inode.c 157.7 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "ext4_extents.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
53 54 55 56
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
57 58
}

59 60
static void ext4_invalidatepage(struct page *page, unsigned long offset);

61 62 63
/*
 * Test whether an inode is a fast symlink.
 */
64
static int ext4_inode_is_fast_symlink(struct inode *inode)
65
{
66
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
67 68 69 70 71 72
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
73
 * The ext4 forget function must perform a revoke if we are freeing data
74 75 76 77 78 79
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
80
 *
81 82
 * If the handle isn't valid we're not journaling, but we still need to
 * call into ext4_journal_revoke() to put the buffer head.
83
 */
84
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
85
		struct buffer_head *bh, ext4_fsblk_t blocknr)
86 87 88 89 90 91 92 93
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
94
		  "data mode %x\n",
95 96 97 98 99 100 101 102
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

103 104
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
105
		if (bh) {
106
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
107
			return ext4_journal_forget(handle, bh);
108 109 110 111 112 113 114
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
115 116
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
117
	if (err)
118
		ext4_abort(inode->i_sb, __func__,
119 120 121 122 123 124 125 126 127 128 129
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
130
	ext4_lblk_t needed;
131 132 133 134 135 136

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
137
	 * like a regular file for ext4 to try to delete it.  Things
138 139 140 141 142 143 144
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
145 146
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
147

148
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

165
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
166 167 168
	if (!IS_ERR(result))
		return result;

169
	ext4_std_error(inode->i_sb, PTR_ERR(result));
170 171 172 173 174 175 176 177 178 179 180
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
181 182 183
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
184
		return 0;
185
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
186 187 188 189 190 191 192 193 194
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
195 196
 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
				 int nblocks)
197
{
198 199 200 201 202 203 204 205
	int ret;

	/*
	 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
206
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
207
	jbd_debug(2, "restarting handle %p\n", handle);
208 209 210 211 212
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);

	return ret;
213 214 215 216 217
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
218
void ext4_delete_inode(struct inode *inode)
219 220
{
	handle_t *handle;
221
	int err;
222

223 224
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
225 226 227 228 229
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

230
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
231
	if (IS_ERR(handle)) {
232
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
233 234 235 236 237
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
238
		ext4_orphan_del(NULL, inode);
239 240 241 242
		goto no_delete;
	}

	if (IS_SYNC(inode))
243
		ext4_handle_sync(handle);
244
	inode->i_size = 0;
245 246 247 248 249 250
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
251
	if (inode->i_blocks)
252
		ext4_truncate(inode);
253 254 255 256 257 258 259

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
260
	if (!ext4_handle_has_enough_credits(handle, 3)) {
261 262 263 264 265 266 267 268 269 270 271 272
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

273
	/*
274
	 * Kill off the orphan record which ext4_truncate created.
275
	 * AKPM: I think this can be inside the above `if'.
276
	 * Note that ext4_orphan_del() has to be able to cope with the
277
	 * deletion of a non-existent orphan - this is because we don't
278
	 * know if ext4_truncate() actually created an orphan record.
279 280
	 * (Well, we could do this if we need to, but heck - it works)
	 */
281 282
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
283 284 285 286 287 288 289 290

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
291
	if (ext4_mark_inode_dirty(handle, inode))
292 293 294
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
295 296
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
315
 *	ext4_block_to_path - parse the block number into array of offsets
316 317 318
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
319 320
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
321
 *
322
 *	To store the locations of file's data ext4 uses a data structure common
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

345
static int ext4_block_to_path(struct inode *inode,
346 347
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
348
{
349 350 351
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
352 353 354 355 356
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

357
	if (i_block < direct_blocks) {
358 359
		offsets[n++] = i_block;
		final = direct_blocks;
360
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
361
		offsets[n++] = EXT4_IND_BLOCK;
362 363 364
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
365
		offsets[n++] = EXT4_DIND_BLOCK;
366 367 368 369
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
370
		offsets[n++] = EXT4_TIND_BLOCK;
371 372 373 374 375
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
376
		ext4_warning(inode->i_sb, "ext4_block_to_path",
377 378 379
			     "block %lu > max in inode %lu",
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
380 381 382 383 384 385
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

386
static int __ext4_check_blockref(const char *function, struct inode *inode,
387 388
				 __le32 *p, unsigned int max)
{
389
	__le32 *bref = p;
390 391
	unsigned int blk;

392
	while (bref < p+max) {
393
		blk = le32_to_cpu(*bref++);
394 395
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
396
						    blk, 1))) {
397
			ext4_error(inode->i_sb, function,
398 399
				   "invalid block reference %u "
				   "in inode #%lu", blk, inode->i_ino);
400 401 402 403
			return -EIO;
		}
	}
	return 0;
404 405 406 407
}


#define ext4_check_indirect_blockref(inode, bh)                         \
408
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
409 410 411
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
412
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
413 414
			      EXT4_NDIR_BLOCKS)

415
/**
416
 *	ext4_get_branch - read the chain of indirect blocks leading to data
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
441 442
 *
 *      Need to be called with
443
 *      down_read(&EXT4_I(inode)->i_data_sem)
444
 */
A
Aneesh Kumar K.V 已提交
445 446
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
447 448 449 450 451 452 453 454
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
455
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
456 457 458
	if (!p->key)
		goto no_block;
	while (--depth) {
459 460
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
461
			goto failure;
462

463 464 465 466 467 468 469 470 471 472 473
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
474

475
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
476 477 478 479 480 481 482 483 484 485 486 487 488
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
489
 *	ext4_find_near - find a place for allocation with sufficient locality
490 491 492
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
493
 *	This function returns the preferred place for block allocation.
494 495 496 497 498 499 500 501 502 503 504 505 506 507
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
508
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
509
{
510
	struct ext4_inode_info *ei = EXT4_I(inode);
511
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
512
	__le32 *p;
513
	ext4_fsblk_t bg_start;
514
	ext4_fsblk_t last_block;
515
	ext4_grpblk_t colour;
516 517
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
533 534 535 536 537 538 539
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
540 541
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

542 543 544 545 546 547 548
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

549 550
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
551
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
552 553
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
554 555 556 557
	return bg_start + colour;
}

/**
558
 *	ext4_find_goal - find a preferred place for allocation.
559 560 561 562
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
563
 *	Normally this function find the preferred place for block allocation,
564
 *	returns it.
565 566
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
567
 */
A
Aneesh Kumar K.V 已提交
568
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
569
				   Indirect *partial)
570
{
571 572
	ext4_fsblk_t goal;

573
	/*
574
	 * XXX need to get goal block from mballoc's data structures
575 576
	 */

577 578 579
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
580 581 582
}

/**
583
 *	ext4_blks_to_allocate: Look up the block map and count the number
584 585 586 587 588 589 590 591 592 593
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
594
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
595
				 int blocks_to_boundary)
596
{
597
	unsigned int count = 0;
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
621
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
622 623 624 625 626 627 628 629
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
630
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
631 632 633
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
634
{
635
	struct ext4_allocation_request ar;
636
	int target, i;
637
	unsigned long count = 0, blk_allocated = 0;
638
	int index = 0;
639
	ext4_fsblk_t current_block = 0;
640 641 642 643 644 645 646 647 648 649
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
650 651 652
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
653 654
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
655 656
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
657 658 659
		if (*err)
			goto failed_out;

660 661
		BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);

662 663 664 665 666 667
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
668 669 670 671 672 673 674 675 676
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
677
			break;
678
		}
679 680
	}

681 682 683 684 685
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
686 687 688 689 690 691 692 693 694 695
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
696
	BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
697

698 699 700 701 702 703 704 705 706
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
707 708 709 710
			/*
			 * save the new block number
			 * for the first direct block
			 */
711 712
			new_blocks[index] = current_block;
		}
713
		blk_allocated += ar.len;
714 715
	}
allocated:
716
	/* total number of blocks allocated for direct blocks */
717
	ret = blk_allocated;
718 719 720
	*err = 0;
	return ret;
failed_out:
721
	for (i = 0; i < index; i++)
722
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
723 724 725 726
	return ret;
}

/**
727
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
728 729 730 731 732 733 734 735 736 737
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
738
 *	the same format as ext4_get_branch() would do. We are calling it after
739 740
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
741
 *	picture as after the successful ext4_get_block(), except that in one
742 743 744 745 746 747
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
748
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
749 750
 *	as described above and return 0.
 */
751
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
752 753 754
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
755 756 757 758 759 760
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
761 762
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
763

764
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
783
		err = ext4_journal_get_create_access(handle, bh);
784
		if (err) {
785 786
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
787 788 789 790 791 792 793 794
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
795
		if (n == indirect_blks) {
796 797 798 799 800 801
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
802
			for (i = 1; i < num; i++)
803 804 805 806 807 808
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

809 810
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
811 812 813 814 815 816 817 818
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
819
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
820
		ext4_journal_forget(handle, branch[i].bh);
821
	}
822
	for (i = 0; i < indirect_blks; i++)
823
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
824

825
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
826 827 828 829 830

	return err;
}

/**
831
 * ext4_splice_branch - splice the allocated branch onto inode.
832 833 834
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
835
 *	ext4_alloc_branch)
836 837 838 839 840 841 842 843
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
844
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
845 846
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
847 848 849
{
	int i;
	int err = 0;
850
	ext4_fsblk_t current_block;
851 852 853 854 855 856 857 858

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
859
		err = ext4_journal_get_write_access(handle, where->bh);
860 861 862 863 864 865 866 867 868 869 870 871 872 873
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
874
			*(where->p + i) = cpu_to_le32(current_block++);
875 876 877 878 879 880 881 882 883 884 885
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
886
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
887 888
		 */
		jbd_debug(5, "splicing indirect only\n");
889 890
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
891 892 893 894 895 896
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
897
		ext4_mark_inode_dirty(handle, inode);
898 899 900 901 902 903
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
904
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
905
		ext4_journal_forget(handle, where[i].bh);
906 907
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
908
	}
909
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
910 911 912 913 914

	return err;
}

/*
915 916 917 918
 * The ext4_ind_get_blocks() function handles non-extents inodes
 * (i.e., using the traditional indirect/double-indirect i_blocks
 * scheme) for ext4_get_blocks().
 *
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
935
 *
936 937 938 939 940
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
941
 */
942
static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
943 944 945
			       ext4_lblk_t iblock, unsigned int maxblocks,
			       struct buffer_head *bh_result,
			       int flags)
946 947
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
948
	ext4_lblk_t offsets[4];
949 950
	Indirect chain[4];
	Indirect *partial;
951
	ext4_fsblk_t goal;
952 953 954 955
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
956
	ext4_fsblk_t first_block = 0;
957

A
Alex Tomas 已提交
958
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
959
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
A
Aneesh Kumar K.V 已提交
960
	depth = ext4_block_to_path(inode, iblock, offsets,
961
				   &blocks_to_boundary);
962 963 964 965

	if (depth == 0)
		goto out;

966
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
967 968 969 970 971 972 973 974

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
975
			ext4_fsblk_t blk;
976 977 978 979 980 981 982 983

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
984
		goto got_it;
985 986 987
	}

	/* Next simple case - plain lookup or failed read of indirect block */
988
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
989 990 991
		goto cleanup;

	/*
992
	 * Okay, we need to do block allocation.
993
	*/
994
	goal = ext4_find_goal(inode, iblock, partial);
995 996 997 998 999 1000 1001 1002

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
1003
	count = ext4_blks_to_allocate(partial, indirect_blks,
1004 1005
					maxblocks, blocks_to_boundary);
	/*
1006
	 * Block out ext4_truncate while we alter the tree
1007
	 */
1008
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1009 1010
				&count, goal,
				offsets + (partial - chain), partial);
1011 1012

	/*
1013
	 * The ext4_splice_branch call will free and forget any buffers
1014 1015 1016 1017 1018 1019
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1020
		err = ext4_splice_branch(handle, inode, iblock,
1021 1022
					 partial, indirect_blks, count);
	else
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
qsize_t ext4_get_reserved_space(struct inode *inode)
{
	unsigned long long total;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks +
		EXT4_I(inode)->i_reserved_meta_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	return total;
}
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1080 1081 1082
	if (!blocks)
		return 0;

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1103 1104 1105 1106 1107 1108 1109 1110 1111
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1112 1113 1114 1115 1116

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1117 1118 1119 1120 1121 1122

	/*
	 * free those over-booking quota for metadata blocks
	 */
	if (mdb_free)
		vfs_dq_release_reservation_block(inode, mdb_free);
1123 1124 1125 1126 1127 1128 1129 1130

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
	if (!total && (atomic_read(&inode->i_writecount) == 0))
		ext4_discard_preallocations(inode);
1131 1132
}

1133 1134
static int check_block_validity(struct inode *inode, const char *msg,
				sector_t logical, sector_t phys, int len)
1135 1136
{
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1137
		ext4_error(inode->i_sb, msg,
1138 1139 1140 1141 1142 1143 1144 1145 1146
			   "inode #%lu logical block %llu mapped to %llu "
			   "(size %d)", inode->i_ino,
			   (unsigned long long) logical,
			   (unsigned long long) phys, len);
		return -EIO;
	}
	return 0;
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * Return the number of dirty pages in the given inode starting at
 * page frame idx.
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
			head = page_buffers(page);
			bh = head;
			do {
				if (!buffer_delay(bh) &&
				    !buffer_unwritten(bh)) {
					done = 1;
					break;
				}
			} while ((bh = bh->b_this_page) != head);
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
			if (num >= max_pages)
				break;
		}
		pagevec_release(&pvec);
	}
	return num;
}

1205
/*
1206
 * The ext4_get_blocks() function tries to look up the requested blocks,
1207
 * and returns if the blocks are already mapped.
1208 1209 1210 1211 1212 1213
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
1214
 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1227 1228
int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
		    unsigned int max_blocks, struct buffer_head *bh,
1229
		    int flags)
1230 1231
{
	int retval;
1232 1233

	clear_buffer_mapped(bh);
1234
	clear_buffer_unwritten(bh);
1235

1236 1237 1238
	ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, max_blocks,
		  (unsigned long)block);
1239
	/*
1240 1241
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1242 1243 1244 1245
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1246
				bh, 0);
1247
	} else {
1248
		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1249
					     bh, 0);
1250
	}
1251
	up_read((&EXT4_I(inode)->i_data_sem));
1252

1253
	if (retval > 0 && buffer_mapped(bh)) {
1254 1255
		int ret = check_block_validity(inode, "file system corruption",
					       block, bh->b_blocknr, retval);
1256 1257 1258 1259
		if (ret != 0)
			return ret;
	}

1260
	/* If it is only a block(s) look up */
1261
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1272 1273
		return retval;

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
	clear_buffer_unwritten(bh);

1286
	/*
1287 1288 1289 1290
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1291 1292
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1293 1294 1295 1296 1297 1298 1299

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1300
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1301
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1302 1303 1304 1305
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1306 1307
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1308
					      bh, flags);
1309
	} else {
1310
		retval = ext4_ind_get_blocks(handle, inode, block,
1311
					     max_blocks, bh, flags);
1312 1313 1314 1315 1316 1317 1318

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1319
			EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1320
		}
1321
	}
1322

1323
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1324
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1325 1326 1327 1328 1329 1330 1331

	/*
	 * Update reserved blocks/metadata blocks after successful
	 * block allocation which had been deferred till now.
	 */
	if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
		ext4_da_update_reserve_space(inode, retval);
1332

1333
	up_write((&EXT4_I(inode)->i_data_sem));
1334
	if (retval > 0 && buffer_mapped(bh)) {
1335 1336 1337
		int ret = check_block_validity(inode, "file system "
					       "corruption after allocation",
					       block, bh->b_blocknr, retval);
1338 1339 1340
		if (ret != 0)
			return ret;
	}
1341 1342 1343
	return retval;
}

1344 1345 1346
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1347 1348
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1349
{
1350
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1351
	int ret = 0, started = 0;
1352
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1353
	int dio_credits;
1354

J
Jan Kara 已提交
1355 1356 1357 1358
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1359 1360
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1361
		if (IS_ERR(handle)) {
1362
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1363
			goto out;
1364
		}
J
Jan Kara 已提交
1365
		started = 1;
1366 1367
	}

1368
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1369
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
J
Jan Kara 已提交
1370 1371 1372
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1373
	}
J
Jan Kara 已提交
1374 1375 1376
	if (started)
		ext4_journal_stop(handle);
out:
1377 1378 1379 1380 1381 1382
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1383
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1384
				ext4_lblk_t block, int create, int *errp)
1385 1386 1387
{
	struct buffer_head dummy;
	int fatal = 0, err;
1388
	int flags = 0;
1389 1390 1391 1392 1393 1394

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
1395 1396 1397
	if (create)
		flags |= EXT4_GET_BLOCKS_CREATE;
	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1398
	/*
1399 1400
	 * ext4_get_blocks() returns number of blocks mapped. 0 in
	 * case of a HOLE.
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1417
			J_ASSERT(handle != NULL);
1418 1419 1420 1421 1422

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1423
			 * writes use ext4_get_block instead, so it's not a
1424 1425 1426 1427
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1428
			fatal = ext4_journal_get_create_access(handle, bh);
1429
			if (!fatal && !buffer_uptodate(bh)) {
1430
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1431 1432 1433
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1434 1435
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1452
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1453
			       ext4_lblk_t block, int create, int *err)
1454
{
1455
	struct buffer_head *bh;
1456

1457
	bh = ext4_getblk(handle, inode, block, create, err);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1471 1472 1473 1474 1475 1476 1477
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1478 1479 1480 1481 1482 1483 1484
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1485 1486
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1487
	     block_start = block_end, bh = next) {
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1505
 * close off a transaction and start a new one between the ext4_get_block()
1506
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1507 1508
 * prepare_write() is the right place.
 *
1509 1510
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1511 1512 1513 1514
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1515
 * By accident, ext4 can be reentered when a transaction is open via
1516 1517 1518 1519 1520 1521
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1522
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1523 1524 1525 1526 1527
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1528
				       struct buffer_head *bh)
1529 1530 1531
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1532
	return ext4_journal_get_write_access(handle, bh);
1533 1534
}

N
Nick Piggin 已提交
1535
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1536 1537
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1538
{
1539
	struct inode *inode = mapping->host;
1540
	int ret, needed_blocks;
1541 1542
	handle_t *handle;
	int retries = 0;
1543
	struct page *page;
1544
	pgoff_t index;
1545
	unsigned from, to;
N
Nick Piggin 已提交
1546

1547
	trace_ext4_write_begin(inode, pos, len, flags);
1548 1549 1550 1551 1552
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1553
	index = pos >> PAGE_CACHE_SHIFT;
1554 1555
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1556 1557

retry:
1558 1559 1560 1561
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1562
	}
1563

1564 1565 1566 1567
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1568
	page = grab_cache_page_write_begin(mapping, index, flags);
1569 1570 1571 1572 1573 1574 1575
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1576
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1577
				ext4_get_block);
N
Nick Piggin 已提交
1578 1579

	if (!ret && ext4_should_journal_data(inode)) {
1580 1581 1582
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1583 1584

	if (ret) {
1585 1586
		unlock_page(page);
		page_cache_release(page);
1587 1588 1589 1590
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1591 1592 1593
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1594
		 */
1595
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1596 1597 1598 1599
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1600
			ext4_truncate(inode);
1601
			/*
1602
			 * If truncate failed early the inode might
1603 1604 1605 1606 1607 1608 1609
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1610 1611
	}

1612
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1613
		goto retry;
1614
out:
1615 1616 1617
	return ret;
}

N
Nick Piggin 已提交
1618 1619
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1620 1621 1622 1623
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1624
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1625 1626
}

1627
static int ext4_generic_write_end(struct file *file,
1628 1629 1630
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1673 1674 1675 1676
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1677
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1678 1679
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1680
static int ext4_ordered_write_end(struct file *file,
1681 1682 1683
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1684
{
1685
	handle_t *handle = ext4_journal_current_handle();
1686
	struct inode *inode = mapping->host;
1687 1688
	int ret = 0, ret2;

1689
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1690
	ret = ext4_jbd2_file_inode(handle, inode);
1691 1692

	if (ret == 0) {
1693
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1694
							page, fsdata);
1695
		copied = ret2;
1696
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1697 1698 1699 1700 1701
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1702 1703
		if (ret2 < 0)
			ret = ret2;
1704
	}
1705
	ret2 = ext4_journal_stop(handle);
1706 1707
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1708

1709
	if (pos + len > inode->i_size) {
1710
		ext4_truncate(inode);
1711
		/*
1712
		 * If truncate failed early the inode might still be
1713 1714 1715 1716 1717 1718 1719 1720
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1721
	return ret ? ret : copied;
1722 1723
}

N
Nick Piggin 已提交
1724
static int ext4_writeback_write_end(struct file *file,
1725 1726 1727
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1728
{
1729
	handle_t *handle = ext4_journal_current_handle();
1730
	struct inode *inode = mapping->host;
1731 1732
	int ret = 0, ret2;

1733
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1734
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1735
							page, fsdata);
1736
	copied = ret2;
1737
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1738 1739 1740 1741 1742 1743
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1744 1745
	if (ret2 < 0)
		ret = ret2;
1746

1747
	ret2 = ext4_journal_stop(handle);
1748 1749
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1750

1751
	if (pos + len > inode->i_size) {
1752
		ext4_truncate(inode);
1753
		/*
1754
		 * If truncate failed early the inode might still be
1755 1756 1757 1758 1759 1760 1761
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1762
	return ret ? ret : copied;
1763 1764
}

N
Nick Piggin 已提交
1765
static int ext4_journalled_write_end(struct file *file,
1766 1767 1768
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1769
{
1770
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1771
	struct inode *inode = mapping->host;
1772 1773
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1774
	unsigned from, to;
1775
	loff_t new_i_size;
1776

1777
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1778 1779 1780 1781 1782 1783 1784 1785
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1786 1787

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1788
				to, &partial, write_end_fn);
1789 1790
	if (!partial)
		SetPageUptodate(page);
1791 1792
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1793
		i_size_write(inode, pos+copied);
1794
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1795 1796
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1797
		ret2 = ext4_mark_inode_dirty(handle, inode);
1798 1799 1800
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1801

1802
	unlock_page(page);
1803
	page_cache_release(page);
1804
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1805 1806 1807 1808 1809 1810
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1811
	ret2 = ext4_journal_stop(handle);
1812 1813
	if (!ret)
		ret = ret2;
1814
	if (pos + len > inode->i_size) {
1815
		ext4_truncate(inode);
1816
		/*
1817
		 * If truncate failed early the inode might still be
1818 1819 1820 1821 1822 1823
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1824 1825

	return ret ? ret : copied;
1826
}
1827 1828 1829

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1830
	int retries = 0;
1831 1832
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	unsigned long md_needed, mdblocks, total = 0;
1833 1834 1835 1836 1837 1838

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1839
repeat:
1840 1841 1842 1843 1844 1845 1846 1847
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
	if (vfs_dq_reserve_block(inode, total)) {
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return -EDQUOT;
	}

1858
	if (ext4_claim_free_blocks(sbi, total)) {
1859
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1860
		vfs_dq_release_reservation_block(inode, total);
A
Aneesh Kumar K.V 已提交
1861 1862 1863 1864
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1865 1866 1867 1868 1869 1870 1871 1872 1873
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1874
static void ext4_da_release_space(struct inode *inode, int to_free)
1875 1876 1877 1878
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1879 1880 1881
	if (!to_free)
		return;		/* Nothing to release, exit */

1882
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1898
	/* recalculate the number of metablocks still need to be reserved */
1899
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1900 1901 1902 1903 1904 1905 1906 1907
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1908 1909
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1910 1911

	/* update per-inode reservations */
1912 1913
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1914 1915 1916 1917

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1918 1919

	vfs_dq_release_reservation_block(inode, release);
1920 1921 1922
}

static void ext4_da_page_release_reservation(struct page *page,
1923
					     unsigned long offset)
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1940
	ext4_da_release_space(page->mapping->host, to_release);
1941
}
1942

1943 1944 1945 1946 1947 1948
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1949
 * them with writepage() call back
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1962
	long pages_skipped;
1963 1964 1965 1966 1967
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1968 1969

	BUG_ON(mpd->next_page <= mpd->first_page);
1970 1971 1972
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1973
	 * If we look at mpd->b_blocknr we would only be looking
1974 1975
	 * at the currently mapped buffer_heads.
	 */
1976 1977 1978
	index = mpd->first_page;
	end = mpd->next_page - 1;

1979
	pagevec_init(&pvec, 0);
1980
	while (index <= end) {
1981
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1982 1983 1984 1985 1986
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1987 1988 1989 1990 1991 1992 1993 1994
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1995
			pages_skipped = mpd->wbc->pages_skipped;
1996
			err = mapping->a_ops->writepage(page, mpd->wbc);
1997 1998 1999 2000 2001
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
2002
				mpd->pages_written++;
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
2025
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2026 2027 2028 2029 2030 2031 2032 2033 2034
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
2035
	pgoff_t index, end;
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

				if (buffer_delay(bh) ||
						buffer_unwritten(bh)) {

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2093
				} else if (buffer_mapped(bh))
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

2153 2154 2155
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2168 2169 2170
	return;
}

2171 2172 2173
/*
 * mpage_da_map_blocks - go through given space
 *
2174
 * @mpd - bh describing space
2175 2176 2177 2178
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2179
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2180
{
2181
	int err, blks, get_blocks_flags;
A
Aneesh Kumar K.V 已提交
2182
	struct buffer_head new;
2183 2184 2185 2186
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2187 2188 2189 2190

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2191
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2192 2193
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2194
		return 0;
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2205
	/*
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	 * Call ext4_get_blocks() to allocate any delayed allocation
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
	 * want to change *many* call functions, so ext4_get_blocks()
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2222
	 */
2223 2224 2225 2226 2227
	new.b_state = 0;
	get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
			    EXT4_GET_BLOCKS_DELALLOC_RESERVE);
	if (mpd->b_state & (1 << BH_Delay))
		get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2228
	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2229
			       &new, get_blocks_flags);
2230 2231
	if (blks < 0) {
		err = blks;
2232 2233 2234 2235
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2236 2237 2238
		 */
		if (err == -EAGAIN)
			return 0;
2239 2240

		if (err == -ENOSPC &&
2241
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2242 2243 2244 2245
			mpd->retval = err;
			return 0;
		}

2246
		/*
2247 2248 2249 2250 2251
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2252
		 */
2253 2254 2255 2256 2257 2258 2259 2260
		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
			 "delayed block allocation failed for inode %lu at "
			 "logical offset %llu with max blocks %zd with "
			 "error %d\n", mpd->inode->i_ino,
			 (unsigned long long) next,
			 mpd->b_size >> mpd->inode->i_blkbits, err);
		printk(KERN_CRIT "This should not happen!!  "
		       "Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2261
		if (err == -ENOSPC) {
2262
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2263
		}
2264
		/* invalidate all the pages */
2265
		ext4_da_block_invalidatepages(mpd, next,
2266
				mpd->b_size >> mpd->inode->i_blkbits);
2267 2268
		return err;
	}
2269 2270 2271
	BUG_ON(blks == 0);

	new.b_size = (blks << mpd->inode->i_blkbits);
2272

2273 2274
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2275

2276 2277 2278 2279
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2280 2281
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2282
		mpage_put_bnr_to_bhs(mpd, next, &new);
2283

2284 2285 2286 2287 2288 2289 2290
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2291
	 * Update on-disk size along with block allocation.
2292 2293 2294 2295 2296 2297 2298 2299 2300
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2301
	return 0;
2302 2303
}

2304 2305
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2317 2318
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2319 2320
{
	sector_t next;
2321
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2322

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2345 2346 2347
	/*
	 * First block in the extent
	 */
2348 2349 2350 2351
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2352 2353 2354
		return;
	}

2355
	next = mpd->b_blocknr + nrblocks;
2356 2357 2358
	/*
	 * Can we merge the block to our big extent?
	 */
2359 2360
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2361 2362 2363
		return;
	}

2364
flush_it:
2365 2366 2367 2368
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2369 2370
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2371 2372
	mpd->io_done = 1;
	return;
2373 2374
}

2375
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2376
{
2377
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2378 2379
}

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2394
	struct buffer_head *bh, *head;
2395 2396
	sector_t logical;

2397 2398 2399 2400
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
2401
		 * try to write them again after
2402 2403 2404 2405 2406 2407
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2408 2409 2410 2411 2412 2413
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2414
		 * and start IO on them using writepage()
2415 2416
		 */
		if (mpd->next_page != mpd->first_page) {
2417 2418
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2419 2420 2421 2422 2423 2424 2425
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2436 2437 2438
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2439 2440 2441 2442 2443 2444 2445
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2446 2447
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2448 2449
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2450 2451 2452 2453 2454 2455 2456 2457
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2458 2459 2460 2461
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2462
			 * with the page in ext4_writepage
2463
			 */
2464
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2465 2466 2467
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2468 2469
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2470 2471 2472 2473 2474 2475 2476 2477 2478
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2479 2480
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2481
			}
2482 2483 2484 2485 2486 2487 2488 2489
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2490 2491 2492
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2493 2494 2495 2496 2497 2498 2499
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2500 2501 2502 2503 2504
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;
2505 2506 2507 2508
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2509 2510 2511 2512 2513 2514 2515 2516 2517

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2518
	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2519 2520
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2521 2522 2523 2524
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2525 2526 2527 2528 2529
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2530
		map_bh(bh_result, inode->i_sb, invalid_block);
2531 2532 2533 2534
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
2535 2536 2537 2538 2539 2540 2541 2542
		if (buffer_unwritten(bh_result)) {
			/* A delayed write to unwritten bh should
			 * be marked new and mapped.  Mapped ensures
			 * that we don't do get_block multiple times
			 * when we write to the same offset and new
			 * ensures that we do proper zero out for
			 * partial write.
			 */
2543
			set_buffer_new(bh_result);
2544 2545
			set_buffer_mapped(bh_result);
		}
2546 2547 2548 2549 2550
		ret = 0;
	}

	return ret;
}
2551

2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
 * callback function for block_prepare_write(), nobh_writepage(), and
 * block_write_full_page().  These functions should only try to map a
 * single block at a time.
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
 * delayed allocation before calling nobh_writepage() or
 * block_write_full_page().  Otherwise, b_blocknr could be left
 * unitialized, and the page write functions will be taken by
 * surprise.
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2569 2570 2571 2572 2573
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

2574 2575
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

2576 2577 2578 2579
	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
2580
	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2581 2582 2583 2584 2585
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2586 2587
}

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       struct writeback_control *wbc,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
out:
	return ret;
}

2641
/*
2642 2643 2644 2645 2646 2647 2648 2649 2650
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2651 2652 2653 2654 2655
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2681
 */
2682
static int ext4_writepage(struct page *page,
2683
			  struct writeback_control *wbc)
2684 2685
{
	int ret = 0;
2686
	loff_t size;
2687
	unsigned int len;
2688 2689 2690
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2691
	trace_ext4_writepage(inode, page);
2692 2693 2694 2695 2696
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2697

2698
	if (page_has_buffers(page)) {
2699
		page_bufs = page_buffers(page);
2700
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2701
					ext4_bh_delay_or_unwritten)) {
2702
			/*
2703 2704
			 * We don't want to do  block allocation
			 * So redirty the page and return
2705 2706 2707
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2728
		ret = block_prepare_write(page, 0, len,
2729
					  noalloc_get_block_write);
2730 2731 2732 2733
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2734
						ext4_bh_delay_or_unwritten)) {
2735 2736 2737 2738 2739 2740 2741 2742 2743
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2744 2745 2746 2747 2748
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2749
		/* now mark the buffer_heads as dirty and uptodate */
2750
		block_commit_write(page, 0, len);
2751 2752
	}

2753 2754 2755 2756 2757 2758 2759 2760 2761
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
		return __ext4_journalled_writepage(page, wbc, len);
	}

2762
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2763
		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2764
	else
2765 2766
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2767 2768 2769 2770

	return ret;
}

2771
/*
2772 2773 2774 2775 2776
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2777
 */
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2795

2796
static int ext4_da_writepages(struct address_space *mapping,
2797
			      struct writeback_control *wbc)
2798
{
2799 2800
	pgoff_t	index;
	int range_whole = 0;
2801
	handle_t *handle = NULL;
2802
	struct mpage_da_data mpd;
2803
	struct inode *inode = mapping->host;
2804
	int no_nrwrite_index_update;
2805 2806
	int pages_written = 0;
	long pages_skipped;
2807
	unsigned int max_pages;
2808
	int range_cyclic, cycled = 1, io_done = 0;
2809 2810
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2811
	loff_t range_start = wbc->range_start;
2812
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2813

2814
	trace_ext4_da_writepages(inode, wbc);
2815

2816 2817 2818 2819 2820
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2821
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2822
		return 0;
2823 2824 2825 2826 2827

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2828
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2829 2830 2831 2832 2833
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2834
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2835 2836
		return -EROFS;

2837 2838
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2839

2840 2841
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2842
		index = mapping->writeback_index;
2843 2844 2845 2846 2847 2848
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2849
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2850

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
	if (!range_cyclic && range_whole)
		desired_nr_to_write = wbc->nr_to_write * 8;
	else
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2881 2882 2883
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2884 2885 2886 2887 2888 2889 2890 2891
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2892
retry:
2893
	while (!ret && wbc->nr_to_write > 0) {
2894 2895 2896 2897 2898 2899 2900 2901

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2902
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2903

2904 2905 2906 2907
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2908
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2909 2910
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
2911 2912
			goto out_writepages;
		}
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
		 * If we have a contigous extent of pages and we
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2944
		trace_ext4_da_write_pages(inode, &mpd);
2945
		wbc->nr_to_write -= mpd.pages_written;
2946

2947
		ext4_journal_stop(handle);
2948

2949
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2950 2951 2952 2953
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2954
			jbd2_journal_force_commit_nested(sbi->s_journal);
2955 2956 2957
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2958 2959 2960 2961
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2962 2963
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2964
			ret = 0;
2965
			io_done = 1;
2966
		} else if (wbc->nr_to_write)
2967 2968 2969 2970 2971 2972
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2973
	}
2974 2975 2976 2977 2978 2979 2980
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2981
	if (pages_skipped != wbc->pages_skipped)
2982 2983 2984 2985
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
			 "with nr_to_write = %ld ret = %d\n",
			 __func__, wbc->nr_to_write, ret);
2986 2987 2988

	/* Update index */
	index += pages_written;
2989
	wbc->range_cyclic = range_cyclic;
2990 2991 2992 2993 2994 2995
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2996

2997
out_writepages:
2998 2999
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
3000 3001
	if (wbc->nr_to_write > nr_to_writebump)
		wbc->nr_to_write -= nr_to_writebump;
3002
	wbc->range_start = range_start;
3003
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3004
	return ret;
3005 3006
}

3007 3008 3009 3010 3011 3012 3013 3014 3015
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3016
	 * counters can get slightly wrong with percpu_counter_batch getting
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

3034
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3035 3036
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3037
{
3038
	int ret, retries = 0;
3039 3040 3041 3042 3043 3044 3045 3046 3047
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
3048 3049 3050 3051 3052 3053 3054

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3055
	trace_ext4_da_write_begin(inode, pos, len, flags);
3056
retry:
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3068 3069 3070
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3071

3072
	page = grab_cache_page_write_begin(mapping, index, flags);
3073 3074 3075 3076 3077
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3078 3079 3080
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3081
				ext4_da_get_block_prep);
3082 3083 3084 3085
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3086 3087 3088 3089 3090 3091
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3092
			ext4_truncate(inode);
3093 3094
	}

3095 3096
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3097 3098 3099 3100
out:
	return ret;
}

3101 3102 3103 3104 3105
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3106
					    unsigned long offset)
3107 3108 3109 3110 3111 3112 3113 3114 3115
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3116
	for (i = 0; i < idx; i++)
3117 3118
		bh = bh->b_this_page;

3119
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3120 3121 3122 3123
		return 0;
	return 1;
}

3124
static int ext4_da_write_end(struct file *file,
3125 3126 3127
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3128 3129 3130 3131 3132
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3133
	unsigned long start, end;
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3147

3148
	trace_ext4_da_write_end(inode, pos, len, copied);
3149
	start = pos & (PAGE_CACHE_SIZE - 1);
3150
	end = start + copied - 1;
3151 3152 3153 3154 3155 3156 3157 3158

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3170

3171 3172 3173
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3174 3175 3176 3177 3178
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3179
		}
3180
	}
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3202
	ext4_da_page_release_reservation(page, offset);
3203 3204 3205 3206 3207 3208 3209

out:
	ext4_invalidatepage(page, offset);

	return;
}

3210 3211 3212 3213 3214
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3215 3216
	trace_ext4_alloc_da_blocks(inode);

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3227
	 *
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3247
	 *
3248 3249 3250 3251 3252 3253
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3254

3255 3256 3257 3258 3259
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3260
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3261 3262 3263 3264 3265 3266 3267 3268
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3269
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3270 3271 3272 3273 3274
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3285
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3297
		 * NB. EXT4_STATE_JDATA is not set on files other than
3298 3299 3300 3301 3302 3303
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3304 3305
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
3306 3307 3308
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3309 3310 3311 3312 3313

		if (err)
			return 0;
	}

3314
	return generic_block_bmap(mapping, block, ext4_get_block);
3315 3316
}

3317
static int ext4_readpage(struct file *file, struct page *page)
3318
{
3319
	return mpage_readpage(page, ext4_get_block);
3320 3321 3322
}

static int
3323
ext4_readpages(struct file *file, struct address_space *mapping,
3324 3325
		struct list_head *pages, unsigned nr_pages)
{
3326
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3327 3328
}

3329
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3330
{
3331
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3332 3333 3334 3335 3336 3337 3338

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3339 3340 3341 3342
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3343 3344
}

3345
static int ext4_releasepage(struct page *page, gfp_t wait)
3346
{
3347
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3348 3349 3350 3351

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3352 3353 3354 3355
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3356 3357 3358 3359 3360 3361 3362 3363
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3364 3365
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3366
 */
3367
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3368 3369
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3370 3371 3372
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3373
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3374
	handle_t *handle;
3375 3376 3377 3378 3379 3380 3381 3382
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3383 3384 3385 3386 3387 3388
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3389
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3390 3391 3392 3393
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3394 3395
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3396
			ext4_journal_stop(handle);
3397 3398 3399 3400 3401
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3402
				 ext4_get_block, NULL);
3403

J
Jan Kara 已提交
3404
	if (orphan) {
3405 3406
		int err;

J
Jan Kara 已提交
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3417
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3418
		if (ret > 0) {
3419 3420 3421 3422 3423 3424 3425 3426
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3427
				 * ext4_mark_inode_dirty() to userspace.  So
3428 3429
				 * ignore it.
				 */
3430
				ext4_mark_inode_dirty(handle, inode);
3431 3432
			}
		}
3433
		err = ext4_journal_stop(handle);
3434 3435 3436 3437 3438 3439 3440 3441
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3442
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3454
static int ext4_journalled_set_page_dirty(struct page *page)
3455 3456 3457 3458 3459
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3460
static const struct address_space_operations ext4_ordered_aops = {
3461 3462
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3463
	.writepage		= ext4_writepage,
3464 3465 3466 3467 3468 3469 3470 3471 3472
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3473
	.error_remove_page	= generic_error_remove_page,
3474 3475
};

3476
static const struct address_space_operations ext4_writeback_aops = {
3477 3478
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3479
	.writepage		= ext4_writepage,
3480 3481 3482 3483 3484 3485 3486 3487 3488
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3489
	.error_remove_page	= generic_error_remove_page,
3490 3491
};

3492
static const struct address_space_operations ext4_journalled_aops = {
3493 3494
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3495
	.writepage		= ext4_writepage,
3496 3497 3498 3499 3500 3501 3502 3503
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3504
	.error_remove_page	= generic_error_remove_page,
3505 3506
};

3507
static const struct address_space_operations ext4_da_aops = {
3508 3509
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3510
	.writepage		= ext4_writepage,
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3521
	.error_remove_page	= generic_error_remove_page,
3522 3523
};

3524
void ext4_set_aops(struct inode *inode)
3525
{
3526 3527 3528 3529
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3530
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3531 3532 3533
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3534 3535
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3536
	else
3537
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3538 3539 3540
}

/*
3541
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3542 3543 3544 3545
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3546
int ext4_block_truncate_page(handle_t *handle,
3547 3548
		struct address_space *mapping, loff_t from)
{
3549
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3550
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3551 3552
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3553 3554
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3555
	struct page *page;
3556 3557
	int err = 0;

3558 3559
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3560 3561 3562
	if (!page)
		return -EINVAL;

3563 3564 3565 3566 3567 3568 3569 3570 3571
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3572
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3573
		zero_user(page, offset, length);
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3598
		ext4_get_block(inode, iblock, bh, 0);
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3619
	if (ext4_should_journal_data(inode)) {
3620
		BUFFER_TRACE(bh, "get write access");
3621
		err = ext4_journal_get_write_access(handle, bh);
3622 3623 3624 3625
		if (err)
			goto unlock;
	}

3626
	zero_user(page, offset, length);
3627 3628 3629 3630

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3631
	if (ext4_should_journal_data(inode)) {
3632
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3633
	} else {
3634
		if (ext4_should_order_data(inode))
3635
			err = ext4_jbd2_file_inode(handle, inode);
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3659
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3660 3661
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3662
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3663 3664 3665
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3666
 *	This is a helper function used by ext4_truncate().
3667 3668 3669 3670 3671 3672 3673
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3674
 *	past the truncation point is possible until ext4_truncate()
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3693
static Indirect *ext4_find_shared(struct inode *inode, int depth,
3694 3695
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
3696 3697 3698 3699 3700 3701 3702 3703
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3704
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3715
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3727
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3728 3729 3730 3731 3732 3733
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3734
	while (partial > p) {
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3750
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3751 3752 3753 3754
			      struct buffer_head *bh,
			      ext4_fsblk_t block_to_free,
			      unsigned long count, __le32 *first,
			      __le32 *last)
3755 3756 3757 3758
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3759 3760
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
3761
		}
3762
		ext4_mark_inode_dirty(handle, inode);
3763 3764
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
3765 3766
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3767
			ext4_journal_get_write_access(handle, bh);
3768 3769 3770 3771
		}
	}

	/*
3772 3773 3774 3775 3776
	 * Any buffers which are on the journal will be in memory. We
	 * find them on the hash table so jbd2_journal_revoke() will
	 * run jbd2_journal_forget() on them.  We've already detached
	 * each block from the file, so bforget() in
	 * jbd2_journal_forget() should be safe.
3777
	 *
3778
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3779 3780 3781 3782
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3783
			struct buffer_head *tbh;
3784 3785

			*p = 0;
A
Aneesh Kumar K.V 已提交
3786 3787
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3788 3789 3790
		}
	}

3791
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3792 3793 3794
}

/**
3795
 * ext4_free_data - free a list of data blocks
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3813
static void ext4_free_data(handle_t *handle, struct inode *inode,
3814 3815 3816
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3817
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3818 3819 3820 3821
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3822
	ext4_fsblk_t nr;		    /* Current block # */
3823 3824 3825 3826 3827 3828
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3829
		err = ext4_journal_get_write_access(handle, this_bh);
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3847
				ext4_clear_blocks(handle, inode, this_bh,
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3858
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3859 3860 3861
				  count, block_to_free_p, p);

	if (this_bh) {
3862
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3863 3864 3865 3866 3867 3868 3869

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
3870
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3871
			ext4_handle_dirty_metadata(handle, inode, this_bh);
3872 3873 3874 3875 3876 3877
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3878 3879 3880 3881
	}
}

/**
3882
 *	ext4_free_branches - free an array of branches
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3894
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3895 3896 3897
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3898
	ext4_fsblk_t nr;
3899 3900
	__le32 *p;

3901
	if (ext4_handle_is_aborted(handle))
3902 3903 3904 3905
		return;

	if (depth--) {
		struct buffer_head *bh;
3906
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3921
				ext4_error(inode->i_sb, "ext4_free_branches",
3922
					   "Read failure, inode=%lu, block=%llu",
3923 3924 3925 3926 3927 3928
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3929
			ext4_free_branches(handle, inode, bh,
3930 3931 3932
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
3933 3934 3935 3936 3937

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3938
			 * jbd2_journal_revoke().
3939 3940 3941
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3942
			 * transaction then jbd2_journal_forget() will simply
3943
			 * brelse() it.  That means that if the underlying
3944
			 * block is reallocated in ext4_get_block(),
3945 3946 3947 3948 3949 3950 3951 3952
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3953
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
3971
			if (ext4_handle_is_aborted(handle))
3972 3973
				return;
			if (try_to_extend_transaction(handle, inode)) {
3974
				ext4_mark_inode_dirty(handle, inode);
3975 3976
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
3977 3978
			}

3979
			ext4_free_blocks(handle, inode, nr, 1, 1);
3980 3981 3982 3983 3984 3985 3986

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
3987
				if (!ext4_journal_get_write_access(handle,
3988 3989 3990
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
3991 3992 3993 3994
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
3995 3996 3997 3998 3999 4000
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4001
		ext4_free_data(handle, inode, parent_bh, first, last);
4002 4003 4004
	}
}

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4018
/*
4019
 * ext4_truncate()
4020
 *
4021 4022
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4039
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4040
 * that this inode's truncate did not complete and it will again call
4041 4042
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4043
 * that's fine - as long as they are linked from the inode, the post-crash
4044
 * ext4_truncate() run will find them and release them.
4045
 */
4046
void ext4_truncate(struct inode *inode)
4047 4048
{
	handle_t *handle;
4049
	struct ext4_inode_info *ei = EXT4_I(inode);
4050
	__le32 *i_data = ei->i_data;
4051
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4052
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4053
	ext4_lblk_t offsets[4];
4054 4055 4056 4057
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4058
	ext4_lblk_t last_block;
4059 4060
	unsigned blocksize = inode->i_sb->s_blocksize;

4061
	if (!ext4_can_truncate(inode))
4062 4063
		return;

4064
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4065 4066
		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;

A
Aneesh Kumar K.V 已提交
4067
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4068
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4069 4070
		return;
	}
A
Alex Tomas 已提交
4071

4072
	handle = start_transaction(inode);
4073
	if (IS_ERR(handle))
4074 4075 4076
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4077
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4078

4079 4080 4081
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4082

4083
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4096
	if (ext4_orphan_add(handle, inode))
4097 4098
		goto out_stop;

4099 4100 4101 4102 4103
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4104

4105
	ext4_discard_preallocations(inode);
4106

4107 4108 4109 4110 4111
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4112
	 * ext4 *really* writes onto the disk inode.
4113 4114 4115 4116
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4117 4118
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4119 4120 4121
		goto do_indirects;
	}

4122
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4123 4124 4125 4126
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4127
			ext4_free_branches(handle, inode, NULL,
4128 4129 4130 4131 4132 4133 4134 4135 4136
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4137
			ext4_free_branches(handle, inode, partial->bh,
4138 4139 4140 4141 4142 4143
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4144
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4145 4146 4147
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4148
		brelse(partial->bh);
4149 4150 4151 4152 4153 4154
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4155
		nr = i_data[EXT4_IND_BLOCK];
4156
		if (nr) {
4157 4158
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4159
		}
4160 4161
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4162
		if (nr) {
4163 4164
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4165
		}
4166 4167
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4168
		if (nr) {
4169 4170
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4171
		}
4172
	case EXT4_TIND_BLOCK:
4173 4174 4175
		;
	}

4176
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4177
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4178
	ext4_mark_inode_dirty(handle, inode);
4179 4180 4181 4182 4183 4184

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4185
		ext4_handle_sync(handle);
4186 4187 4188 4189 4190
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4191
	 * ext4_delete_inode(), and we allow that function to clean up the
4192 4193 4194
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4195
		ext4_orphan_del(handle, inode);
4196

4197
	ext4_journal_stop(handle);
4198 4199 4200
}

/*
4201
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4202 4203 4204 4205
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4206 4207
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4208
{
4209 4210 4211 4212 4213 4214
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4215
	iloc->bh = NULL;
4216 4217
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4218

4219 4220 4221
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4222 4223
		return -EIO;

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4234
	if (!bh) {
4235 4236 4237
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
4238 4239 4240 4241
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4265
			int i, start;
4266

4267
			start = inode_offset & ~(inodes_per_block - 1);
4268

4269 4270
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4283
			for (i = start; i < start + inodes_per_block; i++) {
4284 4285
				if (i == inode_offset)
					continue;
4286
				if (ext4_test_bit(i, bitmap_bh->b_data))
4287 4288 4289
					break;
			}
			brelse(bitmap_bh);
4290
			if (i == start + inodes_per_block) {
4291 4292 4293 4294 4295 4296 4297 4298 4299
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4300 4301 4302 4303 4304 4305 4306 4307 4308
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4309
			/* s_inode_readahead_blks is always a power of 2 */
4310 4311 4312 4313 4314 4315 4316
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4317
				num -= ext4_itable_unused_count(sb, gdp);
4318 4319 4320 4321 4322 4323 4324
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4335 4336 4337
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4338 4339 4340 4341 4342 4343 4344 4345 4346
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4347
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4348 4349
{
	/* We have all inode data except xattrs in memory here. */
4350 4351
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4352 4353
}

4354
void ext4_set_inode_flags(struct inode *inode)
4355
{
4356
	unsigned int flags = EXT4_I(inode)->i_flags;
4357 4358

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4359
	if (flags & EXT4_SYNC_FL)
4360
		inode->i_flags |= S_SYNC;
4361
	if (flags & EXT4_APPEND_FL)
4362
		inode->i_flags |= S_APPEND;
4363
	if (flags & EXT4_IMMUTABLE_FL)
4364
		inode->i_flags |= S_IMMUTABLE;
4365
	if (flags & EXT4_NOATIME_FL)
4366
		inode->i_flags |= S_NOATIME;
4367
	if (flags & EXT4_DIRSYNC_FL)
4368 4369 4370
		inode->i_flags |= S_DIRSYNC;
}

4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4389

4390
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4391
				  struct ext4_inode_info *ei)
4392 4393
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4394 4395
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4396 4397 4398 4399 4400 4401

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4402 4403 4404 4405 4406 4407
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4408 4409 4410 4411
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4412

4413
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4414
{
4415 4416
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4417
	struct ext4_inode_info *ei;
4418
	struct buffer_head *bh;
4419 4420
	struct inode *inode;
	long ret;
4421 4422
	int block;

4423 4424 4425 4426 4427 4428 4429
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4430

4431 4432
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4433 4434
		goto bad_inode;
	bh = iloc.bh;
4435
	raw_inode = ext4_raw_inode(&iloc);
4436 4437 4438
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4439
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4455
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4456
			/* this inode is deleted */
4457
			brelse(bh);
4458
			ret = -ESTALE;
4459 4460 4461 4462 4463 4464 4465 4466
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4467
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4468
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4469
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4470 4471
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4472
	inode->i_size = ext4_isize(raw_inode);
4473 4474 4475
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4476
	ei->i_last_alloc_group = ~0;
4477 4478 4479 4480
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4481
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4482 4483 4484
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4485
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4486
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4487
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4488
		    EXT4_INODE_SIZE(inode->i_sb)) {
4489
			brelse(bh);
4490
			ret = -EIO;
4491
			goto bad_inode;
4492
		}
4493 4494
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4495 4496
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4497 4498
		} else {
			__le32 *magic = (void *)raw_inode +
4499
					EXT4_GOOD_OLD_INODE_SIZE +
4500
					ei->i_extra_isize;
4501
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4502
				ei->i_state |= EXT4_STATE_XATTR;
4503 4504 4505 4506
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4507 4508 4509 4510 4511
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4512 4513 4514 4515 4516 4517 4518
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4519
	ret = 0;
4520
	if (ei->i_file_acl &&
4521
	    ((ei->i_file_acl <
4522 4523 4524 4525 4526 4527 4528 4529 4530
	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
	       EXT4_SB(sb)->s_gdb_count)) ||
	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
		ext4_error(sb, __func__,
			   "bad extended attribute block %llu in inode #%lu",
			   ei->i_file_acl, inode->i_ino);
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4531 4532 4533 4534 4535
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4536
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4537 4538
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4539
		/* Validate block references which are part of inode */
4540 4541 4542
		ret = ext4_check_inode_blockref(inode);
	}
	if (ret) {
4543 4544
		brelse(bh);
		goto bad_inode;
4545 4546
	}

4547
	if (S_ISREG(inode->i_mode)) {
4548 4549 4550
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4551
	} else if (S_ISDIR(inode->i_mode)) {
4552 4553
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4554
	} else if (S_ISLNK(inode->i_mode)) {
4555
		if (ext4_inode_is_fast_symlink(inode)) {
4556
			inode->i_op = &ext4_fast_symlink_inode_operations;
4557 4558 4559
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4560 4561
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4562
		}
4563 4564
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4565
		inode->i_op = &ext4_special_inode_operations;
4566 4567 4568 4569 4570 4571
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4572 4573 4574
	} else {
		brelse(bh);
		ret = -EIO;
4575
		ext4_error(inode->i_sb, __func__,
4576 4577 4578
			   "bogus i_mode (%o) for inode=%lu",
			   inode->i_mode, inode->i_ino);
		goto bad_inode;
4579
	}
4580
	brelse(iloc.bh);
4581
	ext4_set_inode_flags(inode);
4582 4583
	unlock_new_inode(inode);
	return inode;
4584 4585

bad_inode:
4586 4587
	iget_failed(inode);
	return ERR_PTR(ret);
4588 4589
}

4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4603
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4604
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4605
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4606 4607 4608 4609 4610 4611
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4612 4613 4614 4615
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4616
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4617
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4618
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4619
	} else {
A
Aneesh Kumar K.V 已提交
4620 4621 4622 4623 4624
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4625
	}
4626
	return 0;
4627 4628
}

4629 4630 4631 4632 4633 4634 4635
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4636
static int ext4_do_update_inode(handle_t *handle,
4637
				struct inode *inode,
4638 4639
				struct ext4_iloc *iloc,
				int do_sync)
4640
{
4641 4642
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4643 4644 4645 4646 4647
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4648 4649
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4650

4651
	ext4_get_inode_flags(ei);
4652
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4653
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4654 4655 4656 4657 4658 4659
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4660
		if (!ei->i_dtime) {
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4678 4679 4680 4681 4682 4683

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4684 4685
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4686
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4687
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
4688 4689
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4690 4691
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4692
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4709
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4710
			sb->s_dirt = 1;
4711 4712
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
4713
					EXT4_SB(sb)->s_sbh);
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4728 4729 4730
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4731

4732 4733 4734 4735 4736
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4737
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4738 4739
	}

4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
	/*
	 * If we're not using a journal and we were called from
	 * ext4_write_inode() to sync the inode (making do_sync true),
	 * we can just use sync_dirty_buffer() directly to do our dirty
	 * work.  Testing s_journal here is a bit redundant but it's
	 * worth it to avoid potential future trouble.
	 */
	if (EXT4_SB(inode->i_sb)->s_journal == NULL && do_sync) {
		BUFFER_TRACE(bh, "call sync_dirty_buffer");
		sync_dirty_buffer(bh);
	} else {
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		rc = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!err)
			err = rc;
	}
4756
	ei->i_state &= ~EXT4_STATE_NEW;
4757 4758

out_brelse:
4759
	brelse(bh);
4760
	ext4_std_error(inode->i_sb, err);
4761 4762 4763 4764
	return err;
}

/*
4765
 * ext4_write_inode()
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4782
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4799
int ext4_write_inode(struct inode *inode, int wait)
4800
{
4801 4802
	int err;

4803 4804 4805
	if (current->flags & PF_MEMALLOC)
		return 0;

4806 4807 4808 4809 4810 4811
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4812

4813 4814 4815 4816 4817 4818
		if (!wait)
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4819

4820 4821 4822 4823 4824 4825 4826
		err = ext4_get_inode_loc(inode, &iloc);
		if (err)
			return err;
		err = ext4_do_update_inode(EXT4_NOJOURNAL_HANDLE,
					   inode, &iloc, wait);
	}
	return err;
4827 4828 4829
}

/*
4830
 * ext4_setattr()
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4844 4845 4846 4847 4848 4849 4850 4851
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4852
 */
4853
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4869 4870
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4871 4872 4873 4874
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4875
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4876
		if (error) {
4877
			ext4_journal_stop(handle);
4878 4879 4880 4881 4882 4883 4884 4885
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4886 4887
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4888 4889
	}

4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4901 4902 4903 4904
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4905
		handle = ext4_journal_start(inode, 3);
4906 4907 4908 4909 4910
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4911 4912 4913
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4914 4915
		if (!error)
			error = rc;
4916
		ext4_journal_stop(handle);
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4933 4934 4935 4936
	}

	rc = inode_setattr(inode, attr);

4937
	/* If inode_setattr's call to ext4_truncate failed to get a
4938 4939 4940
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4941
		ext4_orphan_del(NULL, inode);
4942 4943

	if (!rc && (ia_valid & ATTR_MODE))
4944
		rc = ext4_acl_chmod(inode);
4945 4946

err_out:
4947
	ext4_std_error(inode->i_sb, error);
4948 4949 4950 4951 4952
	if (!error)
		error = rc;
	return error;
}

4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4979

4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5008 5009
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5010
}
5011

5012
/*
5013 5014 5015
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5016
 *
5017 5018 5019
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
5020
 *
5021 5022 5023 5024
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5025 5026
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5053 5054
	if (groups > ngroups)
		groups = ngroups;
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5069 5070
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5071
 *
5072
 * This could be called via ext4_write_begin()
5073
 *
5074
 * We need to consider the worse case, when
5075
 * one new block per extent.
5076
 */
A
Alex Tomas 已提交
5077
int ext4_writepage_trans_blocks(struct inode *inode)
5078
{
5079
	int bpp = ext4_journal_blocks_per_page(inode);
5080 5081
	int ret;

5082
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5083

5084
	/* Account for data blocks for journalled mode */
5085
	if (ext4_should_journal_data(inode))
5086
		ret += bpp;
5087 5088
	return ret;
}
5089 5090 5091 5092 5093

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5094
 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5095 5096 5097 5098 5099 5100 5101 5102 5103
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5104
/*
5105
 * The caller must have previously called ext4_reserve_inode_write().
5106 5107
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5108
int ext4_mark_iloc_dirty(handle_t *handle,
5109
			 struct inode *inode, struct ext4_iloc *iloc)
5110 5111 5112
{
	int err = 0;

5113 5114 5115
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5116 5117 5118
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5119
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5120
	err = ext4_do_update_inode(handle, inode, iloc, 0);
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5131 5132
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5133
{
5134 5135 5136 5137 5138 5139 5140 5141 5142
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5143 5144
		}
	}
5145
	ext4_std_error(inode->i_sb, err);
5146 5147 5148
	return err;
}

5149 5150 5151 5152
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5153 5154 5155 5156
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5205
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5206
{
5207
	struct ext4_iloc iloc;
5208 5209 5210
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5211 5212

	might_sleep();
5213
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5214 5215
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
5231 5232
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5233
					ext4_warning(inode->i_sb, __func__,
5234 5235 5236
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5237 5238
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5239 5240 5241 5242
				}
			}
		}
	}
5243
	if (!err)
5244
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5245 5246 5247 5248
	return err;
}

/*
5249
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5250 5251 5252 5253 5254
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5255
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5256 5257 5258 5259 5260 5261
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5262
void ext4_dirty_inode(struct inode *inode)
5263
{
5264
	handle_t *current_handle = ext4_journal_current_handle();
5265 5266
	handle_t *handle;

5267 5268 5269 5270 5271
	if (!ext4_handle_valid(current_handle)) {
		ext4_mark_inode_dirty(current_handle, inode);
		return;
	}

5272
	handle = ext4_journal_start(inode, 2);
5273 5274 5275 5276 5277 5278
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
5279
		       __func__);
5280 5281 5282
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
5283
		ext4_mark_inode_dirty(handle, inode);
5284
	}
5285
	ext4_journal_stop(handle);
5286 5287 5288 5289 5290 5291 5292 5293
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5294
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5295 5296 5297
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5298
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5299
{
5300
	struct ext4_iloc iloc;
5301 5302 5303

	int err = 0;
	if (handle) {
5304
		err = ext4_get_inode_loc(inode, &iloc);
5305 5306
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5307
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5308
			if (!err)
5309 5310 5311
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5312 5313 5314
			brelse(iloc.bh);
		}
	}
5315
	ext4_std_error(inode->i_sb, err);
5316 5317 5318 5319
	return err;
}
#endif

5320
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5336
	journal = EXT4_JOURNAL(inode);
5337 5338
	if (!journal)
		return 0;
5339
	if (is_journal_aborted(journal))
5340 5341
		return -EROFS;

5342 5343
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5354
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5355
	else
5356 5357
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5358

5359
	jbd2_journal_unlock_updates(journal);
5360 5361 5362

	/* Finally we can mark the inode as dirty. */

5363
	handle = ext4_journal_start(inode, 1);
5364 5365 5366
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5367
	err = ext4_mark_inode_dirty(handle, inode);
5368
	ext4_handle_sync(handle);
5369 5370
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5371 5372 5373

	return err;
}
5374 5375 5376 5377 5378 5379

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5380
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5381
{
5382
	struct page *page = vmf->page;
5383 5384 5385
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5386
	void *fsdata;
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5411 5412 5413 5414 5415 5416 5417
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5418 5419
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5420 5421
					ext4_bh_unmapped)) {
			unlock_page(page);
5422
			goto out_unlock;
5423
		}
5424
	}
5425
	unlock_page(page);
5426 5427 5428 5429 5430 5431 5432 5433
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5434
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5435 5436 5437
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5438
			len, len, page, fsdata);
5439 5440 5441 5442
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5443 5444
	if (ret)
		ret = VM_FAULT_SIGBUS;
5445 5446 5447
	up_read(&inode->i_alloc_sem);
	return ret;
}