inode.c 138.4 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22 23
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
24
#include <linux/jbd2.h>
25 26 27 28 29 30
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
31
#include <linux/pagevec.h>
32
#include <linux/mpage.h>
33
#include <linux/namei.h>
34 35
#include <linux/uio.h>
#include <linux/bio.h>
36
#include <linux/workqueue.h>
37
#include <linux/kernel.h>
38
#include <linux/printk.h>
39
#include <linux/slab.h>
40
#include <linux/ratelimit.h>
41

42
#include "ext4_jbd2.h"
43 44
#include "xattr.h"
#include "acl.h"
45
#include "truncate.h"
46

47 48
#include <trace/events/ext4.h>

49 50
#define MPAGE_DA_EXTENT_TAIL 0x01

51 52 53
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
54
	trace_ext4_begin_ordered_truncate(inode, new_size);
55 56 57 58 59 60 61 62 63 64 65
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
66 67
}

68
static void ext4_invalidatepage(struct page *page, unsigned long offset);
69 70 71 72 73 74
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
75

76 77 78
/*
 * Test whether an inode is a fast symlink.
 */
79
static int ext4_inode_is_fast_symlink(struct inode *inode)
80
{
81
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
82 83 84 85 86 87 88 89 90 91
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
92
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
93
				 int nblocks)
94
{
95 96 97
	int ret;

	/*
98
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
99 100 101 102
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
103
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
104
	jbd_debug(2, "restarting handle %p\n", handle);
105
	up_write(&EXT4_I(inode)->i_data_sem);
106
	ret = ext4_journal_restart(handle, nblocks);
107
	down_write(&EXT4_I(inode)->i_data_sem);
108
	ext4_discard_preallocations(inode);
109 110

	return ret;
111 112 113 114 115
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
116
void ext4_evict_inode(struct inode *inode)
117 118
{
	handle_t *handle;
119
	int err;
120

121
	trace_ext4_evict_inode(inode);
122 123 124

	ext4_ioend_wait(inode);

A
Al Viro 已提交
125
	if (inode->i_nlink) {
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
153 154 155 156
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

157
	if (!is_bad_inode(inode))
158
		dquot_initialize(inode);
159

160 161
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
162 163 164 165 166
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

167
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168
	if (IS_ERR(handle)) {
169
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
170 171 172 173 174
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
175
		ext4_orphan_del(NULL, inode);
176 177 178 179
		goto no_delete;
	}

	if (IS_SYNC(inode))
180
		ext4_handle_sync(handle);
181
	inode->i_size = 0;
182 183
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
184
		ext4_warning(inode->i_sb,
185 186 187
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
188
	if (inode->i_blocks)
189
		ext4_truncate(inode);
190 191 192 193 194 195 196

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
197
	if (!ext4_handle_has_enough_credits(handle, 3)) {
198 199 200 201
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
202
			ext4_warning(inode->i_sb,
203 204 205
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
206
			ext4_orphan_del(NULL, inode);
207 208 209 210
			goto no_delete;
		}
	}

211
	/*
212
	 * Kill off the orphan record which ext4_truncate created.
213
	 * AKPM: I think this can be inside the above `if'.
214
	 * Note that ext4_orphan_del() has to be able to cope with the
215
	 * deletion of a non-existent orphan - this is because we don't
216
	 * know if ext4_truncate() actually created an orphan record.
217 218
	 * (Well, we could do this if we need to, but heck - it works)
	 */
219 220
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
221 222 223 224 225 226 227 228

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
229
	if (ext4_mark_inode_dirty(handle, inode))
230
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
231
		ext4_clear_inode(inode);
232
	else
233 234
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
235 236
	return;
no_delete:
A
Al Viro 已提交
237
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
238 239
}

240 241
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
242
{
243
	return &EXT4_I(inode)->i_reserved_quota;
244
}
245
#endif
246

247 248
/*
 * Calculate the number of metadata blocks need to reserve
249
 * to allocate a block located at @lblock
250
 */
251
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252
{
253
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254
		return ext4_ext_calc_metadata_amount(inode, lblock);
255

256
	return ext4_ind_calc_metadata_amount(inode, lblock);
257 258
}

259 260 261 262
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
263 264
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
265 266
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267 268 269
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
270
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271 272 273 274 275 276 277 278
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
279

280 281 282
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
283
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
284
			   used + ei->i_allocated_meta_blocks);
285
	ei->i_allocated_meta_blocks = 0;
286

287 288 289 290 291 292
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
293
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294
				   ei->i_reserved_meta_blocks);
295
		ei->i_reserved_meta_blocks = 0;
296
		ei->i_da_metadata_calc_len = 0;
297
	}
298
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
299

300 301
	/* Update quota subsystem for data blocks */
	if (quota_claim)
302
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
303
	else {
304 305 306
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
307
		 * not re-claim the quota for fallocated blocks.
308
		 */
309
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
310
	}
311 312 313 314 315 316

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
317 318
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
319
		ext4_discard_preallocations(inode);
320 321
}

322
static int __check_block_validity(struct inode *inode, const char *func,
323 324
				unsigned int line,
				struct ext4_map_blocks *map)
325
{
326 327
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
328 329 330 331
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
332 333 334 335 336
		return -EIO;
	}
	return 0;
}

337
#define check_block_validity(inode, map)	\
338
	__check_block_validity((inode), __func__, __LINE__, (map))
339

340
/*
341 342
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
376 377 378 379 380 381 382 383 384
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
385 386 387 388 389
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
390 391
			if (num >= max_pages) {
				done = 1;
392
				break;
393
			}
394 395 396 397 398 399
		}
		pagevec_release(&pvec);
	}
	return num;
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/*
 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 */
static void set_buffers_da_mapped(struct inode *inode,
				   struct ext4_map_blocks *map)
{
	struct address_space *mapping = inode->i_mapping;
	struct pagevec pvec;
	int i, nr_pages;
	pgoff_t index, end;

	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + map->m_len - 1) >>
		(PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index,
					  min(end - index + 1,
					      (pgoff_t)PAGEVEC_SIZE));
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page))
				break;

			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					set_buffer_da_mapped(bh);
					bh = bh->b_this_page;
				} while (bh != head);
			}
			index++;
		}
		pagevec_release(&pvec);
	}
}

443
/*
444
 * The ext4_map_blocks() function tries to look up the requested blocks,
445
 * and returns if the blocks are already mapped.
446 447 448 449 450
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
451 452
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453 454 455 456 457 458 459 460 461 462 463 464
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
465 466
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
467 468
{
	int retval;
469

470 471 472 473
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
474
	/*
475 476
	 * Try to see if we can get the block without requesting a new
	 * file system block.
477 478
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
479
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
480
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
481
	} else {
482
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
483
	}
484
	up_read((&EXT4_I(inode)->i_data_sem));
485

486
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
487
		int ret = check_block_validity(inode, map);
488 489 490 491
		if (ret != 0)
			return ret;
	}

492
	/* If it is only a block(s) look up */
493
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
494 495 496 497 498 499 500 501 502
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
503
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
504 505
		return retval;

506 507 508 509 510 511 512 513 514 515
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
516
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
517

518
	/*
519 520 521 522
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
523 524
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
525 526 527 528 529 530 531

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
532
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
533
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
534 535 536 537
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
538
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
539
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
540
	} else {
541
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
542

543
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
544 545 546 547 548
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
549
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
550
		}
551

552 553 554 555 556 557 558
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
559
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
560 561
			ext4_da_update_reserve_space(inode, retval, 1);
	}
562
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
563
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
564

565 566 567 568 569 570 571 572
		/* If we have successfully mapped the delayed allocated blocks,
		 * set the BH_Da_Mapped bit on them. Its important to do this
		 * under the protection of i_data_sem.
		 */
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
			set_buffers_da_mapped(inode, map);
	}

573
	up_write((&EXT4_I(inode)->i_data_sem));
574
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575
		int ret = check_block_validity(inode, map);
576 577 578
		if (ret != 0)
			return ret;
	}
579 580 581
	return retval;
}

582 583 584
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

585 586
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
587
{
588
	handle_t *handle = ext4_journal_current_handle();
589
	struct ext4_map_blocks map;
J
Jan Kara 已提交
590
	int ret = 0, started = 0;
591
	int dio_credits;
592

593 594 595 596
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
597
		/* Direct IO write... */
598 599 600
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
601
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
602
		if (IS_ERR(handle)) {
603
			ret = PTR_ERR(handle);
604
			return ret;
605
		}
J
Jan Kara 已提交
606
		started = 1;
607 608
	}

609
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
610
	if (ret > 0) {
611 612 613
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
614
		ret = 0;
615
	}
J
Jan Kara 已提交
616 617
	if (started)
		ext4_journal_stop(handle);
618 619 620
	return ret;
}

621 622 623 624 625 626 627
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

628 629 630
/*
 * `handle' can be NULL if create is zero
 */
631
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
632
				ext4_lblk_t block, int create, int *errp)
633
{
634 635
	struct ext4_map_blocks map;
	struct buffer_head *bh;
636 637 638 639
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

640 641 642 643
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
644

645 646 647 648 649 650 651 652 653 654
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
655
	}
656 657 658
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
659

660 661 662 663 664 665 666 667 668 669 670 671 672
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
673
		}
674 675 676 677 678 679 680
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
681
	}
682 683 684 685 686 687
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
688 689
}

690
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
691
			       ext4_lblk_t block, int create, int *err)
692
{
693
	struct buffer_head *bh;
694

695
	bh = ext4_getblk(handle, inode, block, create, err);
696 697 698 699 700 701 702 703 704 705 706 707 708
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

709 710 711 712 713 714 715
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
716 717 718 719 720 721 722
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

723 724
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
725
	     block_start = block_end, bh = next) {
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
743
 * close off a transaction and start a new one between the ext4_get_block()
744
 * and the commit_write().  So doing the jbd2_journal_start at the start of
745 746
 * prepare_write() is the right place.
 *
747 748
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
749 750 751 752
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
753
 * By accident, ext4 can be reentered when a transaction is open via
754 755 756 757 758 759
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
760
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
761 762 763 764 765
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
766
				       struct buffer_head *bh)
767
{
768 769 770
	int dirty = buffer_dirty(bh);
	int ret;

771 772
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
773
	/*
C
Christoph Hellwig 已提交
774
	 * __block_write_begin() could have dirtied some buffers. Clean
775 776
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
777
	 * by __block_write_begin() isn't a real problem here as we clear
778 779 780 781 782 783 784 785 786
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
787 788
}

789 790
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
791
static int ext4_write_begin(struct file *file, struct address_space *mapping,
792 793
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
794
{
795
	struct inode *inode = mapping->host;
796
	int ret, needed_blocks;
797 798
	handle_t *handle;
	int retries = 0;
799
	struct page *page;
800
	pgoff_t index;
801
	unsigned from, to;
N
Nick Piggin 已提交
802

803
	trace_ext4_write_begin(inode, pos, len, flags);
804 805 806 807 808
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
809
	index = pos >> PAGE_CACHE_SHIFT;
810 811
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
812 813

retry:
814 815 816 817
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
818
	}
819

820 821 822 823
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

824
	page = grab_cache_page_write_begin(mapping, index, flags);
825 826 827 828 829 830 831
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

832
	if (ext4_should_dioread_nolock(inode))
833
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
834
	else
835
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
836 837

	if (!ret && ext4_should_journal_data(inode)) {
838 839 840
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
841 842

	if (ret) {
843 844
		unlock_page(page);
		page_cache_release(page);
845
		/*
846
		 * __block_write_begin may have instantiated a few blocks
847 848
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
849 850 851
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
852
		 */
853
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
854 855 856 857
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
858
			ext4_truncate_failed_write(inode);
859
			/*
860
			 * If truncate failed early the inode might
861 862 863 864 865 866 867
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
868 869
	}

870
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
871
		goto retry;
872
out:
873 874 875
	return ret;
}

N
Nick Piggin 已提交
876 877
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
878 879 880 881
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
882
	return ext4_handle_dirty_metadata(handle, NULL, bh);
883 884
}

885
static int ext4_generic_write_end(struct file *file,
886 887 888
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

931 932 933 934
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
935
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
936 937
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
938
static int ext4_ordered_write_end(struct file *file,
939 940 941
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
942
{
943
	handle_t *handle = ext4_journal_current_handle();
944
	struct inode *inode = mapping->host;
945 946
	int ret = 0, ret2;

947
	trace_ext4_ordered_write_end(inode, pos, len, copied);
948
	ret = ext4_jbd2_file_inode(handle, inode);
949 950

	if (ret == 0) {
951
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
952
							page, fsdata);
953
		copied = ret2;
954
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
955 956 957 958 959
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
960 961
		if (ret2 < 0)
			ret = ret2;
962
	}
963
	ret2 = ext4_journal_stop(handle);
964 965
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
966

967
	if (pos + len > inode->i_size) {
968
		ext4_truncate_failed_write(inode);
969
		/*
970
		 * If truncate failed early the inode might still be
971 972 973 974 975 976 977 978
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
979
	return ret ? ret : copied;
980 981
}

N
Nick Piggin 已提交
982
static int ext4_writeback_write_end(struct file *file,
983 984 985
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
986
{
987
	handle_t *handle = ext4_journal_current_handle();
988
	struct inode *inode = mapping->host;
989 990
	int ret = 0, ret2;

991
	trace_ext4_writeback_write_end(inode, pos, len, copied);
992
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
993
							page, fsdata);
994
	copied = ret2;
995
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
996 997 998 999 1000 1001
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1002 1003
	if (ret2 < 0)
		ret = ret2;
1004

1005
	ret2 = ext4_journal_stop(handle);
1006 1007
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1008

1009
	if (pos + len > inode->i_size) {
1010
		ext4_truncate_failed_write(inode);
1011
		/*
1012
		 * If truncate failed early the inode might still be
1013 1014 1015 1016 1017 1018 1019
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1020
	return ret ? ret : copied;
1021 1022
}

N
Nick Piggin 已提交
1023
static int ext4_journalled_write_end(struct file *file,
1024 1025 1026
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1027
{
1028
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1029
	struct inode *inode = mapping->host;
1030 1031
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1032
	unsigned from, to;
1033
	loff_t new_i_size;
1034

1035
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1036 1037 1038
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1039 1040
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
1041 1042 1043 1044 1045
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1046 1047

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1048
				to, &partial, write_end_fn);
1049 1050
	if (!partial)
		SetPageUptodate(page);
1051 1052
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1053
		i_size_write(inode, pos+copied);
1054
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1055
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1056 1057
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1058
		ret2 = ext4_mark_inode_dirty(handle, inode);
1059 1060 1061
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1062

1063
	unlock_page(page);
1064
	page_cache_release(page);
1065
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1066 1067 1068 1069 1070 1071
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1072
	ret2 = ext4_journal_stop(handle);
1073 1074
	if (!ret)
		ret = ret2;
1075
	if (pos + len > inode->i_size) {
1076
		ext4_truncate_failed_write(inode);
1077
		/*
1078
		 * If truncate failed early the inode might still be
1079 1080 1081 1082 1083 1084
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1085 1086

	return ret ? ret : copied;
1087
}
1088

1089
/*
1090
 * Reserve a single cluster located at lblock
1091
 */
1092
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1093
{
A
Aneesh Kumar K.V 已提交
1094
	int retries = 0;
1095
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1096
	struct ext4_inode_info *ei = EXT4_I(inode);
1097
	unsigned int md_needed;
1098
	int ret;
1099 1100 1101 1102 1103 1104

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1105
repeat:
1106
	spin_lock(&ei->i_block_reservation_lock);
1107 1108
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1109
	trace_ext4_da_reserve_space(inode, md_needed);
1110
	spin_unlock(&ei->i_block_reservation_lock);
1111

1112
	/*
1113 1114 1115
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1116
	 */
1117
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1118 1119
	if (ret)
		return ret;
1120 1121 1122 1123
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1124
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1125
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
A
Aneesh Kumar K.V 已提交
1126 1127 1128 1129
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1130 1131
		return -ENOSPC;
	}
1132
	spin_lock(&ei->i_block_reservation_lock);
1133
	ei->i_reserved_data_blocks++;
1134 1135
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1136

1137 1138 1139
	return 0;       /* success */
}

1140
static void ext4_da_release_space(struct inode *inode, int to_free)
1141 1142
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1143
	struct ext4_inode_info *ei = EXT4_I(inode);
1144

1145 1146 1147
	if (!to_free)
		return;		/* Nothing to release, exit */

1148
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1149

L
Li Zefan 已提交
1150
	trace_ext4_da_release_space(inode, to_free);
1151
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1152
		/*
1153 1154 1155 1156
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1157
		 */
1158 1159 1160 1161 1162 1163
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1164
	}
1165
	ei->i_reserved_data_blocks -= to_free;
1166

1167 1168 1169 1170 1171
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1172 1173
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1174
		 */
1175
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1176
				   ei->i_reserved_meta_blocks);
1177
		ei->i_reserved_meta_blocks = 0;
1178
		ei->i_da_metadata_calc_len = 0;
1179
	}
1180

1181
	/* update fs dirty data blocks counter */
1182
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1183 1184

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1185

1186
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1187 1188 1189
}

static void ext4_da_page_release_reservation(struct page *page,
1190
					     unsigned long offset)
1191 1192 1193 1194
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1195 1196 1197
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1198 1199 1200 1201 1202 1203 1204 1205 1206

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
1207
			clear_buffer_da_mapped(bh);
1208 1209 1210
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		ext4_fsblk_t lblk;
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
		    !ext4_find_delalloc_cluster(inode, lblk, 1))
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1225
}
1226

1227 1228 1229 1230 1231 1232
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1233
 * them with writepage() call back
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1244 1245
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1246
{
1247 1248 1249 1250 1251
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1252
	loff_t size = i_size_read(inode);
1253 1254
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1255
	int journal_data = ext4_should_journal_data(inode);
1256
	sector_t pblock = 0, cur_logical = 0;
1257
	struct ext4_io_submit io_submit;
1258 1259

	BUG_ON(mpd->next_page <= mpd->first_page);
1260
	memset(&io_submit, 0, sizeof(io_submit));
1261 1262 1263
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1264
	 * If we look at mpd->b_blocknr we would only be looking
1265 1266
	 * at the currently mapped buffer_heads.
	 */
1267 1268 1269
	index = mpd->first_page;
	end = mpd->next_page - 1;

1270
	pagevec_init(&pvec, 0);
1271
	while (index <= end) {
1272
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1273 1274 1275
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1276
			int commit_write = 0, skip_page = 0;
1277 1278
			struct page *page = pvec.pages[i];

1279 1280 1281
			index = page->index;
			if (index > end)
				break;
1282 1283 1284 1285 1286

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1287 1288 1289 1290 1291 1292
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1293 1294 1295 1296 1297
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1298
			/*
1299 1300
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1301
			 * __block_write_begin.  If this fails,
1302
			 * skip the page and move on.
1303
			 */
1304
			if (!page_has_buffers(page)) {
1305
				if (__block_write_begin(page, 0, len,
1306
						noalloc_get_block_write)) {
1307
				skip_page:
1308 1309 1310 1311 1312
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1313

1314 1315
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1316
			do {
1317
				if (!bh)
1318
					goto skip_page;
1319 1320 1321
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1322 1323 1324 1325
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1326 1327
					if (buffer_da_mapped(bh))
						clear_buffer_da_mapped(bh);
1328 1329 1330 1331 1332 1333 1334
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1335

1336
				/* skip page if block allocation undone */
1337
				if (buffer_delay(bh) || buffer_unwritten(bh))
1338
					skip_page = 1;
1339 1340
				bh = bh->b_this_page;
				block_start += bh->b_size;
1341 1342
				cur_logical++;
				pblock++;
1343 1344
			} while (bh != page_bufs);

1345 1346
			if (skip_page)
				goto skip_page;
1347 1348 1349 1350 1351

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1352
			clear_page_dirty_for_io(page);
1353 1354 1355 1356 1357 1358
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1359
				err = __ext4_journalled_writepage(page, len);
1360
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1361 1362
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1363 1364 1365 1366 1367 1368
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1369 1370
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1371 1372

			if (!err)
1373
				mpd->pages_written++;
1374 1375 1376 1377 1378 1379 1380 1381 1382
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1383
	ext4_io_submit(&io_submit);
1384 1385 1386
	return ret;
}

1387
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1388 1389 1390 1391 1392 1393 1394
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

1395 1396
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1397 1398 1399 1400 1401 1402
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1403
			if (page->index > end)
1404 1405 1406 1407 1408 1409 1410
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1411 1412
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1413 1414 1415 1416
	}
	return;
}

1417 1418 1419
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1420
	printk(KERN_CRIT "Total free blocks count %lld\n",
1421 1422
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1423 1424
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
1425 1426
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1427
	printk(KERN_CRIT "dirty_blocks=%lld\n",
1428 1429
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1430 1431 1432 1433 1434
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
1435 1436 1437
	return;
}

1438
/*
1439 1440
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1441
 *
1442
 * @mpd - bh describing space
1443 1444 1445 1446
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1447
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1448
{
1449
	int err, blks, get_blocks_flags;
1450
	struct ext4_map_blocks map, *mapp = NULL;
1451 1452 1453 1454
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1455 1456

	/*
1457 1458
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1459
	 */
1460 1461 1462 1463 1464
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1465 1466 1467 1468

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1469
	/*
1470
	 * Call ext4_map_blocks() to allocate any delayed allocation
1471 1472 1473 1474 1475 1476 1477 1478
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1479
	 * want to change *many* call functions, so ext4_map_blocks()
1480
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1481 1482 1483 1484 1485
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1486
	 */
1487 1488
	map.m_lblk = next;
	map.m_len = max_blocks;
1489
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1490 1491
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1492
	if (mpd->b_state & (1 << BH_Delay))
1493 1494
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1495
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1496
	if (blks < 0) {
1497 1498
		struct super_block *sb = mpd->inode->i_sb;

1499
		err = blks;
1500
		/*
1501
		 * If get block returns EAGAIN or ENOSPC and there
1502 1503
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1504 1505
		 */
		if (err == -EAGAIN)
1506
			goto submit_io;
1507

1508
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1509
			mpd->retval = err;
1510
			goto submit_io;
1511 1512
		}

1513
		/*
1514 1515 1516 1517 1518
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1519
		 */
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1531
		}
1532
		/* invalidate all the pages */
1533
		ext4_da_block_invalidatepages(mpd);
1534 1535 1536

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1537
		return;
1538
	}
1539 1540
	BUG_ON(blks == 0);

1541
	mapp = &map;
1542 1543 1544
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1545

1546 1547
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1548

1549 1550 1551 1552 1553 1554
		if (ext4_should_order_data(mpd->inode)) {
			err = ext4_jbd2_file_inode(handle, mpd->inode);
			if (err)
				/* Only if the journal is aborted */
				return;
		}
1555 1556 1557
	}

	/*
1558
	 * Update on-disk size along with block allocation.
1559 1560 1561 1562 1563 1564
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1565 1566 1567 1568 1569
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1570 1571
	}

1572
submit_io:
1573
	mpage_da_submit_io(mpd, mapp);
1574
	mpd->io_done = 1;
1575 1576
}

1577 1578
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1590 1591
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1592 1593
{
	sector_t next;
1594
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1595

1596 1597 1598 1599
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1600
	 * ext4_map_blocks() multiple times in a loop
1601 1602 1603 1604
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1605
	/* check if thereserved journal credits might overflow */
1606
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1627 1628 1629
	/*
	 * First block in the extent
	 */
1630 1631 1632 1633
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1634 1635 1636
		return;
	}

1637
	next = mpd->b_blocknr + nrblocks;
1638 1639 1640
	/*
	 * Can we merge the block to our big extent?
	 */
1641 1642
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1643 1644 1645
		return;
	}

1646
flush_it:
1647 1648 1649 1650
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1651
	mpage_da_map_and_submit(mpd);
1652
	return;
1653 1654
}

1655
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1656
{
1657
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1658 1659
}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1720
/*
1721 1722 1723
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1724 1725 1726 1727 1728 1729 1730
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1731 1732
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1733
				  struct buffer_head *bh, int create)
1734
{
1735
	struct ext4_map_blocks map;
1736 1737 1738
	int ret = 0;

	BUG_ON(create == 0);
1739 1740 1741 1742
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1743 1744 1745 1746 1747 1748

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1749 1750
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1751
		return ret;
1752

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1764
		set_buffer_mapped(bh);
1765 1766
	}
	return 0;
1767
}
1768

1769 1770 1771
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1772
 * callback function for block_write_begin() and block_write_full_page().
1773
 * These functions should only try to map a single block at a time.
1774 1775 1776 1777 1778
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1779 1780 1781
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1782 1783
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1784 1785
				   struct buffer_head *bh_result, int create)
{
1786
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1787
	return _ext4_get_block(inode, iblock, bh_result, 0);
1788 1789
}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1812
	ClearPageChecked(page);
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1826 1827
	BUG_ON(!ext4_handle_valid(handle));

1828 1829 1830 1831 1832 1833 1834
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1835
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1836 1837 1838 1839 1840
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1841
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1842 1843 1844 1845
out:
	return ret;
}

1846 1847 1848
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

1849
/*
1850 1851 1852 1853
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1854
 * we are writing back data modified via mmap(), no one guarantees in which
1855 1856 1857 1858
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1859 1860 1861 1862 1863
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1889
 */
1890
static int ext4_writepage(struct page *page,
1891
			  struct writeback_control *wbc)
1892
{
T
Theodore Ts'o 已提交
1893
	int ret = 0, commit_write = 0;
1894
	loff_t size;
1895
	unsigned int len;
1896
	struct buffer_head *page_bufs = NULL;
1897 1898
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
1899
	trace_ext4_writepage(page);
1900 1901 1902 1903 1904
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1905

T
Theodore Ts'o 已提交
1906 1907
	/*
	 * If the page does not have buffers (for whatever reason),
1908
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
1909 1910
	 * fails, redirty the page and move on.
	 */
1911
	if (!page_has_buffers(page)) {
1912
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
1913 1914
					noalloc_get_block_write)) {
		redirty_page:
1915 1916 1917 1918
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
1919 1920 1921 1922 1923
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
1924
		/*
1925 1926 1927 1928
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
1929
		 */
T
Theodore Ts'o 已提交
1930 1931 1932
		goto redirty_page;
	}
	if (commit_write)
1933
		/* now mark the buffer_heads as dirty and uptodate */
1934
		block_commit_write(page, 0, len);
1935

1936
	if (PageChecked(page) && ext4_should_journal_data(inode))
1937 1938 1939 1940
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
1941
		return __ext4_journalled_writepage(page, len);
1942

T
Theodore Ts'o 已提交
1943
	if (buffer_uninit(page_bufs)) {
1944 1945 1946 1947
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
1948 1949
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
1950 1951 1952 1953

	return ret;
}

1954
/*
1955
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
1956
 * calculate the total number of credits to reserve to fit
1957 1958 1959
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
1960
 */
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
1972
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1973 1974 1975 1976 1977
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
1978

1979 1980
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
1981
 * address space and accumulate pages that need writing, and call
1982 1983
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
1984 1985 1986
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
1987 1988
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
1989
{
1990
	struct buffer_head	*bh, *head;
1991
	struct inode		*inode = mapping->host;
1992 1993 1994 1995 1996 1997
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
1998

1999 2000 2001
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2002 2003 2004 2005
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2006
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2007 2008 2009 2010
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2011
	*done_index = index;
2012
	while (index <= end) {
2013
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2014 2015
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2016
			return 0;
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2028 2029
			if (page->index > end)
				goto out;
2030

2031 2032
			*done_index = page->index + 1;

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2043 2044 2045
			lock_page(page);

			/*
2046 2047 2048 2049 2050 2051
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2052
			 */
2053 2054 2055 2056
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2057 2058 2059 2060
				unlock_page(page);
				continue;
			}

2061
			wait_on_page_writeback(page);
2062 2063
			BUG_ON(PageWriteback(page));

2064
			if (mpd->next_page != page->index)
2065 2066 2067 2068 2069 2070
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2071 2072
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2073
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2074 2075
				if (mpd->io_done)
					goto ret_extent_tail;
2076 2077
			} else {
				/*
2078 2079
				 * Page with regular buffer heads,
				 * just add all dirty ones
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2095 2096
						if (mpd->io_done)
							goto ret_extent_tail;
2097 2098
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2099 2100 2101 2102 2103 2104 2105 2106 2107
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2108 2109 2110 2111 2112 2113
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2114 2115 2116 2117 2118
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2119
				    wbc->sync_mode == WB_SYNC_NONE)
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2130
					goto out;
2131 2132 2133 2134 2135
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2136 2137 2138
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2139 2140 2141
out:
	pagevec_release(&pvec);
	cond_resched();
2142 2143 2144 2145
	return ret;
}


2146
static int ext4_da_writepages(struct address_space *mapping,
2147
			      struct writeback_control *wbc)
2148
{
2149 2150
	pgoff_t	index;
	int range_whole = 0;
2151
	handle_t *handle = NULL;
2152
	struct mpage_da_data mpd;
2153
	struct inode *inode = mapping->host;
2154
	int pages_written = 0;
2155
	unsigned int max_pages;
2156
	int range_cyclic, cycled = 1, io_done = 0;
2157 2158
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2159
	loff_t range_start = wbc->range_start;
2160
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2161
	pgoff_t done_index = 0;
2162
	pgoff_t end;
2163

2164
	trace_ext4_da_writepages(inode, wbc);
2165

2166 2167 2168 2169 2170
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2171
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2172
		return 0;
2173 2174 2175 2176 2177

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2178
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2179 2180 2181 2182 2183
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2184
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2185 2186
		return -EROFS;

2187 2188
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2189

2190 2191
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2192
		index = mapping->writeback_index;
2193 2194 2195 2196 2197
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2198 2199
		end = -1;
	} else {
2200
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2201 2202
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2203

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2221 2222 2223 2224 2225 2226
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2237
retry:
2238
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2239 2240
		tag_pages_for_writeback(mapping, index, end);

2241
	while (!ret && wbc->nr_to_write > 0) {
2242 2243 2244 2245 2246 2247 2248 2249

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2250
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2251

2252 2253 2254 2255
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2256
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2257
			       "%ld pages, ino %lu; err %d", __func__,
2258
				wbc->nr_to_write, inode->i_ino, ret);
2259 2260
			goto out_writepages;
		}
2261 2262

		/*
2263
		 * Now call write_cache_pages_da() to find the next
2264
		 * contiguous region of logical blocks that need
2265
		 * blocks to be allocated by ext4 and submit them.
2266
		 */
2267
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2268
		/*
2269
		 * If we have a contiguous extent of pages and we
2270 2271 2272 2273
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2274
			mpage_da_map_and_submit(&mpd);
2275 2276
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2277
		trace_ext4_da_write_pages(inode, &mpd);
2278
		wbc->nr_to_write -= mpd.pages_written;
2279

2280
		ext4_journal_stop(handle);
2281

2282
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2283 2284 2285 2286
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2287
			jbd2_journal_force_commit_nested(sbi->s_journal);
2288 2289
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2290 2291 2292 2293
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2294
			pages_written += mpd.pages_written;
2295
			ret = 0;
2296
			io_done = 1;
2297
		} else if (wbc->nr_to_write)
2298 2299 2300 2301 2302 2303
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2304
	}
2305 2306 2307 2308 2309 2310 2311
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2312 2313

	/* Update index */
2314
	wbc->range_cyclic = range_cyclic;
2315 2316 2317 2318 2319
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2320
		mapping->writeback_index = done_index;
2321

2322
out_writepages:
2323
	wbc->nr_to_write -= nr_to_writebump;
2324
	wbc->range_start = range_start;
2325
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2326
	return ret;
2327 2328
}

2329 2330 2331 2332 2333 2334 2335 2336 2337
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2338
	 * counters can get slightly wrong with percpu_counter_batch getting
2339 2340 2341 2342
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2343 2344 2345
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2346
	if (2 * free_blocks < 3 * dirty_blocks ||
2347
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2348
		/*
2349 2350
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2351 2352 2353
		 */
		return 1;
	}
2354 2355 2356 2357 2358 2359 2360
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

2361 2362 2363
	return 0;
}

2364
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2365 2366
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2367
{
2368
	int ret, retries = 0;
2369 2370 2371 2372
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;
2373
	loff_t page_len;
2374 2375

	index = pos >> PAGE_CACHE_SHIFT;
2376 2377 2378 2379 2380 2381 2382

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2383
	trace_ext4_da_write_begin(inode, pos, len, flags);
2384
retry:
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2396 2397 2398
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2399

2400
	page = grab_cache_page_write_begin(mapping, index, flags);
2401 2402 2403 2404 2405
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2406 2407
	*pagep = page;

2408
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2409 2410 2411 2412
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2413 2414 2415 2416 2417 2418
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2419
			ext4_truncate_failed_write(inode);
2420 2421 2422 2423 2424 2425 2426
	} else {
		page_len = pos & (PAGE_CACHE_SIZE - 1);
		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers_no_lock(handle,
				inode, page, pos - page_len, page_len,
				EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
		}
2427 2428
	}

2429 2430
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2431 2432 2433 2434
out:
	return ret;
}

2435 2436 2437 2438 2439
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2440
					    unsigned long offset)
2441 2442 2443 2444 2445 2446 2447 2448 2449
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2450
	for (i = 0; i < idx; i++)
2451 2452
		bh = bh->b_this_page;

2453
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2454 2455 2456 2457
		return 0;
	return 1;
}

2458
static int ext4_da_write_end(struct file *file,
2459 2460 2461
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2462 2463 2464 2465 2466
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2467
	unsigned long start, end;
2468
	int write_mode = (int)(unsigned long)fsdata;
2469
	loff_t page_len;
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2482

2483
	trace_ext4_da_write_end(inode, pos, len, copied);
2484
	start = pos & (PAGE_CACHE_SIZE - 1);
2485
	end = start + copied - 1;
2486 2487 2488 2489 2490 2491 2492 2493

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2505

2506 2507 2508
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2509 2510 2511 2512 2513
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2514
		}
2515
	}
2516 2517
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

	page_len = PAGE_CACHE_SIZE -
			((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));

	if (page_len > 0) {
		ret = ext4_discard_partial_page_buffers_no_lock(handle,
			inode, page, pos + copied - 1, page_len,
			EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
	}

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2547
	ext4_da_page_release_reservation(page, offset);
2548 2549 2550 2551 2552 2553 2554

out:
	ext4_invalidatepage(page, offset);

	return;
}

2555 2556 2557 2558 2559
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2560 2561
	trace_ext4_alloc_da_blocks(inode);

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2572
	 *
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2585
	 * the pages by calling redirty_page_for_writepage() but that
2586 2587
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2588
	 * simplifying them because we wouldn't actually intend to
2589 2590 2591
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2592
	 *
2593 2594 2595 2596 2597 2598
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2599

2600 2601 2602 2603 2604
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2605
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2606 2607 2608 2609 2610 2611 2612 2613
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2614
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2615 2616 2617 2618 2619
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2630 2631
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2643
		 * NB. EXT4_STATE_JDATA is not set on files other than
2644 2645 2646 2647 2648 2649
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2650
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2651
		journal = EXT4_JOURNAL(inode);
2652 2653 2654
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2655 2656 2657 2658 2659

		if (err)
			return 0;
	}

2660
	return generic_block_bmap(mapping, block, ext4_get_block);
2661 2662
}

2663
static int ext4_readpage(struct file *file, struct page *page)
2664
{
2665
	trace_ext4_readpage(page);
2666
	return mpage_readpage(page, ext4_get_block);
2667 2668 2669
}

static int
2670
ext4_readpages(struct file *file, struct address_space *mapping,
2671 2672
		struct list_head *pages, unsigned nr_pages)
{
2673
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2674 2675
}

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2696
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2697
{
2698
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2699

2700 2701
	trace_ext4_invalidatepage(page, offset);

2702 2703 2704 2705 2706
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2707 2708 2709 2710 2711 2712
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2713 2714 2715 2716
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2717 2718
}

2719
static int ext4_releasepage(struct page *page, gfp_t wait)
2720
{
2721
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2722

2723 2724
	trace_ext4_releasepage(page);

2725 2726 2727
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2728 2729 2730 2731
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2732 2733
}

2734 2735 2736 2737 2738
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2739
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2740 2741
		   struct buffer_head *bh_result, int create)
{
2742
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2743
		   inode->i_ino, create);
2744 2745
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2746 2747 2748
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2749 2750
			    ssize_t size, void *private, int ret,
			    bool is_async)
2751
{
2752
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2753 2754
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
2755 2756
	unsigned long flags;
	struct ext4_inode_info *ei;
2757

2758 2759
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2760
		goto out;
2761

2762 2763 2764 2765 2766 2767
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
2768
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2769 2770
		ext4_free_io_end(io_end);
		iocb->private = NULL;
2771 2772 2773
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2774
		inode_dio_done(inode);
2775
		return;
2776 2777
	}

2778 2779
	io_end->offset = offset;
	io_end->size = size;
2780 2781 2782 2783
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2784 2785
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

2786
	/* Add the io_end to per-inode completed aio dio list*/
2787 2788 2789 2790
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2791 2792 2793

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
2794
	iocb->private = NULL;
2795 2796 2797

	/* XXX: probably should move into the real I/O completion handler */
	inode_dio_done(inode);
2798
}
2799

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

2817 2818 2819 2820
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2821
	inode = io_end->inode;
2822 2823 2824 2825
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
		io_end->flag |= EXT4_IO_END_UNWRITTEN;
		atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
	}
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2852
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2871 2872 2873 2874 2875
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2876
 * For holes, we fallocate those blocks, mark them as uninitialized
2877
 * If those blocks were preallocated, we mark sure they are splited, but
2878
 * still keep the range to write as uninitialized.
2879
 *
2880 2881
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2882
 * set up an end_io call back function, which will do the conversion
2883
 * when async direct IO completed.
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
2902 2903 2904
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
2905
 		 * to prevent parallel buffered read to expose the stale data
2906
 		 * before DIO complete the data IO.
2907 2908
		 *
 		 * As to previously fallocated extents, ext4 get_block
2909 2910 2911
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
2912 2913 2914 2915 2916 2917 2918 2919
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
2920
 		 */
2921 2922 2923
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
2924
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2925 2926 2927 2928
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
2929
			 * direct IO, so that later ext4_map_blocks()
2930 2931 2932 2933 2934 2935 2936
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

2937
		ret = __blockdev_direct_IO(rw, iocb, inode,
2938 2939
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
2940
					 ext4_get_block_write,
2941 2942 2943
					 ext4_end_io_dio,
					 NULL,
					 DIO_LOCKING | DIO_SKIP_HOLES);
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
2963 2964
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
2965
			int err;
2966 2967
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
2968
			 * completed, we could do the conversion right here
2969
			 */
2970 2971 2972 2973
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
2974
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2975
		}
2976 2977
		return ret;
	}
2978 2979

	/* for write the the end of file case, we fall back to old way */
2980 2981 2982 2983 2984 2985 2986 2987 2988
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
2989
	ssize_t ret;
2990

2991 2992 2993 2994 2995 2996
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

2997
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2998
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2999 3000 3001 3002 3003 3004
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3005 3006
}

3007
/*
3008
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3020
static int ext4_journalled_set_page_dirty(struct page *page)
3021 3022 3023 3024 3025
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3026
static const struct address_space_operations ext4_ordered_aops = {
3027 3028
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3029
	.writepage		= ext4_writepage,
3030 3031 3032 3033 3034 3035 3036 3037
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3038
	.error_remove_page	= generic_error_remove_page,
3039 3040
};

3041
static const struct address_space_operations ext4_writeback_aops = {
3042 3043
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3044
	.writepage		= ext4_writepage,
3045 3046 3047 3048 3049 3050 3051 3052
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3053
	.error_remove_page	= generic_error_remove_page,
3054 3055
};

3056
static const struct address_space_operations ext4_journalled_aops = {
3057 3058
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3059
	.writepage		= ext4_writepage,
3060 3061 3062 3063 3064 3065
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
3066
	.direct_IO		= ext4_direct_IO,
3067
	.is_partially_uptodate  = block_is_partially_uptodate,
3068
	.error_remove_page	= generic_error_remove_page,
3069 3070
};

3071
static const struct address_space_operations ext4_da_aops = {
3072 3073
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3074
	.writepage		= ext4_writepage,
3075 3076 3077 3078 3079 3080 3081 3082 3083
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3084
	.error_remove_page	= generic_error_remove_page,
3085 3086
};

3087
void ext4_set_aops(struct inode *inode)
3088
{
3089 3090 3091 3092
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3093
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3094 3095 3096
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3097 3098
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3099
	else
3100
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3101 3102
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
		return -EINVAL;

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
 * from:   The starting byte offset (from the begining of the file)
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
 *         for updateing the contents of a page whose blocks may
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
 * Returns zero on sucess or negative on failure.
 */
int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	unsigned int end_of_block, range_to_discard;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page)) {
		/*
		 * If the range to be discarded covers a partial block
		 * we need to get the page buffers.  This is because
		 * partial blocks cannot be released and the page needs
		 * to be updated with the contents of the block before
		 * we write the zeros on top of it.
		 */
		if (!(from & (blocksize - 1)) ||
		    !((from + length) & (blocksize - 1))) {
			create_empty_buffers(page, blocksize, 0);
		} else {
			/*
			 * If there are no partial blocks,
			 * there is nothing to update,
			 * so we can return now
			 */
			return 0;
		}
	}

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3310
		} else
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3323
/*
3324
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3325 3326 3327 3328
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3329
int ext4_block_truncate_page(handle_t *handle,
3330
		struct address_space *mapping, loff_t from)
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
{
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	unsigned length;
	unsigned blocksize;
	struct inode *inode = mapping->host;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));

	return ext4_block_zero_page_range(handle, mapping, from, length);
}

/*
 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
 * starting from file offset 'from'.  The range to be zero'd must
 * be contained with in one block.  If the specified range exceeds
 * the end of the block it will be shortened to end of the block
 * that cooresponds to 'from'
 */
int ext4_block_zero_page_range(handle_t *handle,
		struct address_space *mapping, loff_t from, loff_t length)
3352
{
3353
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3354
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3355
	unsigned blocksize, max, pos;
A
Aneesh Kumar K.V 已提交
3356
	ext4_lblk_t iblock;
3357 3358
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3359
	struct page *page;
3360 3361
	int err = 0;

3362 3363
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3364 3365 3366
	if (!page)
		return -EINVAL;

3367
	blocksize = inode->i_sb->s_blocksize;
3368 3369 3370 3371 3372 3373 3374 3375 3376
	max = blocksize - (offset & (blocksize - 1));

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the block
	 */
	if (length > max || length < 0)
		length = max;

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3399
		ext4_get_block(inode, iblock, bh, 0);
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3420
	if (ext4_should_journal_data(inode)) {
3421
		BUFFER_TRACE(bh, "get write access");
3422
		err = ext4_journal_get_write_access(handle, bh);
3423 3424 3425 3426
		if (err)
			goto unlock;
	}

3427
	zero_user(page, offset, length);
3428 3429 3430 3431

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3432
	if (ext4_should_journal_data(inode)) {
3433
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3434
	} else
3435 3436 3437 3438 3439 3440 3441 3442
		mark_buffer_dirty(bh);

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
		return -ENOTSUPP;

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
		return -ENOTSUPP;
	}

3476 3477 3478 3479 3480
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
		return -ENOTSUPP;
	}

3481 3482 3483
	return ext4_ext_punch_hole(file, offset, length);
}

3484
/*
3485
 * ext4_truncate()
3486
 *
3487 3488
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3505
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3506
 * that this inode's truncate did not complete and it will again call
3507 3508
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3509
 * that's fine - as long as they are linked from the inode, the post-crash
3510
 * ext4_truncate() run will find them and release them.
3511
 */
3512
void ext4_truncate(struct inode *inode)
3513
{
3514 3515
	trace_ext4_truncate_enter(inode);

3516
	if (!ext4_can_truncate(inode))
3517 3518
		return;

3519
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3520

3521
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3522
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3523

3524
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3525
		ext4_ext_truncate(inode);
3526 3527
	else
		ext4_ind_truncate(inode);
3528

3529
	trace_ext4_truncate_exit(inode);
3530 3531 3532
}

/*
3533
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3534 3535 3536 3537
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3538 3539
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3540
{
3541 3542 3543 3544 3545 3546
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3547
	iloc->bh = NULL;
3548 3549
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3550

3551 3552 3553
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3554 3555
		return -EIO;

3556 3557 3558
	/*
	 * Figure out the offset within the block group inode table
	 */
3559
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3560 3561 3562 3563 3564 3565
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3566
	if (!bh) {
3567 3568
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3569 3570 3571 3572
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3596
			int i, start;
3597

3598
			start = inode_offset & ~(inodes_per_block - 1);
3599

3600 3601
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3614
			for (i = start; i < start + inodes_per_block; i++) {
3615 3616
				if (i == inode_offset)
					continue;
3617
				if (ext4_test_bit(i, bitmap_bh->b_data))
3618 3619 3620
					break;
			}
			brelse(bitmap_bh);
3621
			if (i == start + inodes_per_block) {
3622 3623 3624 3625 3626 3627 3628 3629 3630
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3631 3632 3633 3634 3635 3636 3637 3638 3639
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3640
			/* s_inode_readahead_blks is always a power of 2 */
3641 3642 3643 3644 3645 3646 3647
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3648
				num -= ext4_itable_unused_count(sb, gdp);
3649 3650 3651 3652 3653 3654 3655
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3656 3657 3658 3659 3660
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3661
		trace_ext4_load_inode(inode);
3662 3663 3664 3665 3666
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3667 3668
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3669 3670 3671 3672 3673 3674 3675 3676 3677
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3678
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3679 3680
{
	/* We have all inode data except xattrs in memory here. */
3681
	return __ext4_get_inode_loc(inode, iloc,
3682
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3683 3684
}

3685
void ext4_set_inode_flags(struct inode *inode)
3686
{
3687
	unsigned int flags = EXT4_I(inode)->i_flags;
3688 3689

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3690
	if (flags & EXT4_SYNC_FL)
3691
		inode->i_flags |= S_SYNC;
3692
	if (flags & EXT4_APPEND_FL)
3693
		inode->i_flags |= S_APPEND;
3694
	if (flags & EXT4_IMMUTABLE_FL)
3695
		inode->i_flags |= S_IMMUTABLE;
3696
	if (flags & EXT4_NOATIME_FL)
3697
		inode->i_flags |= S_NOATIME;
3698
	if (flags & EXT4_DIRSYNC_FL)
3699 3700 3701
		inode->i_flags |= S_DIRSYNC;
}

3702 3703 3704
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3725
}
3726

3727
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3728
				  struct ext4_inode_info *ei)
3729 3730
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3731 3732
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3733 3734 3735 3736 3737 3738

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3739
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3740 3741 3742 3743 3744
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3745 3746 3747 3748
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3749

3750
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3751
{
3752 3753
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3754 3755
	struct ext4_inode_info *ei;
	struct inode *inode;
3756
	journal_t *journal = EXT4_SB(sb)->s_journal;
3757
	long ret;
3758 3759
	int block;

3760 3761 3762 3763 3764 3765 3766
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3767
	iloc.bh = NULL;
3768

3769 3770
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3771
		goto bad_inode;
3772
	raw_inode = ext4_raw_inode(&iloc);
3773 3774 3775
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3776
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3777 3778 3779 3780 3781
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

3782
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3783 3784 3785 3786 3787 3788 3789 3790 3791
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3792
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3793
			/* this inode is deleted */
3794
			ret = -ESTALE;
3795 3796 3797 3798 3799 3800 3801 3802
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3803
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3804
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3805
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3806 3807
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3808
	inode->i_size = ext4_isize(raw_inode);
3809
	ei->i_disksize = inode->i_size;
3810 3811 3812
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3813 3814
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3815
	ei->i_last_alloc_group = ~0;
3816 3817 3818 3819
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3820
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3821 3822 3823
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3835
		read_lock(&journal->j_state_lock);
3836 3837 3838 3839 3840 3841 3842 3843
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3844
		read_unlock(&journal->j_state_lock);
3845 3846 3847 3848
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3849
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3850
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3851
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3852
		    EXT4_INODE_SIZE(inode->i_sb)) {
3853
			ret = -EIO;
3854
			goto bad_inode;
3855
		}
3856 3857
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3858 3859
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3860 3861
		} else {
			__le32 *magic = (void *)raw_inode +
3862
					EXT4_GOOD_OLD_INODE_SIZE +
3863
					ei->i_extra_isize;
3864
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3865
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3866 3867 3868 3869
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
3870 3871 3872 3873 3874
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3875 3876 3877 3878 3879 3880 3881
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3882
	ret = 0;
3883
	if (ei->i_file_acl &&
3884
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3885 3886
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3887 3888
		ret = -EIO;
		goto bad_inode;
3889
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3890 3891 3892 3893 3894
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3895
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3896 3897
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3898
		/* Validate block references which are part of inode */
3899
		ret = ext4_ind_check_inode(inode);
3900
	}
3901
	if (ret)
3902
		goto bad_inode;
3903

3904
	if (S_ISREG(inode->i_mode)) {
3905 3906 3907
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3908
	} else if (S_ISDIR(inode->i_mode)) {
3909 3910
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3911
	} else if (S_ISLNK(inode->i_mode)) {
3912
		if (ext4_inode_is_fast_symlink(inode)) {
3913
			inode->i_op = &ext4_fast_symlink_inode_operations;
3914 3915 3916
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3917 3918
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3919
		}
3920 3921
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3922
		inode->i_op = &ext4_special_inode_operations;
3923 3924 3925 3926 3927 3928
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3929 3930
	} else {
		ret = -EIO;
3931
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3932
		goto bad_inode;
3933
	}
3934
	brelse(iloc.bh);
3935
	ext4_set_inode_flags(inode);
3936 3937
	unlock_new_inode(inode);
	return inode;
3938 3939

bad_inode:
3940
	brelse(iloc.bh);
3941 3942
	iget_failed(inode);
	return ERR_PTR(ret);
3943 3944
}

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3958
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3959
		raw_inode->i_blocks_high = 0;
3960
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3961 3962 3963 3964 3965 3966
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3967 3968 3969 3970
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3971
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3972
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3973
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3974
	} else {
3975
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3976 3977 3978 3979
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3980
	}
3981
	return 0;
3982 3983
}

3984 3985 3986 3987 3988 3989 3990
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3991
static int ext4_do_update_inode(handle_t *handle,
3992
				struct inode *inode,
3993
				struct ext4_iloc *iloc)
3994
{
3995 3996
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3997 3998 3999 4000 4001
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4002
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4003
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4004

4005
	ext4_get_inode_flags(ei);
4006
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4007
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4008 4009 4010 4011 4012 4013
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4014
		if (!ei->i_dtime) {
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4032 4033 4034 4035 4036 4037

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4038 4039
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4040
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4041
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4042 4043
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4044 4045
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4046
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4063
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4064
			sb->s_dirt = 1;
4065
			ext4_handle_sync(handle);
4066
			err = ext4_handle_dirty_metadata(handle, NULL,
4067
					EXT4_SB(sb)->s_sbh);
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4082 4083 4084
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4085

4086 4087 4088 4089 4090
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4091
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4092 4093
	}

4094
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4095
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4096 4097
	if (!err)
		err = rc;
4098
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4099

4100
	ext4_update_inode_fsync_trans(handle, inode, 0);
4101
out_brelse:
4102
	brelse(bh);
4103
	ext4_std_error(inode->i_sb, err);
4104 4105 4106 4107
	return err;
}

/*
4108
 * ext4_write_inode()
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4125
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4142
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4143
{
4144 4145
	int err;

4146 4147 4148
	if (current->flags & PF_MEMALLOC)
		return 0;

4149 4150 4151 4152 4153 4154
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4155

4156
		if (wbc->sync_mode != WB_SYNC_ALL)
4157 4158 4159 4160 4161
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4162

4163
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4164 4165
		if (err)
			return err;
4166
		if (wbc->sync_mode == WB_SYNC_ALL)
4167 4168
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4169 4170
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4171 4172
			err = -EIO;
		}
4173
		brelse(iloc.bh);
4174 4175
	}
	return err;
4176 4177 4178
}

/*
4179
 * ext4_setattr()
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4193 4194 4195 4196 4197 4198 4199 4200
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4201
 */
4202
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4203 4204 4205
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4206
	int orphan = 0;
4207 4208 4209 4210 4211 4212
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4213
	if (is_quota_modification(inode, attr))
4214
		dquot_initialize(inode);
4215 4216 4217 4218 4219 4220
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4221
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4222
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4223 4224 4225 4226
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4227
		error = dquot_transfer(inode, attr);
4228
		if (error) {
4229
			ext4_journal_stop(handle);
4230 4231 4232 4233 4234 4235 4236 4237
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4238 4239
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4240 4241
	}

4242
	if (attr->ia_valid & ATTR_SIZE) {
4243 4244
		inode_dio_wait(inode);

4245
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4246 4247
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4248 4249
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4250 4251 4252
		}
	}

4253
	if (S_ISREG(inode->i_mode) &&
4254
	    attr->ia_valid & ATTR_SIZE &&
4255
	    (attr->ia_size < inode->i_size)) {
4256 4257
		handle_t *handle;

4258
		handle = ext4_journal_start(inode, 3);
4259 4260 4261 4262
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4263 4264 4265 4266
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4267 4268
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4269 4270
		if (!error)
			error = rc;
4271
		ext4_journal_stop(handle);
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4284
				orphan = 0;
4285 4286 4287 4288
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4289 4290
	}

4291 4292 4293 4294 4295 4296 4297
	if (attr->ia_valid & ATTR_SIZE) {
		if (attr->ia_size != i_size_read(inode)) {
			truncate_setsize(inode, attr->ia_size);
			ext4_truncate(inode);
		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
			ext4_truncate(inode);
	}
4298

C
Christoph Hellwig 已提交
4299 4300 4301 4302 4303 4304 4305 4306 4307
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4308
	if (orphan && inode->i_nlink)
4309
		ext4_orphan_del(NULL, inode);
4310 4311

	if (!rc && (ia_valid & ATTR_MODE))
4312
		rc = ext4_acl_chmod(inode);
4313 4314

err_out:
4315
	ext4_std_error(inode->i_sb, error);
4316 4317 4318 4319 4320
	if (!error)
		error = rc;
	return error;
}

4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4345

4346 4347
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4348
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4349
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4350
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4351
}
4352

4353
/*
4354 4355 4356
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4357
 *
4358
 * If datablocks are discontiguous, they are possible to spread over
4359
 * different block groups too. If they are contiuguous, with flexbg,
4360
 * they could still across block group boundary.
4361
 *
4362 4363
 * Also account for superblock, inode, quota and xattr blocks
 */
4364
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4365
{
4366 4367
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4394 4395
	if (groups > ngroups)
		groups = ngroups;
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4409
 * Calculate the total number of credits to reserve to fit
4410 4411
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4412
 *
4413
 * This could be called via ext4_write_begin()
4414
 *
4415
 * We need to consider the worse case, when
4416
 * one new block per extent.
4417
 */
A
Alex Tomas 已提交
4418
int ext4_writepage_trans_blocks(struct inode *inode)
4419
{
4420
	int bpp = ext4_journal_blocks_per_page(inode);
4421 4422
	int ret;

4423
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4424

4425
	/* Account for data blocks for journalled mode */
4426
	if (ext4_should_journal_data(inode))
4427
		ret += bpp;
4428 4429
	return ret;
}
4430 4431 4432 4433 4434

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4435
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4436 4437 4438 4439 4440 4441 4442 4443 4444
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4445
/*
4446
 * The caller must have previously called ext4_reserve_inode_write().
4447 4448
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4449
int ext4_mark_iloc_dirty(handle_t *handle,
4450
			 struct inode *inode, struct ext4_iloc *iloc)
4451 4452 4453
{
	int err = 0;

4454 4455 4456
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4457 4458 4459
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4460
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4461
	err = ext4_do_update_inode(handle, inode, iloc);
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4472 4473
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4474
{
4475 4476 4477 4478 4479 4480 4481 4482 4483
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4484 4485
		}
	}
4486
	ext4_std_error(inode->i_sb, err);
4487 4488 4489
	return err;
}

4490 4491 4492 4493
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4494 4495 4496 4497
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4510 4511
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4544
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4545
{
4546
	struct ext4_iloc iloc;
4547 4548 4549
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4550 4551

	might_sleep();
4552
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4553
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4554 4555
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4556
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4570 4571
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4572 4573
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4574
					ext4_warning(inode->i_sb,
4575 4576 4577
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4578 4579
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4580 4581 4582 4583
				}
			}
		}
	}
4584
	if (!err)
4585
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4586 4587 4588 4589
	return err;
}

/*
4590
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4591 4592 4593 4594 4595
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4596
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4597 4598 4599 4600 4601 4602
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4603
void ext4_dirty_inode(struct inode *inode, int flags)
4604 4605 4606
{
	handle_t *handle;

4607
	handle = ext4_journal_start(inode, 2);
4608 4609
	if (IS_ERR(handle))
		goto out;
4610 4611 4612

	ext4_mark_inode_dirty(handle, inode);

4613
	ext4_journal_stop(handle);
4614 4615 4616 4617 4618 4619 4620 4621
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4622
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4623 4624 4625
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4626
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4627
{
4628
	struct ext4_iloc iloc;
4629 4630 4631

	int err = 0;
	if (handle) {
4632
		err = ext4_get_inode_loc(inode, &iloc);
4633 4634
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4635
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4636
			if (!err)
4637
				err = ext4_handle_dirty_metadata(handle,
4638
								 NULL,
4639
								 iloc.bh);
4640 4641 4642
			brelse(iloc.bh);
		}
	}
4643
	ext4_std_error(inode->i_sb, err);
4644 4645 4646 4647
	return err;
}
#endif

4648
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4664
	journal = EXT4_JOURNAL(inode);
4665 4666
	if (!journal)
		return 0;
4667
	if (is_journal_aborted(journal))
4668 4669
		return -EROFS;

4670 4671
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4682
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4683
	else
4684
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4685
	ext4_set_aops(inode);
4686

4687
	jbd2_journal_unlock_updates(journal);
4688 4689 4690

	/* Finally we can mark the inode as dirty. */

4691
	handle = ext4_journal_start(inode, 1);
4692 4693 4694
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4695
	err = ext4_mark_inode_dirty(handle, inode);
4696
	ext4_handle_sync(handle);
4697 4698
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4699 4700 4701

	return err;
}
4702 4703 4704 4705 4706 4707

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4708
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4709
{
4710
	struct page *page = vmf->page;
4711 4712
	loff_t size;
	unsigned long len;
4713
	int ret;
4714 4715 4716
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4717 4718 4719
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4720 4721

	/*
4722 4723
	 * This check is racy but catches the common case. We rely on
	 * __block_page_mkwrite() to do a reliable check.
4724
	 */
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4736
	}
4737 4738

	lock_page(page);
4739 4740 4741 4742 4743 4744
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4745
	}
4746 4747 4748 4749 4750

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4751
	/*
4752 4753
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4754
	 */
4755 4756
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4757
					ext4_bh_unmapped)) {
4758 4759 4760 4761
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4762
		}
4763
	}
4764
	unlock_page(page);
4765 4766 4767 4768 4769 4770 4771 4772
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4773
		ret = VM_FAULT_SIGBUS;
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4792 4793
	return ret;
}