*inode = mapping->host;
2081 2082 2083 2084 2085 2086
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2087

2088 2089 2090
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2091 2092 2093 2094
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2095
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2096 2097 2098 2099
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2100
	*done_index = index;
2101
	while (index <= end) {
2102
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2103 2104
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2105
			return 0;
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2117 2118
			if (page->index > end)
				goto out;
2119

2120 2121
			*done_index = page->index + 1;

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2132 2133 2134
			lock_page(page);

			/*
2135 2136 2137 2138 2139 2140
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2141
			 */
2142 2143 2144 2145
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2146 2147 2148 2149
				unlock_page(page);
				continue;
			}

2150
			wait_on_page_writeback(page);
2151 2152
			BUG_ON(PageWriteback(page));

2153
			if (mpd->next_page != page->index)
2154 2155 2156 2157 2158 2159
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2160 2161
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2162
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2163 2164
				if (mpd->io_done)
					goto ret_extent_tail;
2165 2166
			} else {
				/*
2167 2168
				 * Page with regular buffer heads,
				 * just add all dirty ones
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2184 2185
						if (mpd->io_done)
							goto ret_extent_tail;
2186 2187
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2188 2189 2190 2191 2192 2193 2194 2195 2196
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2197 2198 2199 2200 2201 2202
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2203 2204 2205 2206 2207
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2208
				    wbc->sync_mode == WB_SYNC_NONE)
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2219
					goto out;
2220 2221 2222 2223 2224
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2225 2226 2227
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2228 2229 2230
out:
	pagevec_release(&pvec);
	cond_resched();
2231 2232 2233 2234
	return ret;
}


2235
static int ext4_da_writepages(struct address_space *mapping,
2236
			      struct writeback_control *wbc)
2237
{
2238 2239
	pgoff_t	index;
	int range_whole = 0;
2240
	handle_t *handle = NULL;
2241
	struct mpage_da_data mpd;
2242
	struct inode *inode = mapping->host;
2243
	int pages_written = 0;
2244
	unsigned int max_pages;
2245
	int range_cyclic, cycled = 1, io_done = 0;
2246 2247
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2248
	loff_t range_start = wbc->range_start;
2249
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2250
	pgoff_t done_index = 0;
2251
	pgoff_t end;
S
Shaohua Li 已提交
2252
	struct blk_plug plug;
2253

2254
	trace_ext4_da_writepages(inode, wbc);
2255

2256 2257 2258 2259 2260
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2261
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2262
		return 0;
2263 2264 2265 2266 2267

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2268
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2269 2270 2271 2272 2273
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2274
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2275 2276
		return -EROFS;

2277 2278
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2279

2280 2281
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2282
		index = mapping->writeback_index;
2283 2284 2285 2286 2287
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2288 2289
		end = -1;
	} else {
2290
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2291 2292
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2293

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2311 2312 2313 2314 2315 2316
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2327
retry:
2328
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2329 2330
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2331
	blk_start_plug(&plug);
2332
	while (!ret && wbc->nr_to_write > 0) {
2333 2334 2335 2336 2337 2338 2339 2340

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2341
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2342

2343 2344 2345 2346
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2347
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2348
			       "%ld pages, ino %lu; err %d", __func__,
2349
				wbc->nr_to_write, inode->i_ino, ret);
2350
			blk_finish_plug(&plug);
2351 2352
			goto out_writepages;
		}
2353 2354

		/*
2355
		 * Now call write_cache_pages_da() to find the next
2356
		 * contiguous region of logical blocks that need
2357
		 * blocks to be allocated by ext4 and submit them.
2358
		 */
2359
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2360
		/*
2361
		 * If we have a contiguous extent of pages and we
2362 2363 2364 2365
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2366
			mpage_da_map_and_submit(&mpd);
2367 2368
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2369
		trace_ext4_da_write_pages(inode, &mpd);
2370
		wbc->nr_to_write -= mpd.pages_written;
2371

2372
		ext4_journal_stop(handle);
2373

2374
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2375 2376 2377 2378
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2379
			jbd2_journal_force_commit_nested(sbi->s_journal);
2380 2381
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2382
			/*
2383 2384 2385
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2386
			 */
2387
			pages_written += mpd.pages_written;
2388
			ret = mpd.retval;
2389
			io_done = 1;
2390
		} else if (wbc->nr_to_write)
2391 2392 2393 2394 2395 2396
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2397
	}
S
Shaohua Li 已提交
2398
	blk_finish_plug(&plug);
2399 2400 2401 2402 2403 2404 2405
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2406 2407

	/* Update index */
2408
	wbc->range_cyclic = range_cyclic;
2409 2410 2411 2412 2413
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2414
		mapping->writeback_index = done_index;
2415

2416
out_writepages:
2417
	wbc->nr_to_write -= nr_to_writebump;
2418
	wbc->range_start = range_start;
2419
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2420
	return ret;
2421 2422
}

2423 2424 2425 2426 2427 2428 2429 2430 2431
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2432
	 * counters can get slightly wrong with percpu_counter_batch getting
2433 2434 2435 2436
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2437 2438 2439
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2450
	if (2 * free_blocks < 3 * dirty_blocks ||
2451
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2452
		/*
2453 2454
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2455 2456 2457 2458 2459 2460
		 */
		return 1;
	}
	return 0;
}

2461
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2462 2463
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2464
{
2465
	int ret, retries = 0;
2466 2467 2468 2469 2470 2471
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2472 2473 2474 2475 2476 2477 2478

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2479
	trace_ext4_da_write_begin(inode, pos, len, flags);
2480
retry:
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2492 2493 2494
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2495

2496
	page = grab_cache_page_write_begin(mapping, index, flags);
2497 2498 2499 2500 2501
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2502 2503
	*pagep = page;

2504
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2505 2506 2507 2508
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2509 2510 2511 2512 2513 2514
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2515
			ext4_truncate_failed_write(inode);
2516 2517
	}

2518 2519
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2520 2521 2522 2523
out:
	return ret;
}

2524 2525 2526 2527 2528
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2529
					    unsigned long offset)
2530 2531 2532 2533 2534 2535 2536 2537 2538
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2539
	for (i = 0; i < idx; i++)
2540 2541
		bh = bh->b_this_page;

2542
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2543 2544 2545 2546
		return 0;
	return 1;
}

2547
static int ext4_da_write_end(struct file *file,
2548 2549 2550
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2551 2552 2553 2554 2555
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2556
	unsigned long start, end;
2557 2558 2559
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2560 2561
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2562 2563
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2564
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2565 2566
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2567
		default:
2568 2569 2570
			BUG();
		}
	}
2571

2572
	trace_ext4_da_write_end(inode, pos, len, copied);
2573
	start = pos & (PAGE_CACHE_SIZE - 1);
2574
	end = start + copied - 1;
2575 2576 2577 2578 2579 2580 2581 2582

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2583
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2584 2585
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
2586
			if (new_i_size > EXT4_I(inode)->i_disksize)
2587 2588
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2589 2590 2591 2592 2593
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2594
		}
2595
	}
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2617
	ext4_da_page_release_reservation(page, offset);
2618 2619 2620 2621 2622 2623 2624

out:
	ext4_invalidatepage(page, offset);

	return;
}

2625 2626 2627 2628 2629
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2630 2631
	trace_ext4_alloc_da_blocks(inode);

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2642
	 *
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2655
	 * the pages by calling redirty_page_for_writepage() but that
2656 2657
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2658
	 * simplifying them because we wouldn't actually intend to
2659 2660 2661
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2662
	 *
2663 2664 2665 2666 2667 2668
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2669

2670 2671 2672 2673 2674
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2675
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2676 2677 2678 2679 2680 2681 2682 2683
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2684
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2685 2686 2687 2688 2689
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2700 2701
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2713
		 * NB. EXT4_STATE_JDATA is not set on files other than
2714 2715 2716 2717 2718 2719
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2720
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2721
		journal = EXT4_JOURNAL(inode);
2722 2723 2724
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2725 2726 2727 2728 2729

		if (err)
			return 0;
	}

2730
	return generic_block_bmap(mapping, block, ext4_get_block);
2731 2732
}

2733
static int ext4_readpage(struct file *file, struct page *page)
2734
{
2735
	trace_ext4_readpage(page);
2736
	return mpage_readpage(page, ext4_get_block);
2737 2738 2739
}

static int
2740
ext4_readpages(struct file *file, struct address_space *mapping,
2741 2742
		struct list_head *pages, unsigned nr_pages)
{
2743
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2744 2745
}

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2766
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2767
{
2768
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2769

2770 2771
	trace_ext4_invalidatepage(page, offset);

2772 2773 2774 2775 2776
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2777 2778 2779 2780 2781 2782
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2783 2784 2785 2786
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2787 2788
}

2789
static int ext4_releasepage(struct page *page, gfp_t wait)
2790
{
2791
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2792

2793 2794
	trace_ext4_releasepage(page);

2795 2796 2797
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2798 2799 2800 2801
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2802 2803
}

2804 2805 2806 2807 2808
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2809
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2810 2811
		   struct buffer_head *bh_result, int create)
{
2812
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2813
		   inode->i_ino, create);
2814 2815
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2816 2817
}

2818
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2819
		   struct buffer_head *bh_result, int create)
2820
{
2821 2822 2823 2824
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
2825 2826
}

2827
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2828 2829
			    ssize_t size, void *private, int ret,
			    bool is_async)
2830
{
2831
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2832 2833
        ext4_io_end_t *io_end = iocb->private;

2834 2835
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2836
		goto out;
2837

2838
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2839
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2840 2841 2842
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2843 2844
	iocb->private = NULL;

2845
	/* if not aio dio with unwritten extents, just free io and return */
2846
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2847
		ext4_free_io_end(io_end);
2848 2849 2850
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2851
		inode_dio_done(inode);
2852
		return;
2853 2854
	}

2855 2856
	io_end->offset = offset;
	io_end->size = size;
2857 2858 2859 2860
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2861

2862
	ext4_add_complete_io(io_end);
2863
}
2864

2865 2866 2867 2868 2869 2870 2871 2872 2873
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct inode *inode;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2874 2875 2876
		ext4_msg(io_end->inode->i_sb, KERN_INFO,
			 "sb umounted, discard end_io request for inode %lu",
			 io_end->inode->i_ino);
2877 2878 2879 2880
		ext4_free_io_end(io_end);
		goto out;
	}

2881 2882 2883 2884
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2885
	inode = io_end->inode;
2886
	ext4_set_io_unwritten_flag(inode, io_end);
2887
	ext4_add_complete_io(io_end);
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2905
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2924 2925 2926 2927 2928
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2929
 * For holes, we fallocate those blocks, mark them as uninitialized
2930
 * If those blocks were preallocated, we mark sure they are split, but
2931
 * still keep the range to write as uninitialized.
2932
 *
2933
 * The unwritten extents will be converted to written when DIO is completed.
2934
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2935
 * set up an end_io call back function, which will do the conversion
2936
 * when async direct IO completed.
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
2951 2952 2953
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
2954
	loff_t final_size = offset + count;
2955

2956 2957 2958
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2959

2960
	BUG_ON(iocb->private == NULL);
2961

2962 2963
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
2964

2965 2966 2967 2968 2969
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
2970

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
2997
		}
2998 2999
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
3000
		/*
3001 3002 3003 3004
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
3005
		 */
3006 3007
		ext4_inode_aio_set(inode, io_end);
	}
3008

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3055

3056 3057 3058 3059 3060 3061
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3062
	}
3063

3064
	return ret;
3065 3066 3067 3068 3069 3070 3071 3072
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3073
	ssize_t ret;
3074

3075 3076 3077 3078 3079 3080
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

3081
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3082
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3083 3084 3085 3086 3087 3088
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3089 3090
}

3091
/*
3092
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3104
static int ext4_journalled_set_page_dirty(struct page *page)
3105 3106 3107 3108 3109
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3110
static const struct address_space_operations ext4_ordered_aops = {
3111 3112
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3113
	.writepage		= ext4_writepage,
3114 3115 3116 3117 3118 3119 3120 3121
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3122
	.error_remove_page	= generic_error_remove_page,
3123 3124
};

3125
static const struct address_space_operations ext4_writeback_aops = {
3126 3127
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3128
	.writepage		= ext4_writepage,
3129 3130 3131 3132 3133 3134 3135 3136
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3137
	.error_remove_page	= generic_error_remove_page,
3138 3139
};

3140
static const struct address_space_operations ext4_journalled_aops = {
3141 3142
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3143
	.writepage		= ext4_writepage,
3144 3145 3146 3147 3148 3149
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
3150
	.direct_IO		= ext4_direct_IO,
3151
	.is_partially_uptodate  = block_is_partially_uptodate,
3152
	.error_remove_page	= generic_error_remove_page,
3153 3154
};

3155
static const struct address_space_operations ext4_da_aops = {
3156 3157
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3158
	.writepage		= ext4_writepage,
3159 3160 3161 3162 3163 3164 3165 3166 3167
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3168
	.error_remove_page	= generic_error_remove_page,
3169 3170
};

3171
void ext4_set_aops(struct inode *inode)
3172
{
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3187
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3188 3189 3190 3191
		break;
	default:
		BUG();
	}
3192 3193
}

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3214
		return -ENOMEM;
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3243
 * from:   The starting byte offset (from the beginning of the file)
3244 3245 3246 3247 3248 3249 3250
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3251
 *         for updating the contents of a page whose blocks may
3252 3253 3254
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3255
 * Returns zero on success or negative on failure.
3256
 */
E
Eric Sandeen 已提交
3257
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3283 3284
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3297 3298
		unsigned int end_of_block, range_to_discard;

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3384
		} else
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3408 3409 3410 3411 3412 3413 3414 3415
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3416
 * Returns: 0 on success or negative on failure
3417 3418 3419 3420 3421 3422
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3423
		return -EOPNOTSUPP;
3424 3425 3426

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
3427
		return -EOPNOTSUPP;
3428 3429
	}

3430 3431
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3432
		return -EOPNOTSUPP;
3433 3434
	}

3435 3436 3437
	return ext4_ext_punch_hole(file, offset, length);
}

3438
/*
3439
 * ext4_truncate()
3440
 *
3441 3442
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3443 3444
 * simultaneously on behalf of the same inode.
 *
3445
 * As we work through the truncate and commit bits of it to the journal there
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3459
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3460
 * that this inode's truncate did not complete and it will again call
3461 3462
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3463
 * that's fine - as long as they are linked from the inode, the post-crash
3464
 * ext4_truncate() run will find them and release them.
3465
 */
3466
void ext4_truncate(struct inode *inode)
3467
{
3468 3469
	trace_ext4_truncate_enter(inode);

3470
	if (!ext4_can_truncate(inode))
3471 3472
		return;

3473
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3474

3475
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3476
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3477

3478
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3479
		ext4_ext_truncate(inode);
3480 3481
	else
		ext4_ind_truncate(inode);
3482

3483
	trace_ext4_truncate_exit(inode);
3484 3485 3486
}

/*
3487
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3488 3489 3490 3491
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3492 3493
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3494
{
3495 3496 3497 3498 3499 3500
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3501
	iloc->bh = NULL;
3502 3503
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3504

3505 3506 3507
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3508 3509
		return -EIO;

3510 3511 3512
	/*
	 * Figure out the offset within the block group inode table
	 */
3513
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3514 3515 3516 3517 3518 3519
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3520
	if (!bh) {
3521 3522
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3523 3524 3525 3526
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3550
			int i, start;
3551

3552
			start = inode_offset & ~(inodes_per_block - 1);
3553

3554 3555
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3568
			for (i = start; i < start + inodes_per_block; i++) {
3569 3570
				if (i == inode_offset)
					continue;
3571
				if (ext4_test_bit(i, bitmap_bh->b_data))
3572 3573 3574
					break;
			}
			brelse(bitmap_bh);
3575
			if (i == start + inodes_per_block) {
3576 3577 3578 3579 3580 3581 3582 3583 3584
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3585 3586 3587 3588 3589 3590 3591 3592 3593
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3594
			/* s_inode_readahead_blks is always a power of 2 */
3595 3596 3597 3598 3599
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3600
			if (ext4_has_group_desc_csum(sb))
3601
				num -= ext4_itable_unused_count(sb, gdp);
3602 3603 3604 3605 3606 3607 3608
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3609 3610 3611 3612 3613
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3614
		trace_ext4_load_inode(inode);
3615 3616
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3617
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3618 3619
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3620 3621
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3622 3623 3624 3625 3626 3627 3628 3629 3630
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3631
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3632 3633
{
	/* We have all inode data except xattrs in memory here. */
3634
	return __ext4_get_inode_loc(inode, iloc,
3635
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3636 3637
}

3638
void ext4_set_inode_flags(struct inode *inode)
3639
{
3640
	unsigned int flags = EXT4_I(inode)->i_flags;
3641 3642

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3643
	if (flags & EXT4_SYNC_FL)
3644
		inode->i_flags |= S_SYNC;
3645
	if (flags & EXT4_APPEND_FL)
3646
		inode->i_flags |= S_APPEND;
3647
	if (flags & EXT4_IMMUTABLE_FL)
3648
		inode->i_flags |= S_IMMUTABLE;
3649
	if (flags & EXT4_NOATIME_FL)
3650
		inode->i_flags |= S_NOATIME;
3651
	if (flags & EXT4_DIRSYNC_FL)
3652 3653 3654
		inode->i_flags |= S_DIRSYNC;
}

3655 3656 3657
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3678
}
3679

3680
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3681
				  struct ext4_inode_info *ei)
3682 3683
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3684 3685
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3686 3687 3688 3689 3690 3691

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3692
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3693 3694 3695 3696 3697
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3698 3699 3700 3701
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3702

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
}

3713
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3714
{
3715 3716
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3717 3718
	struct ext4_inode_info *ei;
	struct inode *inode;
3719
	journal_t *journal = EXT4_SB(sb)->s_journal;
3720
	long ret;
3721
	int block;
3722 3723
	uid_t i_uid;
	gid_t i_gid;
3724

3725 3726 3727 3728 3729 3730 3731
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3732
	iloc.bh = NULL;
3733

3734 3735
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3736
		goto bad_inode;
3737
	raw_inode = ext4_raw_inode(&iloc);
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3771
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3772 3773
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3774
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3775 3776
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3777
	}
3778 3779
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3780
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3781

3782
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3783 3784 3785 3786 3787 3788 3789 3790 3791
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3792
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3793
			/* this inode is deleted */
3794
			ret = -ESTALE;
3795 3796 3797 3798 3799 3800 3801 3802
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3803
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3804
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3805
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3806 3807
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3808
	inode->i_size = ext4_isize(raw_inode);
3809
	ei->i_disksize = inode->i_size;
3810 3811 3812
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3813 3814
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3815
	ei->i_last_alloc_group = ~0;
3816 3817 3818 3819
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3820
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3821 3822 3823
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3835
		read_lock(&journal->j_state_lock);
3836 3837 3838 3839 3840 3841 3842 3843
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3844
		read_unlock(&journal->j_state_lock);
3845 3846 3847 3848
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3849
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3850 3851
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3852 3853
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3854
		} else {
3855
			ext4_iget_extra_inode(inode, raw_inode, ei);
3856
		}
3857
	}
3858

K
Kalpak Shah 已提交
3859 3860 3861 3862 3863
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3864 3865 3866 3867 3868 3869 3870
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3871
	ret = 0;
3872
	if (ei->i_file_acl &&
3873
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3874 3875
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3876 3877
		ret = -EIO;
		goto bad_inode;
3878
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3879 3880 3881 3882 3883
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3884
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3885 3886
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3887
		/* Validate block references which are part of inode */
3888
		ret = ext4_ind_check_inode(inode);
3889
	}
3890
	if (ret)
3891
		goto bad_inode;
3892

3893
	if (S_ISREG(inode->i_mode)) {
3894 3895 3896
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3897
	} else if (S_ISDIR(inode->i_mode)) {
3898 3899
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3900
	} else if (S_ISLNK(inode->i_mode)) {
3901
		if (ext4_inode_is_fast_symlink(inode)) {
3902
			inode->i_op = &ext4_fast_symlink_inode_operations;
3903 3904 3905
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3906 3907
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3908
		}
3909 3910
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3911
		inode->i_op = &ext4_special_inode_operations;
3912 3913 3914 3915 3916 3917
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3918 3919
	} else {
		ret = -EIO;
3920
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3921
		goto bad_inode;
3922
	}
3923
	brelse(iloc.bh);
3924
	ext4_set_inode_flags(inode);
3925 3926
	unlock_new_inode(inode);
	return inode;
3927 3928

bad_inode:
3929
	brelse(iloc.bh);
3930 3931
	iget_failed(inode);
	return ERR_PTR(ret);
3932 3933
}

3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
3944
		 * i_blocks can be represented in a 32 bit variable
3945 3946
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3947
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3948
		raw_inode->i_blocks_high = 0;
3949
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3950 3951 3952 3953 3954 3955
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3956 3957 3958 3959
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3960
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3961
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3962
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3963
	} else {
3964
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3965 3966 3967 3968
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3969
	}
3970
	return 0;
3971 3972
}

3973 3974 3975 3976 3977 3978 3979
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3980
static int ext4_do_update_inode(handle_t *handle,
3981
				struct inode *inode,
3982
				struct ext4_iloc *iloc)
3983
{
3984 3985
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3986 3987
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
3988
	int need_datasync = 0;
3989 3990
	uid_t i_uid;
	gid_t i_gid;
3991 3992 3993

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3994
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3995
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3996

3997
	ext4_get_inode_flags(ei);
3998
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3999 4000
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4001
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4002 4003
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4004 4005 4006 4007
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4008
		if (!ei->i_dtime) {
4009
			raw_inode->i_uid_high =
4010
				cpu_to_le16(high_16_bits(i_uid));
4011
			raw_inode->i_gid_high =
4012
				cpu_to_le16(high_16_bits(i_gid));
4013 4014 4015 4016 4017
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4018 4019
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4020 4021 4022 4023
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4024 4025 4026 4027 4028 4029

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4030 4031
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4032
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4033
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4034 4035
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4036 4037
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4038
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4039 4040 4041 4042
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4058
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4059
			ext4_handle_sync(handle);
4060
			err = ext4_handle_dirty_super(handle, sb);
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4075 4076 4077
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4078

4079 4080 4081 4082 4083
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4084
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4085 4086
	}

4087 4088
	ext4_inode_csum_set(inode, raw_inode, ei);

4089
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4090
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4091 4092
	if (!err)
		err = rc;
4093
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4094

4095
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4096
out_brelse:
4097
	brelse(bh);
4098
	ext4_std_error(inode->i_sb, err);
4099 4100 4101 4102
	return err;
}

/*
4103
 * ext4_write_inode()
4104 4105 4106 4107 4108
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4109
 *   transaction to commit.
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4120
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4137
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4138
{
4139 4140
	int err;

4141 4142 4143
	if (current->flags & PF_MEMALLOC)
		return 0;

4144 4145 4146 4147 4148 4149
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4150

4151
		if (wbc->sync_mode != WB_SYNC_ALL)
4152 4153 4154 4155 4156
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4157

4158
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4159 4160
		if (err)
			return err;
4161
		if (wbc->sync_mode == WB_SYNC_ALL)
4162 4163
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4164 4165
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4166 4167
			err = -EIO;
		}
4168
		brelse(iloc.bh);
4169 4170
	}
	return err;
4171 4172 4173
}

/*
4174
 * ext4_setattr()
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4188 4189 4190 4191 4192 4193 4194 4195
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4196
 */
4197
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4198 4199 4200
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4201
	int orphan = 0;
4202 4203 4204 4205 4206 4207
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4208
	if (is_quota_modification(inode, attr))
4209
		dquot_initialize(inode);
4210 4211
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4212 4213 4214 4215
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4216
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4217
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4218 4219 4220 4221
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4222
		error = dquot_transfer(inode, attr);
4223
		if (error) {
4224
			ext4_journal_stop(handle);
4225 4226 4227 4228 4229 4230 4231 4232
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4233 4234
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4235 4236
	}

4237
	if (attr->ia_valid & ATTR_SIZE) {
4238

4239
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4240 4241
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4242 4243
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4244 4245 4246
		}
	}

4247
	if (S_ISREG(inode->i_mode) &&
4248
	    attr->ia_valid & ATTR_SIZE &&
4249
	    (attr->ia_size < inode->i_size)) {
4250 4251
		handle_t *handle;

4252
		handle = ext4_journal_start(inode, 3);
4253 4254 4255 4256
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4257 4258 4259 4260
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4261 4262
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4263 4264
		if (!error)
			error = rc;
4265
		ext4_journal_stop(handle);
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4278
				orphan = 0;
4279 4280 4281 4282
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4283 4284
	}

4285
	if (attr->ia_valid & ATTR_SIZE) {
4286
		if (attr->ia_size != i_size_read(inode)) {
4287
			truncate_setsize(inode, attr->ia_size);
4288 4289 4290 4291 4292
			/* Inode size will be reduced, wait for dio in flight.
			 * Temporarily disable dioread_nolock to prevent
			 * livelock. */
			if (orphan) {
				ext4_inode_block_unlocked_dio(inode);
4293
				inode_dio_wait(inode);
4294 4295
				ext4_inode_resume_unlocked_dio(inode);
			}
4296
		}
4297
		ext4_truncate(inode);
4298
	}
4299

C
Christoph Hellwig 已提交
4300 4301 4302 4303 4304 4305 4306 4307 4308
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4309
	if (orphan && inode->i_nlink)
4310
		ext4_orphan_del(NULL, inode);
4311 4312

	if (!rc && (ia_valid & ATTR_MODE))
4313
		rc = ext4_acl_chmod(inode);
4314 4315

err_out:
4316
	ext4_std_error(inode->i_sb, error);
4317 4318 4319 4320 4321
	if (!error)
		error = rc;
	return error;
}

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4341 4342
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4343 4344 4345 4346

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4347

4348 4349
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4350
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4351
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4352
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4353
}
4354

4355
/*
4356 4357 4358
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4359
 *
4360
 * If datablocks are discontiguous, they are possible to spread over
4361
 * different block groups too. If they are contiguous, with flexbg,
4362
 * they could still across block group boundary.
4363
 *
4364 4365
 * Also account for superblock, inode, quota and xattr blocks
 */
4366
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4367
{
4368 4369
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4396 4397
	if (groups > ngroups)
		groups = ngroups;
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4411
 * Calculate the total number of credits to reserve to fit
4412 4413
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4414
 *
4415
 * This could be called via ext4_write_begin()
4416
 *
4417
 * We need to consider the worse case, when
4418
 * one new block per extent.
4419
 */
A
Alex Tomas 已提交
4420
int ext4_writepage_trans_blocks(struct inode *inode)
4421
{
4422
	int bpp = ext4_journal_blocks_per_page(inode);
4423 4424
	int ret;

4425
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4426

4427
	/* Account for data blocks for journalled mode */
4428
	if (ext4_should_journal_data(inode))
4429
		ret += bpp;
4430 4431
	return ret;
}
4432 4433 4434 4435 4436

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4437
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4438 4439 4440 4441 4442 4443 4444 4445 4446
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4447
/*
4448
 * The caller must have previously called ext4_reserve_inode_write().
4449 4450
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4451
int ext4_mark_iloc_dirty(handle_t *handle,
4452
			 struct inode *inode, struct ext4_iloc *iloc)
4453 4454 4455
{
	int err = 0;

4456
	if (IS_I_VERSION(inode))
4457 4458
		inode_inc_iversion(inode);

4459 4460 4461
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4462
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4463
	err = ext4_do_update_inode(handle, inode, iloc);
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4474 4475
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4476
{
4477 4478 4479 4480 4481 4482 4483 4484 4485
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4486 4487
		}
	}
4488
	ext4_std_error(inode->i_sb, err);
4489 4490 4491
	return err;
}

4492 4493 4494 4495
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4496 4497 4498 4499
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4512 4513
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4538
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4539
{
4540
	struct ext4_iloc iloc;
4541 4542 4543
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4544 4545

	might_sleep();
4546
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4547
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4548 4549
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4550
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4564 4565
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4566 4567
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4568
					ext4_warning(inode->i_sb,
4569 4570 4571
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4572 4573
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4574 4575 4576 4577
				}
			}
		}
	}
4578
	if (!err)
4579
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4580 4581 4582 4583
	return err;
}

/*
4584
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4585 4586 4587 4588 4589
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4590
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4591 4592 4593 4594 4595 4596
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4597
void ext4_dirty_inode(struct inode *inode, int flags)
4598 4599 4600
{
	handle_t *handle;

4601
	handle = ext4_journal_start(inode, 2);
4602 4603
	if (IS_ERR(handle))
		goto out;
4604 4605 4606

	ext4_mark_inode_dirty(handle, inode);

4607
	ext4_journal_stop(handle);
4608 4609 4610 4611 4612 4613 4614 4615
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4616
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4617 4618 4619
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4620
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4621
{
4622
	struct ext4_iloc iloc;
4623 4624 4625

	int err = 0;
	if (handle) {
4626
		err = ext4_get_inode_loc(inode, &iloc);
4627 4628
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4629
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4630
			if (!err)
4631
				err = ext4_handle_dirty_metadata(handle,
4632
								 NULL,
4633
								 iloc.bh);
4634 4635 4636
			brelse(iloc.bh);
		}
	}
4637
	ext4_std_error(inode->i_sb, err);
4638 4639 4640 4641
	return err;
}
#endif

4642
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4658
	journal = EXT4_JOURNAL(inode);
4659 4660
	if (!journal)
		return 0;
4661
	if (is_journal_aborted(journal))
4662
		return -EROFS;
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4674

4675 4676 4677 4678
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4679
	jbd2_journal_lock_updates(journal);
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4690
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4691 4692
	else {
		jbd2_journal_flush(journal);
4693
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4694
	}
4695
	ext4_set_aops(inode);
4696

4697
	jbd2_journal_unlock_updates(journal);
4698
	ext4_inode_resume_unlocked_dio(inode);
4699 4700 4701

	/* Finally we can mark the inode as dirty. */

4702
	handle = ext4_journal_start(inode, 1);
4703 4704 4705
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4706
	err = ext4_mark_inode_dirty(handle, inode);
4707
	ext4_handle_sync(handle);
4708 4709
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4710 4711 4712

	return err;
}
4713 4714 4715 4716 4717 4718

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4719
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4720
{
4721
	struct page *page = vmf->page;
4722 4723
	loff_t size;
	unsigned long len;
4724
	int ret;
4725 4726 4727
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4728 4729 4730
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4731

4732
	sb_start_pagefault(inode->i_sb);
4733
	file_update_time(vma->vm_file);
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4744
	}
4745 4746

	lock_page(page);
4747 4748 4749 4750 4751 4752
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4753
	}
4754 4755 4756 4757 4758

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4759
	/*
4760 4761
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4762
	 */
4763 4764
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4765
					ext4_bh_unmapped)) {
4766 4767 4768 4769
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4770
		}
4771
	}
4772
	unlock_page(page);
4773 4774 4775 4776 4777 4778 4779 4780
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4781
		ret = VM_FAULT_SIGBUS;
4782 4783 4784 4785 4786 4787 4788 4789
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4790
			ext4_journal_stop(handle);
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4801
	sb_end_pagefault(inode->i_sb);
4802 4803
	return ret;
}