inode.c 169.9 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45 46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49 50
#include <trace/events/ext4.h>

51 52
#define MPAGE_DA_EXTENT_TAIL 0x01

53 54 55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56
	trace_ext4_begin_ordered_truncate(inode, new_size);
57 58 59 60
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
61 62
}

63
static void ext4_invalidatepage(struct page *page, unsigned long offset);
64 65 66 67 68 69
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
70

71 72 73
/*
 * Test whether an inode is a fast symlink.
 */
74
static int ext4_inode_is_fast_symlink(struct inode *inode)
75
{
76
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
77 78 79 80 81 82 83 84 85 86 87
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
88
	ext4_lblk_t needed;
89 90 91 92 93 94

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
95
	 * like a regular file for ext4 to try to delete it.  Things
96 97 98 99 100 101 102
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
103 104
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
105

106
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

123
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
124 125 126
	if (!IS_ERR(result))
		return result;

127
	ext4_std_error(inode->i_sb, PTR_ERR(result));
128 129 130 131 132 133 134 135 136 137 138
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
139 140 141
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
142
		return 0;
143
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
144 145 146 147 148 149 150 151 152
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
153
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
154
				 int nblocks)
155
{
156 157 158
	int ret;

	/*
159
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
160 161 162 163
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
164
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
165
	jbd_debug(2, "restarting handle %p\n", handle);
166 167 168
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
169
	ext4_discard_preallocations(inode);
170 171

	return ret;
172 173 174 175 176
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
177
void ext4_evict_inode(struct inode *inode)
178 179
{
	handle_t *handle;
180
	int err;
181

182
	trace_ext4_evict_inode(inode);
A
Al Viro 已提交
183 184 185 186 187
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

188
	if (!is_bad_inode(inode))
189
		dquot_initialize(inode);
190

191 192
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
193 194 195 196 197
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

198
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
199
	if (IS_ERR(handle)) {
200
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
201 202 203 204 205
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
206
		ext4_orphan_del(NULL, inode);
207 208 209 210
		goto no_delete;
	}

	if (IS_SYNC(inode))
211
		ext4_handle_sync(handle);
212
	inode->i_size = 0;
213 214
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
215
		ext4_warning(inode->i_sb,
216 217 218
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
219
	if (inode->i_blocks)
220
		ext4_truncate(inode);
221 222 223 224 225 226 227

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
228
	if (!ext4_handle_has_enough_credits(handle, 3)) {
229 230 231 232
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
233
			ext4_warning(inode->i_sb,
234 235 236
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
237
			ext4_orphan_del(NULL, inode);
238 239 240 241
			goto no_delete;
		}
	}

242
	/*
243
	 * Kill off the orphan record which ext4_truncate created.
244
	 * AKPM: I think this can be inside the above `if'.
245
	 * Note that ext4_orphan_del() has to be able to cope with the
246
	 * deletion of a non-existent orphan - this is because we don't
247
	 * know if ext4_truncate() actually created an orphan record.
248 249
	 * (Well, we could do this if we need to, but heck - it works)
	 */
250 251
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
252 253 254 255 256 257 258 259

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
260
	if (ext4_mark_inode_dirty(handle, inode))
261
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
262
		ext4_clear_inode(inode);
263
	else
264 265
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
266 267
	return;
no_delete:
A
Al Viro 已提交
268
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
284
 *	ext4_block_to_path - parse the block number into array of offsets
285 286 287
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
288 289
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
290
 *
291
 *	To store the locations of file's data ext4 uses a data structure common
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

314
static int ext4_block_to_path(struct inode *inode,
315 316
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
317
{
318 319 320
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
321 322 323 324 325
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

326
	if (i_block < direct_blocks) {
327 328
		offsets[n++] = i_block;
		final = direct_blocks;
329
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
330
		offsets[n++] = EXT4_IND_BLOCK;
331 332 333
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
334
		offsets[n++] = EXT4_DIND_BLOCK;
335 336 337 338
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
339
		offsets[n++] = EXT4_TIND_BLOCK;
340 341 342 343 344
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
345
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
346 347
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
348 349 350 351 352 353
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

354 355
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
356 357
				 __le32 *p, unsigned int max)
{
358
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
359
	__le32 *bref = p;
360 361
	unsigned int blk;

362
	while (bref < p+max) {
363
		blk = le32_to_cpu(*bref++);
364 365
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
366
						    blk, 1))) {
367
			es->s_last_error_block = cpu_to_le64(blk);
368 369
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
370 371 372 373
			return -EIO;
		}
	}
	return 0;
374 375 376 377
}


#define ext4_check_indirect_blockref(inode, bh)                         \
378 379
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
380 381 382
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
383 384
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
385 386
			      EXT4_NDIR_BLOCKS)

387
/**
388
 *	ext4_get_branch - read the chain of indirect blocks leading to data
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
413 414
 *
 *      Need to be called with
415
 *      down_read(&EXT4_I(inode)->i_data_sem)
416
 */
A
Aneesh Kumar K.V 已提交
417 418
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
419 420 421 422 423 424 425 426
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
427
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
428 429 430
	if (!p->key)
		goto no_block;
	while (--depth) {
431 432
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
433
			goto failure;
434

435 436 437 438 439 440 441 442 443 444 445
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
446

447
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
448 449 450 451 452 453 454 455 456 457 458 459 460
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
461
 *	ext4_find_near - find a place for allocation with sufficient locality
462 463 464
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
465
 *	This function returns the preferred place for block allocation.
466 467 468 469 470 471 472 473 474 475 476 477 478 479
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
480
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
481
{
482
	struct ext4_inode_info *ei = EXT4_I(inode);
483
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
484
	__le32 *p;
485
	ext4_fsblk_t bg_start;
486
	ext4_fsblk_t last_block;
487
	ext4_grpblk_t colour;
488 489
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
505 506 507 508 509 510 511
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
512 513
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

514 515 516 517 518 519 520
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

521 522
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
523
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
524 525
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
526 527 528 529
	return bg_start + colour;
}

/**
530
 *	ext4_find_goal - find a preferred place for allocation.
531 532 533 534
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
535
 *	Normally this function find the preferred place for block allocation,
536
 *	returns it.
537 538
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
539
 */
A
Aneesh Kumar K.V 已提交
540
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
541
				   Indirect *partial)
542
{
543 544
	ext4_fsblk_t goal;

545
	/*
546
	 * XXX need to get goal block from mballoc's data structures
547 548
	 */

549 550 551
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
552 553 554
}

/**
555
 *	ext4_blks_to_allocate: Look up the block map and count the number
556 557 558 559 560 561 562 563 564 565
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
566
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
567
				 int blocks_to_boundary)
568
{
569
	unsigned int count = 0;
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
593
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
594 595 596 597 598 599 600 601
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
602
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
603 604 605
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
606
{
607
	struct ext4_allocation_request ar;
608
	int target, i;
609
	unsigned long count = 0, blk_allocated = 0;
610
	int index = 0;
611
	ext4_fsblk_t current_block = 0;
612 613 614 615 616 617 618 619 620 621
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
622 623 624
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
625 626
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
627 628
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
629 630 631
		if (*err)
			goto failed_out;

632 633 634 635 636 637 638 639
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
640

641 642 643 644 645 646
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
647 648 649 650 651 652 653 654 655
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
656
			break;
657
		}
658 659
	}

660 661 662 663 664
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
665 666 667 668 669 670 671 672 673 674
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
675 676 677 678 679 680 681 682
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
683

684 685 686 687 688 689 690 691 692
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
693 694 695 696
			/*
			 * save the new block number
			 * for the first direct block
			 */
697 698
			new_blocks[index] = current_block;
		}
699
		blk_allocated += ar.len;
700 701
	}
allocated:
702
	/* total number of blocks allocated for direct blocks */
703
	ret = blk_allocated;
704 705 706
	*err = 0;
	return ret;
failed_out:
707
	for (i = 0; i < index; i++)
708
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
709 710 711 712
	return ret;
}

/**
713
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
714 715 716 717 718 719 720 721 722 723
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
724
 *	the same format as ext4_get_branch() would do. We are calling it after
725 726
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
727
 *	picture as after the successful ext4_get_block(), except that in one
728 729 730 731 732 733
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
734
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
735 736
 *	as described above and return 0.
 */
737
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
738 739 740
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
741 742 743 744 745 746
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
747 748
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
749

750
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
766 767 768 769 770
		if (unlikely(!bh)) {
			err = -EIO;
			goto failed;
		}

771 772 773
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
774
		err = ext4_journal_get_create_access(handle, bh);
775
		if (err) {
776 777
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
778 779 780 781 782 783 784 785
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
786
		if (n == indirect_blks) {
787 788 789 790 791 792
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
793
			for (i = 1; i < num; i++)
794 795 796 797 798 799
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

800 801
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
802 803 804 805 806 807 808
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
809
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
810
	for (i = 1; i <= n ; i++) {
811
		/*
812 813 814
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
815
		 */
816 817
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
818
	}
819 820
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
821

822
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
823 824 825 826 827

	return err;
}

/**
828
 * ext4_splice_branch - splice the allocated branch onto inode.
829 830 831
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
832
 *	ext4_alloc_branch)
833 834 835 836 837 838 839 840
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
841
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
842 843
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
844 845 846
{
	int i;
	int err = 0;
847
	ext4_fsblk_t current_block;
848 849 850 851 852 853 854 855

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
856
		err = ext4_journal_get_write_access(handle, where->bh);
857 858 859 860 861 862 863 864 865 866 867 868 869 870
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
871
			*(where->p + i) = cpu_to_le32(current_block++);
872 873 874 875 876 877 878 879 880 881 882
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
883
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
884 885
		 */
		jbd_debug(5, "splicing indirect only\n");
886 887
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
888 889 890 891 892 893
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
894
		ext4_mark_inode_dirty(handle, inode);
895 896 897 898 899 900
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
901
		/*
902 903 904
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
905
		 */
906 907
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
908
	}
909 910
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
911 912 913 914 915

	return err;
}

/*
916
 * The ext4_ind_map_blocks() function handles non-extents inodes
917
 * (i.e., using the traditional indirect/double-indirect i_blocks
918
 * scheme) for ext4_map_blocks().
919
 *
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
936
 *
937 938 939 940 941
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
942
 */
943 944
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
945
			       int flags)
946 947
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
948
	ext4_lblk_t offsets[4];
949 950
	Indirect chain[4];
	Indirect *partial;
951
	ext4_fsblk_t goal;
952 953 954 955
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
956
	ext4_fsblk_t first_block = 0;
957

958
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
959
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
960
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
961
				   &blocks_to_boundary);
962 963 964 965

	if (depth == 0)
		goto out;

966
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
967 968 969 970 971 972

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
973
		while (count < map->m_len && count <= blocks_to_boundary) {
974
			ext4_fsblk_t blk;
975 976 977 978 979 980 981 982

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
983
		goto got_it;
984 985 986
	}

	/* Next simple case - plain lookup or failed read of indirect block */
987
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
988 989 990
		goto cleanup;

	/*
991
	 * Okay, we need to do block allocation.
992
	*/
993
	goal = ext4_find_goal(inode, map->m_lblk, partial);
994 995 996 997 998 999 1000 1001

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
1002
	count = ext4_blks_to_allocate(partial, indirect_blks,
1003
				      map->m_len, blocks_to_boundary);
1004
	/*
1005
	 * Block out ext4_truncate while we alter the tree
1006
	 */
1007
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1008 1009
				&count, goal,
				offsets + (partial - chain), partial);
1010 1011

	/*
1012
	 * The ext4_splice_branch call will free and forget any buffers
1013 1014 1015 1016 1017 1018
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1019
		err = ext4_splice_branch(handle, inode, map->m_lblk,
1020
					 partial, indirect_blks, count);
1021
	if (err)
1022 1023
		goto cleanup;

1024
	map->m_flags |= EXT4_MAP_NEW;
1025 1026

	ext4_update_inode_fsync_trans(handle, inode, 1);
1027
got_it:
1028 1029 1030
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1031
	if (count > blocks_to_boundary)
1032
		map->m_flags |= EXT4_MAP_BOUNDARY;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
	return err;
}

1046 1047
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1048
{
1049
	return &EXT4_I(inode)->i_reserved_quota;
1050
}
1051
#endif
1052

1053 1054
/*
 * Calculate the number of metadata blocks need to reserve
1055
 * to allocate a new block at @lblocks for non extent file based file
1056
 */
1057 1058
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1059
{
1060
	struct ext4_inode_info *ei = EXT4_I(inode);
1061
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1062
	int blk_bits;
1063

1064 1065
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1066

1067
	lblock -= EXT4_NDIR_BLOCKS;
1068

1069 1070 1071 1072 1073 1074 1075
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1076
	blk_bits = order_base_2(lblock);
1077
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1078 1079 1080 1081
}

/*
 * Calculate the number of metadata blocks need to reserve
1082
 * to allocate a block located at @lblock
1083
 */
1084
static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1085
{
1086
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1087
		return ext4_ext_calc_metadata_amount(inode, lblock);
1088

1089
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1090 1091
}

1092 1093 1094 1095
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1096 1097
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1098 1099
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1100 1101 1102
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1103
	trace_ext4_da_update_reserve_space(inode, used);
1104 1105 1106 1107 1108 1109 1110 1111
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1112

1113 1114 1115
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1116 1117
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1118
	ei->i_allocated_meta_blocks = 0;
1119

1120 1121 1122 1123 1124 1125
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1126 1127
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1128
		ei->i_reserved_meta_blocks = 0;
1129
		ei->i_da_metadata_calc_len = 0;
1130
	}
1131
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1132

1133 1134
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1135
		dquot_claim_block(inode, used);
1136
	else {
1137 1138 1139
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1140
		 * not re-claim the quota for fallocated blocks.
1141
		 */
1142
		dquot_release_reservation_block(inode, used);
1143
	}
1144 1145 1146 1147 1148 1149

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1150 1151
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1152
		ext4_discard_preallocations(inode);
1153 1154
}

1155
static int __check_block_validity(struct inode *inode, const char *func,
1156 1157
				unsigned int line,
				struct ext4_map_blocks *map)
1158
{
1159 1160
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
1161 1162 1163 1164
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
1165 1166 1167 1168 1169
		return -EIO;
	}
	return 0;
}

1170
#define check_block_validity(inode, map)	\
1171
	__check_block_validity((inode), __func__, __LINE__, (map))
1172

1173
/*
1174 1175
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1209 1210 1211 1212 1213 1214 1215 1216 1217
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1218 1219 1220 1221 1222
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
1223 1224
			if (num >= max_pages) {
				done = 1;
1225
				break;
1226
			}
1227 1228 1229 1230 1231 1232
		}
		pagevec_release(&pvec);
	}
	return num;
}

1233
/*
1234
 * The ext4_map_blocks() function tries to look up the requested blocks,
1235
 * and returns if the blocks are already mapped.
1236 1237 1238 1239 1240
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1241 1242
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1255 1256
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1257 1258
{
	int retval;
1259

1260 1261 1262 1263
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1264
	/*
1265 1266
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1267 1268
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1269
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1270
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1271
	} else {
1272
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1273
	}
1274
	up_read((&EXT4_I(inode)->i_data_sem));
1275

1276
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1277
		int ret = check_block_validity(inode, map);
1278 1279 1280 1281
		if (ret != 0)
			return ret;
	}

1282
	/* If it is only a block(s) look up */
1283
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1284 1285 1286 1287 1288 1289 1290 1291 1292
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1293
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1294 1295
		return retval;

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1306
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1307

1308
	/*
1309 1310 1311 1312
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1313 1314
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1315 1316 1317 1318 1319 1320 1321

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1322
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1323
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1324 1325 1326 1327
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1328
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1329
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1330
	} else {
1331
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1332

1333
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1334 1335 1336 1337 1338
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1339
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1340
		}
1341

1342 1343 1344 1345 1346 1347 1348
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1349
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1350 1351
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1352
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1353
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1354

1355
	up_write((&EXT4_I(inode)->i_data_sem));
1356
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1357
		int ret = check_block_validity(inode, map);
1358 1359 1360
		if (ret != 0)
			return ret;
	}
1361 1362 1363
	return retval;
}

1364 1365 1366
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1367 1368
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1369
{
1370
	handle_t *handle = ext4_journal_current_handle();
1371
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1372
	int ret = 0, started = 0;
1373
	int dio_credits;
1374

1375 1376 1377 1378
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1379
		/* Direct IO write... */
1380 1381 1382
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1383
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1384
		if (IS_ERR(handle)) {
1385
			ret = PTR_ERR(handle);
1386
			return ret;
1387
		}
J
Jan Kara 已提交
1388
		started = 1;
1389 1390
	}

1391
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1392
	if (ret > 0) {
1393 1394 1395
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1396
		ret = 0;
1397
	}
J
Jan Kara 已提交
1398 1399
	if (started)
		ext4_journal_stop(handle);
1400 1401 1402
	return ret;
}

1403 1404 1405 1406 1407 1408 1409
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1410 1411 1412
/*
 * `handle' can be NULL if create is zero
 */
1413
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1414
				ext4_lblk_t block, int create, int *errp)
1415
{
1416 1417
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1418 1419 1420 1421
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1422 1423 1424 1425
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1437
	}
1438 1439 1440
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1455
		}
1456 1457 1458 1459 1460 1461 1462
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1463
	}
1464 1465 1466 1467 1468 1469
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1470 1471
}

1472
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1473
			       ext4_lblk_t block, int create, int *err)
1474
{
1475
	struct buffer_head *bh;
1476

1477
	bh = ext4_getblk(handle, inode, block, create, err);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1491 1492 1493 1494 1495 1496 1497
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1498 1499 1500 1501 1502 1503 1504
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1505 1506
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1507
	     block_start = block_end, bh = next) {
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1525
 * close off a transaction and start a new one between the ext4_get_block()
1526
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1527 1528
 * prepare_write() is the right place.
 *
1529 1530
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1531 1532 1533 1534
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1535
 * By accident, ext4 can be reentered when a transaction is open via
1536 1537 1538 1539 1540 1541
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1542
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1543 1544 1545 1546 1547
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1548
				       struct buffer_head *bh)
1549
{
1550 1551 1552
	int dirty = buffer_dirty(bh);
	int ret;

1553 1554
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1555
	/*
C
Christoph Hellwig 已提交
1556
	 * __block_write_begin() could have dirtied some buffers. Clean
1557 1558
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
1559
	 * by __block_write_begin() isn't a real problem here as we clear
1560 1561 1562 1563 1564 1565 1566 1567 1568
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
1569 1570
}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1581 1582
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1583
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1584 1585
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1586
{
1587
	struct inode *inode = mapping->host;
1588
	int ret, needed_blocks;
1589 1590
	handle_t *handle;
	int retries = 0;
1591
	struct page *page;
1592
	pgoff_t index;
1593
	unsigned from, to;
N
Nick Piggin 已提交
1594

1595
	trace_ext4_write_begin(inode, pos, len, flags);
1596 1597 1598 1599 1600
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1601
	index = pos >> PAGE_CACHE_SHIFT;
1602 1603
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1604 1605

retry:
1606 1607 1608 1609
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1610
	}
1611

1612 1613 1614 1615
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1616
	page = grab_cache_page_write_begin(mapping, index, flags);
1617 1618 1619 1620 1621 1622 1623
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1624
	if (ext4_should_dioread_nolock(inode))
1625
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1626
	else
1627
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1628 1629

	if (!ret && ext4_should_journal_data(inode)) {
1630 1631 1632
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1633 1634

	if (ret) {
1635 1636
		unlock_page(page);
		page_cache_release(page);
1637
		/*
1638
		 * __block_write_begin may have instantiated a few blocks
1639 1640
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1641 1642 1643
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1644
		 */
1645
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1646 1647 1648 1649
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1650
			ext4_truncate_failed_write(inode);
1651
			/*
1652
			 * If truncate failed early the inode might
1653 1654 1655 1656 1657 1658 1659
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1660 1661
	}

1662
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1663
		goto retry;
1664
out:
1665 1666 1667
	return ret;
}

N
Nick Piggin 已提交
1668 1669
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1670 1671 1672 1673
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1674
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1675 1676
}

1677
static int ext4_generic_write_end(struct file *file,
1678 1679 1680
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1723 1724 1725 1726
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1727
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1728 1729
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1730
static int ext4_ordered_write_end(struct file *file,
1731 1732 1733
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1734
{
1735
	handle_t *handle = ext4_journal_current_handle();
1736
	struct inode *inode = mapping->host;
1737 1738
	int ret = 0, ret2;

1739
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1740
	ret = ext4_jbd2_file_inode(handle, inode);
1741 1742

	if (ret == 0) {
1743
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1744
							page, fsdata);
1745
		copied = ret2;
1746
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1747 1748 1749 1750 1751
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1752 1753
		if (ret2 < 0)
			ret = ret2;
1754
	}
1755
	ret2 = ext4_journal_stop(handle);
1756 1757
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1758

1759
	if (pos + len > inode->i_size) {
1760
		ext4_truncate_failed_write(inode);
1761
		/*
1762
		 * If truncate failed early the inode might still be
1763 1764 1765 1766 1767 1768 1769 1770
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1771
	return ret ? ret : copied;
1772 1773
}

N
Nick Piggin 已提交
1774
static int ext4_writeback_write_end(struct file *file,
1775 1776 1777
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1778
{
1779
	handle_t *handle = ext4_journal_current_handle();
1780
	struct inode *inode = mapping->host;
1781 1782
	int ret = 0, ret2;

1783
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1784
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1785
							page, fsdata);
1786
	copied = ret2;
1787
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1788 1789 1790 1791 1792 1793
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1794 1795
	if (ret2 < 0)
		ret = ret2;
1796

1797
	ret2 = ext4_journal_stop(handle);
1798 1799
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1800

1801
	if (pos + len > inode->i_size) {
1802
		ext4_truncate_failed_write(inode);
1803
		/*
1804
		 * If truncate failed early the inode might still be
1805 1806 1807 1808 1809 1810 1811
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1812
	return ret ? ret : copied;
1813 1814
}

N
Nick Piggin 已提交
1815
static int ext4_journalled_write_end(struct file *file,
1816 1817 1818
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1819
{
1820
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1821
	struct inode *inode = mapping->host;
1822 1823
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1824
	unsigned from, to;
1825
	loff_t new_i_size;
1826

1827
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1828 1829 1830 1831 1832 1833 1834 1835
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1836 1837

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1838
				to, &partial, write_end_fn);
1839 1840
	if (!partial)
		SetPageUptodate(page);
1841 1842
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1843
		i_size_write(inode, pos+copied);
1844
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1845 1846
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1847
		ret2 = ext4_mark_inode_dirty(handle, inode);
1848 1849 1850
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1851

1852
	unlock_page(page);
1853
	page_cache_release(page);
1854
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1855 1856 1857 1858 1859 1860
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1861
	ret2 = ext4_journal_stop(handle);
1862 1863
	if (!ret)
		ret = ret2;
1864
	if (pos + len > inode->i_size) {
1865
		ext4_truncate_failed_write(inode);
1866
		/*
1867
		 * If truncate failed early the inode might still be
1868 1869 1870 1871 1872 1873
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1874 1875

	return ret ? ret : copied;
1876
}
1877

1878 1879 1880 1881
/*
 * Reserve a single block located at lblock
 */
static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1882
{
A
Aneesh Kumar K.V 已提交
1883
	int retries = 0;
1884
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1885
	struct ext4_inode_info *ei = EXT4_I(inode);
1886
	unsigned long md_needed;
1887
	int ret;
1888 1889 1890 1891 1892 1893

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1894
repeat:
1895
	spin_lock(&ei->i_block_reservation_lock);
1896
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1897
	trace_ext4_da_reserve_space(inode, md_needed);
1898
	spin_unlock(&ei->i_block_reservation_lock);
1899

1900
	/*
1901 1902 1903
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1904
	 */
1905
	ret = dquot_reserve_block(inode, 1);
1906 1907
	if (ret)
		return ret;
1908 1909 1910 1911
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1912
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1913
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1914 1915 1916 1917
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1918 1919
		return -ENOSPC;
	}
1920
	spin_lock(&ei->i_block_reservation_lock);
1921
	ei->i_reserved_data_blocks++;
1922 1923
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1924

1925 1926 1927
	return 0;       /* success */
}

1928
static void ext4_da_release_space(struct inode *inode, int to_free)
1929 1930
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1931
	struct ext4_inode_info *ei = EXT4_I(inode);
1932

1933 1934 1935
	if (!to_free)
		return;		/* Nothing to release, exit */

1936
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1937

L
Li Zefan 已提交
1938
	trace_ext4_da_release_space(inode, to_free);
1939
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1940
		/*
1941 1942 1943 1944
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1945
		 */
1946 1947 1948 1949 1950 1951
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1952
	}
1953
	ei->i_reserved_data_blocks -= to_free;
1954

1955 1956 1957 1958 1959 1960
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1961 1962
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1963
		ei->i_reserved_meta_blocks = 0;
1964
		ei->i_da_metadata_calc_len = 0;
1965
	}
1966

1967
	/* update fs dirty data blocks counter */
1968
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1969 1970

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1971

1972
	dquot_release_reservation_block(inode, to_free);
1973 1974 1975
}

static void ext4_da_page_release_reservation(struct page *page,
1976
					     unsigned long offset)
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1993
	ext4_da_release_space(page->mapping->host, to_release);
1994
}
1995

1996 1997 1998 1999 2000 2001
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
2002
 * them with writepage() call back
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
2013 2014
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
2015
{
2016 2017 2018 2019 2020
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2021
	loff_t size = i_size_read(inode);
2022 2023
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
2024
	int journal_data = ext4_should_journal_data(inode);
2025
	sector_t pblock = 0, cur_logical = 0;
2026
	struct ext4_io_submit io_submit;
2027 2028

	BUG_ON(mpd->next_page <= mpd->first_page);
2029
	memset(&io_submit, 0, sizeof(io_submit));
2030 2031 2032
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
2033
	 * If we look at mpd->b_blocknr we would only be looking
2034 2035
	 * at the currently mapped buffer_heads.
	 */
2036 2037 2038
	index = mpd->first_page;
	end = mpd->next_page - 1;

2039
	pagevec_init(&pvec, 0);
2040
	while (index <= end) {
2041
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2042 2043 2044
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
2045
			int commit_write = 0, redirty_page = 0;
2046 2047
			struct page *page = pvec.pages[i];

2048 2049 2050
			index = page->index;
			if (index > end)
				break;
2051 2052 2053 2054 2055

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
2056 2057 2058 2059 2060 2061
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
2062 2063 2064 2065 2066
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2067
			/*
2068 2069
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
2070
			 * __block_write_begin.  If this fails,
2071
			 * redirty the page and move on.
2072
			 */
2073
			if (!page_has_buffers(page)) {
2074
				if (__block_write_begin(page, 0, len,
2075 2076 2077 2078 2079 2080 2081 2082 2083
						noalloc_get_block_write)) {
				redirty_page:
					redirty_page_for_writepage(mpd->wbc,
								   page);
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
2084

2085 2086
			bh = page_bufs = page_buffers(page);
			block_start = 0;
2087
			do {
2088
				if (!bh)
2089
					goto redirty_page;
2090 2091 2092
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
2093 2094 2095 2096
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
2097 2098 2099 2100 2101 2102 2103
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
2104

2105 2106 2107
				/* redirty page if block allocation undone */
				if (buffer_delay(bh) || buffer_unwritten(bh))
					redirty_page = 1;
2108 2109
				bh = bh->b_this_page;
				block_start += bh->b_size;
2110 2111
				cur_logical++;
				pblock++;
2112 2113 2114 2115
			} while (bh != page_bufs);

			if (redirty_page)
				goto redirty_page;
2116 2117 2118 2119 2120

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

2121 2122 2123 2124 2125 2126
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
2127
				err = __ext4_journalled_writepage(page, len);
2128 2129 2130
			else
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
2131 2132

			if (!err)
2133
				mpd->pages_written++;
2134 2135 2136 2137 2138 2139 2140 2141 2142
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
2143
	ext4_io_submit(&io_submit);
2144 2145 2146
	return ret;
}

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2165
			if (page->index > end)
2166 2167 2168 2169 2170 2171 2172
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2173 2174
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2175 2176 2177 2178
	}
	return;
}

2179 2180 2181
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2194 2195 2196
	return;
}

2197
/*
2198 2199
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
2200
 *
2201
 * @mpd - bh describing space
2202 2203 2204 2205
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2206
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2207
{
2208
	int err, blks, get_blocks_flags;
2209
	struct ext4_map_blocks map, *mapp = NULL;
2210 2211 2212 2213
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2214 2215

	/*
2216 2217
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
2218
	 */
2219 2220 2221 2222 2223
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
2224 2225 2226 2227

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2228
	/*
2229
	 * Call ext4_map_blocks() to allocate any delayed allocation
2230 2231 2232 2233 2234 2235 2236 2237
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
2238
	 * want to change *many* call functions, so ext4_map_blocks()
2239 2240 2241 2242 2243 2244
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2245
	 */
2246 2247
	map.m_lblk = next;
	map.m_len = max_blocks;
2248
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2249 2250
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2251
	if (mpd->b_state & (1 << BH_Delay))
2252 2253
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2254
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2255
	if (blks < 0) {
2256 2257
		struct super_block *sb = mpd->inode->i_sb;

2258
		err = blks;
2259
		/*
2260 2261 2262 2263
		 * If get block returns EAGAIN or ENOSPC and there
		 * appears to be free blocks we will call
		 * ext4_writepage() for all of the pages which will
		 * just redirty the pages.
2264 2265
		 */
		if (err == -EAGAIN)
2266
			goto submit_io;
2267 2268

		if (err == -ENOSPC &&
2269
		    ext4_count_free_blocks(sb)) {
2270
			mpd->retval = err;
2271
			goto submit_io;
2272 2273
		}

2274
		/*
2275 2276 2277 2278 2279
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2280
		 */
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2292
		}
2293
		/* invalidate all the pages */
2294
		ext4_da_block_invalidatepages(mpd, next,
2295
				mpd->b_size >> mpd->inode->i_blkbits);
2296
		return;
2297
	}
2298 2299
	BUG_ON(blks == 0);

2300
	mapp = &map;
2301 2302 2303
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2304

2305 2306 2307
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2308

2309 2310 2311
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
2312 2313
			/* This only happens if the journal is aborted */
			return;
2314 2315 2316
	}

	/*
2317
	 * Update on-disk size along with block allocation.
2318 2319 2320 2321 2322 2323
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
2324 2325 2326 2327 2328
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
2329 2330
	}

2331
submit_io:
2332
	mpage_da_submit_io(mpd, mapp);
2333
	mpd->io_done = 1;
2334 2335
}

2336 2337
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2349 2350
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2351 2352
{
	sector_t next;
2353
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2354

2355 2356 2357 2358
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
2359
	 * ext4_map_blocks() multiple times in a loop
2360 2361 2362 2363
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2364
	/* check if thereserved journal credits might overflow */
2365
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2386 2387 2388
	/*
	 * First block in the extent
	 */
2389 2390 2391 2392
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2393 2394 2395
		return;
	}

2396
	next = mpd->b_blocknr + nrblocks;
2397 2398 2399
	/*
	 * Can we merge the block to our big extent?
	 */
2400 2401
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2402 2403 2404
		return;
	}

2405
flush_it:
2406 2407 2408 2409
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2410
	mpage_da_map_and_submit(mpd);
2411
	return;
2412 2413
}

2414
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2415
{
2416
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2417 2418
}

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
2429 2430
				struct writeback_control *wbc,
				struct mpage_da_data *mpd)
2431 2432
{
	struct inode *inode = mpd->inode;
2433
	struct buffer_head *bh, *head;
2434 2435 2436 2437 2438 2439 2440 2441
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2442
		 * and start IO on them
2443 2444
		 */
		if (mpd->next_page != mpd->first_page) {
2445
			mpage_da_map_and_submit(mpd);
2446 2447 2448 2449 2450 2451
			/*
			 * skip rest of the page in the page_vec
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2462 2463 2464
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2465 2466 2467 2468 2469 2470 2471
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2472 2473
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2474 2475
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2476 2477 2478 2479 2480 2481 2482 2483
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2484 2485 2486 2487
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2488
			 * with the page in ext4_writepage
2489
			 */
2490
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2491 2492 2493
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2494 2495
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2496 2497 2498 2499 2500 2501 2502 2503 2504
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2505 2506
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2507
			}
2508 2509 2510 2511 2512 2513 2514 2515
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2516 2517 2518
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2519 2520 2521 2522 2523 2524 2525
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2526 2527
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2528
				  struct buffer_head *bh, int create)
2529
{
2530
	struct ext4_map_blocks map;
2531
	int ret = 0;
2532 2533 2534 2535
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2536 2537

	BUG_ON(create == 0);
2538 2539 2540 2541
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2542 2543 2544 2545 2546 2547

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2548 2549 2550 2551 2552 2553
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2554
		/*
C
Christoph Hellwig 已提交
2555
		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2556
		 */
2557
		ret = ext4_da_reserve_space(inode, iblock);
2558 2559 2560 2561
		if (ret)
			/* not enough space to reserve */
			return ret;

2562 2563 2564 2565
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2566 2567
	}

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
		set_buffer_mapped(bh);
	}
	return 0;
2582
}
2583

2584 2585 2586
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
2587
 * callback function for block_write_begin() and block_write_full_page().
2588
 * These functions should only try to map a single block at a time.
2589 2590 2591 2592 2593
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2594 2595 2596
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2597 2598
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2599 2600
				   struct buffer_head *bh_result, int create)
{
2601
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2602
	return _ext4_get_block(inode, iblock, bh_result, 0);
2603 2604
}

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2627
	ClearPageChecked(page);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2653
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2654 2655 2656 2657
out:
	return ret;
}

2658 2659 2660
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2661
/*
2662 2663 2664 2665 2666 2667 2668 2669 2670
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2671 2672 2673 2674 2675
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2701
 */
2702
static int ext4_writepage(struct page *page,
2703
			  struct writeback_control *wbc)
2704
{
T
Theodore Ts'o 已提交
2705
	int ret = 0, commit_write = 0;
2706
	loff_t size;
2707
	unsigned int len;
2708
	struct buffer_head *page_bufs = NULL;
2709 2710
	struct inode *inode = page->mapping->host;

2711
	trace_ext4_writepage(inode, page);
2712 2713 2714 2715 2716
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2717

T
Theodore Ts'o 已提交
2718 2719
	/*
	 * If the page does not have buffers (for whatever reason),
2720
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
2721 2722
	 * fails, redirty the page and move on.
	 */
2723
	if (!page_has_buffers(page)) {
2724
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2725 2726
					noalloc_get_block_write)) {
		redirty_page:
2727 2728 2729 2730
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2731 2732 2733 2734 2735
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2736
		/*
2737 2738 2739 2740
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
2741
		 */
T
Theodore Ts'o 已提交
2742 2743 2744
		goto redirty_page;
	}
	if (commit_write)
2745
		/* now mark the buffer_heads as dirty and uptodate */
2746
		block_commit_write(page, 0, len);
2747

2748
	if (PageChecked(page) && ext4_should_journal_data(inode))
2749 2750 2751 2752
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2753
		return __ext4_journalled_writepage(page, len);
2754

T
Theodore Ts'o 已提交
2755
	if (buffer_uninit(page_bufs)) {
2756 2757 2758 2759
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2760 2761
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2762 2763 2764 2765

	return ret;
}

2766
/*
2767 2768 2769 2770 2771
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2772
 */
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2784
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2785 2786 2787 2788 2789
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2790

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
 * address space and call the callback function (which usually writes
 * the pages).
 *
 * This is a forked version of write_cache_pages().  Differences:
 *	Range cyclic is ignored.
 *	no_nrwrite_index_update is always presumed true
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2802 2803
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2804 2805 2806 2807
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
2808
	unsigned nr_pages;
2809 2810 2811
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	long nr_to_write = wbc->nr_to_write;
2812
	int tag;
2813 2814 2815 2816 2817

	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2818 2819 2820 2821 2822
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2823
	*done_index = index;
2824 2825 2826
	while (!done && (index <= end)) {
		int i;

2827
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				done = 1;
				break;
			}

2847 2848
			*done_index = page->index + 1;

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

			ret = __mpage_da_writepage(page, wbc, mpd);
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					done = 1;
					break;
				}
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
				    wbc->sync_mode == WB_SYNC_NONE) {
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
					done = 1;
					break;
				}
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	return ret;
}


2918
static int ext4_da_writepages(struct address_space *mapping,
2919
			      struct writeback_control *wbc)
2920
{
2921 2922
	pgoff_t	index;
	int range_whole = 0;
2923
	handle_t *handle = NULL;
2924
	struct mpage_da_data mpd;
2925
	struct inode *inode = mapping->host;
2926 2927
	int pages_written = 0;
	long pages_skipped;
2928
	unsigned int max_pages;
2929
	int range_cyclic, cycled = 1, io_done = 0;
2930 2931
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2932
	loff_t range_start = wbc->range_start;
2933
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2934
	pgoff_t done_index = 0;
2935
	pgoff_t end;
2936

2937
	trace_ext4_da_writepages(inode, wbc);
2938

2939 2940 2941 2942 2943
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2944
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2945
		return 0;
2946 2947 2948 2949 2950

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2951
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2952 2953 2954 2955 2956
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2957
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2958 2959
		return -EROFS;

2960 2961
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2962

2963 2964
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2965
		index = mapping->writeback_index;
2966 2967 2968 2969 2970
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2971 2972
		end = -1;
	} else {
2973
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2974 2975
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2976

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2994 2995 2996 2997 2998 2999
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

3010 3011 3012
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

3013 3014
	pages_skipped = wbc->pages_skipped;

3015
retry:
3016 3017 3018
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);

3019
	while (!ret && wbc->nr_to_write > 0) {
3020 3021 3022 3023 3024 3025 3026 3027

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
3028
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3029

3030 3031 3032 3033
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
3034
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3035
			       "%ld pages, ino %lu; err %d", __func__,
3036
				wbc->nr_to_write, inode->i_ino, ret);
3037 3038
			goto out_writepages;
		}
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
3057
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3058
		/*
3059
		 * If we have a contiguous extent of pages and we
3060 3061 3062 3063
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3064
			mpage_da_map_and_submit(&mpd);
3065 3066
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3067
		trace_ext4_da_write_pages(inode, &mpd);
3068
		wbc->nr_to_write -= mpd.pages_written;
3069

3070
		ext4_journal_stop(handle);
3071

3072
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3073 3074 3075 3076
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3077
			jbd2_journal_force_commit_nested(sbi->s_journal);
3078 3079 3080
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3081 3082 3083 3084
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3085 3086
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
3087
			ret = 0;
3088
			io_done = 1;
3089
		} else if (wbc->nr_to_write)
3090 3091 3092 3093 3094 3095
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3096
	}
3097 3098 3099 3100 3101 3102 3103
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3104
	if (pages_skipped != wbc->pages_skipped)
3105 3106
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
3107
			 "with nr_to_write = %ld ret = %d",
3108
			 __func__, wbc->nr_to_write, ret);
3109 3110

	/* Update index */
3111
	wbc->range_cyclic = range_cyclic;
3112 3113 3114 3115 3116
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
3117
		mapping->writeback_index = done_index;
3118

3119
out_writepages:
3120
	wbc->nr_to_write -= nr_to_writebump;
3121
	wbc->range_start = range_start;
3122
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3123
	return ret;
3124 3125
}

3126 3127 3128 3129 3130 3131 3132 3133 3134
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3135
	 * counters can get slightly wrong with percpu_counter_batch getting
3136 3137 3138 3139 3140 3141 3142 3143 3144
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3145 3146
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3147 3148 3149
		 */
		return 1;
	}
3150 3151 3152 3153 3154 3155 3156
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3157 3158 3159
	return 0;
}

3160
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3161 3162
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3163
{
3164
	int ret, retries = 0;
3165 3166 3167 3168 3169 3170
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3171 3172 3173 3174 3175 3176 3177

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3178
	trace_ext4_da_write_begin(inode, pos, len, flags);
3179
retry:
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3191 3192 3193
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3194

3195
	page = grab_cache_page_write_begin(mapping, index, flags);
3196 3197 3198 3199 3200
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3201 3202
	*pagep = page;

3203
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3204 3205 3206 3207
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3208 3209 3210 3211 3212 3213
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3214
			ext4_truncate_failed_write(inode);
3215 3216
	}

3217 3218
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3219 3220 3221 3222
out:
	return ret;
}

3223 3224 3225 3226 3227
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3228
					    unsigned long offset)
3229 3230 3231 3232 3233 3234 3235 3236 3237
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3238
	for (i = 0; i < idx; i++)
3239 3240
		bh = bh->b_this_page;

3241
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3242 3243 3244 3245
		return 0;
	return 1;
}

3246
static int ext4_da_write_end(struct file *file,
3247 3248 3249
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3250 3251 3252 3253 3254
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3255
	unsigned long start, end;
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3269

3270
	trace_ext4_da_write_end(inode, pos, len, copied);
3271
	start = pos & (PAGE_CACHE_SIZE - 1);
3272
	end = start + copied - 1;
3273 3274 3275 3276 3277 3278 3279 3280

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3292

3293 3294 3295
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3296 3297 3298 3299 3300
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3301
		}
3302
	}
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3324
	ext4_da_page_release_reservation(page, offset);
3325 3326 3327 3328 3329 3330 3331

out:
	ext4_invalidatepage(page, offset);

	return;
}

3332 3333 3334 3335 3336
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3337 3338
	trace_ext4_alloc_da_blocks(inode);

3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3349
	 *
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3369
	 *
3370 3371 3372 3373 3374 3375
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3376

3377 3378 3379 3380 3381
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3382
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3383 3384 3385 3386 3387 3388 3389 3390
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3391
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3392 3393 3394 3395 3396
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3407 3408
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3420
		 * NB. EXT4_STATE_JDATA is not set on files other than
3421 3422 3423 3424 3425 3426
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3427
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3428
		journal = EXT4_JOURNAL(inode);
3429 3430 3431
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3432 3433 3434 3435 3436

		if (err)
			return 0;
	}

3437
	return generic_block_bmap(mapping, block, ext4_get_block);
3438 3439
}

3440
static int ext4_readpage(struct file *file, struct page *page)
3441
{
3442
	return mpage_readpage(page, ext4_get_block);
3443 3444 3445
}

static int
3446
ext4_readpages(struct file *file, struct address_space *mapping,
3447 3448
		struct list_head *pages, unsigned nr_pages)
{
3449
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3450 3451
}

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3472
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3473
{
3474
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3475

3476 3477 3478 3479 3480
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3481 3482 3483 3484 3485 3486
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3487 3488 3489 3490
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3491 3492
}

3493
static int ext4_releasepage(struct page *page, gfp_t wait)
3494
{
3495
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3496 3497 3498 3499

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3500 3501 3502 3503
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3504 3505 3506
}

/*
3507 3508
 * O_DIRECT for ext3 (or indirect map) based files
 *
3509 3510 3511 3512 3513
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3514 3515
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3516
 */
3517
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3518 3519
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3520 3521 3522
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3523
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3524
	handle_t *handle;
3525 3526 3527
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3528
	int retries = 0;
3529 3530 3531 3532 3533

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3534 3535 3536 3537 3538 3539
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3540
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3541 3542 3543 3544
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3545 3546
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3547
			ext4_journal_stop(handle);
3548 3549 3550
		}
	}

3551
retry:
3552
	if (rw == READ && ext4_should_dioread_nolock(inode))
3553
		ret = __blockdev_direct_IO(rw, iocb, inode,
3554 3555
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3556 3557
				 ext4_get_block, NULL, NULL, 0);
	else {
3558 3559
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3560
				 offset, nr_segs,
3561
				 ext4_get_block, NULL);
3562 3563 3564 3565 3566 3567 3568 3569 3570

		if (unlikely((rw & WRITE) && ret < 0)) {
			loff_t isize = i_size_read(inode);
			loff_t end = offset + iov_length(iov, nr_segs);

			if (end > isize)
				vmtruncate(inode, isize);
		}
	}
3571 3572
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3573

J
Jan Kara 已提交
3574
	if (orphan) {
3575 3576
		int err;

J
Jan Kara 已提交
3577 3578 3579 3580 3581 3582 3583
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3584 3585 3586
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3587 3588 3589
			goto out;
		}
		if (inode->i_nlink)
3590
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3591
		if (ret > 0) {
3592 3593 3594 3595 3596 3597 3598 3599
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3600
				 * ext4_mark_inode_dirty() to userspace.  So
3601 3602
				 * ignore it.
				 */
3603
				ext4_mark_inode_dirty(handle, inode);
3604 3605
			}
		}
3606
		err = ext4_journal_stop(handle);
3607 3608 3609 3610 3611 3612 3613
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3614 3615 3616 3617 3618
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3619
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3620 3621
		   struct buffer_head *bh_result, int create)
{
3622
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3623
		   inode->i_ino, create);
3624 3625
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3626 3627 3628
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3629 3630
			    ssize_t size, void *private, int ret,
			    bool is_async)
3631 3632 3633
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3634 3635
	unsigned long flags;
	struct ext4_inode_info *ei;
3636

3637 3638
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3639
		goto out;
3640

3641 3642 3643 3644 3645 3646
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3647
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3648 3649
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3650 3651 3652 3653
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3654 3655
	}

3656 3657
	io_end->offset = offset;
	io_end->size = size;
3658 3659 3660 3661
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3662 3663
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3664
	/* Add the io_end to per-inode completed aio dio list*/
3665 3666 3667 3668
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3669 3670 3671

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
3672 3673
	iocb->private = NULL;
}
3674

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

3692
	io_end->flag = EXT4_IO_END_UNWRITTEN;
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
		if (printk_ratelimit())
			printk(KERN_WARNING "%s: allocation fail\n", __func__);
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3740 3741 3742 3743 3744 3745 3746 3747 3748
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3749 3750 3751 3752
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3771 3772 3773
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3774 3775
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3776 3777
		 *
 		 * As to previously fallocated extents, ext4 get_block
3778 3779 3780
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3781 3782 3783 3784 3785 3786 3787 3788
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3789
 		 */
3790 3791 3792
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3793
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3794 3795 3796 3797
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
3798
			 * direct IO, so that later ext4_map_blocks()
3799 3800 3801 3802 3803 3804 3805
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3806 3807 3808
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3809
					 ext4_get_block_write,
3810
					 ext4_end_io_dio);
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3830 3831
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3832
			int err;
3833 3834 3835 3836
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3837 3838 3839 3840
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3841
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3842
		}
3843 3844
		return ret;
	}
3845 3846

	/* for write the the end of file case, we fall back to old way */
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

3857
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3858 3859 3860 3861 3862
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

3863
/*
3864
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3876
static int ext4_journalled_set_page_dirty(struct page *page)
3877 3878 3879 3880 3881
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3882
static const struct address_space_operations ext4_ordered_aops = {
3883 3884
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3885
	.writepage		= ext4_writepage,
3886 3887 3888 3889 3890 3891 3892 3893 3894
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3895
	.error_remove_page	= generic_error_remove_page,
3896 3897
};

3898
static const struct address_space_operations ext4_writeback_aops = {
3899 3900
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3901
	.writepage		= ext4_writepage,
3902 3903 3904 3905 3906 3907 3908 3909 3910
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3911
	.error_remove_page	= generic_error_remove_page,
3912 3913
};

3914
static const struct address_space_operations ext4_journalled_aops = {
3915 3916
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3917
	.writepage		= ext4_writepage,
3918 3919 3920 3921 3922 3923 3924 3925
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3926
	.error_remove_page	= generic_error_remove_page,
3927 3928
};

3929
static const struct address_space_operations ext4_da_aops = {
3930 3931
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3932
	.writepage		= ext4_writepage,
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3943
	.error_remove_page	= generic_error_remove_page,
3944 3945
};

3946
void ext4_set_aops(struct inode *inode)
3947
{
3948 3949 3950 3951
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3952
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3953 3954 3955
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3956 3957
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3958
	else
3959
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3960 3961 3962
}

/*
3963
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3964 3965 3966 3967
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3968
int ext4_block_truncate_page(handle_t *handle,
3969 3970
		struct address_space *mapping, loff_t from)
{
3971
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3972
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3973 3974
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3975 3976
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3977
	struct page *page;
3978 3979
	int err = 0;

3980 3981
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3982 3983 3984
	if (!page)
		return -EINVAL;

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4009
		ext4_get_block(inode, iblock, bh, 0);
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4030
	if (ext4_should_journal_data(inode)) {
4031
		BUFFER_TRACE(bh, "get write access");
4032
		err = ext4_journal_get_write_access(handle, bh);
4033 4034 4035 4036
		if (err)
			goto unlock;
	}

4037
	zero_user(page, offset, length);
4038 4039 4040 4041

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4042
	if (ext4_should_journal_data(inode)) {
4043
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4044
	} else {
4045
		if (ext4_should_order_data(inode))
4046
			err = ext4_jbd2_file_inode(handle, inode);
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4070
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4071 4072
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4073
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4074 4075 4076
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4077
 *	This is a helper function used by ext4_truncate().
4078 4079 4080 4081 4082 4083 4084
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4085
 *	past the truncation point is possible until ext4_truncate()
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4104
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4105 4106
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4107 4108 4109 4110 4111
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4112
	/* Make k index the deepest non-null offset + 1 */
4113 4114
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4115
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4126
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4138
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4139 4140 4141 4142 4143 4144
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4145
	while (partial > p) {
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4161 4162 4163 4164 4165
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4166 4167
{
	__le32 *p;
4168
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4169 4170 4171

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4172

4173 4174
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4175 4176 4177
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4178 4179 4180
		return 1;
	}

4181 4182
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4183 4184
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4185
		}
4186
		ext4_mark_inode_dirty(handle, inode);
4187 4188
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4189 4190
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4191
			ext4_journal_get_write_access(handle, bh);
4192 4193 4194
		}
	}

4195 4196
	for (p = first; p < last; p++)
		*p = 0;
4197

4198
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4199
	return 0;
4200 4201 4202
}

/**
4203
 * ext4_free_data - free a list of data blocks
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4221
static void ext4_free_data(handle_t *handle, struct inode *inode,
4222 4223 4224
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4225
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4226 4227 4228 4229
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4230
	ext4_fsblk_t nr;		    /* Current block # */
4231 4232 4233 4234 4235 4236
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4237
		err = ext4_journal_get_write_access(handle, this_bh);
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4255 4256 4257 4258
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4259 4260 4261 4262 4263 4264 4265 4266
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4267
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4268 4269 4270
				  count, block_to_free_p, p);

	if (this_bh) {
4271
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4272 4273 4274 4275 4276 4277 4278

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4279
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4280
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4281
		else
4282 4283 4284 4285
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4286 4287 4288 4289
	}
}

/**
4290
 *	ext4_free_branches - free an array of branches
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4302
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4303 4304 4305
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4306
	ext4_fsblk_t nr;
4307 4308
	__le32 *p;

4309
	if (ext4_handle_is_aborted(handle))
4310 4311 4312 4313
		return;

	if (depth--) {
		struct buffer_head *bh;
4314
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4315 4316 4317 4318 4319 4320
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4321 4322
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4323 4324 4325 4326
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4327 4328 4329
				break;
			}

4330 4331 4332 4333 4334 4335 4336 4337
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4338 4339
				EXT4_ERROR_INODE_BLOCK(inode, nr,
						       "Read failure");
4340 4341 4342 4343 4344
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4345
			ext4_free_branches(handle, inode, bh,
4346 4347 4348
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4366
			if (ext4_handle_is_aborted(handle))
4367 4368
				return;
			if (try_to_extend_transaction(handle, inode)) {
4369
				ext4_mark_inode_dirty(handle, inode);
4370 4371
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4372 4373
			}

4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
			/*
			 * The forget flag here is critical because if
			 * we are journaling (and not doing data
			 * journaling), we have to make sure a revoke
			 * record is written to prevent the journal
			 * replay from overwriting the (former)
			 * indirect block if it gets reallocated as a
			 * data block.  This must happen in the same
			 * transaction where the data blocks are
			 * actually freed.
			 */
4385
			ext4_free_blocks(handle, inode, 0, nr, 1,
4386 4387
					 EXT4_FREE_BLOCKS_METADATA|
					 EXT4_FREE_BLOCKS_FORGET);
4388 4389 4390 4391 4392 4393 4394

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4395
				if (!ext4_journal_get_write_access(handle,
4396 4397 4398
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4399 4400 4401 4402
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4403 4404 4405 4406 4407 4408
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4409
		ext4_free_data(handle, inode, parent_bh, first, last);
4410 4411 4412
	}
}

4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4426
/*
4427
 * ext4_truncate()
4428
 *
4429 4430
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4447
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4448
 * that this inode's truncate did not complete and it will again call
4449 4450
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4451
 * that's fine - as long as they are linked from the inode, the post-crash
4452
 * ext4_truncate() run will find them and release them.
4453
 */
4454
void ext4_truncate(struct inode *inode)
4455 4456
{
	handle_t *handle;
4457
	struct ext4_inode_info *ei = EXT4_I(inode);
4458
	__le32 *i_data = ei->i_data;
4459
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4460
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4461
	ext4_lblk_t offsets[4];
4462 4463 4464 4465
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4466
	ext4_lblk_t last_block;
4467 4468
	unsigned blocksize = inode->i_sb->s_blocksize;

4469
	if (!ext4_can_truncate(inode))
4470 4471
		return;

4472
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4473

4474
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4475
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4476

4477
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4478
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4479 4480
		return;
	}
A
Alex Tomas 已提交
4481

4482
	handle = start_transaction(inode);
4483
	if (IS_ERR(handle))
4484 4485 4486
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4487
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4488

4489 4490 4491
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4492

4493
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4506
	if (ext4_orphan_add(handle, inode))
4507 4508
		goto out_stop;

4509 4510 4511 4512 4513
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4514

4515
	ext4_discard_preallocations(inode);
4516

4517 4518 4519 4520 4521
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4522
	 * ext4 *really* writes onto the disk inode.
4523 4524 4525 4526
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4527 4528
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4529 4530 4531
		goto do_indirects;
	}

4532
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4533 4534 4535 4536
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4537
			ext4_free_branches(handle, inode, NULL,
4538 4539 4540 4541 4542 4543 4544 4545 4546
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4547
			ext4_free_branches(handle, inode, partial->bh,
4548 4549 4550 4551 4552 4553
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4554
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4555 4556 4557
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4558
		brelse(partial->bh);
4559 4560 4561 4562 4563 4564
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4565
		nr = i_data[EXT4_IND_BLOCK];
4566
		if (nr) {
4567 4568
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4569
		}
4570 4571
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4572
		if (nr) {
4573 4574
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4575
		}
4576 4577
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4578
		if (nr) {
4579 4580
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4581
		}
4582
	case EXT4_TIND_BLOCK:
4583 4584 4585
		;
	}

4586
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4587
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4588
	ext4_mark_inode_dirty(handle, inode);
4589 4590 4591 4592 4593 4594

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4595
		ext4_handle_sync(handle);
4596 4597 4598 4599 4600
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4601
	 * ext4_delete_inode(), and we allow that function to clean up the
4602 4603 4604
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4605
		ext4_orphan_del(handle, inode);
4606

4607
	ext4_journal_stop(handle);
4608 4609 4610
}

/*
4611
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4612 4613 4614 4615
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4616 4617
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4618
{
4619 4620 4621 4622 4623 4624
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4625
	iloc->bh = NULL;
4626 4627
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4628

4629 4630 4631
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4632 4633
		return -EIO;

4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4644
	if (!bh) {
4645 4646
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
4647 4648 4649 4650
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4674
			int i, start;
4675

4676
			start = inode_offset & ~(inodes_per_block - 1);
4677

4678 4679
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4692
			for (i = start; i < start + inodes_per_block; i++) {
4693 4694
				if (i == inode_offset)
					continue;
4695
				if (ext4_test_bit(i, bitmap_bh->b_data))
4696 4697 4698
					break;
			}
			brelse(bitmap_bh);
4699
			if (i == start + inodes_per_block) {
4700 4701 4702 4703 4704 4705 4706 4707 4708
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4709 4710 4711 4712 4713 4714 4715 4716 4717
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4718
			/* s_inode_readahead_blks is always a power of 2 */
4719 4720 4721 4722 4723 4724 4725
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4726
				num -= ext4_itable_unused_count(sb, gdp);
4727 4728 4729 4730 4731 4732 4733
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4744 4745
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4746 4747 4748 4749 4750 4751 4752 4753 4754
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4755
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4756 4757
{
	/* We have all inode data except xattrs in memory here. */
4758
	return __ext4_get_inode_loc(inode, iloc,
4759
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4760 4761
}

4762
void ext4_set_inode_flags(struct inode *inode)
4763
{
4764
	unsigned int flags = EXT4_I(inode)->i_flags;
4765 4766

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4767
	if (flags & EXT4_SYNC_FL)
4768
		inode->i_flags |= S_SYNC;
4769
	if (flags & EXT4_APPEND_FL)
4770
		inode->i_flags |= S_APPEND;
4771
	if (flags & EXT4_IMMUTABLE_FL)
4772
		inode->i_flags |= S_IMMUTABLE;
4773
	if (flags & EXT4_NOATIME_FL)
4774
		inode->i_flags |= S_NOATIME;
4775
	if (flags & EXT4_DIRSYNC_FL)
4776 4777 4778
		inode->i_flags |= S_DIRSYNC;
}

4779 4780 4781
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4802
}
4803

4804
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4805
				  struct ext4_inode_info *ei)
4806 4807
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4808 4809
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4810 4811 4812 4813 4814 4815

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4816
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4817 4818 4819 4820 4821
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4822 4823 4824 4825
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4826

4827
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4828
{
4829 4830
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4831 4832
	struct ext4_inode_info *ei;
	struct inode *inode;
4833
	journal_t *journal = EXT4_SB(sb)->s_journal;
4834
	long ret;
4835 4836
	int block;

4837 4838 4839 4840 4841 4842 4843
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4844
	iloc.bh = 0;
4845

4846 4847
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4848
		goto bad_inode;
4849
	raw_inode = ext4_raw_inode(&iloc);
4850 4851 4852
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4853
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4854 4855 4856 4857 4858
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

4859
	ei->i_state_flags = 0;
4860 4861 4862 4863 4864 4865 4866 4867 4868
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4869
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4870
			/* this inode is deleted */
4871
			ret = -ESTALE;
4872 4873 4874 4875 4876 4877 4878 4879
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4880
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4881
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4882
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4883 4884
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4885
	inode->i_size = ext4_isize(raw_inode);
4886
	ei->i_disksize = inode->i_size;
4887 4888 4889
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4890 4891
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4892
	ei->i_last_alloc_group = ~0;
4893 4894 4895 4896
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4897
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4898 4899 4900
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4912
		read_lock(&journal->j_state_lock);
4913 4914 4915 4916 4917 4918 4919 4920
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4921
		read_unlock(&journal->j_state_lock);
4922 4923 4924 4925
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4926
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4927
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4928
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4929
		    EXT4_INODE_SIZE(inode->i_sb)) {
4930
			ret = -EIO;
4931
			goto bad_inode;
4932
		}
4933 4934
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4935 4936
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4937 4938
		} else {
			__le32 *magic = (void *)raw_inode +
4939
					EXT4_GOOD_OLD_INODE_SIZE +
4940
					ei->i_extra_isize;
4941
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4942
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4943 4944 4945 4946
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4947 4948 4949 4950 4951
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4952 4953 4954 4955 4956 4957 4958
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4959
	ret = 0;
4960
	if (ei->i_file_acl &&
4961
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4962 4963
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4964 4965
		ret = -EIO;
		goto bad_inode;
4966
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4967 4968 4969 4970 4971
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4972
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4973 4974
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4975
		/* Validate block references which are part of inode */
4976 4977
		ret = ext4_check_inode_blockref(inode);
	}
4978
	if (ret)
4979
		goto bad_inode;
4980

4981
	if (S_ISREG(inode->i_mode)) {
4982 4983 4984
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4985
	} else if (S_ISDIR(inode->i_mode)) {
4986 4987
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4988
	} else if (S_ISLNK(inode->i_mode)) {
4989
		if (ext4_inode_is_fast_symlink(inode)) {
4990
			inode->i_op = &ext4_fast_symlink_inode_operations;
4991 4992 4993
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4994 4995
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4996
		}
4997 4998
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4999
		inode->i_op = &ext4_special_inode_operations;
5000 5001 5002 5003 5004 5005
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5006 5007
	} else {
		ret = -EIO;
5008
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5009
		goto bad_inode;
5010
	}
5011
	brelse(iloc.bh);
5012
	ext4_set_inode_flags(inode);
5013 5014
	unlock_new_inode(inode);
	return inode;
5015 5016

bad_inode:
5017
	brelse(iloc.bh);
5018 5019
	iget_failed(inode);
	return ERR_PTR(ret);
5020 5021
}

5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5035
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5036
		raw_inode->i_blocks_high = 0;
5037
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5038 5039 5040 5041 5042 5043
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5044 5045 5046 5047
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5048
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5049
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5050
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5051
	} else {
5052
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5053 5054 5055 5056
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5057
	}
5058
	return 0;
5059 5060
}

5061 5062 5063 5064 5065 5066 5067
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5068
static int ext4_do_update_inode(handle_t *handle,
5069
				struct inode *inode,
5070
				struct ext4_iloc *iloc)
5071
{
5072 5073
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5074 5075 5076 5077 5078
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5079
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5080
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5081

5082
	ext4_get_inode_flags(ei);
5083
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5084
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5085 5086 5087 5088 5089 5090
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5091
		if (!ei->i_dtime) {
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5109 5110 5111 5112 5113 5114

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5115 5116
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5117
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5118
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5119 5120
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5121 5122
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5123
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5140
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5141
			sb->s_dirt = 1;
5142
			ext4_handle_sync(handle);
5143
			err = ext4_handle_dirty_metadata(handle, NULL,
5144
					EXT4_SB(sb)->s_sbh);
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5159 5160 5161
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5162

5163 5164 5165 5166 5167
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5168
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5169 5170
	}

5171
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5172
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5173 5174
	if (!err)
		err = rc;
5175
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5176

5177
	ext4_update_inode_fsync_trans(handle, inode, 0);
5178
out_brelse:
5179
	brelse(bh);
5180
	ext4_std_error(inode->i_sb, err);
5181 5182 5183 5184
	return err;
}

/*
5185
 * ext4_write_inode()
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5202
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5219
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5220
{
5221 5222
	int err;

5223 5224 5225
	if (current->flags & PF_MEMALLOC)
		return 0;

5226 5227 5228 5229 5230 5231
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5232

5233
		if (wbc->sync_mode != WB_SYNC_ALL)
5234 5235 5236 5237 5238
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5239

5240
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5241 5242
		if (err)
			return err;
5243
		if (wbc->sync_mode == WB_SYNC_ALL)
5244 5245
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5246 5247
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
5248 5249
			err = -EIO;
		}
5250
		brelse(iloc.bh);
5251 5252
	}
	return err;
5253 5254 5255
}

/*
5256
 * ext4_setattr()
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5270 5271 5272 5273 5274 5275 5276 5277
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5278
 */
5279
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5280 5281 5282
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
5283
	int orphan = 0;
5284 5285 5286 5287 5288 5289
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5290
	if (is_quota_modification(inode, attr))
5291
		dquot_initialize(inode);
5292 5293 5294 5295 5296 5297
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5298
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5299
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5300 5301 5302 5303
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5304
		error = dquot_transfer(inode, attr);
5305
		if (error) {
5306
			ext4_journal_stop(handle);
5307 5308 5309 5310 5311 5312 5313 5314
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5315 5316
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5317 5318
	}

5319
	if (attr->ia_valid & ATTR_SIZE) {
5320
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5321 5322
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

5323 5324
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
5325 5326 5327
		}
	}

5328
	if (S_ISREG(inode->i_mode) &&
5329 5330
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
5331
	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5332 5333
		handle_t *handle;

5334
		handle = ext4_journal_start(inode, 3);
5335 5336 5337 5338
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5339 5340 5341 5342
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
5343 5344
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5345 5346
		if (!error)
			error = rc;
5347
		ext4_journal_stop(handle);
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
5360
				orphan = 0;
5361 5362 5363 5364
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5365
		/* ext4_truncate will clear the flag */
5366
		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5367
			ext4_truncate(inode);
5368 5369
	}

C
Christoph Hellwig 已提交
5370 5371 5372
	if ((attr->ia_valid & ATTR_SIZE) &&
	    attr->ia_size != i_size_read(inode))
		rc = vmtruncate(inode, attr->ia_size);
5373

C
Christoph Hellwig 已提交
5374 5375 5376 5377 5378 5379 5380 5381 5382
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
5383
	if (orphan && inode->i_nlink)
5384
		ext4_orphan_del(NULL, inode);
5385 5386

	if (!rc && (ia_valid & ATTR_MODE))
5387
		rc = ext4_acl_chmod(inode);
5388 5389

err_out:
5390
	ext4_std_error(inode->i_sb, error);
5391 5392 5393 5394 5395
	if (!error)
		error = rc;
	return error;
}

5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5420

5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5448
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5449 5450
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5451
}
5452

5453
/*
5454 5455 5456
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5457
 *
5458
 * If datablocks are discontiguous, they are possible to spread over
5459
 * different block groups too. If they are contiuguous, with flexbg,
5460
 * they could still across block group boundary.
5461
 *
5462 5463
 * Also account for superblock, inode, quota and xattr blocks
 */
5464
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5465
{
5466 5467
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5494 5495
	if (groups > ngroups)
		groups = ngroups;
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5510 5511
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5512
 *
5513
 * This could be called via ext4_write_begin()
5514
 *
5515
 * We need to consider the worse case, when
5516
 * one new block per extent.
5517
 */
A
Alex Tomas 已提交
5518
int ext4_writepage_trans_blocks(struct inode *inode)
5519
{
5520
	int bpp = ext4_journal_blocks_per_page(inode);
5521 5522
	int ret;

5523
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5524

5525
	/* Account for data blocks for journalled mode */
5526
	if (ext4_should_journal_data(inode))
5527
		ret += bpp;
5528 5529
	return ret;
}
5530 5531 5532 5533 5534

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5535
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5536 5537 5538 5539 5540 5541 5542 5543 5544
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5545
/*
5546
 * The caller must have previously called ext4_reserve_inode_write().
5547 5548
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5549
int ext4_mark_iloc_dirty(handle_t *handle,
5550
			 struct inode *inode, struct ext4_iloc *iloc)
5551 5552 5553
{
	int err = 0;

5554 5555 5556
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5557 5558 5559
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5560
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5561
	err = ext4_do_update_inode(handle, inode, iloc);
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5572 5573
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5574
{
5575 5576 5577 5578 5579 5580 5581 5582 5583
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5584 5585
		}
	}
5586
	ext4_std_error(inode->i_sb, err);
5587 5588 5589
	return err;
}

5590 5591 5592 5593
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5594 5595 5596 5597
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5610 5611
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5644
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5645
{
5646
	struct ext4_iloc iloc;
5647 5648 5649
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5650 5651

	might_sleep();
5652
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5653
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5654 5655
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5656
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5670 5671
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5672 5673
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5674
					ext4_warning(inode->i_sb,
5675 5676 5677
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5678 5679
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5680 5681 5682 5683
				}
			}
		}
	}
5684
	if (!err)
5685
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5686 5687 5688 5689
	return err;
}

/*
5690
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5691 5692 5693 5694 5695
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5696
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5697 5698 5699 5700 5701 5702
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5703
void ext4_dirty_inode(struct inode *inode)
5704 5705 5706
{
	handle_t *handle;

5707
	handle = ext4_journal_start(inode, 2);
5708 5709
	if (IS_ERR(handle))
		goto out;
5710 5711 5712

	ext4_mark_inode_dirty(handle, inode);

5713
	ext4_journal_stop(handle);
5714 5715 5716 5717 5718 5719 5720 5721
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5722
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5723 5724 5725
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5726
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5727
{
5728
	struct ext4_iloc iloc;
5729 5730 5731

	int err = 0;
	if (handle) {
5732
		err = ext4_get_inode_loc(inode, &iloc);
5733 5734
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5735
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5736
			if (!err)
5737
				err = ext4_handle_dirty_metadata(handle,
5738
								 NULL,
5739
								 iloc.bh);
5740 5741 5742
			brelse(iloc.bh);
		}
	}
5743
	ext4_std_error(inode->i_sb, err);
5744 5745 5746 5747
	return err;
}
#endif

5748
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5764
	journal = EXT4_JOURNAL(inode);
5765 5766
	if (!journal)
		return 0;
5767
	if (is_journal_aborted(journal))
5768 5769
		return -EROFS;

5770 5771
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5782
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5783
	else
5784
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5785
	ext4_set_aops(inode);
5786

5787
	jbd2_journal_unlock_updates(journal);
5788 5789 5790

	/* Finally we can mark the inode as dirty. */

5791
	handle = ext4_journal_start(inode, 1);
5792 5793 5794
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5795
	err = ext4_mark_inode_dirty(handle, inode);
5796
	ext4_handle_sync(handle);
5797 5798
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5799 5800 5801

	return err;
}
5802 5803 5804 5805 5806 5807

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5808
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5809
{
5810
	struct page *page = vmf->page;
5811 5812 5813
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5814
	void *fsdata;
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5839 5840 5841 5842 5843 5844 5845
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5846 5847
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5848 5849
					ext4_bh_unmapped)) {
			unlock_page(page);
5850
			goto out_unlock;
5851
		}
5852
	}
5853
	unlock_page(page);
5854 5855 5856 5857 5858 5859 5860 5861
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5862
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5863 5864 5865
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5866
			len, len, page, fsdata);
5867 5868 5869 5870
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5871 5872
	if (ret)
		ret = VM_FAULT_SIGBUS;
5873 5874 5875
	up_read(&inode->i_alloc_sem);
	return ret;
}