inode.c 139.3 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136 137 138 139 140
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
141 142 143
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
144

145 146 147
/*
 * Test whether an inode is a fast symlink.
 */
148
static int ext4_inode_is_fast_symlink(struct inode *inode)
149
{
150
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 152 153 154 155 156 157 158 159 160
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
161
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162
				 int nblocks)
163
{
164 165 166
	int ret;

	/*
167
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 169 170 171
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
172
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173
	jbd_debug(2, "restarting handle %p\n", handle);
174
	up_write(&EXT4_I(inode)->i_data_sem);
175
	ret = ext4_journal_restart(handle, nblocks);
176
	down_write(&EXT4_I(inode)->i_data_sem);
177
	ext4_discard_preallocations(inode);
178 179

	return ret;
180 181 182 183 184
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
185
void ext4_evict_inode(struct inode *inode)
186 187
{
	handle_t *handle;
188
	int err;
189

190
	trace_ext4_evict_inode(inode);
191 192 193

	ext4_ioend_wait(inode);

A
Al Viro 已提交
194
	if (inode->i_nlink) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
222 223 224 225
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

226
	if (!is_bad_inode(inode))
227
		dquot_initialize(inode);
228

229 230
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
231 232 233 234 235
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

236
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
237
	if (IS_ERR(handle)) {
238
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
239 240 241 242 243
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
244
		ext4_orphan_del(NULL, inode);
245 246 247 248
		goto no_delete;
	}

	if (IS_SYNC(inode))
249
		ext4_handle_sync(handle);
250
	inode->i_size = 0;
251 252
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
253
		ext4_warning(inode->i_sb,
254 255 256
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
257
	if (inode->i_blocks)
258
		ext4_truncate(inode);
259 260 261 262 263 264 265

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
266
	if (!ext4_handle_has_enough_credits(handle, 3)) {
267 268 269 270
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
271
			ext4_warning(inode->i_sb,
272 273 274
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
275
			ext4_orphan_del(NULL, inode);
276 277 278 279
			goto no_delete;
		}
	}

280
	/*
281
	 * Kill off the orphan record which ext4_truncate created.
282
	 * AKPM: I think this can be inside the above `if'.
283
	 * Note that ext4_orphan_del() has to be able to cope with the
284
	 * deletion of a non-existent orphan - this is because we don't
285
	 * know if ext4_truncate() actually created an orphan record.
286 287
	 * (Well, we could do this if we need to, but heck - it works)
	 */
288 289
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
290 291 292 293 294 295 296 297

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
298
	if (ext4_mark_inode_dirty(handle, inode))
299
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
300
		ext4_clear_inode(inode);
301
	else
302 303
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
304 305
	return;
no_delete:
A
Al Viro 已提交
306
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
307 308
}

309 310
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
311
{
312
	return &EXT4_I(inode)->i_reserved_quota;
313
}
314
#endif
315

316 317
/*
 * Calculate the number of metadata blocks need to reserve
318
 * to allocate a block located at @lblock
319
 */
320
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
321
{
322
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
323
		return ext4_ext_calc_metadata_amount(inode, lblock);
324

325
	return ext4_ind_calc_metadata_amount(inode, lblock);
326 327
}

328 329 330 331
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
332 333
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
334 335
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 337 338
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
339
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 341
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
342
			 "with only %d reserved data blocks",
343 344 345 346 347
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
348

349 350 351
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
352
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
353
			   used + ei->i_allocated_meta_blocks);
354
	ei->i_allocated_meta_blocks = 0;
355

356 357 358 359 360 361
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
362
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
363
				   ei->i_reserved_meta_blocks);
364
		ei->i_reserved_meta_blocks = 0;
365
		ei->i_da_metadata_calc_len = 0;
366
	}
367
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
368

369 370
	/* Update quota subsystem for data blocks */
	if (quota_claim)
371
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
372
	else {
373 374 375
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
376
		 * not re-claim the quota for fallocated blocks.
377
		 */
378
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
379
	}
380 381 382 383 384 385

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
386 387
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
388
		ext4_discard_preallocations(inode);
389 390
}

391
static int __check_block_validity(struct inode *inode, const char *func,
392 393
				unsigned int line,
				struct ext4_map_blocks *map)
394
{
395 396
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
397 398 399 400
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
401 402 403 404 405
		return -EIO;
	}
	return 0;
}

406
#define check_block_validity(inode, map)	\
407
	__check_block_validity((inode), __func__, __LINE__, (map))
408

409
/*
410 411
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
445 446 447 448 449 450 451 452 453
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
454 455 456 457 458
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
459 460
			if (num >= max_pages) {
				done = 1;
461
				break;
462
			}
463 464 465 466 467 468
		}
		pagevec_release(&pvec);
	}
	return num;
}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/*
 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 */
static void set_buffers_da_mapped(struct inode *inode,
				   struct ext4_map_blocks *map)
{
	struct address_space *mapping = inode->i_mapping;
	struct pagevec pvec;
	int i, nr_pages;
	pgoff_t index, end;

	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + map->m_len - 1) >>
		(PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index,
					  min(end - index + 1,
					      (pgoff_t)PAGEVEC_SIZE));
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page))
				break;

			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					set_buffer_da_mapped(bh);
					bh = bh->b_this_page;
				} while (bh != head);
			}
			index++;
		}
		pagevec_release(&pvec);
	}
}

512
/*
513
 * The ext4_map_blocks() function tries to look up the requested blocks,
514
 * and returns if the blocks are already mapped.
515 516 517 518 519
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
520 521
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
522 523 524 525 526 527 528 529
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
530
 * that case, buffer head is unmapped
531 532 533
 *
 * It returns the error in case of allocation failure.
 */
534 535
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
536 537
{
	int retval;
538

539 540 541 542
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
543
	/*
544 545
	 * Try to see if we can get the block without requesting a new
	 * file system block.
546
	 */
547 548
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
549
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
550 551
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
552
	} else {
553 554
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
555
	}
556 557
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
558

559
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
560
		int ret = check_block_validity(inode, map);
561 562 563 564
		if (ret != 0)
			return ret;
	}

565
	/* If it is only a block(s) look up */
566
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
567 568 569 570 571 572
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
573
	 * ext4_ext_get_block() returns the create = 0
574 575
	 * with buffer head unmapped.
	 */
576
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
577 578
		return retval;

579 580 581 582 583 584 585 586 587 588
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
589
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
590

591
	/*
592 593 594 595
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
596 597
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
598 599 600 601 602 603 604

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
605
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
606
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
607 608 609 610
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
611
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
612
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
613
	} else {
614
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
615

616
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
617 618 619 620 621
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
622
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
623
		}
624

625 626 627 628 629 630 631
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
632
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
633 634
			ext4_da_update_reserve_space(inode, retval, 1);
	}
635
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
636
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
637

638 639 640 641 642 643 644 645
		/* If we have successfully mapped the delayed allocated blocks,
		 * set the BH_Da_Mapped bit on them. Its important to do this
		 * under the protection of i_data_sem.
		 */
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
			set_buffers_da_mapped(inode, map);
	}

646
	up_write((&EXT4_I(inode)->i_data_sem));
647
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
648
		int ret = check_block_validity(inode, map);
649 650 651
		if (ret != 0)
			return ret;
	}
652 653 654
	return retval;
}

655 656 657
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

658 659
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
660
{
661
	handle_t *handle = ext4_journal_current_handle();
662
	struct ext4_map_blocks map;
J
Jan Kara 已提交
663
	int ret = 0, started = 0;
664
	int dio_credits;
665

666 667 668 669
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
670
		/* Direct IO write... */
671 672 673
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
674
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
675
		if (IS_ERR(handle)) {
676
			ret = PTR_ERR(handle);
677
			return ret;
678
		}
J
Jan Kara 已提交
679
		started = 1;
680 681
	}

682
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
683
	if (ret > 0) {
684 685 686
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
687
		ret = 0;
688
	}
J
Jan Kara 已提交
689 690
	if (started)
		ext4_journal_stop(handle);
691 692 693
	return ret;
}

694 695 696 697 698 699 700
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

701 702 703
/*
 * `handle' can be NULL if create is zero
 */
704
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
705
				ext4_lblk_t block, int create, int *errp)
706
{
707 708
	struct ext4_map_blocks map;
	struct buffer_head *bh;
709 710 711 712
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

713 714 715 716
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
717

718 719 720 721 722 723 724 725 726 727
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
728
	}
729 730 731
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
732

733 734 735 736 737 738 739 740 741 742 743 744 745
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
746
		}
747 748 749 750 751 752 753
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
754
	}
755 756 757 758 759 760
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
761 762
}

763
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
764
			       ext4_lblk_t block, int create, int *err)
765
{
766
	struct buffer_head *bh;
767

768
	bh = ext4_getblk(handle, inode, block, create, err);
769 770 771 772
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
773
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
774 775 776 777 778 779 780 781
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

782 783 784 785 786 787 788
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
789 790 791 792 793 794 795
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

796 797
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
798
	     block_start = block_end, bh = next) {
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
816
 * close off a transaction and start a new one between the ext4_get_block()
817
 * and the commit_write().  So doing the jbd2_journal_start at the start of
818 819
 * prepare_write() is the right place.
 *
820 821
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
822 823 824 825
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
826
 * By accident, ext4 can be reentered when a transaction is open via
827 828 829 830 831 832
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
833
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
834 835 836 837 838
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
839
				       struct buffer_head *bh)
840
{
841 842 843
	int dirty = buffer_dirty(bh);
	int ret;

844 845
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
846
	/*
C
Christoph Hellwig 已提交
847
	 * __block_write_begin() could have dirtied some buffers. Clean
848 849
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
850
	 * by __block_write_begin() isn't a real problem here as we clear
851 852 853 854 855 856 857 858 859
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
860 861
}

862 863
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
864
static int ext4_write_begin(struct file *file, struct address_space *mapping,
865 866
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
867
{
868
	struct inode *inode = mapping->host;
869
	int ret, needed_blocks;
870 871
	handle_t *handle;
	int retries = 0;
872
	struct page *page;
873
	pgoff_t index;
874
	unsigned from, to;
N
Nick Piggin 已提交
875

876
	trace_ext4_write_begin(inode, pos, len, flags);
877 878 879 880 881
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
882
	index = pos >> PAGE_CACHE_SHIFT;
883 884
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
885 886

retry:
887 888 889 890
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
891
	}
892

893 894 895 896
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

897
	page = grab_cache_page_write_begin(mapping, index, flags);
898 899 900 901 902 903 904
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

905
	if (ext4_should_dioread_nolock(inode))
906
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
907
	else
908
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
909 910

	if (!ret && ext4_should_journal_data(inode)) {
911 912 913
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
914 915

	if (ret) {
916 917
		unlock_page(page);
		page_cache_release(page);
918
		/*
919
		 * __block_write_begin may have instantiated a few blocks
920 921
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
922 923 924
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
925
		 */
926
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
927 928 929 930
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
931
			ext4_truncate_failed_write(inode);
932
			/*
933
			 * If truncate failed early the inode might
934 935 936 937 938 939 940
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
941 942
	}

943
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
944
		goto retry;
945
out:
946 947 948
	return ret;
}

N
Nick Piggin 已提交
949 950
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
951 952 953 954
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
955
	return ext4_handle_dirty_metadata(handle, NULL, bh);
956 957
}

958
static int ext4_generic_write_end(struct file *file,
959 960 961
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1004 1005 1006 1007
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1008
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1009 1010
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1011
static int ext4_ordered_write_end(struct file *file,
1012 1013 1014
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1015
{
1016
	handle_t *handle = ext4_journal_current_handle();
1017
	struct inode *inode = mapping->host;
1018 1019
	int ret = 0, ret2;

1020
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1021
	ret = ext4_jbd2_file_inode(handle, inode);
1022 1023

	if (ret == 0) {
1024
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1025
							page, fsdata);
1026
		copied = ret2;
1027
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1028 1029 1030 1031 1032
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1033 1034
		if (ret2 < 0)
			ret = ret2;
1035 1036 1037
	} else {
		unlock_page(page);
		page_cache_release(page);
1038
	}
1039

1040
	ret2 = ext4_journal_stop(handle);
1041 1042
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1043

1044
	if (pos + len > inode->i_size) {
1045
		ext4_truncate_failed_write(inode);
1046
		/*
1047
		 * If truncate failed early the inode might still be
1048 1049 1050 1051 1052 1053 1054 1055
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1056
	return ret ? ret : copied;
1057 1058
}

N
Nick Piggin 已提交
1059
static int ext4_writeback_write_end(struct file *file,
1060 1061 1062
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1063
{
1064
	handle_t *handle = ext4_journal_current_handle();
1065
	struct inode *inode = mapping->host;
1066 1067
	int ret = 0, ret2;

1068
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1069
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1070
							page, fsdata);
1071
	copied = ret2;
1072
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1073 1074 1075 1076 1077 1078
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1079 1080
	if (ret2 < 0)
		ret = ret2;
1081

1082
	ret2 = ext4_journal_stop(handle);
1083 1084
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1085

1086
	if (pos + len > inode->i_size) {
1087
		ext4_truncate_failed_write(inode);
1088
		/*
1089
		 * If truncate failed early the inode might still be
1090 1091 1092 1093 1094 1095 1096
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1097
	return ret ? ret : copied;
1098 1099
}

N
Nick Piggin 已提交
1100
static int ext4_journalled_write_end(struct file *file,
1101 1102 1103
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1104
{
1105
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1106
	struct inode *inode = mapping->host;
1107 1108
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1109
	unsigned from, to;
1110
	loff_t new_i_size;
1111

1112
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1113 1114 1115
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1116 1117
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
1118 1119 1120 1121 1122
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1123 1124

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1125
				to, &partial, write_end_fn);
1126 1127
	if (!partial)
		SetPageUptodate(page);
1128 1129
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1130
		i_size_write(inode, pos+copied);
1131
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1132
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1133 1134
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1135
		ret2 = ext4_mark_inode_dirty(handle, inode);
1136 1137 1138
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1139

1140
	unlock_page(page);
1141
	page_cache_release(page);
1142
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1143 1144 1145 1146 1147 1148
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1149
	ret2 = ext4_journal_stop(handle);
1150 1151
	if (!ret)
		ret = ret2;
1152
	if (pos + len > inode->i_size) {
1153
		ext4_truncate_failed_write(inode);
1154
		/*
1155
		 * If truncate failed early the inode might still be
1156 1157 1158 1159 1160 1161
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1162 1163

	return ret ? ret : copied;
1164
}
1165

1166
/*
1167
 * Reserve a single cluster located at lblock
1168
 */
1169
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1170
{
A
Aneesh Kumar K.V 已提交
1171
	int retries = 0;
1172
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1173
	struct ext4_inode_info *ei = EXT4_I(inode);
1174
	unsigned int md_needed;
1175
	int ret;
1176 1177 1178 1179 1180 1181

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1182
repeat:
1183
	spin_lock(&ei->i_block_reservation_lock);
1184 1185
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1186
	trace_ext4_da_reserve_space(inode, md_needed);
1187
	spin_unlock(&ei->i_block_reservation_lock);
1188

1189
	/*
1190 1191 1192
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1193
	 */
1194
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1195 1196
	if (ret)
		return ret;
1197 1198 1199 1200
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1201
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1202
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
A
Aneesh Kumar K.V 已提交
1203 1204 1205 1206
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1207 1208
		return -ENOSPC;
	}
1209
	spin_lock(&ei->i_block_reservation_lock);
1210
	ei->i_reserved_data_blocks++;
1211 1212
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1213

1214 1215 1216
	return 0;       /* success */
}

1217
static void ext4_da_release_space(struct inode *inode, int to_free)
1218 1219
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1220
	struct ext4_inode_info *ei = EXT4_I(inode);
1221

1222 1223 1224
	if (!to_free)
		return;		/* Nothing to release, exit */

1225
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1226

L
Li Zefan 已提交
1227
	trace_ext4_da_release_space(inode, to_free);
1228
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1229
		/*
1230 1231 1232 1233
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1234
		 */
1235 1236
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
1237
			 "data blocks", inode->i_ino, to_free,
1238 1239 1240
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1241
	}
1242
	ei->i_reserved_data_blocks -= to_free;
1243

1244 1245 1246 1247 1248
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1249 1250
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1251
		 */
1252
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1253
				   ei->i_reserved_meta_blocks);
1254
		ei->i_reserved_meta_blocks = 0;
1255
		ei->i_da_metadata_calc_len = 0;
1256
	}
1257

1258
	/* update fs dirty data blocks counter */
1259
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1260 1261

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1262

1263
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1264 1265 1266
}

static void ext4_da_page_release_reservation(struct page *page,
1267
					     unsigned long offset)
1268 1269 1270 1271
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1272 1273 1274
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1275 1276 1277 1278 1279 1280 1281 1282 1283

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
1284
			clear_buffer_da_mapped(bh);
1285 1286 1287
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		ext4_fsblk_t lblk;
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
		    !ext4_find_delalloc_cluster(inode, lblk, 1))
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1302
}
1303

1304 1305 1306 1307 1308 1309
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1310
 * them with writepage() call back
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1321 1322
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1323
{
1324 1325 1326 1327 1328
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1329
	loff_t size = i_size_read(inode);
1330 1331
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1332
	int journal_data = ext4_should_journal_data(inode);
1333
	sector_t pblock = 0, cur_logical = 0;
1334
	struct ext4_io_submit io_submit;
1335 1336

	BUG_ON(mpd->next_page <= mpd->first_page);
1337
	memset(&io_submit, 0, sizeof(io_submit));
1338 1339 1340
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1341
	 * If we look at mpd->b_blocknr we would only be looking
1342 1343
	 * at the currently mapped buffer_heads.
	 */
1344 1345 1346
	index = mpd->first_page;
	end = mpd->next_page - 1;

1347
	pagevec_init(&pvec, 0);
1348
	while (index <= end) {
1349
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1350 1351 1352
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1353
			int commit_write = 0, skip_page = 0;
1354 1355
			struct page *page = pvec.pages[i];

1356 1357 1358
			index = page->index;
			if (index > end)
				break;
1359 1360 1361 1362 1363

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1364 1365 1366 1367 1368 1369
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1370 1371 1372 1373 1374
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1375
			/*
1376 1377
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1378
			 * __block_write_begin.  If this fails,
1379
			 * skip the page and move on.
1380
			 */
1381
			if (!page_has_buffers(page)) {
1382
				if (__block_write_begin(page, 0, len,
1383
						noalloc_get_block_write)) {
1384
				skip_page:
1385 1386 1387 1388 1389
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1390

1391 1392
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1393
			do {
1394
				if (!bh)
1395
					goto skip_page;
1396 1397 1398
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1399 1400 1401 1402
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1403 1404
					if (buffer_da_mapped(bh))
						clear_buffer_da_mapped(bh);
1405 1406 1407 1408 1409 1410 1411
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1412

1413 1414 1415 1416 1417
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1418
					skip_page = 1;
1419 1420
				bh = bh->b_this_page;
				block_start += bh->b_size;
1421 1422
				cur_logical++;
				pblock++;
1423 1424
			} while (bh != page_bufs);

1425 1426
			if (skip_page)
				goto skip_page;
1427 1428 1429 1430 1431

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1432
			clear_page_dirty_for_io(page);
1433 1434 1435 1436 1437 1438
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1439
				err = __ext4_journalled_writepage(page, len);
1440
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1441 1442
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1443 1444 1445 1446 1447 1448
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1449 1450
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1451 1452

			if (!err)
1453
				mpd->pages_written++;
1454 1455 1456 1457 1458 1459 1460 1461 1462
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1463
	ext4_io_submit(&io_submit);
1464 1465 1466
	return ret;
}

1467
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1468 1469 1470 1471 1472 1473 1474
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

1475 1476
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1477 1478 1479 1480 1481 1482
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1483
			if (page->index > end)
1484 1485 1486 1487 1488 1489 1490
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1491 1492
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1493 1494 1495 1496
	}
	return;
}

1497 1498 1499
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1500 1501 1502
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1503 1504
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1505 1506
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1507 1508
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1509
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1510 1511
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1512 1513 1514 1515
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1516
	       EXT4_I(inode)->i_reserved_meta_blocks);
1517 1518 1519
	return;
}

1520
/*
1521 1522
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1523
 *
1524
 * @mpd - bh describing space
1525 1526 1527 1528
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1529
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1530
{
1531
	int err, blks, get_blocks_flags;
1532
	struct ext4_map_blocks map, *mapp = NULL;
1533 1534 1535 1536
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1537 1538

	/*
1539 1540
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1541
	 */
1542 1543 1544 1545 1546
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1547 1548 1549 1550

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1551
	/*
1552
	 * Call ext4_map_blocks() to allocate any delayed allocation
1553 1554 1555 1556 1557 1558 1559 1560
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1561
	 * want to change *many* call functions, so ext4_map_blocks()
1562
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1563 1564 1565 1566 1567
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1568
	 */
1569 1570
	map.m_lblk = next;
	map.m_len = max_blocks;
1571
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1572 1573
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1574
	if (mpd->b_state & (1 << BH_Delay))
1575 1576
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1577
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1578
	if (blks < 0) {
1579 1580
		struct super_block *sb = mpd->inode->i_sb;

1581
		err = blks;
1582
		/*
1583
		 * If get block returns EAGAIN or ENOSPC and there
1584 1585
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1586 1587
		 */
		if (err == -EAGAIN)
1588
			goto submit_io;
1589

1590
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1591
			mpd->retval = err;
1592
			goto submit_io;
1593 1594
		}

1595
		/*
1596 1597 1598 1599 1600
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1601
		 */
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1613
		}
1614
		/* invalidate all the pages */
1615
		ext4_da_block_invalidatepages(mpd);
1616 1617 1618

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1619
		return;
1620
	}
1621 1622
	BUG_ON(blks == 0);

1623
	mapp = &map;
1624 1625 1626
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1627

1628 1629
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1630

1631 1632
		if (ext4_should_order_data(mpd->inode)) {
			err = ext4_jbd2_file_inode(handle, mpd->inode);
1633
			if (err) {
1634
				/* Only if the journal is aborted */
1635 1636 1637
				mpd->retval = err;
				goto submit_io;
			}
1638
		}
1639 1640 1641
	}

	/*
1642
	 * Update on-disk size along with block allocation.
1643 1644 1645 1646 1647 1648
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1649 1650 1651 1652 1653
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1654 1655
	}

1656
submit_io:
1657
	mpage_da_submit_io(mpd, mapp);
1658
	mpd->io_done = 1;
1659 1660
}

1661 1662
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1674 1675
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1676 1677
{
	sector_t next;
1678
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1679

1680 1681 1682 1683
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1684
	 * ext4_map_blocks() multiple times in a loop
1685 1686 1687 1688
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1689
	/* check if thereserved journal credits might overflow */
1690
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1711 1712 1713
	/*
	 * First block in the extent
	 */
1714 1715 1716 1717
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1718 1719 1720
		return;
	}

1721
	next = mpd->b_blocknr + nrblocks;
1722 1723 1724
	/*
	 * Can we merge the block to our big extent?
	 */
1725 1726
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1727 1728 1729
		return;
	}

1730
flush_it:
1731 1732 1733 1734
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1735
	mpage_da_map_and_submit(mpd);
1736
	return;
1737 1738
}

1739
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1740
{
1741
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1742 1743
}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1804
/*
1805 1806 1807
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1808 1809 1810 1811 1812 1813 1814
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1815 1816
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1817
				  struct buffer_head *bh, int create)
1818
{
1819
	struct ext4_map_blocks map;
1820 1821 1822
	int ret = 0;

	BUG_ON(create == 0);
1823 1824 1825 1826
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1827 1828 1829 1830 1831 1832

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1833 1834
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1835
		return ret;
1836

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1848
		set_buffer_mapped(bh);
1849 1850
	}
	return 0;
1851
}
1852

1853 1854 1855
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1856
 * callback function for block_write_begin() and block_write_full_page().
1857
 * These functions should only try to map a single block at a time.
1858 1859 1860 1861 1862
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1863 1864 1865
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1866 1867
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1868 1869
				   struct buffer_head *bh_result, int create)
{
1870
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1871
	return _ext4_get_block(inode, iblock, bh_result, 0);
1872 1873
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1896
	ClearPageChecked(page);
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1910 1911
	BUG_ON(!ext4_handle_valid(handle));

1912 1913 1914 1915 1916 1917 1918
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1919
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1920 1921 1922 1923 1924
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1925
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1926 1927 1928 1929
out:
	return ret;
}

1930 1931 1932
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

1933
/*
1934 1935 1936 1937
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1938
 * we are writing back data modified via mmap(), no one guarantees in which
1939 1940 1941 1942
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1943 1944 1945 1946 1947
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
1948 1949 1950 1951 1952 1953 1954 1955 1956
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1957
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1973
 */
1974
static int ext4_writepage(struct page *page,
1975
			  struct writeback_control *wbc)
1976
{
T
Theodore Ts'o 已提交
1977
	int ret = 0, commit_write = 0;
1978
	loff_t size;
1979
	unsigned int len;
1980
	struct buffer_head *page_bufs = NULL;
1981 1982
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
1983
	trace_ext4_writepage(page);
1984 1985 1986 1987 1988
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1989

T
Theodore Ts'o 已提交
1990 1991
	/*
	 * If the page does not have buffers (for whatever reason),
1992
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
1993 1994
	 * fails, redirty the page and move on.
	 */
1995
	if (!page_has_buffers(page)) {
1996
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
1997 1998
					noalloc_get_block_write)) {
		redirty_page:
1999 2000 2001 2002
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2003 2004 2005 2006 2007
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2008
		/*
2009 2010 2011
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
2012 2013 2014
		 * We can also reach here via shrink_page_list but it
		 * should never be for direct reclaim so warn if that
		 * happens
2015
		 */
2016 2017
		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
								PF_MEMALLOC);
T
Theodore Ts'o 已提交
2018 2019 2020
		goto redirty_page;
	}
	if (commit_write)
2021
		/* now mark the buffer_heads as dirty and uptodate */
2022
		block_commit_write(page, 0, len);
2023

2024
	if (PageChecked(page) && ext4_should_journal_data(inode))
2025 2026 2027 2028
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2029
		return __ext4_journalled_writepage(page, len);
2030

T
Theodore Ts'o 已提交
2031
	if (buffer_uninit(page_bufs)) {
2032 2033 2034 2035
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2036 2037
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2038 2039 2040 2041

	return ret;
}

2042
/*
2043
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2044
 * calculate the total number of credits to reserve to fit
2045 2046 2047
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2048
 */
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2060
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2061 2062 2063 2064 2065
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2066

2067 2068
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2069
 * address space and accumulate pages that need writing, and call
2070 2071
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2072 2073 2074
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2075 2076
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2077
{
2078
	struct buffer_head	*bh, *head;
2079
	struct inode		*inode = mapping->host;
2080 2081 2082 2083 2084 2085
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2086

2087 2088 2089
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2090 2091 2092 2093
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2094
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2095 2096 2097 2098
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2099
	*done_index = index;
2100
	while (index <= end) {
2101
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2102 2103
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2104
			return 0;
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2116 2117
			if (page->index > end)
				goto out;
2118

2119 2120
			*done_index = page->index + 1;

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2131 2132 2133
			lock_page(page);

			/*
2134 2135 2136 2137 2138 2139
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2140
			 */
2141 2142 2143 2144
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2145 2146 2147 2148
				unlock_page(page);
				continue;
			}

2149
			wait_on_page_writeback(page);
2150 2151
			BUG_ON(PageWriteback(page));

2152
			if (mpd->next_page != page->index)
2153 2154 2155 2156 2157 2158
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2159 2160
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2161
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2162 2163
				if (mpd->io_done)
					goto ret_extent_tail;
2164 2165
			} else {
				/*
2166 2167
				 * Page with regular buffer heads,
				 * just add all dirty ones
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2183 2184
						if (mpd->io_done)
							goto ret_extent_tail;
2185 2186
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2187 2188 2189 2190 2191 2192 2193 2194 2195
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2196 2197 2198 2199 2200 2201
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2202 2203 2204 2205 2206
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2207
				    wbc->sync_mode == WB_SYNC_NONE)
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2218
					goto out;
2219 2220 2221 2222 2223
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2224 2225 2226
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2227 2228 2229
out:
	pagevec_release(&pvec);
	cond_resched();
2230 2231 2232 2233
	return ret;
}


2234
static int ext4_da_writepages(struct address_space *mapping,
2235
			      struct writeback_control *wbc)
2236
{
2237 2238
	pgoff_t	index;
	int range_whole = 0;
2239
	handle_t *handle = NULL;
2240
	struct mpage_da_data mpd;
2241
	struct inode *inode = mapping->host;
2242
	int pages_written = 0;
2243
	unsigned int max_pages;
2244
	int range_cyclic, cycled = 1, io_done = 0;
2245 2246
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2247
	loff_t range_start = wbc->range_start;
2248
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2249
	pgoff_t done_index = 0;
2250
	pgoff_t end;
S
Shaohua Li 已提交
2251
	struct blk_plug plug;
2252

2253
	trace_ext4_da_writepages(inode, wbc);
2254

2255 2256 2257 2258 2259
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2260
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2261
		return 0;
2262 2263 2264 2265 2266

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2267
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2268 2269 2270 2271 2272
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2273
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2274 2275
		return -EROFS;

2276 2277
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2278

2279 2280
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2281
		index = mapping->writeback_index;
2282 2283 2284 2285 2286
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2287 2288
		end = -1;
	} else {
2289
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2290 2291
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2292

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2310 2311 2312 2313 2314 2315
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2326
retry:
2327
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2328 2329
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2330
	blk_start_plug(&plug);
2331
	while (!ret && wbc->nr_to_write > 0) {
2332 2333 2334 2335 2336 2337 2338 2339

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2340
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2341

2342 2343 2344 2345
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2346
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2347
			       "%ld pages, ino %lu; err %d", __func__,
2348
				wbc->nr_to_write, inode->i_ino, ret);
2349
			blk_finish_plug(&plug);
2350 2351
			goto out_writepages;
		}
2352 2353

		/*
2354
		 * Now call write_cache_pages_da() to find the next
2355
		 * contiguous region of logical blocks that need
2356
		 * blocks to be allocated by ext4 and submit them.
2357
		 */
2358
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2359
		/*
2360
		 * If we have a contiguous extent of pages and we
2361 2362 2363 2364
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2365
			mpage_da_map_and_submit(&mpd);
2366 2367
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2368
		trace_ext4_da_write_pages(inode, &mpd);
2369
		wbc->nr_to_write -= mpd.pages_written;
2370

2371
		ext4_journal_stop(handle);
2372

2373
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2374 2375 2376 2377
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2378
			jbd2_journal_force_commit_nested(sbi->s_journal);
2379 2380
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2381
			/*
2382 2383 2384
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2385
			 */
2386
			pages_written += mpd.pages_written;
2387
			ret = mpd.retval;
2388
			io_done = 1;
2389
		} else if (wbc->nr_to_write)
2390 2391 2392 2393 2394 2395
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2396
	}
S
Shaohua Li 已提交
2397
	blk_finish_plug(&plug);
2398 2399 2400 2401 2402 2403 2404
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2405 2406

	/* Update index */
2407
	wbc->range_cyclic = range_cyclic;
2408 2409 2410 2411 2412
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2413
		mapping->writeback_index = done_index;
2414

2415
out_writepages:
2416
	wbc->nr_to_write -= nr_to_writebump;
2417
	wbc->range_start = range_start;
2418
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2419
	return ret;
2420 2421
}

2422 2423 2424 2425 2426 2427 2428 2429 2430
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2431
	 * counters can get slightly wrong with percpu_counter_batch getting
2432 2433 2434 2435
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2436 2437 2438
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2439
	if (2 * free_blocks < 3 * dirty_blocks ||
2440
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2441
		/*
2442 2443
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2444 2445 2446
		 */
		return 1;
	}
2447 2448 2449 2450 2451
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
2452
		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2453

2454 2455 2456
	return 0;
}

2457
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2458 2459
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2460
{
2461
	int ret, retries = 0;
2462 2463 2464 2465 2466 2467
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2468 2469 2470 2471 2472 2473 2474

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2475
	trace_ext4_da_write_begin(inode, pos, len, flags);
2476
retry:
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2488 2489 2490
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2491

2492
	page = grab_cache_page_write_begin(mapping, index, flags);
2493 2494 2495 2496 2497
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2498 2499
	*pagep = page;

2500
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2501 2502 2503 2504
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2505 2506 2507 2508 2509 2510
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2511
			ext4_truncate_failed_write(inode);
2512 2513
	}

2514 2515
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2516 2517 2518 2519
out:
	return ret;
}

2520 2521 2522 2523 2524
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2525
					    unsigned long offset)
2526 2527 2528 2529 2530 2531 2532 2533 2534
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2535
	for (i = 0; i < idx; i++)
2536 2537
		bh = bh->b_this_page;

2538
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2539 2540 2541 2542
		return 0;
	return 1;
}

2543
static int ext4_da_write_end(struct file *file,
2544 2545 2546
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2547 2548 2549 2550 2551
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2552
	unsigned long start, end;
2553 2554 2555
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2556 2557
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2558 2559
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2560
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2561 2562
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2563
		default:
2564 2565 2566
			BUG();
		}
	}
2567

2568
	trace_ext4_da_write_end(inode, pos, len, copied);
2569
	start = pos & (PAGE_CACHE_SIZE - 1);
2570
	end = start + copied - 1;
2571 2572 2573 2574 2575 2576 2577 2578

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2579
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2590

2591 2592 2593
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2594 2595 2596 2597 2598
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2599
		}
2600
	}
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2622
	ext4_da_page_release_reservation(page, offset);
2623 2624 2625 2626 2627 2628 2629

out:
	ext4_invalidatepage(page, offset);

	return;
}

2630 2631 2632 2633 2634
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2635 2636
	trace_ext4_alloc_da_blocks(inode);

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2647
	 *
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2660
	 * the pages by calling redirty_page_for_writepage() but that
2661 2662
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2663
	 * simplifying them because we wouldn't actually intend to
2664 2665 2666
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2667
	 *
2668 2669 2670 2671 2672 2673
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2674

2675 2676 2677 2678 2679
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2680
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2681 2682 2683 2684 2685 2686 2687 2688
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2689
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2690 2691 2692 2693 2694
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2705 2706
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2718
		 * NB. EXT4_STATE_JDATA is not set on files other than
2719 2720 2721 2722 2723 2724
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2725
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2726
		journal = EXT4_JOURNAL(inode);
2727 2728 2729
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2730 2731 2732 2733 2734

		if (err)
			return 0;
	}

2735
	return generic_block_bmap(mapping, block, ext4_get_block);
2736 2737
}

2738
static int ext4_readpage(struct file *file, struct page *page)
2739
{
2740
	trace_ext4_readpage(page);
2741
	return mpage_readpage(page, ext4_get_block);
2742 2743 2744
}

static int
2745
ext4_readpages(struct file *file, struct address_space *mapping,
2746 2747
		struct list_head *pages, unsigned nr_pages)
{
2748
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2749 2750
}

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2771
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2772
{
2773
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2774

2775 2776
	trace_ext4_invalidatepage(page, offset);

2777 2778 2779 2780 2781
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2782 2783 2784 2785 2786 2787
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2788 2789 2790 2791
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2792 2793
}

2794
static int ext4_releasepage(struct page *page, gfp_t wait)
2795
{
2796
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2797

2798 2799
	trace_ext4_releasepage(page);

2800 2801 2802
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2803 2804 2805 2806
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2807 2808
}

2809 2810 2811 2812 2813
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2814
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2815 2816
		   struct buffer_head *bh_result, int create)
{
2817
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2818
		   inode->i_ino, create);
2819 2820
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2821 2822
}

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int flags)
{
	handle_t *handle = ext4_journal_current_handle();
	struct ext4_map_blocks map;
	int ret = 0;

	ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
		   inode->i_ino, flags);

	flags = EXT4_GET_BLOCKS_NO_LOCK;

	map.m_lblk = iblock;
	map.m_len = bh_result->b_size >> inode->i_blkbits;

	ret = ext4_map_blocks(handle, inode, &map, flags);
	if (ret > 0) {
		map_bh(bh_result, inode->i_sb, map.m_pblk);
		bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
					map.m_flags;
		bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
		ret = 0;
	}
	return ret;
}

2849
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2850 2851
			    ssize_t size, void *private, int ret,
			    bool is_async)
2852
{
2853
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2854 2855
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
2856 2857
	unsigned long flags;
	struct ext4_inode_info *ei;
2858

2859 2860
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2861
		goto out;
2862

2863
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2864
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2865 2866 2867
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2868 2869
	iocb->private = NULL;

2870
	/* if not aio dio with unwritten extents, just free io and return */
2871
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2872
		ext4_free_io_end(io_end);
2873 2874 2875
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2876
		inode_dio_done(inode);
2877
		return;
2878 2879
	}

2880 2881
	io_end->offset = offset;
	io_end->size = size;
2882 2883 2884 2885
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2886 2887
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

2888
	/* Add the io_end to per-inode completed aio dio list*/
2889 2890 2891 2892
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2893 2894

	/* queue the work to convert unwritten extents to written */
2895
	queue_work(wq, &io_end->work);
2896
}
2897

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2909 2910 2911
		ext4_msg(io_end->inode->i_sb, KERN_INFO,
			 "sb umounted, discard end_io request for inode %lu",
			 io_end->inode->i_ino);
2912 2913 2914 2915
		ext4_free_io_end(io_end);
		goto out;
	}

2916 2917 2918 2919
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2920
	inode = io_end->inode;
2921
	ext4_set_io_unwritten_flag(inode, io_end);
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2948
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2967 2968 2969 2970 2971
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2972
 * For holes, we fallocate those blocks, mark them as uninitialized
2973
 * If those blocks were preallocated, we mark sure they are splited, but
2974
 * still keep the range to write as uninitialized.
2975
 *
2976 2977
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2978
 * set up an end_io call back function, which will do the conversion
2979
 * when async direct IO completed.
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
2997 2998
		int overwrite = 0;

2999
		/*
3000 3001 3002
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
3003
 		 * to prevent parallel buffered read to expose the stale data
3004
 		 * before DIO complete the data IO.
3005 3006
		 *
 		 * As to previously fallocated extents, ext4 get_block
3007 3008 3009
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3010 3011 3012 3013 3014 3015 3016 3017
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3018
 		 */
3019 3020 3021
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3022 3023 3024
			ext4_io_end_t *io_end =
				ext4_init_io_end(inode, GFP_NOFS);
			if (!io_end)
3025
				return -ENOMEM;
3026 3027
			io_end->flag |= EXT4_IO_END_DIRECT;
			iocb->private = io_end;
3028 3029
			/*
			 * we save the io structure for current async
3030
			 * direct IO, so that later ext4_map_blocks()
3031 3032 3033 3034 3035 3036 3037
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
		if (overwrite)
			ret = __blockdev_direct_IO(rw, iocb, inode,
						 inode->i_sb->s_bdev, iov,
						 offset, nr_segs,
						 ext4_get_block_write_nolock,
						 ext4_end_io_dio,
						 NULL,
						 0);
		else
			ret = __blockdev_direct_IO(rw, iocb, inode,
						 inode->i_sb->s_bdev, iov,
						 offset, nr_segs,
						 ext4_get_block_write,
						 ext4_end_io_dio,
						 NULL,
						 DIO_LOCKING);
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3073
		} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3074
						EXT4_STATE_DIO_UNWRITTEN)) {
3075
			int err;
3076 3077
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
3078
			 * completed, we could do the conversion right here
3079
			 */
3080 3081 3082 3083
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3084
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3085
		}
3086 3087
		return ret;
	}
3088 3089

	/* for write the the end of file case, we fall back to old way */
3090 3091 3092 3093 3094 3095 3096 3097 3098
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3099
	ssize_t ret;
3100

3101 3102 3103 3104 3105 3106
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

3107
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3108
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3109 3110 3111 3112 3113 3114
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3115 3116
}

3117
/*
3118
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3130
static int ext4_journalled_set_page_dirty(struct page *page)
3131 3132 3133 3134 3135
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3136
static const struct address_space_operations ext4_ordered_aops = {
3137 3138
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3139
	.writepage		= ext4_writepage,
3140 3141 3142 3143 3144 3145 3146 3147
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3148
	.error_remove_page	= generic_error_remove_page,
3149 3150
};

3151
static const struct address_space_operations ext4_writeback_aops = {
3152 3153
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3154
	.writepage		= ext4_writepage,
3155 3156 3157 3158 3159 3160 3161 3162
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3163
	.error_remove_page	= generic_error_remove_page,
3164 3165
};

3166
static const struct address_space_operations ext4_journalled_aops = {
3167 3168
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3169
	.writepage		= ext4_writepage,
3170 3171 3172 3173 3174 3175
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
3176
	.direct_IO		= ext4_direct_IO,
3177
	.is_partially_uptodate  = block_is_partially_uptodate,
3178
	.error_remove_page	= generic_error_remove_page,
3179 3180
};

3181
static const struct address_space_operations ext4_da_aops = {
3182 3183
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3184
	.writepage		= ext4_writepage,
3185 3186 3187 3188 3189 3190 3191 3192 3193
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3194
	.error_remove_page	= generic_error_remove_page,
3195 3196
};

3197
void ext4_set_aops(struct inode *inode)
3198
{
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3213
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3214 3215 3216 3217
		break;
	default:
		BUG();
	}
3218 3219
}

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3240
		return -ENOMEM;
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
 * from:   The starting byte offset (from the begining of the file)
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
 *         for updateing the contents of a page whose blocks may
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
 * Returns zero on sucess or negative on failure.
 */
E
Eric Sandeen 已提交
3283
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3309 3310
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3323 3324
		unsigned int end_of_block, range_to_discard;

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3410
		} else
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3449
		return -EOPNOTSUPP;
3450 3451 3452

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
3453
		return -EOPNOTSUPP;
3454 3455
	}

3456 3457
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3458
		return -EOPNOTSUPP;
3459 3460
	}

3461 3462 3463
	return ext4_ext_punch_hole(file, offset, length);
}

3464
/*
3465
 * ext4_truncate()
3466
 *
3467 3468
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3469 3470
 * simultaneously on behalf of the same inode.
 *
3471
 * As we work through the truncate and commit bits of it to the journal there
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3485
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3486
 * that this inode's truncate did not complete and it will again call
3487 3488
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3489
 * that's fine - as long as they are linked from the inode, the post-crash
3490
 * ext4_truncate() run will find them and release them.
3491
 */
3492
void ext4_truncate(struct inode *inode)
3493
{
3494 3495
	trace_ext4_truncate_enter(inode);

3496
	if (!ext4_can_truncate(inode))
3497 3498
		return;

3499
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3500

3501
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3502
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3503

3504
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3505
		ext4_ext_truncate(inode);
3506 3507
	else
		ext4_ind_truncate(inode);
3508

3509
	trace_ext4_truncate_exit(inode);
3510 3511 3512
}

/*
3513
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3514 3515 3516 3517
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3518 3519
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3520
{
3521 3522 3523 3524 3525 3526
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3527
	iloc->bh = NULL;
3528 3529
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3530

3531 3532 3533
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3534 3535
		return -EIO;

3536 3537 3538
	/*
	 * Figure out the offset within the block group inode table
	 */
3539
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3540 3541 3542 3543 3544 3545
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3546
	if (!bh) {
3547 3548
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3549 3550 3551 3552
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3576
			int i, start;
3577

3578
			start = inode_offset & ~(inodes_per_block - 1);
3579

3580 3581
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3594
			for (i = start; i < start + inodes_per_block; i++) {
3595 3596
				if (i == inode_offset)
					continue;
3597
				if (ext4_test_bit(i, bitmap_bh->b_data))
3598 3599 3600
					break;
			}
			brelse(bitmap_bh);
3601
			if (i == start + inodes_per_block) {
3602 3603 3604 3605 3606 3607 3608 3609 3610
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3611 3612 3613 3614 3615 3616 3617 3618 3619
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3620
			/* s_inode_readahead_blks is always a power of 2 */
3621 3622 3623 3624 3625
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3626
			if (ext4_has_group_desc_csum(sb))
3627
				num -= ext4_itable_unused_count(sb, gdp);
3628 3629 3630 3631 3632 3633 3634
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3635 3636 3637 3638 3639
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3640
		trace_ext4_load_inode(inode);
3641 3642
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3643
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3644 3645
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3646 3647
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3648 3649 3650 3651 3652 3653 3654 3655 3656
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3657
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3658 3659
{
	/* We have all inode data except xattrs in memory here. */
3660
	return __ext4_get_inode_loc(inode, iloc,
3661
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3662 3663
}

3664
void ext4_set_inode_flags(struct inode *inode)
3665
{
3666
	unsigned int flags = EXT4_I(inode)->i_flags;
3667 3668

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3669
	if (flags & EXT4_SYNC_FL)
3670
		inode->i_flags |= S_SYNC;
3671
	if (flags & EXT4_APPEND_FL)
3672
		inode->i_flags |= S_APPEND;
3673
	if (flags & EXT4_IMMUTABLE_FL)
3674
		inode->i_flags |= S_IMMUTABLE;
3675
	if (flags & EXT4_NOATIME_FL)
3676
		inode->i_flags |= S_NOATIME;
3677
	if (flags & EXT4_DIRSYNC_FL)
3678 3679 3680
		inode->i_flags |= S_DIRSYNC;
}

3681 3682 3683
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3704
}
3705

3706
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3707
				  struct ext4_inode_info *ei)
3708 3709
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3710 3711
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3712 3713 3714 3715 3716 3717

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3718
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3719 3720 3721 3722 3723
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3724 3725 3726 3727
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3728

3729
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3730
{
3731 3732
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3733 3734
	struct ext4_inode_info *ei;
	struct inode *inode;
3735
	journal_t *journal = EXT4_SB(sb)->s_journal;
3736
	long ret;
3737
	int block;
3738 3739
	uid_t i_uid;
	gid_t i_gid;
3740

3741 3742 3743 3744 3745 3746 3747
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3748
	iloc.bh = NULL;
3749

3750 3751
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3752
		goto bad_inode;
3753
	raw_inode = ext4_raw_inode(&iloc);
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3787
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3788 3789
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3790
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3791 3792
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3793
	}
3794 3795
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3796
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3797

3798
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3799 3800 3801 3802 3803 3804 3805 3806 3807
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3808
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3809
			/* this inode is deleted */
3810
			ret = -ESTALE;
3811 3812 3813 3814 3815 3816 3817 3818
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3819
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3820
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3821
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3822 3823
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3824
	inode->i_size = ext4_isize(raw_inode);
3825
	ei->i_disksize = inode->i_size;
3826 3827 3828
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3829 3830
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3831
	ei->i_last_alloc_group = ~0;
3832 3833 3834 3835
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3836
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3837 3838 3839
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3851
		read_lock(&journal->j_state_lock);
3852 3853 3854 3855 3856 3857 3858 3859
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3860
		read_unlock(&journal->j_state_lock);
3861 3862 3863 3864
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3865
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3866 3867
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3868 3869
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3870 3871
		} else {
			__le32 *magic = (void *)raw_inode +
3872
					EXT4_GOOD_OLD_INODE_SIZE +
3873
					ei->i_extra_isize;
3874
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3875
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3876
		}
3877
	}
3878

K
Kalpak Shah 已提交
3879 3880 3881 3882 3883
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3884 3885 3886 3887 3888 3889 3890
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3891
	ret = 0;
3892
	if (ei->i_file_acl &&
3893
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3894 3895
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3896 3897
		ret = -EIO;
		goto bad_inode;
3898
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3899 3900 3901 3902 3903
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3904
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3905 3906
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3907
		/* Validate block references which are part of inode */
3908
		ret = ext4_ind_check_inode(inode);
3909
	}
3910
	if (ret)
3911
		goto bad_inode;
3912

3913
	if (S_ISREG(inode->i_mode)) {
3914 3915 3916
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3917
	} else if (S_ISDIR(inode->i_mode)) {
3918 3919
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3920
	} else if (S_ISLNK(inode->i_mode)) {
3921
		if (ext4_inode_is_fast_symlink(inode)) {
3922
			inode->i_op = &ext4_fast_symlink_inode_operations;
3923 3924 3925
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3926 3927
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3928
		}
3929 3930
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3931
		inode->i_op = &ext4_special_inode_operations;
3932 3933 3934 3935 3936 3937
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3938 3939
	} else {
		ret = -EIO;
3940
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3941
		goto bad_inode;
3942
	}
3943
	brelse(iloc.bh);
3944
	ext4_set_inode_flags(inode);
3945 3946
	unlock_new_inode(inode);
	return inode;
3947 3948

bad_inode:
3949
	brelse(iloc.bh);
3950 3951
	iget_failed(inode);
	return ERR_PTR(ret);
3952 3953
}

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3967
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3968
		raw_inode->i_blocks_high = 0;
3969
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3970 3971 3972 3973 3974 3975
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3976 3977 3978 3979
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3980
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3981
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3982
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3983
	} else {
3984
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3985 3986 3987 3988
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3989
	}
3990
	return 0;
3991 3992
}

3993 3994 3995 3996 3997 3998 3999
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4000
static int ext4_do_update_inode(handle_t *handle,
4001
				struct inode *inode,
4002
				struct ext4_iloc *iloc)
4003
{
4004 4005
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4006 4007
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4008 4009
	uid_t i_uid;
	gid_t i_gid;
4010 4011 4012

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4013
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4014
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4015

4016
	ext4_get_inode_flags(ei);
4017
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4018 4019
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4020
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4021 4022
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4023 4024 4025 4026
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4027
		if (!ei->i_dtime) {
4028
			raw_inode->i_uid_high =
4029
				cpu_to_le16(high_16_bits(i_uid));
4030
			raw_inode->i_gid_high =
4031
				cpu_to_le16(high_16_bits(i_gid));
4032 4033 4034 4035 4036
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4037 4038
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4039 4040 4041 4042
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4043 4044 4045 4046 4047 4048

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4049 4050
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4051
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4052
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4053 4054
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4055 4056
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4057
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4074
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4075
			ext4_handle_sync(handle);
4076
			err = ext4_handle_dirty_super_now(handle, sb);
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4091 4092 4093
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4094

4095 4096 4097 4098 4099
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4100
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4101 4102
	}

4103 4104
	ext4_inode_csum_set(inode, raw_inode, ei);

4105
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4106
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4107 4108
	if (!err)
		err = rc;
4109
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4110

4111
	ext4_update_inode_fsync_trans(handle, inode, 0);
4112
out_brelse:
4113
	brelse(bh);
4114
	ext4_std_error(inode->i_sb, err);
4115 4116 4117 4118
	return err;
}

/*
4119
 * ext4_write_inode()
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4136
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4153
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4154
{
4155 4156
	int err;

4157 4158 4159
	if (current->flags & PF_MEMALLOC)
		return 0;

4160 4161 4162 4163 4164 4165
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4166

4167
		if (wbc->sync_mode != WB_SYNC_ALL)
4168 4169 4170 4171 4172
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4173

4174
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4175 4176
		if (err)
			return err;
4177
		if (wbc->sync_mode == WB_SYNC_ALL)
4178 4179
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4180 4181
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4182 4183
			err = -EIO;
		}
4184
		brelse(iloc.bh);
4185 4186
	}
	return err;
4187 4188 4189
}

/*
4190
 * ext4_setattr()
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4204 4205 4206 4207 4208 4209 4210 4211
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4212
 */
4213
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4214 4215 4216
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4217
	int orphan = 0;
4218 4219 4220 4221 4222 4223
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4224
	if (is_quota_modification(inode, attr))
4225
		dquot_initialize(inode);
4226 4227
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4228 4229 4230 4231
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4232
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4233
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4234 4235 4236 4237
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4238
		error = dquot_transfer(inode, attr);
4239
		if (error) {
4240
			ext4_journal_stop(handle);
4241 4242 4243 4244 4245 4246 4247 4248
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4249 4250
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4251 4252
	}

4253
	if (attr->ia_valid & ATTR_SIZE) {
4254 4255
		inode_dio_wait(inode);

4256
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4257 4258
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4259 4260
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4261 4262 4263
		}
	}

4264
	if (S_ISREG(inode->i_mode) &&
4265
	    attr->ia_valid & ATTR_SIZE &&
4266
	    (attr->ia_size < inode->i_size)) {
4267 4268
		handle_t *handle;

4269
		handle = ext4_journal_start(inode, 3);
4270 4271 4272 4273
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4274 4275 4276 4277
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4278 4279
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4280 4281
		if (!error)
			error = rc;
4282
		ext4_journal_stop(handle);
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4295
				orphan = 0;
4296 4297 4298 4299
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4300 4301
	}

4302
	if (attr->ia_valid & ATTR_SIZE) {
4303
		if (attr->ia_size != i_size_read(inode))
4304
			truncate_setsize(inode, attr->ia_size);
4305
		ext4_truncate(inode);
4306
	}
4307

C
Christoph Hellwig 已提交
4308 4309 4310 4311 4312 4313 4314 4315 4316
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4317
	if (orphan && inode->i_nlink)
4318
		ext4_orphan_del(NULL, inode);
4319 4320

	if (!rc && (ia_valid & ATTR_MODE))
4321
		rc = ext4_acl_chmod(inode);
4322 4323

err_out:
4324
	ext4_std_error(inode->i_sb, error);
4325 4326 4327 4328 4329
	if (!error)
		error = rc;
	return error;
}

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4349 4350
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4351 4352 4353 4354

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4355

4356 4357
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4358
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4359
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4360
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4361
}
4362

4363
/*
4364 4365 4366
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4367
 *
4368
 * If datablocks are discontiguous, they are possible to spread over
4369
 * different block groups too. If they are contiuguous, with flexbg,
4370
 * they could still across block group boundary.
4371
 *
4372 4373
 * Also account for superblock, inode, quota and xattr blocks
 */
4374
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4375
{
4376 4377
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4404 4405
	if (groups > ngroups)
		groups = ngroups;
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4419
 * Calculate the total number of credits to reserve to fit
4420 4421
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4422
 *
4423
 * This could be called via ext4_write_begin()
4424
 *
4425
 * We need to consider the worse case, when
4426
 * one new block per extent.
4427
 */
A
Alex Tomas 已提交
4428
int ext4_writepage_trans_blocks(struct inode *inode)
4429
{
4430
	int bpp = ext4_journal_blocks_per_page(inode);
4431 4432
	int ret;

4433
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4434

4435
	/* Account for data blocks for journalled mode */
4436
	if (ext4_should_journal_data(inode))
4437
		ret += bpp;
4438 4439
	return ret;
}
4440 4441 4442 4443 4444

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4445
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4446 4447 4448 4449 4450 4451 4452 4453 4454
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4455
/*
4456
 * The caller must have previously called ext4_reserve_inode_write().
4457 4458
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4459
int ext4_mark_iloc_dirty(handle_t *handle,
4460
			 struct inode *inode, struct ext4_iloc *iloc)
4461 4462 4463
{
	int err = 0;

4464
	if (IS_I_VERSION(inode))
4465 4466
		inode_inc_iversion(inode);

4467 4468 4469
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4470
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4471
	err = ext4_do_update_inode(handle, inode, iloc);
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4482 4483
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4484
{
4485 4486 4487 4488 4489 4490 4491 4492 4493
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4494 4495
		}
	}
4496
	ext4_std_error(inode->i_sb, err);
4497 4498 4499
	return err;
}

4500 4501 4502 4503
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4504 4505 4506 4507
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4520 4521
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4554
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4555
{
4556
	struct ext4_iloc iloc;
4557 4558 4559
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4560 4561

	might_sleep();
4562
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4563
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4564 4565
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4566
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4580 4581
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4582 4583
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4584
					ext4_warning(inode->i_sb,
4585 4586 4587
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4588 4589
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4590 4591 4592 4593
				}
			}
		}
	}
4594
	if (!err)
4595
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4596 4597 4598 4599
	return err;
}

/*
4600
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4601 4602 4603 4604 4605
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4606
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4607 4608 4609 4610 4611 4612
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4613
void ext4_dirty_inode(struct inode *inode, int flags)
4614 4615 4616
{
	handle_t *handle;

4617
	handle = ext4_journal_start(inode, 2);
4618 4619
	if (IS_ERR(handle))
		goto out;
4620 4621 4622

	ext4_mark_inode_dirty(handle, inode);

4623
	ext4_journal_stop(handle);
4624 4625 4626 4627 4628 4629 4630 4631
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4632
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4633 4634 4635
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4636
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4637
{
4638
	struct ext4_iloc iloc;
4639 4640 4641

	int err = 0;
	if (handle) {
4642
		err = ext4_get_inode_loc(inode, &iloc);
4643 4644
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4645
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4646
			if (!err)
4647
				err = ext4_handle_dirty_metadata(handle,
4648
								 NULL,
4649
								 iloc.bh);
4650 4651 4652
			brelse(iloc.bh);
		}
	}
4653
	ext4_std_error(inode->i_sb, err);
4654 4655 4656 4657
	return err;
}
#endif

4658
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4674
	journal = EXT4_JOURNAL(inode);
4675 4676
	if (!journal)
		return 0;
4677
	if (is_journal_aborted(journal))
4678
		return -EROFS;
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4690

4691
	jbd2_journal_lock_updates(journal);
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4702
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4703 4704
	else {
		jbd2_journal_flush(journal);
4705
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4706
	}
4707
	ext4_set_aops(inode);
4708

4709
	jbd2_journal_unlock_updates(journal);
4710 4711 4712

	/* Finally we can mark the inode as dirty. */

4713
	handle = ext4_journal_start(inode, 1);
4714 4715 4716
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4717
	err = ext4_mark_inode_dirty(handle, inode);
4718
	ext4_handle_sync(handle);
4719 4720
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4721 4722 4723

	return err;
}
4724 4725 4726 4727 4728 4729

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4730
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4731
{
4732
	struct page *page = vmf->page;
4733 4734
	loff_t size;
	unsigned long len;
4735
	int ret;
4736 4737 4738
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4739 4740 4741
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4742 4743

	/*
4744 4745
	 * This check is racy but catches the common case. We rely on
	 * __block_page_mkwrite() to do a reliable check.
4746
	 */
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4758
	}
4759 4760

	lock_page(page);
4761 4762 4763 4764 4765 4766
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4767
	}
4768 4769 4770 4771 4772

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4773
	/*
4774 4775
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4776
	 */
4777 4778
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4779
					ext4_bh_unmapped)) {
4780 4781 4782 4783
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4784
		}
4785
	}
4786
	unlock_page(page);
4787 4788 4789 4790 4791 4792 4793 4794
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4795
		ret = VM_FAULT_SIGBUS;
4796 4797 4798 4799 4800 4801 4802 4803
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4804
			ext4_journal_stop(handle);
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4815 4816
	return ret;
}