inode.c 151.1 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include "ext4_jbd2.h"
41 42
#include "xattr.h"
#include "acl.h"
43
#include "ext4_extents.h"
44

45 46
#define MPAGE_DA_EXTENT_TAIL 0x01

47 48 49
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
50 51 52 53
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
54 55
}

56 57
static void ext4_invalidatepage(struct page *page, unsigned long offset);

58 59 60
/*
 * Test whether an inode is a fast symlink.
 */
61
static int ext4_inode_is_fast_symlink(struct inode *inode)
62
{
63
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 65 66 67 68 69
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
70
 * The ext4 forget function must perform a revoke if we are freeing data
71 72 73 74 75 76
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
77 78
 *
 * If the handle isn't valid we're not journaling so there's nothing to do.
79
 */
80 81
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
82 83 84
{
	int err;

85 86 87
	if (!ext4_handle_valid(handle))
		return 0;

88 89 90 91 92 93 94 95 96 97 98 99 100 101
	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

102 103
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
104
		if (bh) {
105
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
106
			return ext4_journal_forget(handle, bh);
107 108 109 110 111 112 113
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
114 115
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
116
	if (err)
117
		ext4_abort(inode->i_sb, __func__,
118 119 120 121 122 123 124 125 126 127 128
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
129
	ext4_lblk_t needed;
130 131 132 133 134 135

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
136
	 * like a regular file for ext4 to try to delete it.  Things
137 138 139 140 141 142 143
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
144 145
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
146

147
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

164
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 166 167
	if (!IS_ERR(result))
		return result;

168
	ext4_std_error(inode->i_sb, PTR_ERR(result));
169 170 171 172 173 174 175 176 177 178 179
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
180 181 182
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183
		return 0;
184
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 186 187 188 189 190 191 192 193
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
194
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195
{
196
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
197
	jbd_debug(2, "restarting handle %p\n", handle);
198
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 200 201 202 203
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
204
void ext4_delete_inode(struct inode *inode)
205 206
{
	handle_t *handle;
207
	int err;
208

209 210
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
211 212 213 214 215
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

216
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217
	if (IS_ERR(handle)) {
218
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 220 221 222 223
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
224
		ext4_orphan_del(NULL, inode);
225 226 227 228
		goto no_delete;
	}

	if (IS_SYNC(inode))
229
		ext4_handle_sync(handle);
230
	inode->i_size = 0;
231 232 233 234 235 236
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
237
	if (inode->i_blocks)
238
		ext4_truncate(inode);
239 240 241 242 243 244 245

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
246
	if (!ext4_handle_has_enough_credits(handle, 3)) {
247 248 249 250 251 252 253 254 255 256 257 258
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

259
	/*
260
	 * Kill off the orphan record which ext4_truncate created.
261
	 * AKPM: I think this can be inside the above `if'.
262
	 * Note that ext4_orphan_del() has to be able to cope with the
263
	 * deletion of a non-existent orphan - this is because we don't
264
	 * know if ext4_truncate() actually created an orphan record.
265 266
	 * (Well, we could do this if we need to, but heck - it works)
	 */
267 268
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
269 270 271 272 273 274 275 276

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
277
	if (ext4_mark_inode_dirty(handle, inode))
278 279 280
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
281 282
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
301
 *	ext4_block_to_path - parse the block number into array of offsets
302 303 304
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
305 306
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
307
 *
308
 *	To store the locations of file's data ext4 uses a data structure common
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

331
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
332 333
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
334
{
335 336 337
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
338 339 340 341 342 343
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
344
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 346 347
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
348
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
349
		offsets[n++] = EXT4_IND_BLOCK;
350 351 352
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
353
		offsets[n++] = EXT4_DIND_BLOCK;
354 355 356 357
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358
		offsets[n++] = EXT4_TIND_BLOCK;
359 360 361 362 363
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
364
		ext4_warning(inode->i_sb, "ext4_block_to_path",
365
				"block %lu > max in inode %lu",
366
				i_block + direct_blocks +
367
				indirect_blocks + double_blocks, inode->i_ino);
368 369 370 371 372 373 374
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
375
 *	ext4_get_branch - read the chain of indirect blocks leading to data
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
400 401
 *
 *      Need to be called with
402
 *      down_read(&EXT4_I(inode)->i_data_sem)
403
 */
A
Aneesh Kumar K.V 已提交
404 405
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
406 407 408 409 410 411 412 413
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
414
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
415 416 417 418 419 420
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
421
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
422 423 424 425 426 427 428 429 430 431 432 433 434
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
435
 *	ext4_find_near - find a place for allocation with sufficient locality
436 437 438
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
439
 *	This function returns the preferred place for block allocation.
440 441 442 443 444 445 446 447 448 449 450 451 452 453
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
454
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
455
{
456
	struct ext4_inode_info *ei = EXT4_I(inode);
457
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
458
	__le32 *p;
459
	ext4_fsblk_t bg_start;
460
	ext4_fsblk_t last_block;
461
	ext4_grpblk_t colour;
462 463
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
479 480 481 482 483 484 485
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
486 487
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

488 489 490 491 492 493 494
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

495 496
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
497
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
498 499
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
500 501 502 503
	return bg_start + colour;
}

/**
504
 *	ext4_find_goal - find a preferred place for allocation.
505 506 507 508
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
509
 *	Normally this function find the preferred place for block allocation,
510
 *	returns it.
511
 */
A
Aneesh Kumar K.V 已提交
512
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
513
		Indirect *partial)
514 515
{
	/*
516
	 * XXX need to get goal block from mballoc's data structures
517 518
	 */

519
	return ext4_find_near(inode, partial);
520 521 522
}

/**
523
 *	ext4_blks_to_allocate: Look up the block map and count the number
524 525 526 527 528 529 530 531 532 533
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
534
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
535 536
		int blocks_to_boundary)
{
537
	unsigned int count = 0;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
561
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
562 563 564 565 566 567 568 569
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
570
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
571 572 573
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
574
{
575
	struct ext4_allocation_request ar;
576
	int target, i;
577
	unsigned long count = 0, blk_allocated = 0;
578
	int index = 0;
579
	ext4_fsblk_t current_block = 0;
580 581 582 583 584 585 586 587 588 589
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
590 591 592
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
593 594
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
595 596
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
597 598 599 600 601 602 603 604 605
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
606 607 608 609 610 611 612 613 614
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
615
			break;
616
		}
617 618
	}

619 620 621 622 623
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
624 625 626 627 628 629 630 631 632 633 634
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
650
		blk_allocated += ar.len;
651 652
	}
allocated:
653
	/* total number of blocks allocated for direct blocks */
654
	ret = blk_allocated;
655 656 657
	*err = 0;
	return ret;
failed_out:
658
	for (i = 0; i < index; i++)
659
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
660 661 662 663
	return ret;
}

/**
664
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
665 666 667 668 669 670 671 672 673 674
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
675
 *	the same format as ext4_get_branch() would do. We are calling it after
676 677
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
678
 *	picture as after the successful ext4_get_block(), except that in one
679 680 681 682 683 684
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
685
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
686 687
 *	as described above and return 0.
 */
688
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
689 690 691
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
692 693 694 695 696 697
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
698 699
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
700

701
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
720
		err = ext4_journal_get_create_access(handle, bh);
721 722 723 724 725 726 727 728 729 730
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
731
		if (n == indirect_blks) {
732 733 734 735 736 737 738 739 740 741 742 743 744
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

745 746
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
747 748 749 750 751 752 753 754
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
755
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
756
		ext4_journal_forget(handle, branch[i].bh);
757
	}
758
	for (i = 0; i < indirect_blks; i++)
759
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
760

761
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
762 763 764 765 766

	return err;
}

/**
767
 * ext4_splice_branch - splice the allocated branch onto inode.
768 769 770
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
771
 *	ext4_alloc_branch)
772 773 774 775 776 777 778 779
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
780
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
781
			ext4_lblk_t block, Indirect *where, int num, int blks)
782 783 784
{
	int i;
	int err = 0;
785
	ext4_fsblk_t current_block;
786 787 788 789 790 791 792 793

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
794
		err = ext4_journal_get_write_access(handle, where->bh);
795 796 797 798 799 800 801 802 803 804 805 806 807 808
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
809
			*(where->p + i) = cpu_to_le32(current_block++);
810 811 812 813
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
814
	inode->i_ctime = ext4_current_time(inode);
815
	ext4_mark_inode_dirty(handle, inode);
816 817 818 819 820 821 822 823 824

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
825
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
826 827
		 */
		jbd_debug(5, "splicing indirect only\n");
828 829
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
830 831 832 833 834 835 836 837 838 839 840 841 842
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
843
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
844
		ext4_journal_forget(handle, where[i].bh);
845 846
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
847
	}
848
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
870 871 872
 *
 *
 * Need to be called with
873 874
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
875
 */
876 877 878 879
static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
				  ext4_lblk_t iblock, unsigned int maxblocks,
				  struct buffer_head *bh_result,
				  int create, int extend_disksize)
880 881
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
882
	ext4_lblk_t offsets[4];
883 884
	Indirect chain[4];
	Indirect *partial;
885
	ext4_fsblk_t goal;
886 887 888
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
889
	struct ext4_inode_info *ei = EXT4_I(inode);
890
	int count = 0;
891
	ext4_fsblk_t first_block = 0;
892
	loff_t disksize;
893 894


A
Alex Tomas 已提交
895
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
896
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
897 898
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
899 900 901 902

	if (depth == 0)
		goto out;

903
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
904 905 906 907 908 909 910 911

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
912
			ext4_fsblk_t blk;
913 914 915 916 917 918 919 920

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
921
		goto got_it;
922 923 924 925 926 927 928
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
929
	 * Okay, we need to do block allocation.
930
	*/
931
	goal = ext4_find_goal(inode, iblock, partial);
932 933 934 935 936 937 938 939

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
940
	count = ext4_blks_to_allocate(partial, indirect_blks,
941 942
					maxblocks, blocks_to_boundary);
	/*
943
	 * Block out ext4_truncate while we alter the tree
944
	 */
945 946 947
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
948 949

	/*
950
	 * The ext4_splice_branch call will free and forget any buffers
951 952 953 954 955 956
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
957
		err = ext4_splice_branch(handle, inode, iblock,
958 959
					partial, indirect_blks, count);
	/*
960
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
961
	 * protect it if you're about to implement concurrent
962
	 * ext4_get_block() -bzzz
963
	*/
964 965 966 967 968 969 970
	if (!err && extend_disksize) {
		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > ei->i_disksize)
			ei->i_disksize = disksize;
	}
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

993 994 995 996 997 998 999 1000 1001 1002 1003
qsize_t ext4_get_reserved_space(struct inode *inode)
{
	unsigned long long total;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks +
		EXT4_I(inode)->i_reserved_meta_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	return total;
}
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1029 1030 1031
	if (!blocks)
		return 0;

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1052 1053 1054 1055 1056 1057 1058 1059 1060
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1061 1062 1063 1064 1065

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1066 1067 1068 1069 1070 1071

	/*
	 * free those over-booking quota for metadata blocks
	 */
	if (mdb_free)
		vfs_dq_release_reservation_block(inode, mdb_free);
1072 1073 1074 1075 1076 1077 1078 1079

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
	if (!total && (atomic_read(&inode->i_writecount) == 0))
		ext4_discard_preallocations(inode);
1080 1081
}

1082
/*
1083 1084
 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
 * and returns if the blocks are already mapped.
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1104
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1105
			unsigned int max_blocks, struct buffer_head *bh,
1106
			int create, int extend_disksize, int flag)
1107 1108
{
	int retval;
1109 1110 1111

	clear_buffer_mapped(bh);

1112 1113 1114 1115 1116 1117 1118 1119
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, 0, 0);
1120
	} else {
1121 1122
		retval = ext4_get_blocks_handle(handle,
				inode, block, max_blocks, bh, 0, 0);
1123
	}
1124
	up_read((&EXT4_I(inode)->i_data_sem));
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

	/* If it is only a block(s) look up */
	if (!create)
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1138 1139 1140
		return retval;

	/*
1141 1142 1143 1144
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1145 1146
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1147 1148 1149 1150 1151 1152 1153 1154 1155

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
	if (flag)
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1156 1157 1158 1159
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1160 1161 1162 1163 1164 1165
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1176
	}
1177 1178 1179 1180 1181 1182 1183 1184 1185

	if (flag) {
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
		/*
		 * Update reserved blocks/metadata blocks
		 * after successful block allocation
		 * which were deferred till now
		 */
		if ((retval > 0) && buffer_delay(bh))
1186
			ext4_da_update_reserve_space(inode, retval);
1187 1188
	}

1189
	up_write((&EXT4_I(inode)->i_data_sem));
1190 1191 1192
	return retval;
}

1193 1194 1195
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1196 1197
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1198
{
1199
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1200
	int ret = 0, started = 0;
1201
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1202
	int dio_credits;
1203

J
Jan Kara 已提交
1204 1205 1206 1207
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1208 1209
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1210
		if (IS_ERR(handle)) {
1211
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1212
			goto out;
1213
		}
J
Jan Kara 已提交
1214
		started = 1;
1215 1216
	}

J
Jan Kara 已提交
1217
	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1218
					max_blocks, bh_result, create, 0, 0);
J
Jan Kara 已提交
1219 1220 1221
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1222
	}
J
Jan Kara 已提交
1223 1224 1225
	if (started)
		ext4_journal_stop(handle);
out:
1226 1227 1228 1229 1230 1231
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1232
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1233
				ext4_lblk_t block, int create, int *errp)
1234 1235 1236 1237 1238 1239 1240 1241 1242
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1243
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1244
					&dummy, create, 1, 0);
1245
	/*
1246
	 * ext4_get_blocks_handle() returns number of blocks
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1264
			J_ASSERT(handle != NULL);
1265 1266 1267 1268 1269

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1270
			 * writes use ext4_get_block instead, so it's not a
1271 1272 1273 1274
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1275
			fatal = ext4_journal_get_create_access(handle, bh);
1276
			if (!fatal && !buffer_uptodate(bh)) {
1277
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1278 1279 1280
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1281 1282
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1299
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1300
			       ext4_lblk_t block, int create, int *err)
1301
{
1302
	struct buffer_head *bh;
1303

1304
	bh = ext4_getblk(handle, inode, block, create, err);
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1318 1319 1320 1321 1322 1323 1324
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1325 1326 1327 1328 1329 1330 1331
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1332 1333 1334
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
	     block_start = block_end, bh = next)
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1353
 * close off a transaction and start a new one between the ext4_get_block()
1354
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1355 1356
 * prepare_write() is the right place.
 *
1357 1358
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1359 1360 1361 1362
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1363
 * By accident, ext4 can be reentered when a transaction is open via
1364 1365 1366 1367 1368 1369
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1370
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1371 1372 1373 1374 1375 1376 1377 1378 1379
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1380
	return ext4_journal_get_write_access(handle, bh);
1381 1382
}

N
Nick Piggin 已提交
1383 1384 1385
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1386
{
1387
	struct inode *inode = mapping->host;
1388
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1389 1390
	handle_t *handle;
	int retries = 0;
1391
	struct page *page;
N
Nick Piggin 已提交
1392
 	pgoff_t index;
1393
	unsigned from, to;
N
Nick Piggin 已提交
1394

1395 1396 1397 1398
	trace_mark(ext4_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
N
Nick Piggin 已提交
1399
 	index = pos >> PAGE_CACHE_SHIFT;
1400 1401
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1402 1403

retry:
1404 1405 1406 1407
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1408
	}
1409

1410 1411 1412 1413
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1414
	page = grab_cache_page_write_begin(mapping, index, flags);
1415 1416 1417 1418 1419 1420 1421
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1422
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1423
				ext4_get_block);
N
Nick Piggin 已提交
1424 1425

	if (!ret && ext4_should_journal_data(inode)) {
1426 1427 1428
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1429 1430

	if (ret) {
1431
		unlock_page(page);
1432
		ext4_journal_stop(handle);
1433
		page_cache_release(page);
1434 1435 1436 1437 1438 1439 1440
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
N
Nick Piggin 已提交
1441 1442
	}

1443
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1444
		goto retry;
1445
out:
1446 1447 1448
	return ret;
}

N
Nick Piggin 已提交
1449 1450
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1451 1452 1453 1454
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1455
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1456 1457 1458 1459 1460 1461
}

/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1462
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1463 1464
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1465 1466 1467 1468
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1469
{
1470
	handle_t *handle = ext4_journal_current_handle();
1471
	struct inode *inode = mapping->host;
1472 1473
	int ret = 0, ret2;

1474 1475 1476 1477
	trace_mark(ext4_ordered_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
1478
	ret = ext4_jbd2_file_inode(handle, inode);
1479 1480 1481 1482

	if (ret == 0) {
		loff_t new_i_size;

N
Nick Piggin 已提交
1483
		new_i_size = pos + copied;
1484 1485 1486 1487 1488 1489 1490 1491 1492
		if (new_i_size > EXT4_I(inode)->i_disksize) {
			ext4_update_i_disksize(inode, new_i_size);
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
		}

1493
		ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1494
							page, fsdata);
1495 1496 1497
		copied = ret2;
		if (ret2 < 0)
			ret = ret2;
1498
	}
1499
	ret2 = ext4_journal_stop(handle);
1500 1501
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1502 1503

	return ret ? ret : copied;
1504 1505
}

N
Nick Piggin 已提交
1506 1507 1508 1509
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1510
{
1511
	handle_t *handle = ext4_journal_current_handle();
1512
	struct inode *inode = mapping->host;
1513 1514 1515
	int ret = 0, ret2;
	loff_t new_i_size;

1516 1517 1518 1519
	trace_mark(ext4_writeback_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1520
	new_i_size = pos + copied;
1521 1522 1523 1524 1525 1526 1527 1528
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_mark_inode_dirty(handle, inode);
	}
1529

1530
	ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1531
							page, fsdata);
1532 1533 1534
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
1535

1536
	ret2 = ext4_journal_stop(handle);
1537 1538
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1539 1540

	return ret ? ret : copied;
1541 1542
}

N
Nick Piggin 已提交
1543 1544 1545 1546
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1547
{
1548
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1549
	struct inode *inode = mapping->host;
1550 1551
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1552
	unsigned from, to;
1553
	loff_t new_i_size;
1554

1555 1556 1557 1558
	trace_mark(ext4_journalled_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1559 1560 1561 1562 1563 1564 1565 1566
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1567 1568

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1569
				to, &partial, write_end_fn);
1570 1571
	if (!partial)
		SetPageUptodate(page);
1572 1573
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1574
		i_size_write(inode, pos+copied);
1575
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1576 1577
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1578
		ret2 = ext4_mark_inode_dirty(handle, inode);
1579 1580 1581
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1582

1583
	unlock_page(page);
1584
	ret2 = ext4_journal_stop(handle);
1585 1586
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1587 1588 1589
	page_cache_release(page);

	return ret ? ret : copied;
1590
}
1591 1592 1593

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1594
	int retries = 0;
1595 1596
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	unsigned long md_needed, mdblocks, total = 0;
1597 1598 1599 1600 1601 1602

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1603
repeat:
1604 1605 1606 1607 1608 1609 1610 1611
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
	if (vfs_dq_reserve_block(inode, total)) {
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return -EDQUOT;
	}

1622
	if (ext4_claim_free_blocks(sbi, total)) {
1623
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1624 1625 1626 1627
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1628
		vfs_dq_release_reservation_block(inode, total);
1629 1630 1631 1632 1633 1634 1635 1636 1637
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1638
static void ext4_da_release_space(struct inode *inode, int to_free)
1639 1640 1641 1642
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1643 1644 1645
	if (!to_free)
		return;		/* Nothing to release, exit */

1646
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1662
	/* recalculate the number of metablocks still need to be reserved */
1663
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1664 1665 1666 1667 1668 1669 1670 1671
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1672 1673
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1674 1675

	/* update per-inode reservations */
1676 1677
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1678 1679 1680 1681

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1682 1683

	vfs_dq_release_reservation_block(inode, release);
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
}

static void ext4_da_page_release_reservation(struct page *page,
						unsigned long offset)
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1704
	ext4_da_release_space(page->mapping->host, to_release);
1705
}
1706

1707 1708 1709 1710 1711 1712
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
1713 1714 1715
	sector_t b_blocknr;		/* start block number of extent */
	size_t b_size;			/* size of extent */
	unsigned long b_state;		/* state of the extent */
1716 1717
	unsigned long first_page, next_page;	/* extent of pages */
	struct writeback_control *wbc;
1718
	int io_done;
1719
	int pages_written;
1720
	int retval;
1721 1722 1723 1724
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1725
 * them with writepage() call back
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1738
	long pages_skipped;
1739 1740 1741 1742 1743
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1744 1745

	BUG_ON(mpd->next_page <= mpd->first_page);
1746 1747 1748
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1749
	 * If we look at mpd->b_blocknr we would only be looking
1750 1751
	 * at the currently mapped buffer_heads.
	 */
1752 1753 1754
	index = mpd->first_page;
	end = mpd->next_page - 1;

1755
	pagevec_init(&pvec, 0);
1756
	while (index <= end) {
1757
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1758 1759 1760 1761 1762
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1763 1764 1765 1766 1767 1768 1769 1770
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1771
			pages_skipped = mpd->wbc->pages_skipped;
1772
			err = mapping->a_ops->writepage(page, mpd->wbc);
1773 1774 1775 1776 1777
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1778
				mpd->pages_written++;
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
 * block numbers into buffer heads, dropping BH_Delay
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1811
	pgoff_t index, end;
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
				if (buffer_delay(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_delay(bh);
1854 1855 1856 1857 1858 1859 1860
					bh->b_bdev = inode->i_sb->s_bdev;
				} else if (buffer_unwritten(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_unwritten(bh);
					set_buffer_mapped(bh);
					set_buffer_new(bh);
					bh->b_bdev = inode->i_sb->s_bdev;
1861
				} else if (buffer_mapped(bh))
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

1921 1922 1923 1924 1925 1926 1927
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	printk(KERN_EMERG "Total free blocks count %lld\n",
			ext4_count_free_blocks(inode->i_sb));
	printk(KERN_EMERG "Free/Dirty block details\n");
	printk(KERN_EMERG "free_blocks=%lld\n",
1928
			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1929
	printk(KERN_EMERG "dirty_blocks=%lld\n",
1930
			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1931
	printk(KERN_EMERG "Block reservation details\n");
1932
	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1933
			EXT4_I(inode)->i_reserved_data_blocks);
1934
	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1935 1936 1937 1938
			EXT4_I(inode)->i_reserved_meta_blocks);
	return;
}

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
#define		EXT4_DELALLOC_RSVED	1
static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	loff_t disksize = EXT4_I(inode)->i_disksize;
	handle_t *handle = NULL;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);
	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
				   bh_result, create, 0, EXT4_DELALLOC_RSVED);
	if (ret <= 0)
		return ret;

	bh_result->b_size = (ret << inode->i_blkbits);

	if (ext4_should_order_data(inode)) {
		int retval;
		retval = ext4_jbd2_file_inode(handle, inode);
		if (retval)
			/*
			 * Failed to add inode for ordered mode. Don't
			 * update file size
			 */
			return retval;
	}

	/*
	 * Update on-disk size along with block allocation we don't
	 * use 'extend_disksize' as size may change within already
	 * allocated block -bzzz
	 */
	disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
	if (disksize > i_size_read(inode))
		disksize = i_size_read(inode);
	if (disksize > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, disksize);
		ret = ext4_mark_inode_dirty(handle, inode);
		return ret;
	}
	return 0;
}

1984 1985 1986
/*
 * mpage_da_map_blocks - go through given space
 *
1987
 * @mpd - bh describing space
1988 1989 1990 1991
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1992
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
1993
{
1994
	int err = 0;
A
Aneesh Kumar K.V 已提交
1995
	struct buffer_head new;
1996
	sector_t next;
1997 1998 1999 2000

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2001 2002
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
	    !(mpd->b_state & (1 << BH_Delay)))
2003
		return 0;
2004
	new.b_state = mpd->b_state;
2005
	new.b_blocknr = 0;
2006 2007
	new.b_size = mpd->b_size;
	next = mpd->b_blocknr;
2008 2009 2010 2011 2012
	/*
	 * If we didn't accumulate anything
	 * to write simply return
	 */
	if (!new.b_size)
2013 2014
		return 0;

2015 2016 2017 2018 2019 2020
	err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
	if (err) {
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2021 2022 2023
		 */
		if (err == -EAGAIN)
			return 0;
2024 2025

		if (err == -ENOSPC &&
2026
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2027 2028 2029 2030
			mpd->retval = err;
			return 0;
		}

2031
		/*
2032 2033 2034 2035 2036
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2037 2038 2039 2040 2041 2042
		 */
		printk(KERN_EMERG "%s block allocation failed for inode %lu "
				  "at logical offset %llu with max blocks "
				  "%zd with error %d\n",
				  __func__, mpd->inode->i_ino,
				  (unsigned long long)next,
2043
				  mpd->b_size >> mpd->inode->i_blkbits, err);
2044 2045
		printk(KERN_EMERG "This should not happen.!! "
					"Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2046
		if (err == -ENOSPC) {
2047
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2048
		}
2049 2050
		/* invlaidate all the pages */
		ext4_da_block_invalidatepages(mpd, next,
2051
				mpd->b_size >> mpd->inode->i_blkbits);
2052 2053
		return err;
	}
2054
	BUG_ON(new.b_size == 0);
2055

2056 2057
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2058

2059 2060 2061 2062
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2063 2064
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2065
		mpage_put_bnr_to_bhs(mpd, next, &new);
2066

2067
	return 0;
2068 2069
}

2070 2071
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2083 2084
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2085 2086
{
	sector_t next;
2087
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2111 2112 2113
	/*
	 * First block in the extent
	 */
2114 2115 2116 2117
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2118 2119 2120
		return;
	}

2121
	next = mpd->b_blocknr + nrblocks;
2122 2123 2124
	/*
	 * Can we merge the block to our big extent?
	 */
2125 2126
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2127 2128 2129
		return;
	}

2130
flush_it:
2131 2132 2133 2134
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2135 2136
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2137 2138
	mpd->io_done = 1;
	return;
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
}

/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2155
	struct buffer_head *bh, *head;
2156 2157
	sector_t logical;

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
		 * try to to write them again after
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2169 2170 2171 2172 2173 2174
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2175
		 * and start IO on them using writepage()
2176 2177
		 */
		if (mpd->next_page != mpd->first_page) {
2178 2179
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2180 2181 2182 2183 2184 2185 2186
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2197 2198 2199
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2200 2201 2202 2203 2204 2205 2206
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2207 2208
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2209 2210
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2211 2212 2213 2214 2215 2216 2217 2218
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2219 2220 2221 2222 2223 2224
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
			 * with the page in ext4_da_writepage
			 */
2225
			if (buffer_dirty(bh) &&
2226 2227 2228 2229
			    (!buffer_mapped(bh) || buffer_delay(bh))) {
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2230 2231
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2232 2233 2234 2235 2236 2237 2238 2239 2240
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2241 2242
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2243
			}
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
 * this is a special callback for ->write_begin() only
 * it's intention is to return mapped block or reserve space
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2268 2269 2270
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2271 2272 2273 2274
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2275 2276 2277 2278 2279
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
		map_bh(bh_result, inode->i_sb, 0);
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}

	return ret;
}
2290 2291 2292

static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
{
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
	/*
	 * unmapped buffer is possible for holes.
	 * delay buffer is possible with delayed allocation
	 */
	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
}

static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
				   bh_result, 0, 0, 0);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2317 2318 2319
}

/*
2320 2321 2322 2323
 * get called vi ext4_da_writepages after taking page lock (have journal handle)
 * get called via journal_submit_inode_data_buffers (no journal handle)
 * get called via shrink_page_list via pdflush (no journal handle)
 * or grab_page_cache when doing write_begin (have journal handle)
2324
 */
2325 2326 2327 2328
static int ext4_da_writepage(struct page *page,
				struct writeback_control *wbc)
{
	int ret = 0;
2329
	loff_t size;
2330
	unsigned int len;
2331 2332 2333
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2334 2335 2336
	trace_mark(ext4_da_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
2337 2338 2339 2340 2341
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2342

2343
	if (page_has_buffers(page)) {
2344
		page_bufs = page_buffers(page);
2345 2346
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
					ext4_bh_unmapped_or_delay)) {
2347
			/*
2348 2349
			 * We don't want to do  block allocation
			 * So redirty the page and return
2350 2351 2352
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
						ext4_normal_get_block_write);
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
						ext4_bh_unmapped_or_delay)) {
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2389 2390 2391 2392 2393
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2394 2395
		/* now mark the buffer_heads as dirty and uptodate */
		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2396 2397 2398
	}

	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2399
		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2400
	else
2401 2402 2403
		ret = block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2404 2405 2406 2407

	return ret;
}

2408
/*
2409 2410 2411 2412 2413
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2414
 */
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2432

2433
static int ext4_da_writepages(struct address_space *mapping,
2434
			      struct writeback_control *wbc)
2435
{
2436 2437
	pgoff_t	index;
	int range_whole = 0;
2438
	handle_t *handle = NULL;
2439
	struct mpage_da_data mpd;
2440
	struct inode *inode = mapping->host;
2441
	int no_nrwrite_index_update;
2442 2443
	int pages_written = 0;
	long pages_skipped;
2444
	int range_cyclic, cycled = 1, io_done = 0;
2445 2446
	int needed_blocks, ret = 0, nr_to_writebump = 0;
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2447

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
	trace_mark(ext4_da_writepages,
		   "dev %s ino %lu nr_t_write %ld "
		   "pages_skipped %ld range_start %llu "
		   "range_end %llu nonblocking %d "
		   "for_kupdate %d for_reclaim %d "
		   "for_writepages %d range_cyclic %d",
		   inode->i_sb->s_id, inode->i_ino,
		   wbc->nr_to_write, wbc->pages_skipped,
		   (unsigned long long) wbc->range_start,
		   (unsigned long long) wbc->range_end,
		   wbc->nonblocking, wbc->for_kupdate,
		   wbc->for_reclaim, wbc->for_writepages,
		   wbc->range_cyclic);

2462 2463 2464 2465 2466
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2467
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2468
		return 0;
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
		return -EROFS;

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	/*
	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
	 * This make sure small files blocks are allocated in
	 * single attempt. This ensure that small files
	 * get less fragmented.
	 */
	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
		wbc->nr_to_write = sbi->s_mb_stream_request;
	}
2493 2494
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2495

2496 2497
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2498
		index = mapping->writeback_index;
2499 2500 2501 2502 2503 2504
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2505
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2506

2507 2508 2509
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2510 2511 2512 2513 2514 2515 2516 2517
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2518
retry:
2519
	while (!ret && wbc->nr_to_write > 0) {
2520 2521 2522 2523 2524 2525 2526 2527

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2528
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2529

2530 2531 2532 2533
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2534
			printk(KERN_CRIT "%s: jbd2_start: "
2535 2536 2537
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
			dump_stack();
2538 2539
			goto out_writepages;
		}
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
		 * If we have a contigous extent of pages and we
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
		wbc->nr_to_write -= mpd.pages_written;
2572

2573
		ext4_journal_stop(handle);
2574

2575
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2576 2577 2578 2579
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2580
			jbd2_journal_force_commit_nested(sbi->s_journal);
2581 2582 2583
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2584 2585 2586 2587
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2588 2589
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2590
			ret = 0;
2591
			io_done = 1;
2592
		} else if (wbc->nr_to_write)
2593 2594 2595 2596 2597 2598
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2599
	}
2600 2601 2602 2603 2604 2605 2606
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2607 2608 2609 2610 2611 2612 2613
	if (pages_skipped != wbc->pages_skipped)
		printk(KERN_EMERG "This should not happen leaving %s "
				"with nr_to_write = %ld ret = %d\n",
				__func__, wbc->nr_to_write, ret);

	/* Update index */
	index += pages_written;
2614
	wbc->range_cyclic = range_cyclic;
2615 2616 2617 2618 2619 2620
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2621

2622
out_writepages:
2623 2624 2625
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
	wbc->nr_to_write -= nr_to_writebump;
2626 2627 2628 2629 2630 2631 2632 2633
	trace_mark(ext4_da_writepage_result,
		   "dev %s ino %lu ret %d pages_written %d "
		   "pages_skipped %ld congestion %d "
		   "more_io %d no_nrwrite_index_update %d",
		   inode->i_sb->s_id, inode->i_ino, ret,
		   pages_written, wbc->pages_skipped,
		   wbc->encountered_congestion, wbc->more_io,
		   wbc->no_nrwrite_index_update);
2634
	return ret;
2635 2636
}

2637 2638 2639 2640 2641 2642 2643 2644 2645
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2646
	 * counters can get slightly wrong with percpu_counter_batch getting
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2664 2665 2666 2667
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
2668
	int ret, retries = 0;
2669 2670 2671 2672 2673 2674 2675 2676 2677
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
2678 2679 2680 2681 2682 2683 2684

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2685 2686 2687 2688 2689

	trace_mark(ext4_da_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
2690
retry:
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2702 2703 2704
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2705

2706
	page = grab_cache_page_write_begin(mapping, index, flags);
2707 2708 2709 2710 2711
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2712 2713 2714 2715 2716 2717 2718 2719
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_da_get_block_prep);
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2720 2721 2722 2723 2724 2725 2726
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
2727 2728
	}

2729 2730
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2731 2732 2733 2734
out:
	return ret;
}

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
					 unsigned long offset)
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2750
	for (i = 0; i < idx; i++)
2751 2752 2753 2754 2755 2756 2757
		bh = bh->b_this_page;

	if (!buffer_mapped(bh) || (buffer_delay(bh)))
		return 0;
	return 1;
}

2758 2759 2760 2761 2762 2763 2764 2765 2766
static int ext4_da_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2767
	unsigned long start, end;
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2781

2782 2783 2784 2785
	trace_mark(ext4_da_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
2786
	start = pos & (PAGE_CACHE_SIZE - 1);
2787
	end = start + copied - 1;
2788 2789 2790 2791 2792 2793 2794 2795

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2807

2808 2809 2810
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2811 2812 2813 2814 2815
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2816
		}
2817
	}
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2839
	ext4_da_page_release_reservation(page, offset);
2840 2841 2842 2843 2844 2845 2846

out:
	ext4_invalidatepage(page, offset);

	return;
}

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
	 * 
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
	 * 
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2889

2890 2891 2892 2893 2894
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2895
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2896 2897 2898 2899 2900 2901 2902 2903
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2904
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2905 2906 2907 2908 2909
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2920
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2932
		 * NB. EXT4_STATE_JDATA is not set on files other than
2933 2934 2935 2936 2937 2938
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2939 2940
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
2941 2942 2943
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2944 2945 2946 2947 2948

		if (err)
			return 0;
	}

2949
	return generic_block_bmap(mapping, block, ext4_get_block);
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

/*
2965 2966 2967 2968 2969 2970 2971 2972
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
2973
 *
2974
 * In all journaling modes block_write_full_page() will start the I/O.
2975 2976 2977
 *
 * Problem:
 *
2978 2979
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
2980 2981 2982
 *
 * Similar for:
 *
2983
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2984
 *
2985
 * Same applies to ext4_get_block().  We will deadlock on various things like
2986
 * lock_journal and i_data_sem
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 */
3017
static int __ext4_normal_writepage(struct page *page,
3018 3019 3020 3021 3022
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;

	if (test_opt(inode->i_sb, NOBH))
3023 3024
		return nobh_writepage(page,
					ext4_normal_get_block_write, wbc);
3025
	else
3026 3027 3028
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
3029 3030
}

3031
static int ext4_normal_writepage(struct page *page,
3032 3033 3034
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
3035 3036 3037
	loff_t size = i_size_read(inode);
	loff_t len;

3038 3039 3040
	trace_mark(ext4_normal_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
3041 3042 3043 3044 3045
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3060 3061

	if (!ext4_journal_current_handle())
3062
		return __ext4_normal_writepage(page, wbc);
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				struct writeback_control *wbc)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
3075 3076 3077 3078
	handle_t *handle = NULL;
	int ret = 0;
	int err;

3079 3080
	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
					ext4_normal_get_block_write);
3081 3082 3083 3084 3085 3086 3087 3088 3089
	if (ret != 0)
		goto out_unlock;

	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
								bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
3090

3091
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3092 3093
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
3094
		goto out;
3095 3096
	}

3097 3098
	ret = walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3099

3100 3101 3102 3103
	err = walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, write_end_fn);
	if (ret == 0)
		ret = err;
3104
	err = ext4_journal_stop(handle);
3105 3106 3107
	if (!ret)
		ret = err;

3108 3109 3110 3111 3112 3113
	walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	goto out;

out_unlock:
3114
	unlock_page(page);
3115
out:
3116 3117 3118
	return ret;
}

3119
static int ext4_journalled_writepage(struct page *page,
3120 3121 3122
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
3123 3124
	loff_t size = i_size_read(inode);
	loff_t len;
3125

3126 3127 3128
	trace_mark(ext4_journalled_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
3129 3130 3131 3132 3133
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3148

3149
	if (ext4_journal_current_handle())
3150 3151
		goto no_write;

3152
	if (PageChecked(page)) {
3153 3154 3155 3156 3157
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
3158
		return __ext4_journalled_writepage(page, wbc);
3159 3160 3161 3162 3163 3164
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
3165 3166 3167
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
3168 3169 3170 3171
	}
no_write:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
3172
	return 0;
3173 3174
}

3175
static int ext4_readpage(struct file *file, struct page *page)
3176
{
3177
	return mpage_readpage(page, ext4_get_block);
3178 3179 3180
}

static int
3181
ext4_readpages(struct file *file, struct address_space *mapping,
3182 3183
		struct list_head *pages, unsigned nr_pages)
{
3184
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3185 3186
}

3187
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3188
{
3189
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3190 3191 3192 3193 3194 3195 3196

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3197 3198 3199 3200
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3201 3202
}

3203
static int ext4_releasepage(struct page *page, gfp_t wait)
3204
{
3205
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3206 3207 3208 3209

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3210 3211 3212 3213
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3214 3215 3216 3217 3218 3219 3220 3221
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3222 3223
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3224
 */
3225
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3226 3227 3228 3229 3230
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3231
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3232
	handle_t *handle;
3233 3234 3235 3236 3237 3238 3239 3240
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3241 3242 3243 3244 3245 3246
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3247
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3248 3249 3250 3251
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3252 3253
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3254
			ext4_journal_stop(handle);
3255 3256 3257 3258 3259
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3260
				 ext4_get_block, NULL);
3261

J
Jan Kara 已提交
3262
	if (orphan) {
3263 3264
		int err;

J
Jan Kara 已提交
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3275
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3276
		if (ret > 0) {
3277 3278 3279 3280 3281 3282 3283 3284
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3285
				 * ext4_mark_inode_dirty() to userspace.  So
3286 3287
				 * ignore it.
				 */
3288
				ext4_mark_inode_dirty(handle, inode);
3289 3290
			}
		}
3291
		err = ext4_journal_stop(handle);
3292 3293 3294 3295 3296 3297 3298 3299
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3300
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3312
static int ext4_journalled_set_page_dirty(struct page *page)
3313 3314 3315 3316 3317
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3318
static const struct address_space_operations ext4_ordered_aops = {
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3331 3332
};

3333
static const struct address_space_operations ext4_writeback_aops = {
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3346 3347
};

3348
static const struct address_space_operations ext4_journalled_aops = {
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_journalled_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3360 3361
};

3362
static const struct address_space_operations ext4_da_aops = {
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_da_writepage,
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3376 3377
};

3378
void ext4_set_aops(struct inode *inode)
3379
{
3380 3381 3382 3383
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3384
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3385 3386 3387
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3388 3389
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3390
	else
3391
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3392 3393 3394
}

/*
3395
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3396 3397 3398 3399
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3400
int ext4_block_truncate_page(handle_t *handle,
3401 3402
		struct address_space *mapping, loff_t from)
{
3403
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3404
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3405 3406
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3407 3408
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3409
	struct page *page;
3410 3411
	int err = 0;

3412 3413 3414 3415
	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
	if (!page)
		return -EINVAL;

3416 3417 3418 3419 3420 3421 3422 3423 3424
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3425
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3426
		zero_user(page, offset, length);
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3451
		ext4_get_block(inode, iblock, bh, 0);
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3472
	if (ext4_should_journal_data(inode)) {
3473
		BUFFER_TRACE(bh, "get write access");
3474
		err = ext4_journal_get_write_access(handle, bh);
3475 3476 3477 3478
		if (err)
			goto unlock;
	}

3479
	zero_user(page, offset, length);
3480 3481 3482 3483

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3484
	if (ext4_should_journal_data(inode)) {
3485
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3486
	} else {
3487
		if (ext4_should_order_data(inode))
3488
			err = ext4_jbd2_file_inode(handle, inode);
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3512
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3513 3514
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3515
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3516 3517 3518
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3519
 *	This is a helper function used by ext4_truncate().
3520 3521 3522 3523 3524 3525 3526
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3527
 *	past the truncation point is possible until ext4_truncate()
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3546
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
3547
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3548 3549 3550 3551 3552 3553 3554 3555
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3556
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3567
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3579
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3580 3581 3582 3583 3584 3585
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3586
	while (partial > p) {
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3602 3603
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3604 3605 3606 3607 3608
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3609 3610
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
3611
		}
3612 3613
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3614 3615
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3616
			ext4_journal_get_write_access(handle, bh);
3617 3618 3619 3620 3621
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
3622
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3623
	 * on them.  We've already detached each block from the file, so
3624
	 * bforget() in jbd2_journal_forget() should be safe.
3625
	 *
3626
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3627 3628 3629 3630
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3631
			struct buffer_head *tbh;
3632 3633

			*p = 0;
A
Aneesh Kumar K.V 已提交
3634 3635
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3636 3637 3638
		}
	}

3639
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3640 3641 3642
}

/**
3643
 * ext4_free_data - free a list of data blocks
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3661
static void ext4_free_data(handle_t *handle, struct inode *inode,
3662 3663 3664
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3665
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3666 3667 3668 3669
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3670
	ext4_fsblk_t nr;		    /* Current block # */
3671 3672 3673 3674 3675 3676
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3677
		err = ext4_journal_get_write_access(handle, this_bh);
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3695
				ext4_clear_blocks(handle, inode, this_bh,
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3706
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3707 3708 3709
				  count, block_to_free_p, p);

	if (this_bh) {
3710
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3711 3712 3713 3714 3715 3716 3717

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
3718
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3719
			ext4_handle_dirty_metadata(handle, inode, this_bh);
3720 3721 3722 3723 3724 3725
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3726 3727 3728 3729
	}
}

/**
3730
 *	ext4_free_branches - free an array of branches
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3742
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3743 3744 3745
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3746
	ext4_fsblk_t nr;
3747 3748
	__le32 *p;

3749
	if (ext4_handle_is_aborted(handle))
3750 3751 3752 3753
		return;

	if (depth--) {
		struct buffer_head *bh;
3754
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3769
				ext4_error(inode->i_sb, "ext4_free_branches",
3770
					   "Read failure, inode=%lu, block=%llu",
3771 3772 3773 3774 3775 3776
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3777
			ext4_free_branches(handle, inode, bh,
3778 3779 3780
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
3781 3782 3783 3784 3785

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3786
			 * jbd2_journal_revoke().
3787 3788 3789
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3790
			 * transaction then jbd2_journal_forget() will simply
3791
			 * brelse() it.  That means that if the underlying
3792
			 * block is reallocated in ext4_get_block(),
3793 3794 3795 3796 3797 3798 3799 3800
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3801
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
3819
			if (ext4_handle_is_aborted(handle))
3820 3821
				return;
			if (try_to_extend_transaction(handle, inode)) {
3822 3823
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
3824 3825
			}

3826
			ext4_free_blocks(handle, inode, nr, 1, 1);
3827 3828 3829 3830 3831 3832 3833

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
3834
				if (!ext4_journal_get_write_access(handle,
3835 3836 3837
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
3838 3839 3840 3841
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
3842 3843 3844 3845 3846 3847
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
3848
		ext4_free_data(handle, inode, parent_bh, first, last);
3849 3850 3851
	}
}

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3865
/*
3866
 * ext4_truncate()
3867
 *
3868 3869
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3886
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3887
 * that this inode's truncate did not complete and it will again call
3888 3889
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3890
 * that's fine - as long as they are linked from the inode, the post-crash
3891
 * ext4_truncate() run will find them and release them.
3892
 */
3893
void ext4_truncate(struct inode *inode)
3894 3895
{
	handle_t *handle;
3896
	struct ext4_inode_info *ei = EXT4_I(inode);
3897
	__le32 *i_data = ei->i_data;
3898
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3899
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
3900
	ext4_lblk_t offsets[4];
3901 3902 3903 3904
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
3905
	ext4_lblk_t last_block;
3906 3907
	unsigned blocksize = inode->i_sb->s_blocksize;

3908
	if (!ext4_can_truncate(inode))
3909 3910
		return;

3911 3912 3913
	if (inode->i_size == 0)
		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;

A
Aneesh Kumar K.V 已提交
3914
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3915
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
3916 3917
		return;
	}
A
Alex Tomas 已提交
3918

3919
	handle = start_transaction(inode);
3920
	if (IS_ERR(handle))
3921 3922 3923
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
3924
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3925

3926 3927 3928
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
3929

3930
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
3943
	if (ext4_orphan_add(handle, inode))
3944 3945
		goto out_stop;

3946 3947 3948 3949 3950
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
3951

3952
	ext4_discard_preallocations(inode);
3953

3954 3955 3956 3957 3958
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
3959
	 * ext4 *really* writes onto the disk inode.
3960 3961 3962 3963
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
3964 3965
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
3966 3967 3968
		goto do_indirects;
	}

3969
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3970 3971 3972 3973
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
3974
			ext4_free_branches(handle, inode, NULL,
3975 3976 3977 3978 3979 3980 3981 3982 3983
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
3984
			ext4_free_branches(handle, inode, partial->bh,
3985 3986 3987 3988 3989 3990
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
3991
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4002
		nr = i_data[EXT4_IND_BLOCK];
4003
		if (nr) {
4004 4005
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4006
		}
4007 4008
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4009
		if (nr) {
4010 4011
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4012
		}
4013 4014
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4015
		if (nr) {
4016 4017
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4018
		}
4019
	case EXT4_TIND_BLOCK:
4020 4021 4022
		;
	}

4023
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4024
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4025
	ext4_mark_inode_dirty(handle, inode);
4026 4027 4028 4029 4030 4031

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4032
		ext4_handle_sync(handle);
4033 4034 4035 4036 4037
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4038
	 * ext4_delete_inode(), and we allow that function to clean up the
4039 4040 4041
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4042
		ext4_orphan_del(handle, inode);
4043

4044
	ext4_journal_stop(handle);
4045 4046 4047
}

/*
4048
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4049 4050 4051 4052
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4053 4054
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4055
{
4056 4057 4058 4059 4060 4061
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4062
	iloc->bh = NULL;
4063 4064
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4065

4066 4067 4068
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4069 4070
		return -EIO;

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4081
	if (!bh) {
4082 4083 4084
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
4085 4086 4087 4088
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4112
			int i, start;
4113

4114
			start = inode_offset & ~(inodes_per_block - 1);
4115

4116 4117
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4130
			for (i = start; i < start + inodes_per_block; i++) {
4131 4132
				if (i == inode_offset)
					continue;
4133
				if (ext4_test_bit(i, bitmap_bh->b_data))
4134 4135 4136
					break;
			}
			brelse(bitmap_bh);
4137
			if (i == start + inodes_per_block) {
4138 4139 4140 4141 4142 4143 4144 4145 4146
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
			/* Make sure s_inode_readahead_blks is a power of 2 */
			while (EXT4_SB(sb)->s_inode_readahead_blks &
			       (EXT4_SB(sb)->s_inode_readahead_blks-1))
				EXT4_SB(sb)->s_inode_readahead_blks = 
				   (EXT4_SB(sb)->s_inode_readahead_blks &
				    (EXT4_SB(sb)->s_inode_readahead_blks-1));
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4169
				num -= ext4_itable_unused_count(sb, gdp);
4170 4171 4172 4173 4174 4175 4176
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4187 4188 4189
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4190 4191 4192 4193 4194 4195 4196 4197 4198
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4199
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4200 4201
{
	/* We have all inode data except xattrs in memory here. */
4202 4203
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4204 4205
}

4206
void ext4_set_inode_flags(struct inode *inode)
4207
{
4208
	unsigned int flags = EXT4_I(inode)->i_flags;
4209 4210

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4211
	if (flags & EXT4_SYNC_FL)
4212
		inode->i_flags |= S_SYNC;
4213
	if (flags & EXT4_APPEND_FL)
4214
		inode->i_flags |= S_APPEND;
4215
	if (flags & EXT4_IMMUTABLE_FL)
4216
		inode->i_flags |= S_IMMUTABLE;
4217
	if (flags & EXT4_NOATIME_FL)
4218
		inode->i_flags |= S_NOATIME;
4219
	if (flags & EXT4_DIRSYNC_FL)
4220 4221 4222
		inode->i_flags |= S_DIRSYNC;
}

4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4241 4242 4243 4244
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4245 4246
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4247 4248 4249 4250 4251 4252

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4253 4254 4255 4256 4257 4258
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4259 4260 4261 4262
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4263

4264
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4265
{
4266 4267
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4268
	struct ext4_inode_info *ei;
4269
	struct buffer_head *bh;
4270 4271
	struct inode *inode;
	long ret;
4272 4273
	int block;

4274 4275 4276 4277 4278 4279 4280
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
T
Theodore Ts'o 已提交
4281
#ifdef CONFIG_EXT4_FS_POSIX_ACL
4282 4283
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4284 4285
#endif

4286 4287
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4288 4289
		goto bad_inode;
	bh = iloc.bh;
4290
	raw_inode = ext4_raw_inode(&iloc);
4291 4292 4293
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4294
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4310
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4311
			/* this inode is deleted */
4312
			brelse(bh);
4313
			ret = -ESTALE;
4314 4315 4316 4317 4318 4319 4320 4321
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4322
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4323
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4324
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4325
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
4326 4327
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4328
	}
4329
	inode->i_size = ext4_isize(raw_inode);
4330 4331 4332
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4333
	ei->i_last_alloc_group = ~0;
4334 4335 4336 4337
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4338
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4339 4340 4341
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4342
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4343
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4344
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4345
		    EXT4_INODE_SIZE(inode->i_sb)) {
4346
			brelse(bh);
4347
			ret = -EIO;
4348
			goto bad_inode;
4349
		}
4350 4351
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4352 4353
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4354 4355
		} else {
			__le32 *magic = (void *)raw_inode +
4356
					EXT4_GOOD_OLD_INODE_SIZE +
4357
					ei->i_extra_isize;
4358 4359
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
4360 4361 4362 4363
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4364 4365 4366 4367 4368
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4369 4370 4371 4372 4373 4374 4375
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
	if (ei->i_flags & EXT4_EXTENTS_FL) {
		/* Validate extent which is part of inode */
		ret = ext4_ext_check_inode(inode);
		if (ret) {
			brelse(bh);
			goto bad_inode;
		}

	}

4386
	if (S_ISREG(inode->i_mode)) {
4387 4388 4389
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4390
	} else if (S_ISDIR(inode->i_mode)) {
4391 4392
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4393
	} else if (S_ISLNK(inode->i_mode)) {
4394
		if (ext4_inode_is_fast_symlink(inode)) {
4395
			inode->i_op = &ext4_fast_symlink_inode_operations;
4396 4397 4398
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4399 4400
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4401 4402
		}
	} else {
4403
		inode->i_op = &ext4_special_inode_operations;
4404 4405 4406 4407 4408 4409 4410
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
4411
	brelse(iloc.bh);
4412
	ext4_set_inode_flags(inode);
4413 4414
	unlock_new_inode(inode);
	return inode;
4415 4416

bad_inode:
4417 4418
	iget_failed(inode);
	return ERR_PTR(ret);
4419 4420
}

4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4434
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4435
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4436
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4437 4438 4439 4440 4441 4442
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4443 4444 4445 4446
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4447
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4448
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4449
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4450
	} else {
A
Aneesh Kumar K.V 已提交
4451 4452 4453 4454 4455
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4456
	}
4457
	return 0;
4458 4459
}

4460 4461 4462 4463 4464 4465 4466
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4467
static int ext4_do_update_inode(handle_t *handle,
4468
				struct inode *inode,
4469
				struct ext4_iloc *iloc)
4470
{
4471 4472
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4473 4474 4475 4476 4477
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4478 4479
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4480

4481
	ext4_get_inode_flags(ei);
4482
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4483
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4484 4485 4486 4487 4488 4489
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4490
		if (!ei->i_dtime) {
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4508 4509 4510 4511 4512 4513

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4514 4515
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4516
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4517 4518
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4519 4520
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4521 4522
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4523
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4540
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4541
			sb->s_dirt = 1;
4542 4543
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
4544
					EXT4_SB(sb)->s_sbh);
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4559
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4560 4561
		raw_inode->i_block[block] = ei->i_data[block];

4562 4563 4564 4565 4566
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4567
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4568 4569
	}

4570 4571
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4572 4573
	if (!err)
		err = rc;
4574
	ei->i_state &= ~EXT4_STATE_NEW;
4575 4576

out_brelse:
4577
	brelse(bh);
4578
	ext4_std_error(inode->i_sb, err);
4579 4580 4581 4582
	return err;
}

/*
4583
 * ext4_write_inode()
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4600
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4617
int ext4_write_inode(struct inode *inode, int wait)
4618 4619 4620 4621
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4622
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4623
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4624 4625 4626 4627 4628 4629 4630
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4631
	return ext4_force_commit(inode->i_sb);
4632 4633
}

4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
{
	int err = 0;

	mark_buffer_dirty(bh);
	if (inode && inode_needs_sync(inode)) {
		sync_dirty_buffer(bh);
		if (buffer_req(bh) && !buffer_uptodate(bh)) {
			ext4_error(inode->i_sb, __func__,
				   "IO error syncing inode, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long)bh->b_blocknr);
			err = -EIO;
		}
	}
	return err;
}

4653
/*
4654
 * ext4_setattr()
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4668 4669 4670 4671 4672 4673 4674 4675
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4676
 */
4677
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4693 4694
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4695 4696 4697 4698
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4699
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4700
		if (error) {
4701
			ext4_journal_stop(handle);
4702 4703 4704 4705 4706 4707 4708 4709
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4710 4711
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4712 4713
	}

4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4725 4726 4727 4728
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4729
		handle = ext4_journal_start(inode, 3);
4730 4731 4732 4733 4734
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4735 4736 4737
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4738 4739
		if (!error)
			error = rc;
4740
		ext4_journal_stop(handle);
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4757 4758 4759 4760
	}

	rc = inode_setattr(inode, attr);

4761
	/* If inode_setattr's call to ext4_truncate failed to get a
4762 4763 4764
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4765
		ext4_orphan_del(NULL, inode);
4766 4767

	if (!rc && (ia_valid & ATTR_MODE))
4768
		rc = ext4_acl_chmod(inode);
4769 4770

err_out:
4771
	ext4_std_error(inode->i_sb, error);
4772 4773 4774 4775 4776
	if (!error)
		error = rc;
	return error;
}

4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4803

4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4832 4833
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4834
}
4835

4836
/*
4837 4838 4839
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4840
 *
4841 4842 4843
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
4844
 *
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	int groups, gdpblocks;
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
		groups = EXT4_SB(inode->i_sb)->s_groups_count;
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
4892 4893
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4894
 *
4895
 * This could be called via ext4_write_begin()
4896
 *
4897
 * We need to consider the worse case, when
4898
 * one new block per extent.
4899
 */
A
Alex Tomas 已提交
4900
int ext4_writepage_trans_blocks(struct inode *inode)
4901
{
4902
	int bpp = ext4_journal_blocks_per_page(inode);
4903 4904
	int ret;

4905
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4906

4907
	/* Account for data blocks for journalled mode */
4908
	if (ext4_should_journal_data(inode))
4909
		ret += bpp;
4910 4911
	return ret;
}
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4927
/*
4928
 * The caller must have previously called ext4_reserve_inode_write().
4929 4930
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4931 4932
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
4933 4934 4935
{
	int err = 0;

4936 4937 4938
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4939 4940 4941
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4942
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4943
	err = ext4_do_update_inode(handle, inode, iloc);
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4954 4955
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4956
{
4957 4958 4959 4960 4961 4962 4963 4964 4965
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4966 4967
		}
	}
4968
	ext4_std_error(inode->i_sb, err);
4969 4970 4971
	return err;
}

4972 4973 4974 4975
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4976 4977 4978 4979
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5028
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5029
{
5030
	struct ext4_iloc iloc;
5031 5032 5033
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5034 5035

	might_sleep();
5036
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5037 5038
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
5054 5055
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5056
					ext4_warning(inode->i_sb, __func__,
5057 5058 5059
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5060 5061
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5062 5063 5064 5065
				}
			}
		}
	}
5066
	if (!err)
5067
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5068 5069 5070 5071
	return err;
}

/*
5072
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5073 5074 5075 5076 5077
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5078
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5079 5080 5081 5082 5083 5084
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5085
void ext4_dirty_inode(struct inode *inode)
5086
{
5087
	handle_t *current_handle = ext4_journal_current_handle();
5088 5089
	handle_t *handle;

5090 5091 5092 5093 5094
	if (!ext4_handle_valid(current_handle)) {
		ext4_mark_inode_dirty(current_handle, inode);
		return;
	}

5095
	handle = ext4_journal_start(inode, 2);
5096 5097 5098 5099 5100 5101
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
5102
		       __func__);
5103 5104 5105
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
5106
		ext4_mark_inode_dirty(handle, inode);
5107
	}
5108
	ext4_journal_stop(handle);
5109 5110 5111 5112 5113 5114 5115 5116
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5117
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5118 5119 5120
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5121
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5122
{
5123
	struct ext4_iloc iloc;
5124 5125 5126

	int err = 0;
	if (handle) {
5127
		err = ext4_get_inode_loc(inode, &iloc);
5128 5129
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5130
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5131
			if (!err)
5132 5133 5134
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5135 5136 5137
			brelse(iloc.bh);
		}
	}
5138
	ext4_std_error(inode->i_sb, err);
5139 5140 5141 5142
	return err;
}
#endif

5143
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5159
	journal = EXT4_JOURNAL(inode);
5160 5161
	if (!journal)
		return 0;
5162
	if (is_journal_aborted(journal))
5163 5164
		return -EROFS;

5165 5166
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5177
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5178
	else
5179 5180
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5181

5182
	jbd2_journal_unlock_updates(journal);
5183 5184 5185

	/* Finally we can mark the inode as dirty. */

5186
	handle = ext4_journal_start(inode, 1);
5187 5188 5189
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5190
	err = ext4_mark_inode_dirty(handle, inode);
5191
	ext4_handle_sync(handle);
5192 5193
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5194 5195 5196

	return err;
}
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
{
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5208
	void *fsdata;
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5247
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5248 5249 5250
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5251
			len, len, page, fsdata);
5252 5253 5254 5255 5256 5257 5258
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
	up_read(&inode->i_alloc_sem);
	return ret;
}