inode.c 173.9 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45 46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49 50
#include <trace/events/ext4.h>

51 52
#define MPAGE_DA_EXTENT_TAIL 0x01

53 54 55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56 57 58 59
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
60 61
}

62
static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
static int ext4_writepage(struct page *page, struct writeback_control *wbc);
64

65 66 67
/*
 * Test whether an inode is a fast symlink.
 */
68
static int ext4_inode_is_fast_symlink(struct inode *inode)
69
{
70
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
71 72 73 74 75 76 77 78 79 80 81
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
82
	ext4_lblk_t needed;
83 84 85 86 87 88

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
89
	 * like a regular file for ext4 to try to delete it.  Things
90 91 92 93 94 95 96
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
97 98
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
99

100
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

117
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
118 119 120
	if (!IS_ERR(result))
		return result;

121
	ext4_std_error(inode->i_sb, PTR_ERR(result));
122 123 124 125 126 127 128 129 130 131 132
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
133 134 135
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
136
		return 0;
137
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
138 139 140 141 142 143 144 145 146
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
147
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
148
				 int nblocks)
149
{
150 151 152
	int ret;

	/*
153
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
154 155 156 157
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
158
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
159
	jbd_debug(2, "restarting handle %p\n", handle);
160 161 162
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
163
	ext4_discard_preallocations(inode);
164 165

	return ret;
166 167 168 169 170
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
171
void ext4_evict_inode(struct inode *inode)
172 173
{
	handle_t *handle;
174
	int err;
175

A
Al Viro 已提交
176 177 178 179 180
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

181
	if (!is_bad_inode(inode))
182
		dquot_initialize(inode);
183

184 185
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
186 187 188 189 190
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

191
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
192
	if (IS_ERR(handle)) {
193
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
194 195 196 197 198
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
199
		ext4_orphan_del(NULL, inode);
200 201 202 203
		goto no_delete;
	}

	if (IS_SYNC(inode))
204
		ext4_handle_sync(handle);
205
	inode->i_size = 0;
206 207
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
208
		ext4_warning(inode->i_sb,
209 210 211
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
212
	if (inode->i_blocks)
213
		ext4_truncate(inode);
214 215 216 217 218 219 220

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
221
	if (!ext4_handle_has_enough_credits(handle, 3)) {
222 223 224 225
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
226
			ext4_warning(inode->i_sb,
227 228 229
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
230
			ext4_orphan_del(NULL, inode);
231 232 233 234
			goto no_delete;
		}
	}

235
	/*
236
	 * Kill off the orphan record which ext4_truncate created.
237
	 * AKPM: I think this can be inside the above `if'.
238
	 * Note that ext4_orphan_del() has to be able to cope with the
239
	 * deletion of a non-existent orphan - this is because we don't
240
	 * know if ext4_truncate() actually created an orphan record.
241 242
	 * (Well, we could do this if we need to, but heck - it works)
	 */
243 244
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
245 246 247 248 249 250 251 252

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
253
	if (ext4_mark_inode_dirty(handle, inode))
254
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
255
		ext4_clear_inode(inode);
256
	else
257 258
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
259 260
	return;
no_delete:
A
Al Viro 已提交
261
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
277
 *	ext4_block_to_path - parse the block number into array of offsets
278 279 280
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
281 282
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
283
 *
284
 *	To store the locations of file's data ext4 uses a data structure common
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

307
static int ext4_block_to_path(struct inode *inode,
308 309
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
310
{
311 312 313
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
314 315 316 317 318
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

319
	if (i_block < direct_blocks) {
320 321
		offsets[n++] = i_block;
		final = direct_blocks;
322
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
323
		offsets[n++] = EXT4_IND_BLOCK;
324 325 326
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
327
		offsets[n++] = EXT4_DIND_BLOCK;
328 329 330 331
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
332
		offsets[n++] = EXT4_TIND_BLOCK;
333 334 335 336 337
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
338
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
339 340
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
341 342 343 344 345 346
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

347 348
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
349 350
				 __le32 *p, unsigned int max)
{
351
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
352
	__le32 *bref = p;
353 354
	unsigned int blk;

355
	while (bref < p+max) {
356
		blk = le32_to_cpu(*bref++);
357 358
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
359
						    blk, 1))) {
360
			es->s_last_error_block = cpu_to_le64(blk);
361 362
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
363 364 365 366
			return -EIO;
		}
	}
	return 0;
367 368 369 370
}


#define ext4_check_indirect_blockref(inode, bh)                         \
371 372
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
373 374 375
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
376 377
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
378 379
			      EXT4_NDIR_BLOCKS)

380
/**
381
 *	ext4_get_branch - read the chain of indirect blocks leading to data
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
406 407
 *
 *      Need to be called with
408
 *      down_read(&EXT4_I(inode)->i_data_sem)
409
 */
A
Aneesh Kumar K.V 已提交
410 411
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
412 413 414 415 416 417 418 419
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
420
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
421 422 423
	if (!p->key)
		goto no_block;
	while (--depth) {
424 425
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
426
			goto failure;
427

428 429 430 431 432 433 434 435 436 437 438
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
439

440
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
441 442 443 444 445 446 447 448 449 450 451 452 453
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
454
 *	ext4_find_near - find a place for allocation with sufficient locality
455 456 457
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
458
 *	This function returns the preferred place for block allocation.
459 460 461 462 463 464 465 466 467 468 469 470 471 472
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
473
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
474
{
475
	struct ext4_inode_info *ei = EXT4_I(inode);
476
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
477
	__le32 *p;
478
	ext4_fsblk_t bg_start;
479
	ext4_fsblk_t last_block;
480
	ext4_grpblk_t colour;
481 482
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
498 499 500 501 502 503 504
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
505 506
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

507 508 509 510 511 512 513
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

514 515
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
516
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
517 518
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
519 520 521 522
	return bg_start + colour;
}

/**
523
 *	ext4_find_goal - find a preferred place for allocation.
524 525 526 527
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
528
 *	Normally this function find the preferred place for block allocation,
529
 *	returns it.
530 531
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
532
 */
A
Aneesh Kumar K.V 已提交
533
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
534
				   Indirect *partial)
535
{
536 537
	ext4_fsblk_t goal;

538
	/*
539
	 * XXX need to get goal block from mballoc's data structures
540 541
	 */

542 543 544
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
545 546 547
}

/**
548
 *	ext4_blks_to_allocate: Look up the block map and count the number
549 550 551 552 553 554 555 556 557 558
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
559
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
560
				 int blocks_to_boundary)
561
{
562
	unsigned int count = 0;
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
586
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
587 588 589 590 591 592 593 594
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
595
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
596 597 598
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
599
{
600
	struct ext4_allocation_request ar;
601
	int target, i;
602
	unsigned long count = 0, blk_allocated = 0;
603
	int index = 0;
604
	ext4_fsblk_t current_block = 0;
605 606 607 608 609 610 611 612 613 614
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
615 616 617
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
618 619
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
620 621
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
622 623 624
		if (*err)
			goto failed_out;

625 626 627 628 629 630 631 632
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
633

634 635 636 637 638 639
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
640 641 642 643 644 645 646 647 648
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
649
			break;
650
		}
651 652
	}

653 654 655 656 657
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
658 659 660 661 662 663 664 665 666 667
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
668 669 670 671 672 673 674 675
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
676

677 678 679 680 681 682 683 684 685
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
686 687 688 689
			/*
			 * save the new block number
			 * for the first direct block
			 */
690 691
			new_blocks[index] = current_block;
		}
692
		blk_allocated += ar.len;
693 694
	}
allocated:
695
	/* total number of blocks allocated for direct blocks */
696
	ret = blk_allocated;
697 698 699
	*err = 0;
	return ret;
failed_out:
700
	for (i = 0; i < index; i++)
701
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
702 703 704 705
	return ret;
}

/**
706
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
707 708 709 710 711 712 713 714 715 716
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
717
 *	the same format as ext4_get_branch() would do. We are calling it after
718 719
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
720
 *	picture as after the successful ext4_get_block(), except that in one
721 722 723 724 725 726
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
727
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
728 729
 *	as described above and return 0.
 */
730
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
731 732 733
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
734 735 736 737 738 739
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
740 741
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
742

743
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
762
		err = ext4_journal_get_create_access(handle, bh);
763
		if (err) {
764 765
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
766 767 768 769 770 771 772 773
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
774
		if (n == indirect_blks) {
775 776 777 778 779 780
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
781
			for (i = 1; i < num; i++)
782 783 784 785 786 787
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

788 789
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
790 791 792 793 794 795 796
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
797
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
798
	for (i = 1; i <= n ; i++) {
799
		/*
800 801 802
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
803
		 */
804 805
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
806
	}
807 808
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
809

810
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
811 812 813 814 815

	return err;
}

/**
816
 * ext4_splice_branch - splice the allocated branch onto inode.
817 818 819
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
820
 *	ext4_alloc_branch)
821 822 823 824 825 826 827 828
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
829
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
830 831
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
832 833 834
{
	int i;
	int err = 0;
835
	ext4_fsblk_t current_block;
836 837 838 839 840 841 842 843

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
844
		err = ext4_journal_get_write_access(handle, where->bh);
845 846 847 848 849 850 851 852 853 854 855 856 857 858
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
859
			*(where->p + i) = cpu_to_le32(current_block++);
860 861 862 863 864 865 866 867 868 869 870
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
871
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
872 873
		 */
		jbd_debug(5, "splicing indirect only\n");
874 875
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
876 877 878 879 880 881
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
882
		ext4_mark_inode_dirty(handle, inode);
883 884 885 886 887 888
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
889
		/*
890 891 892
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
893
		 */
894 895
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
896
	}
897 898
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
899 900 901 902 903

	return err;
}

/*
904
 * The ext4_ind_map_blocks() function handles non-extents inodes
905
 * (i.e., using the traditional indirect/double-indirect i_blocks
906
 * scheme) for ext4_map_blocks().
907
 *
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
924
 *
925 926 927 928 929
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
930
 */
931 932
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
933
			       int flags)
934 935
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
936
	ext4_lblk_t offsets[4];
937 938
	Indirect chain[4];
	Indirect *partial;
939
	ext4_fsblk_t goal;
940 941 942 943
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
944
	ext4_fsblk_t first_block = 0;
945

946
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
947
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
948
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
949
				   &blocks_to_boundary);
950 951 952 953

	if (depth == 0)
		goto out;

954
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
955 956 957 958 959 960

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
961
		while (count < map->m_len && count <= blocks_to_boundary) {
962
			ext4_fsblk_t blk;
963 964 965 966 967 968 969 970

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
971
		goto got_it;
972 973 974
	}

	/* Next simple case - plain lookup or failed read of indirect block */
975
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
976 977 978
		goto cleanup;

	/*
979
	 * Okay, we need to do block allocation.
980
	*/
981
	goal = ext4_find_goal(inode, map->m_lblk, partial);
982 983 984 985 986 987 988 989

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
990
	count = ext4_blks_to_allocate(partial, indirect_blks,
991
				      map->m_len, blocks_to_boundary);
992
	/*
993
	 * Block out ext4_truncate while we alter the tree
994
	 */
995
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
996 997
				&count, goal,
				offsets + (partial - chain), partial);
998 999

	/*
1000
	 * The ext4_splice_branch call will free and forget any buffers
1001 1002 1003 1004 1005 1006
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1007
		err = ext4_splice_branch(handle, inode, map->m_lblk,
1008
					 partial, indirect_blks, count);
1009
	if (err)
1010 1011
		goto cleanup;

1012
	map->m_flags |= EXT4_MAP_NEW;
1013 1014

	ext4_update_inode_fsync_trans(handle, inode, 1);
1015
got_it:
1016 1017 1018
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1019
	if (count > blocks_to_boundary)
1020
		map->m_flags |= EXT4_MAP_BOUNDARY;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
	return err;
}

1034 1035
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1036
{
1037
	return &EXT4_I(inode)->i_reserved_quota;
1038
}
1039
#endif
1040

1041 1042
/*
 * Calculate the number of metadata blocks need to reserve
1043
 * to allocate a new block at @lblocks for non extent file based file
1044
 */
1045 1046
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1047
{
1048
	struct ext4_inode_info *ei = EXT4_I(inode);
1049
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1050
	int blk_bits;
1051

1052 1053
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1054

1055
	lblock -= EXT4_NDIR_BLOCKS;
1056

1057 1058 1059 1060 1061 1062 1063
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1064
	blk_bits = order_base_2(lblock);
1065
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1066 1067 1068 1069
}

/*
 * Calculate the number of metadata blocks need to reserve
1070
 * to allocate a block located at @lblock
1071
 */
1072
static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1073
{
1074
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1075
		return ext4_ext_calc_metadata_amount(inode, lblock);
1076

1077
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1078 1079
}

1080 1081 1082 1083
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1084 1085
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1086 1087
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1088 1089 1090
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1091
	trace_ext4_da_update_reserve_space(inode, used);
1092 1093 1094 1095 1096 1097 1098 1099
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1100

1101 1102 1103
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1104 1105
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1106
	ei->i_allocated_meta_blocks = 0;
1107

1108 1109 1110 1111 1112 1113
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1114 1115
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1116
		ei->i_reserved_meta_blocks = 0;
1117
		ei->i_da_metadata_calc_len = 0;
1118
	}
1119
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1120

1121 1122
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1123
		dquot_claim_block(inode, used);
1124
	else {
1125 1126 1127
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1128
		 * not re-claim the quota for fallocated blocks.
1129
		 */
1130
		dquot_release_reservation_block(inode, used);
1131
	}
1132 1133 1134 1135 1136 1137

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1138 1139
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1140
		ext4_discard_preallocations(inode);
1141 1142
}

1143
static int __check_block_validity(struct inode *inode, const char *func,
1144 1145
				unsigned int line,
				struct ext4_map_blocks *map)
1146
{
1147 1148
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
1149 1150 1151 1152
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
1153 1154 1155 1156 1157
		return -EIO;
	}
	return 0;
}

1158
#define check_block_validity(inode, map)	\
1159
	__check_block_validity((inode), __func__, __LINE__, (map))
1160

1161
/*
1162 1163
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1197 1198 1199 1200 1201 1202 1203 1204 1205
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1206 1207 1208 1209 1210
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
1211 1212
			if (num >= max_pages) {
				done = 1;
1213
				break;
1214
			}
1215 1216 1217 1218 1219 1220
		}
		pagevec_release(&pvec);
	}
	return num;
}

1221
/*
1222
 * The ext4_map_blocks() function tries to look up the requested blocks,
1223
 * and returns if the blocks are already mapped.
1224 1225 1226 1227 1228
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1229 1230
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1243 1244
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1245 1246
{
	int retval;
1247

1248 1249 1250 1251
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1252
	/*
1253 1254
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1255 1256
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1257
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1258
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1259
	} else {
1260
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1261
	}
1262
	up_read((&EXT4_I(inode)->i_data_sem));
1263

1264
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1265
		int ret = check_block_validity(inode, map);
1266 1267 1268 1269
		if (ret != 0)
			return ret;
	}

1270
	/* If it is only a block(s) look up */
1271
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1272 1273 1274 1275 1276 1277 1278 1279 1280
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1281
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1282 1283
		return retval;

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1294
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1295

1296
	/*
1297 1298 1299 1300
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1301 1302
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1303 1304 1305 1306 1307 1308 1309

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1310
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1311
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1312 1313 1314 1315
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1316
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1317
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1318
	} else {
1319
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1320

1321
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1322 1323 1324 1325 1326
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1327
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1328
		}
1329

1330 1331 1332 1333 1334 1335 1336
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1337
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1338 1339
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1340
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1341
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1342

1343
	up_write((&EXT4_I(inode)->i_data_sem));
1344
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1345
		int ret = check_block_validity(inode, map);
1346 1347 1348
		if (ret != 0)
			return ret;
	}
1349 1350 1351
	return retval;
}

1352 1353 1354
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1355 1356
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1357
{
1358
	handle_t *handle = ext4_journal_current_handle();
1359
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1360
	int ret = 0, started = 0;
1361
	int dio_credits;
1362

1363 1364 1365 1366
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1367
		/* Direct IO write... */
1368 1369 1370
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1371
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1372
		if (IS_ERR(handle)) {
1373
			ret = PTR_ERR(handle);
1374
			return ret;
1375
		}
J
Jan Kara 已提交
1376
		started = 1;
1377 1378
	}

1379
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1380
	if (ret > 0) {
1381 1382 1383
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1384
		ret = 0;
1385
	}
J
Jan Kara 已提交
1386 1387
	if (started)
		ext4_journal_stop(handle);
1388 1389 1390
	return ret;
}

1391 1392 1393 1394 1395 1396 1397
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1398 1399 1400
/*
 * `handle' can be NULL if create is zero
 */
1401
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1402
				ext4_lblk_t block, int create, int *errp)
1403
{
1404 1405
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1406 1407 1408 1409
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1410 1411 1412 1413
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1414

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1425
	}
1426 1427 1428
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1443
		}
1444 1445 1446 1447 1448 1449 1450
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1451
	}
1452 1453 1454 1455 1456 1457
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1458 1459
}

1460
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1461
			       ext4_lblk_t block, int create, int *err)
1462
{
1463
	struct buffer_head *bh;
1464

1465
	bh = ext4_getblk(handle, inode, block, create, err);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1479 1480 1481 1482 1483 1484 1485
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1486 1487 1488 1489 1490 1491 1492
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1493 1494
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1495
	     block_start = block_end, bh = next) {
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1513
 * close off a transaction and start a new one between the ext4_get_block()
1514
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1515 1516
 * prepare_write() is the right place.
 *
1517 1518
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1519 1520 1521 1522
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1523
 * By accident, ext4 can be reentered when a transaction is open via
1524 1525 1526 1527 1528 1529
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1530
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1531 1532 1533 1534 1535
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1536
				       struct buffer_head *bh)
1537
{
1538 1539 1540
	int dirty = buffer_dirty(bh);
	int ret;

1541 1542
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	/*
	 * __block_prepare_write() could have dirtied some buffers. Clean
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
	 * by __block_prepare_write() isn't a real problem here as we clear
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
1557 1558
}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1569 1570
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1571
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1572 1573
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1574
{
1575
	struct inode *inode = mapping->host;
1576
	int ret, needed_blocks;
1577 1578
	handle_t *handle;
	int retries = 0;
1579
	struct page *page;
1580
	pgoff_t index;
1581
	unsigned from, to;
N
Nick Piggin 已提交
1582

1583
	trace_ext4_write_begin(inode, pos, len, flags);
1584 1585 1586 1587 1588
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1589
	index = pos >> PAGE_CACHE_SHIFT;
1590 1591
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1592 1593

retry:
1594 1595 1596 1597
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1598
	}
1599

1600 1601 1602 1603
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1604
	page = grab_cache_page_write_begin(mapping, index, flags);
1605 1606 1607 1608 1609 1610 1611
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1612
	if (ext4_should_dioread_nolock(inode))
1613
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1614
	else
1615
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1616 1617

	if (!ret && ext4_should_journal_data(inode)) {
1618 1619 1620
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1621 1622

	if (ret) {
1623 1624
		unlock_page(page);
		page_cache_release(page);
1625
		/*
1626
		 * __block_write_begin may have instantiated a few blocks
1627 1628
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1629 1630 1631
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1632
		 */
1633
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1634 1635 1636 1637
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1638
			ext4_truncate_failed_write(inode);
1639
			/*
1640
			 * If truncate failed early the inode might
1641 1642 1643 1644 1645 1646 1647
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1648 1649
	}

1650
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1651
		goto retry;
1652
out:
1653 1654 1655
	return ret;
}

N
Nick Piggin 已提交
1656 1657
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1658 1659 1660 1661
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1662
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1663 1664
}

1665
static int ext4_generic_write_end(struct file *file,
1666 1667 1668
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1711 1712 1713 1714
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1715
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1716 1717
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1718
static int ext4_ordered_write_end(struct file *file,
1719 1720 1721
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1722
{
1723
	handle_t *handle = ext4_journal_current_handle();
1724
	struct inode *inode = mapping->host;
1725 1726
	int ret = 0, ret2;

1727
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1728
	ret = ext4_jbd2_file_inode(handle, inode);
1729 1730

	if (ret == 0) {
1731
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1732
							page, fsdata);
1733
		copied = ret2;
1734
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1735 1736 1737 1738 1739
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1740 1741
		if (ret2 < 0)
			ret = ret2;
1742
	}
1743
	ret2 = ext4_journal_stop(handle);
1744 1745
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1746

1747
	if (pos + len > inode->i_size) {
1748
		ext4_truncate_failed_write(inode);
1749
		/*
1750
		 * If truncate failed early the inode might still be
1751 1752 1753 1754 1755 1756 1757 1758
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1759
	return ret ? ret : copied;
1760 1761
}

N
Nick Piggin 已提交
1762
static int ext4_writeback_write_end(struct file *file,
1763 1764 1765
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1766
{
1767
	handle_t *handle = ext4_journal_current_handle();
1768
	struct inode *inode = mapping->host;
1769 1770
	int ret = 0, ret2;

1771
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1772
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1773
							page, fsdata);
1774
	copied = ret2;
1775
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1776 1777 1778 1779 1780 1781
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1782 1783
	if (ret2 < 0)
		ret = ret2;
1784

1785
	ret2 = ext4_journal_stop(handle);
1786 1787
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1788

1789
	if (pos + len > inode->i_size) {
1790
		ext4_truncate_failed_write(inode);
1791
		/*
1792
		 * If truncate failed early the inode might still be
1793 1794 1795 1796 1797 1798 1799
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1800
	return ret ? ret : copied;
1801 1802
}

N
Nick Piggin 已提交
1803
static int ext4_journalled_write_end(struct file *file,
1804 1805 1806
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1807
{
1808
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1809
	struct inode *inode = mapping->host;
1810 1811
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1812
	unsigned from, to;
1813
	loff_t new_i_size;
1814

1815
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1816 1817 1818 1819 1820 1821 1822 1823
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1824 1825

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1826
				to, &partial, write_end_fn);
1827 1828
	if (!partial)
		SetPageUptodate(page);
1829 1830
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1831
		i_size_write(inode, pos+copied);
1832
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1833 1834
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1835
		ret2 = ext4_mark_inode_dirty(handle, inode);
1836 1837 1838
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1839

1840
	unlock_page(page);
1841
	page_cache_release(page);
1842
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1843 1844 1845 1846 1847 1848
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1849
	ret2 = ext4_journal_stop(handle);
1850 1851
	if (!ret)
		ret = ret2;
1852
	if (pos + len > inode->i_size) {
1853
		ext4_truncate_failed_write(inode);
1854
		/*
1855
		 * If truncate failed early the inode might still be
1856 1857 1858 1859 1860 1861
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1862 1863

	return ret ? ret : copied;
1864
}
1865

1866 1867 1868 1869
/*
 * Reserve a single block located at lblock
 */
static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1870
{
A
Aneesh Kumar K.V 已提交
1871
	int retries = 0;
1872
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1873
	struct ext4_inode_info *ei = EXT4_I(inode);
1874
	unsigned long md_needed;
1875
	int ret;
1876 1877 1878 1879 1880 1881

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1882
repeat:
1883
	spin_lock(&ei->i_block_reservation_lock);
1884
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1885
	trace_ext4_da_reserve_space(inode, md_needed);
1886
	spin_unlock(&ei->i_block_reservation_lock);
1887

1888
	/*
1889 1890 1891
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1892
	 */
1893
	ret = dquot_reserve_block(inode, 1);
1894 1895
	if (ret)
		return ret;
1896 1897 1898 1899
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1900
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1901
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1902 1903 1904 1905
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1906 1907
		return -ENOSPC;
	}
1908
	spin_lock(&ei->i_block_reservation_lock);
1909
	ei->i_reserved_data_blocks++;
1910 1911
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1912

1913 1914 1915
	return 0;       /* success */
}

1916
static void ext4_da_release_space(struct inode *inode, int to_free)
1917 1918
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1919
	struct ext4_inode_info *ei = EXT4_I(inode);
1920

1921 1922 1923
	if (!to_free)
		return;		/* Nothing to release, exit */

1924
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1925

L
Li Zefan 已提交
1926
	trace_ext4_da_release_space(inode, to_free);
1927
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1928
		/*
1929 1930 1931 1932
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1933
		 */
1934 1935 1936 1937 1938 1939
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1940
	}
1941
	ei->i_reserved_data_blocks -= to_free;
1942

1943 1944 1945 1946 1947 1948
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1949 1950
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1951
		ei->i_reserved_meta_blocks = 0;
1952
		ei->i_da_metadata_calc_len = 0;
1953
	}
1954

1955
	/* update fs dirty data blocks counter */
1956
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1957 1958

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1959

1960
	dquot_release_reservation_block(inode, to_free);
1961 1962 1963
}

static void ext4_da_page_release_reservation(struct page *page,
1964
					     unsigned long offset)
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1981
	ext4_da_release_space(page->mapping->host, to_release);
1982
}
1983

1984 1985 1986 1987 1988 1989
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1990
 * them with writepage() call back
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
2003
	long pages_skipped;
2004 2005 2006 2007 2008
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2009 2010

	BUG_ON(mpd->next_page <= mpd->first_page);
2011 2012 2013
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
2014
	 * If we look at mpd->b_blocknr we would only be looking
2015 2016
	 * at the currently mapped buffer_heads.
	 */
2017 2018 2019
	index = mpd->first_page;
	end = mpd->next_page - 1;

2020
	pagevec_init(&pvec, 0);
2021
	while (index <= end) {
2022
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2023 2024 2025 2026 2027
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

2028 2029 2030 2031 2032 2033 2034 2035
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2036
			pages_skipped = mpd->wbc->pages_skipped;
2037
			err = ext4_writepage(page, mpd->wbc);
2038 2039 2040 2041 2042
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
2043
				mpd->pages_written++;
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * the function goes through all passed space and put actual disk
2061
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2062
 */
2063 2064
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
				 struct ext4_map_blocks *map)
2065 2066 2067
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2068 2069
	int blocks = map->m_len;
	sector_t pblock = map->m_pblk, cur_logical;
2070
	struct buffer_head *head, *bh;
2071
	pgoff_t index, end;
2072 2073 2074
	struct pagevec pvec;
	int nr_pages, i;

2075 2076
	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
2103
				if (cur_logical >= map->m_lblk)
2104 2105 2106 2107 2108
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
2109
				if (cur_logical > map->m_lblk + (blocks - 1))
2110
					break;
2111

2112
				if (buffer_delay(bh) || buffer_unwritten(bh)) {
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2128
				} else if (buffer_mapped(bh))
2129 2130
					BUG_ON(bh->b_blocknr != pblock);

2131
				if (map->m_flags & EXT4_MAP_UNINIT)
2132
					set_buffer_uninit(bh);
2133 2134 2135 2136 2137 2138 2139 2140 2141
				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2160
			if (page->index > end)
2161 2162 2163 2164 2165 2166 2167
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2168 2169
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2170 2171 2172 2173
	}
	return;
}

2174 2175 2176
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2189 2190 2191
	return;
}

2192
/*
2193 2194
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
2195
 *
2196
 * @mpd - bh describing space
2197 2198 2199 2200
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2201
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2202
{
2203
	int err, blks, get_blocks_flags;
2204
	struct ext4_map_blocks map;
2205 2206 2207 2208
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2209 2210

	/*
2211 2212
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
2213
	 */
2214 2215 2216 2217 2218
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
2219 2220 2221 2222

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2223
	/*
2224
	 * Call ext4_map_blocks() to allocate any delayed allocation
2225 2226 2227 2228 2229 2230 2231 2232
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
2233
	 * want to change *many* call functions, so ext4_map_blocks()
2234 2235 2236 2237 2238 2239
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2240
	 */
2241 2242
	map.m_lblk = next;
	map.m_len = max_blocks;
2243
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2244 2245
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2246
	if (mpd->b_state & (1 << BH_Delay))
2247 2248
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2249
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2250
	if (blks < 0) {
2251 2252
		struct super_block *sb = mpd->inode->i_sb;

2253
		err = blks;
2254
		/*
2255 2256 2257 2258
		 * If get block returns EAGAIN or ENOSPC and there
		 * appears to be free blocks we will call
		 * ext4_writepage() for all of the pages which will
		 * just redirty the pages.
2259 2260
		 */
		if (err == -EAGAIN)
2261
			goto submit_io;
2262 2263

		if (err == -ENOSPC &&
2264
		    ext4_count_free_blocks(sb)) {
2265
			mpd->retval = err;
2266
			goto submit_io;
2267 2268
		}

2269
		/*
2270 2271 2272 2273 2274
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2275
		 */
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2287
		}
2288
		/* invalidate all the pages */
2289
		ext4_da_block_invalidatepages(mpd, next,
2290
				mpd->b_size >> mpd->inode->i_blkbits);
2291
		return;
2292
	}
2293 2294
	BUG_ON(blks == 0);

2295 2296 2297
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2298

2299 2300 2301
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2302

2303 2304 2305 2306
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2307 2308
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2309
		mpage_put_bnr_to_bhs(mpd, &map);
2310

2311 2312 2313
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
2314 2315
			/* This only happens if the journal is aborted */
			return;
2316 2317 2318
	}

	/*
2319
	 * Update on-disk size along with block allocation.
2320 2321 2322 2323 2324 2325
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
2326 2327 2328 2329 2330
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
2331 2332
	}

2333 2334 2335
submit_io:
	mpage_da_submit_io(mpd);
	mpd->io_done = 1;
2336 2337
}

2338 2339
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2351 2352
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2353 2354
{
	sector_t next;
2355
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2356

2357 2358 2359 2360
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
2361
	 * ext4_map_blocks() multiple times in a loop
2362 2363 2364 2365
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2366
	/* check if thereserved journal credits might overflow */
2367
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2388 2389 2390
	/*
	 * First block in the extent
	 */
2391 2392 2393 2394
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2395 2396 2397
		return;
	}

2398
	next = mpd->b_blocknr + nrblocks;
2399 2400 2401
	/*
	 * Can we merge the block to our big extent?
	 */
2402 2403
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2404 2405 2406
		return;
	}

2407
flush_it:
2408 2409 2410 2411
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2412
	mpage_da_map_and_submit(mpd);
2413
	return;
2414 2415
}

2416
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2417
{
2418
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2419 2420
}

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2435
	struct buffer_head *bh, *head;
2436 2437 2438 2439 2440 2441 2442 2443
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2444
		 * and start IO on them
2445 2446
		 */
		if (mpd->next_page != mpd->first_page) {
2447
			mpage_da_map_and_submit(mpd);
2448 2449 2450 2451 2452 2453
			/*
			 * skip rest of the page in the page_vec
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2464 2465 2466
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2467 2468 2469 2470 2471 2472 2473
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2474 2475
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2476 2477
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2478 2479 2480 2481 2482 2483 2484 2485
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2486 2487 2488 2489
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2490
			 * with the page in ext4_writepage
2491
			 */
2492
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2493 2494 2495
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2496 2497
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2498 2499 2500 2501 2502 2503 2504 2505 2506
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2507 2508
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2509
			}
2510 2511 2512 2513 2514 2515 2516 2517
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2518 2519 2520
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2521 2522 2523 2524 2525 2526 2527
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2528 2529
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2530
				  struct buffer_head *bh, int create)
2531
{
2532
	struct ext4_map_blocks map;
2533
	int ret = 0;
2534 2535 2536 2537
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2538 2539

	BUG_ON(create == 0);
2540 2541 2542 2543
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2544 2545 2546 2547 2548 2549

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2550 2551 2552 2553 2554 2555
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2556 2557 2558 2559
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2560
		ret = ext4_da_reserve_space(inode, iblock);
2561 2562 2563 2564
		if (ret)
			/* not enough space to reserve */
			return ret;

2565 2566 2567 2568
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2569 2570
	}

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
		set_buffer_mapped(bh);
	}
	return 0;
2585
}
2586

2587 2588 2589
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
2590 2591
 * callback function for block_prepare_write() and block_write_full_page().
 * These functions should only try to map a single block at a time.
2592 2593 2594 2595 2596
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2597 2598 2599
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2600 2601
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2602 2603
				   struct buffer_head *bh_result, int create)
{
2604
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2605
	return _ext4_get_block(inode, iblock, bh_result, 0);
2606 2607
}

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2655
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2656 2657 2658 2659
out:
	return ret;
}

2660 2661 2662
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2663
/*
2664 2665 2666 2667 2668 2669 2670 2671 2672
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2673 2674 2675 2676 2677
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2703
 */
2704
static int ext4_writepage(struct page *page,
2705
			  struct writeback_control *wbc)
2706
{
T
Theodore Ts'o 已提交
2707
	int ret = 0, commit_write = 0;
2708
	loff_t size;
2709
	unsigned int len;
2710
	struct buffer_head *page_bufs = NULL;
2711 2712
	struct inode *inode = page->mapping->host;

2713
	trace_ext4_writepage(inode, page);
2714 2715 2716 2717 2718
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2719

T
Theodore Ts'o 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728
	/*
	 * If the page does not have buffers (for whatever reason),
	 * try to create them using block_prepare_write.  If this
	 * fails, redirty the page and move on.
	 */
	if (!page_buffers(page)) {
		if (block_prepare_write(page, 0, len,
					noalloc_get_block_write)) {
		redirty_page:
2729 2730 2731 2732
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2733 2734 2735 2736 2737
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2738
		/*
T
Theodore Ts'o 已提交
2739 2740 2741 2742 2743 2744
		 * We don't want to do block allocation So redirty the
		 * page and return We may reach here when we do a
		 * journal commit via
		 * journal_submit_inode_data_buffers.  If we don't
		 * have mapping block we just ignore them. We can also
		 * reach here via shrink_page_list
2745
		 */
T
Theodore Ts'o 已提交
2746 2747 2748
		goto redirty_page;
	}
	if (commit_write)
2749
		/* now mark the buffer_heads as dirty and uptodate */
2750
		block_commit_write(page, 0, len);
2751

2752 2753 2754 2755 2756 2757
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
2758
		return __ext4_journalled_writepage(page, len);
2759 2760
	}

T
Theodore Ts'o 已提交
2761
	if (buffer_uninit(page_bufs)) {
2762 2763 2764 2765
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2766 2767
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2768 2769 2770 2771

	return ret;
}

2772
/*
2773 2774 2775 2776 2777
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2778
 */
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2790
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2791 2792 2793 2794 2795
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2796

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
 * address space and call the callback function (which usually writes
 * the pages).
 *
 * This is a forked version of write_cache_pages().  Differences:
 *	Range cyclic is ignored.
 *	no_nrwrite_index_update is always presumed true
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
				struct mpage_da_data *mpd)
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	long nr_to_write = wbc->nr_to_write;

	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

	while (!done && (index <= end)) {
		int i;

		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
			      PAGECACHE_TAG_DIRTY,
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				done = 1;
				break;
			}

			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

			ret = __mpage_da_writepage(page, wbc, mpd);
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					done = 1;
					break;
				}
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
				    wbc->sync_mode == WB_SYNC_NONE) {
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
					done = 1;
					break;
				}
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	return ret;
}


2915
static int ext4_da_writepages(struct address_space *mapping,
2916
			      struct writeback_control *wbc)
2917
{
2918 2919
	pgoff_t	index;
	int range_whole = 0;
2920
	handle_t *handle = NULL;
2921
	struct mpage_da_data mpd;
2922
	struct inode *inode = mapping->host;
2923 2924
	int pages_written = 0;
	long pages_skipped;
2925
	unsigned int max_pages;
2926
	int range_cyclic, cycled = 1, io_done = 0;
2927 2928
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2929
	loff_t range_start = wbc->range_start;
2930
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2931

2932
	trace_ext4_da_writepages(inode, wbc);
2933

2934 2935 2936 2937 2938
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2939
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2940
		return 0;
2941 2942 2943 2944 2945

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2946
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2947 2948 2949 2950 2951
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2952
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2953 2954
		return -EROFS;

2955 2956
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2957

2958 2959
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2960
		index = mapping->writeback_index;
2961 2962 2963 2964 2965 2966
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2967
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2968

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2986 2987 2988 2989 2990 2991
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

3002 3003 3004
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

3005 3006
	pages_skipped = wbc->pages_skipped;

3007
retry:
3008
	while (!ret && wbc->nr_to_write > 0) {
3009 3010 3011 3012 3013 3014 3015 3016

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
3017
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3018

3019 3020 3021 3022
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
3023
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3024
			       "%ld pages, ino %lu; err %d", __func__,
3025
				wbc->nr_to_write, inode->i_ino, ret);
3026 3027
			goto out_writepages;
		}
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
3046
		ret = write_cache_pages_da(mapping, wbc, &mpd);
3047
		/*
3048
		 * If we have a contiguous extent of pages and we
3049 3050 3051 3052
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3053
			mpage_da_map_and_submit(&mpd);
3054 3055
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3056
		trace_ext4_da_write_pages(inode, &mpd);
3057
		wbc->nr_to_write -= mpd.pages_written;
3058

3059
		ext4_journal_stop(handle);
3060

3061
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3062 3063 3064 3065
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3066
			jbd2_journal_force_commit_nested(sbi->s_journal);
3067 3068 3069
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3070 3071 3072 3073
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3074 3075
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
3076
			ret = 0;
3077
			io_done = 1;
3078
		} else if (wbc->nr_to_write)
3079 3080 3081 3082 3083 3084
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3085
	}
3086 3087 3088 3089 3090 3091 3092
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3093
	if (pages_skipped != wbc->pages_skipped)
3094 3095
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
3096
			 "with nr_to_write = %ld ret = %d",
3097
			 __func__, wbc->nr_to_write, ret);
3098 3099 3100

	/* Update index */
	index += pages_written;
3101
	wbc->range_cyclic = range_cyclic;
3102 3103 3104 3105 3106 3107
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
3108

3109
out_writepages:
3110
	wbc->nr_to_write -= nr_to_writebump;
3111
	wbc->range_start = range_start;
3112
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3113
	return ret;
3114 3115
}

3116 3117 3118 3119 3120 3121 3122 3123 3124
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3125
	 * counters can get slightly wrong with percpu_counter_batch getting
3126 3127 3128 3129 3130 3131 3132 3133 3134
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3135 3136
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3137 3138 3139
		 */
		return 1;
	}
3140 3141 3142 3143 3144 3145 3146
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3147 3148 3149
	return 0;
}

3150
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3151 3152
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3153
{
3154
	int ret, retries = 0;
3155 3156 3157 3158 3159 3160
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3161 3162 3163 3164 3165 3166 3167

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3168
	trace_ext4_da_write_begin(inode, pos, len, flags);
3169
retry:
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3181 3182 3183
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3184

3185
	page = grab_cache_page_write_begin(mapping, index, flags);
3186 3187 3188 3189 3190
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3191 3192
	*pagep = page;

3193
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3194 3195 3196 3197
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3198 3199 3200 3201 3202 3203
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3204
			ext4_truncate_failed_write(inode);
3205 3206
	}

3207 3208
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3209 3210 3211 3212
out:
	return ret;
}

3213 3214 3215 3216 3217
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3218
					    unsigned long offset)
3219 3220 3221 3222 3223 3224 3225 3226 3227
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3228
	for (i = 0; i < idx; i++)
3229 3230
		bh = bh->b_this_page;

3231
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3232 3233 3234 3235
		return 0;
	return 1;
}

3236
static int ext4_da_write_end(struct file *file,
3237 3238 3239
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3240 3241 3242 3243 3244
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3245
	unsigned long start, end;
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3259

3260
	trace_ext4_da_write_end(inode, pos, len, copied);
3261
	start = pos & (PAGE_CACHE_SIZE - 1);
3262
	end = start + copied - 1;
3263 3264 3265 3266 3267 3268 3269 3270

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3282

3283 3284 3285
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3286 3287 3288 3289 3290
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3291
		}
3292
	}
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3314
	ext4_da_page_release_reservation(page, offset);
3315 3316 3317 3318 3319 3320 3321

out:
	ext4_invalidatepage(page, offset);

	return;
}

3322 3323 3324 3325 3326
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3327 3328
	trace_ext4_alloc_da_blocks(inode);

3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3339
	 *
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3359
	 *
3360 3361 3362 3363 3364 3365
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3366

3367 3368 3369 3370 3371
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3372
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3373 3374 3375 3376 3377 3378 3379 3380
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3381
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3382 3383 3384 3385 3386
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3397 3398
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3410
		 * NB. EXT4_STATE_JDATA is not set on files other than
3411 3412 3413 3414 3415 3416
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3417
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3418
		journal = EXT4_JOURNAL(inode);
3419 3420 3421
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3422 3423 3424 3425 3426

		if (err)
			return 0;
	}

3427
	return generic_block_bmap(mapping, block, ext4_get_block);
3428 3429
}

3430
static int ext4_readpage(struct file *file, struct page *page)
3431
{
3432
	return mpage_readpage(page, ext4_get_block);
3433 3434 3435
}

static int
3436
ext4_readpages(struct file *file, struct address_space *mapping,
3437 3438
		struct list_head *pages, unsigned nr_pages)
{
3439
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3440 3441
}

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
static void ext4_free_io_end(ext4_io_end_t *io)
{
	BUG_ON(!io);
	if (io->page)
		put_page(io->page);
	iput(io->inode);
	kfree(io);
}

static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3471
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3472
{
3473
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3474

3475 3476 3477 3478 3479
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3480 3481 3482 3483 3484 3485
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3486 3487 3488 3489
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3490 3491
}

3492
static int ext4_releasepage(struct page *page, gfp_t wait)
3493
{
3494
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3495 3496 3497 3498

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3499 3500 3501 3502
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3503 3504 3505
}

/*
3506 3507
 * O_DIRECT for ext3 (or indirect map) based files
 *
3508 3509 3510 3511 3512
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3513 3514
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3515
 */
3516
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3517 3518
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3519 3520 3521
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3522
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3523
	handle_t *handle;
3524 3525 3526
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3527
	int retries = 0;
3528 3529 3530 3531 3532

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3533 3534 3535 3536 3537 3538
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3539
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3540 3541 3542 3543
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3544 3545
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3546
			ext4_journal_stop(handle);
3547 3548 3549
		}
	}

3550
retry:
3551
	if (rw == READ && ext4_should_dioread_nolock(inode))
3552
		ret = __blockdev_direct_IO(rw, iocb, inode,
3553 3554
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3555 3556
				 ext4_get_block, NULL, NULL, 0);
	else {
3557 3558
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3559
				 offset, nr_segs,
3560
				 ext4_get_block, NULL);
3561 3562 3563 3564 3565 3566 3567 3568 3569

		if (unlikely((rw & WRITE) && ret < 0)) {
			loff_t isize = i_size_read(inode);
			loff_t end = offset + iov_length(iov, nr_segs);

			if (end > isize)
				vmtruncate(inode, isize);
		}
	}
3570 3571
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3572

J
Jan Kara 已提交
3573
	if (orphan) {
3574 3575
		int err;

J
Jan Kara 已提交
3576 3577 3578 3579 3580 3581 3582
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3583 3584 3585
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3586 3587 3588
			goto out;
		}
		if (inode->i_nlink)
3589
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3590
		if (ret > 0) {
3591 3592 3593 3594 3595 3596 3597 3598
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3599
				 * ext4_mark_inode_dirty() to userspace.  So
3600 3601
				 * ignore it.
				 */
3602
				ext4_mark_inode_dirty(handle, inode);
3603 3604
			}
		}
3605
		err = ext4_journal_stop(handle);
3606 3607 3608 3609 3610 3611 3612
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3613 3614 3615 3616 3617
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3618
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3619 3620
		   struct buffer_head *bh_result, int create)
{
3621
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3622
		   inode->i_ino, create);
3623 3624
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3625 3626
}

3627
static void dump_completed_IO(struct inode * inode)
3628 3629 3630 3631
{
#ifdef	EXT4_DEBUG
	struct list_head *cur, *before, *after;
	ext4_io_end_t *io, *io0, *io1;
3632
	unsigned long flags;
3633

3634 3635
	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3636 3637 3638
		return;
	}

3639
	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3640
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3641
	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3642 3643 3644 3645 3646 3647 3648 3649 3650
		cur = &io->list;
		before = cur->prev;
		io0 = container_of(before, ext4_io_end_t, list);
		after = cur->next;
		io1 = container_of(after, ext4_io_end_t, list);

		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
			    io, inode->i_ino, io0, io1);
	}
3651
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3652 3653
#endif
}
3654 3655 3656 3657

/*
 * check a range of space and convert unwritten extents to written.
 */
3658
static int ext4_end_io_nolock(ext4_io_end_t *io)
3659 3660 3661
{
	struct inode *inode = io->inode;
	loff_t offset = io->offset;
3662
	ssize_t size = io->size;
3663 3664
	int ret = 0;

3665
	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3666 3667 3668 3669 3670 3671
		   "list->prev 0x%p\n",
	           io, inode->i_ino, io->list.next, io->list.prev);

	if (list_empty(&io->list))
		return ret;

3672
	if (io->flag != EXT4_IO_UNWRITTEN)
3673 3674
		return ret;

3675
	ret = ext4_convert_unwritten_extents(inode, offset, size);
3676
	if (ret < 0) {
3677
		printk(KERN_EMERG "%s: failed to convert unwritten"
3678 3679 3680 3681 3682
			"extents to written extents, error is %d"
			" io is still on inode %lu aio dio list\n",
                       __func__, ret, inode->i_ino);
		return ret;
	}
3683

3684 3685
	if (io->iocb)
		aio_complete(io->iocb, io->result, 0);
3686 3687 3688
	/* clear the DIO AIO unwritten flag */
	io->flag = 0;
	return ret;
3689
}
3690

3691 3692 3693
/*
 * work on completed aio dio IO, to convert unwritten extents to extents
 */
3694
static void ext4_end_io_work(struct work_struct *work)
3695
{
3696 3697 3698 3699 3700
	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
	struct inode		*inode = io->inode;
	struct ext4_inode_info	*ei = EXT4_I(inode);
	unsigned long		flags;
	int			ret;
3701

3702
	mutex_lock(&inode->i_mutex);
3703
	ret = ext4_end_io_nolock(io);
3704 3705 3706
	if (ret < 0) {
		mutex_unlock(&inode->i_mutex);
		return;
3707
	}
3708 3709 3710 3711 3712

	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	if (!list_empty(&io->list))
		list_del_init(&io->list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3713
	mutex_unlock(&inode->i_mutex);
3714
	ext4_free_io_end(io);
3715
}
3716

3717 3718 3719
/*
 * This function is called from ext4_sync_file().
 *
3720 3721
 * When IO is completed, the work to convert unwritten extents to
 * written is queued on workqueue but may not get immediately
3722 3723
 * scheduled. When fsync is called, we need to ensure the
 * conversion is complete before fsync returns.
3724 3725 3726 3727 3728
 * The inode keeps track of a list of pending/completed IO that
 * might needs to do the conversion. This function walks through
 * the list and convert the related unwritten extents for completed IO
 * to written.
 * The function return the number of pending IOs on success.
3729
 */
3730
int flush_completed_IO(struct inode *inode)
3731 3732
{
	ext4_io_end_t *io;
3733 3734
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned long flags;
3735 3736 3737
	int ret = 0;
	int ret2 = 0;

3738
	if (list_empty(&ei->i_completed_io_list))
3739 3740
		return ret;

3741
	dump_completed_IO(inode);
3742 3743 3744
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	while (!list_empty(&ei->i_completed_io_list)){
		io = list_entry(ei->i_completed_io_list.next,
3745 3746
				ext4_io_end_t, list);
		/*
3747
		 * Calling ext4_end_io_nolock() to convert completed
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
		 * IO to written.
		 *
		 * When ext4_sync_file() is called, run_queue() may already
		 * about to flush the work corresponding to this io structure.
		 * It will be upset if it founds the io structure related
		 * to the work-to-be schedule is freed.
		 *
		 * Thus we need to keep the io structure still valid here after
		 * convertion finished. The io structure has a flag to
		 * avoid double converting from both fsync and background work
		 * queue work.
		 */
3760
		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3761
		ret = ext4_end_io_nolock(io);
3762
		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3763 3764 3765 3766 3767
		if (ret < 0)
			ret2 = ret;
		else
			list_del_init(&io->list);
	}
3768
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3769 3770 3771
	return (ret2 < 0) ? ret2 : 0;
}

3772
static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3773 3774 3775
{
	ext4_io_end_t *io = NULL;

3776
	io = kmalloc(sizeof(*io), flags);
3777 3778

	if (io) {
3779
		igrab(inode);
3780
		io->inode = inode;
3781
		io->flag = 0;
3782 3783
		io->offset = 0;
		io->size = 0;
3784
		io->page = NULL;
3785 3786
		io->iocb = NULL;
		io->result = 0;
3787
		INIT_WORK(&io->work, ext4_end_io_work);
3788
		INIT_LIST_HEAD(&io->list);
3789 3790 3791 3792 3793 3794
	}

	return io;
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3795 3796
			    ssize_t size, void *private, int ret,
			    bool is_async)
3797 3798 3799
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3800 3801
	unsigned long flags;
	struct ext4_inode_info *ei;
3802

3803 3804
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3805
		goto out;
3806

3807 3808 3809 3810 3811 3812
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3813
	if (io_end->flag != EXT4_IO_UNWRITTEN){
3814 3815
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3816 3817 3818 3819
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3820 3821
	}

3822 3823
	io_end->offset = offset;
	io_end->size = size;
3824 3825 3826 3827
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3828 3829
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3830
	/* Add the io_end to per-inode completed aio dio list*/
3831 3832 3833 3834
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3835 3836 3837

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
3838 3839
	iocb->private = NULL;
}
3840

3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

	io_end->flag = EXT4_IO_UNWRITTEN;
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
		if (printk_ratelimit())
			printk(KERN_WARNING "%s: allocation fail\n", __func__);
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3906 3907 3908 3909 3910 3911 3912 3913 3914
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3915 3916 3917 3918
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3937 3938 3939
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3940 3941
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3942 3943
		 *
 		 * As to previously fallocated extents, ext4 get_block
3944 3945 3946
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3947 3948 3949 3950 3951 3952 3953 3954
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3955
 		 */
3956 3957 3958
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3959
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3960 3961 3962 3963
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
3964
			 * direct IO, so that later ext4_map_blocks()
3965 3966 3967 3968 3969 3970 3971
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3972 3973 3974
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3975
					 ext4_get_block_write,
3976
					 ext4_end_io_dio);
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3996 3997
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3998
			int err;
3999 4000 4001 4002
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
4003 4004 4005 4006
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
4007
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4008
		}
4009 4010
		return ret;
	}
4011 4012

	/* for write the the end of file case, we fall back to old way */
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

4023
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4024 4025 4026 4027 4028
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

4029
/*
4030
 * Pages can be marked dirty completely asynchronously from ext4's journalling
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
4042
static int ext4_journalled_set_page_dirty(struct page *page)
4043 4044 4045 4046 4047
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

4048
static const struct address_space_operations ext4_ordered_aops = {
4049 4050
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4051
	.writepage		= ext4_writepage,
4052 4053 4054 4055 4056 4057 4058 4059 4060
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4061
	.error_remove_page	= generic_error_remove_page,
4062 4063
};

4064
static const struct address_space_operations ext4_writeback_aops = {
4065 4066
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4067
	.writepage		= ext4_writepage,
4068 4069 4070 4071 4072 4073 4074 4075 4076
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4077
	.error_remove_page	= generic_error_remove_page,
4078 4079
};

4080
static const struct address_space_operations ext4_journalled_aops = {
4081 4082
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4083
	.writepage		= ext4_writepage,
4084 4085 4086 4087 4088 4089 4090 4091
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
4092
	.error_remove_page	= generic_error_remove_page,
4093 4094
};

4095
static const struct address_space_operations ext4_da_aops = {
4096 4097
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4098
	.writepage		= ext4_writepage,
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4109
	.error_remove_page	= generic_error_remove_page,
4110 4111
};

4112
void ext4_set_aops(struct inode *inode)
4113
{
4114 4115 4116 4117
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
4118
		inode->i_mapping->a_ops = &ext4_ordered_aops;
4119 4120 4121
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
4122 4123
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
4124
	else
4125
		inode->i_mapping->a_ops = &ext4_journalled_aops;
4126 4127 4128
}

/*
4129
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4130 4131 4132 4133
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
4134
int ext4_block_truncate_page(handle_t *handle,
4135 4136
		struct address_space *mapping, loff_t from)
{
4137
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4138
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
4139 4140
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
4141 4142
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
4143
	struct page *page;
4144 4145
	int err = 0;

4146 4147
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4148 4149 4150
	if (!page)
		return -EINVAL;

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4175
		ext4_get_block(inode, iblock, bh, 0);
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4196
	if (ext4_should_journal_data(inode)) {
4197
		BUFFER_TRACE(bh, "get write access");
4198
		err = ext4_journal_get_write_access(handle, bh);
4199 4200 4201 4202
		if (err)
			goto unlock;
	}

4203
	zero_user(page, offset, length);
4204 4205 4206 4207

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4208
	if (ext4_should_journal_data(inode)) {
4209
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4210
	} else {
4211
		if (ext4_should_order_data(inode))
4212
			err = ext4_jbd2_file_inode(handle, inode);
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4236
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4237 4238
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4239
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4240 4241 4242
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4243
 *	This is a helper function used by ext4_truncate().
4244 4245 4246 4247 4248 4249 4250
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4251
 *	past the truncation point is possible until ext4_truncate()
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4270
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4271 4272
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4273 4274 4275 4276 4277
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4278
	/* Make k index the deepest non-null offset + 1 */
4279 4280
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4281
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4292
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4304
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4305 4306 4307 4308 4309 4310
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4311
	while (partial > p) {
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4327 4328 4329 4330 4331
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4332 4333
{
	__le32 *p;
4334
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4335 4336 4337

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4338

4339 4340
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4341 4342 4343
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4344 4345 4346
		return 1;
	}

4347 4348
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4349 4350
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4351
		}
4352
		ext4_mark_inode_dirty(handle, inode);
4353 4354
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4355 4356
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4357
			ext4_journal_get_write_access(handle, bh);
4358 4359 4360
		}
	}

4361 4362
	for (p = first; p < last; p++)
		*p = 0;
4363

4364
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4365
	return 0;
4366 4367 4368
}

/**
4369
 * ext4_free_data - free a list of data blocks
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4387
static void ext4_free_data(handle_t *handle, struct inode *inode,
4388 4389 4390
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4391
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4392 4393 4394 4395
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4396
	ext4_fsblk_t nr;		    /* Current block # */
4397 4398 4399 4400 4401 4402
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4403
		err = ext4_journal_get_write_access(handle, this_bh);
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4421 4422 4423 4424
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4425 4426 4427 4428 4429 4430 4431 4432
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4433
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4434 4435 4436
				  count, block_to_free_p, p);

	if (this_bh) {
4437
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4438 4439 4440 4441 4442 4443 4444

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4445
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4446
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4447
		else
4448 4449 4450 4451
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4452 4453 4454 4455
	}
}

/**
4456
 *	ext4_free_branches - free an array of branches
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4468
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4469 4470 4471
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4472
	ext4_fsblk_t nr;
4473 4474
	__le32 *p;

4475
	if (ext4_handle_is_aborted(handle))
4476 4477 4478 4479
		return;

	if (depth--) {
		struct buffer_head *bh;
4480
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4481 4482 4483 4484 4485 4486
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4487 4488
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4489 4490 4491 4492
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4493 4494 4495
				break;
			}

4496 4497 4498 4499 4500 4501 4502 4503
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4504 4505
				EXT4_ERROR_INODE_BLOCK(inode, nr,
						       "Read failure");
4506 4507 4508 4509 4510
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4511
			ext4_free_branches(handle, inode, bh,
4512 4513 4514
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4532
			if (ext4_handle_is_aborted(handle))
4533 4534
				return;
			if (try_to_extend_transaction(handle, inode)) {
4535
				ext4_mark_inode_dirty(handle, inode);
4536 4537
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4538 4539
			}

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
			/*
			 * The forget flag here is critical because if
			 * we are journaling (and not doing data
			 * journaling), we have to make sure a revoke
			 * record is written to prevent the journal
			 * replay from overwriting the (former)
			 * indirect block if it gets reallocated as a
			 * data block.  This must happen in the same
			 * transaction where the data blocks are
			 * actually freed.
			 */
4551
			ext4_free_blocks(handle, inode, 0, nr, 1,
4552 4553
					 EXT4_FREE_BLOCKS_METADATA|
					 EXT4_FREE_BLOCKS_FORGET);
4554 4555 4556 4557 4558 4559 4560

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4561
				if (!ext4_journal_get_write_access(handle,
4562 4563 4564
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4565 4566 4567 4568
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4569 4570 4571 4572 4573 4574
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4575
		ext4_free_data(handle, inode, parent_bh, first, last);
4576 4577 4578
	}
}

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4592
/*
4593
 * ext4_truncate()
4594
 *
4595 4596
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4613
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4614
 * that this inode's truncate did not complete and it will again call
4615 4616
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4617
 * that's fine - as long as they are linked from the inode, the post-crash
4618
 * ext4_truncate() run will find them and release them.
4619
 */
4620
void ext4_truncate(struct inode *inode)
4621 4622
{
	handle_t *handle;
4623
	struct ext4_inode_info *ei = EXT4_I(inode);
4624
	__le32 *i_data = ei->i_data;
4625
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4626
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4627
	ext4_lblk_t offsets[4];
4628 4629 4630 4631
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4632
	ext4_lblk_t last_block;
4633 4634
	unsigned blocksize = inode->i_sb->s_blocksize;

4635
	if (!ext4_can_truncate(inode))
4636 4637
		return;

4638
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4639

4640
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4641
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4642

4643
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4644
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4645 4646
		return;
	}
A
Alex Tomas 已提交
4647

4648
	handle = start_transaction(inode);
4649
	if (IS_ERR(handle))
4650 4651 4652
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4653
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4654

4655 4656 4657
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4658

4659
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4672
	if (ext4_orphan_add(handle, inode))
4673 4674
		goto out_stop;

4675 4676 4677 4678 4679
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4680

4681
	ext4_discard_preallocations(inode);
4682

4683 4684 4685 4686 4687
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4688
	 * ext4 *really* writes onto the disk inode.
4689 4690 4691 4692
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4693 4694
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4695 4696 4697
		goto do_indirects;
	}

4698
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4699 4700 4701 4702
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4703
			ext4_free_branches(handle, inode, NULL,
4704 4705 4706 4707 4708 4709 4710 4711 4712
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4713
			ext4_free_branches(handle, inode, partial->bh,
4714 4715 4716 4717 4718 4719
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4720
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4721 4722 4723
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4724
		brelse(partial->bh);
4725 4726 4727 4728 4729 4730
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4731
		nr = i_data[EXT4_IND_BLOCK];
4732
		if (nr) {
4733 4734
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4735
		}
4736 4737
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4738
		if (nr) {
4739 4740
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4741
		}
4742 4743
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4744
		if (nr) {
4745 4746
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4747
		}
4748
	case EXT4_TIND_BLOCK:
4749 4750 4751
		;
	}

4752
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4753
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4754
	ext4_mark_inode_dirty(handle, inode);
4755 4756 4757 4758 4759 4760

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4761
		ext4_handle_sync(handle);
4762 4763 4764 4765 4766
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4767
	 * ext4_delete_inode(), and we allow that function to clean up the
4768 4769 4770
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4771
		ext4_orphan_del(handle, inode);
4772

4773
	ext4_journal_stop(handle);
4774 4775 4776
}

/*
4777
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4778 4779 4780 4781
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4782 4783
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4784
{
4785 4786 4787 4788 4789 4790
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4791
	iloc->bh = NULL;
4792 4793
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4794

4795 4796 4797
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4798 4799
		return -EIO;

4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4810
	if (!bh) {
4811 4812
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
4813 4814 4815 4816
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4840
			int i, start;
4841

4842
			start = inode_offset & ~(inodes_per_block - 1);
4843

4844 4845
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4858
			for (i = start; i < start + inodes_per_block; i++) {
4859 4860
				if (i == inode_offset)
					continue;
4861
				if (ext4_test_bit(i, bitmap_bh->b_data))
4862 4863 4864
					break;
			}
			brelse(bitmap_bh);
4865
			if (i == start + inodes_per_block) {
4866 4867 4868 4869 4870 4871 4872 4873 4874
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4875 4876 4877 4878 4879 4880 4881 4882 4883
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4884
			/* s_inode_readahead_blks is always a power of 2 */
4885 4886 4887 4888 4889 4890 4891
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4892
				num -= ext4_itable_unused_count(sb, gdp);
4893 4894 4895 4896 4897 4898 4899
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4910 4911
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4912 4913 4914 4915 4916 4917 4918 4919 4920
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4921
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4922 4923
{
	/* We have all inode data except xattrs in memory here. */
4924
	return __ext4_get_inode_loc(inode, iloc,
4925
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4926 4927
}

4928
void ext4_set_inode_flags(struct inode *inode)
4929
{
4930
	unsigned int flags = EXT4_I(inode)->i_flags;
4931 4932

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4933
	if (flags & EXT4_SYNC_FL)
4934
		inode->i_flags |= S_SYNC;
4935
	if (flags & EXT4_APPEND_FL)
4936
		inode->i_flags |= S_APPEND;
4937
	if (flags & EXT4_IMMUTABLE_FL)
4938
		inode->i_flags |= S_IMMUTABLE;
4939
	if (flags & EXT4_NOATIME_FL)
4940
		inode->i_flags |= S_NOATIME;
4941
	if (flags & EXT4_DIRSYNC_FL)
4942 4943 4944
		inode->i_flags |= S_DIRSYNC;
}

4945 4946 4947
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4968
}
4969

4970
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4971
				  struct ext4_inode_info *ei)
4972 4973
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4974 4975
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4976 4977 4978 4979 4980 4981

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4982
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4983 4984 4985 4986 4987
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4988 4989 4990 4991
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4992

4993
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4994
{
4995 4996
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4997 4998
	struct ext4_inode_info *ei;
	struct inode *inode;
4999
	journal_t *journal = EXT4_SB(sb)->s_journal;
5000
	long ret;
5001 5002
	int block;

5003 5004 5005 5006 5007 5008 5009
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
5010
	iloc.bh = 0;
5011

5012 5013
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
5014
		goto bad_inode;
5015
	raw_inode = ext4_raw_inode(&iloc);
5016 5017 5018
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5019
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5020 5021 5022 5023 5024
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

5025
	ei->i_state_flags = 0;
5026 5027 5028 5029 5030 5031 5032 5033 5034
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
5035
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5036
			/* this inode is deleted */
5037
			ret = -ESTALE;
5038 5039 5040 5041 5042 5043 5044 5045
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5046
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5047
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5048
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
5049 5050
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5051
	inode->i_size = ext4_isize(raw_inode);
5052
	ei->i_disksize = inode->i_size;
5053 5054 5055
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
5056 5057
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
5058
	ei->i_last_alloc_group = ~0;
5059 5060 5061 5062
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
5063
	for (block = 0; block < EXT4_N_BLOCKS; block++)
5064 5065 5066
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

5078
		read_lock(&journal->j_state_lock);
5079 5080 5081 5082 5083 5084 5085 5086
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
5087
		read_unlock(&journal->j_state_lock);
5088 5089 5090 5091
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

5092
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5093
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5094
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5095
		    EXT4_INODE_SIZE(inode->i_sb)) {
5096
			ret = -EIO;
5097
			goto bad_inode;
5098
		}
5099 5100
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
5101 5102
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
5103 5104
		} else {
			__le32 *magic = (void *)raw_inode +
5105
					EXT4_GOOD_OLD_INODE_SIZE +
5106
					ei->i_extra_isize;
5107
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5108
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5109 5110 5111 5112
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
5113 5114 5115 5116 5117
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

5118 5119 5120 5121 5122 5123 5124
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

5125
	ret = 0;
5126
	if (ei->i_file_acl &&
5127
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5128 5129
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
5130 5131
		ret = -EIO;
		goto bad_inode;
5132
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5133 5134 5135 5136 5137
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
5138
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5139 5140
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
5141
		/* Validate block references which are part of inode */
5142 5143
		ret = ext4_check_inode_blockref(inode);
	}
5144
	if (ret)
5145
		goto bad_inode;
5146

5147
	if (S_ISREG(inode->i_mode)) {
5148 5149 5150
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
5151
	} else if (S_ISDIR(inode->i_mode)) {
5152 5153
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
5154
	} else if (S_ISLNK(inode->i_mode)) {
5155
		if (ext4_inode_is_fast_symlink(inode)) {
5156
			inode->i_op = &ext4_fast_symlink_inode_operations;
5157 5158 5159
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
5160 5161
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5162
		}
5163 5164
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5165
		inode->i_op = &ext4_special_inode_operations;
5166 5167 5168 5169 5170 5171
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5172 5173
	} else {
		ret = -EIO;
5174
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5175
		goto bad_inode;
5176
	}
5177
	brelse(iloc.bh);
5178
	ext4_set_inode_flags(inode);
5179 5180
	unlock_new_inode(inode);
	return inode;
5181 5182

bad_inode:
5183
	brelse(iloc.bh);
5184 5185
	iget_failed(inode);
	return ERR_PTR(ret);
5186 5187
}

5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5201
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5202
		raw_inode->i_blocks_high = 0;
5203
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5204 5205 5206 5207 5208 5209
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5210 5211 5212 5213
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5214
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5215
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5216
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5217
	} else {
5218
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5219 5220 5221 5222
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5223
	}
5224
	return 0;
5225 5226
}

5227 5228 5229 5230 5231 5232 5233
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5234
static int ext4_do_update_inode(handle_t *handle,
5235
				struct inode *inode,
5236
				struct ext4_iloc *iloc)
5237
{
5238 5239
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5240 5241 5242 5243 5244
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5245
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5246
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5247

5248
	ext4_get_inode_flags(ei);
5249
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5250
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5251 5252 5253 5254 5255 5256
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5257
		if (!ei->i_dtime) {
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5275 5276 5277 5278 5279 5280

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5281 5282
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5283
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5284
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5285 5286
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5287 5288
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5289
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5306
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5307
			sb->s_dirt = 1;
5308
			ext4_handle_sync(handle);
5309
			err = ext4_handle_dirty_metadata(handle, NULL,
5310
					EXT4_SB(sb)->s_sbh);
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5325 5326 5327
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5328

5329 5330 5331 5332 5333
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5334
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5335 5336
	}

5337
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5338
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5339 5340
	if (!err)
		err = rc;
5341
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5342

5343
	ext4_update_inode_fsync_trans(handle, inode, 0);
5344
out_brelse:
5345
	brelse(bh);
5346
	ext4_std_error(inode->i_sb, err);
5347 5348 5349 5350
	return err;
}

/*
5351
 * ext4_write_inode()
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5368
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5385
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5386
{
5387 5388
	int err;

5389 5390 5391
	if (current->flags & PF_MEMALLOC)
		return 0;

5392 5393 5394 5395 5396 5397
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5398

5399
		if (wbc->sync_mode != WB_SYNC_ALL)
5400 5401 5402 5403 5404
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5405

5406
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5407 5408
		if (err)
			return err;
5409
		if (wbc->sync_mode == WB_SYNC_ALL)
5410 5411
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5412 5413
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
5414 5415
			err = -EIO;
		}
5416
		brelse(iloc.bh);
5417 5418
	}
	return err;
5419 5420 5421
}

/*
5422
 * ext4_setattr()
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5436 5437 5438 5439 5440 5441 5442 5443
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5444
 */
5445
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5446 5447 5448 5449 5450 5451 5452 5453 5454
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5455
	if (is_quota_modification(inode, attr))
5456
		dquot_initialize(inode);
5457 5458 5459 5460 5461 5462
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5463
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5464
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5465 5466 5467 5468
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5469
		error = dquot_transfer(inode, attr);
5470
		if (error) {
5471
			ext4_journal_stop(handle);
5472 5473 5474 5475 5476 5477 5478 5479
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5480 5481
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5482 5483
	}

5484
	if (attr->ia_valid & ATTR_SIZE) {
5485
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5486 5487
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

5488 5489
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
5490 5491 5492
		}
	}

5493
	if (S_ISREG(inode->i_mode) &&
5494 5495
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
5496
	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5497 5498
		handle_t *handle;

5499
		handle = ext4_journal_start(inode, 3);
5500 5501 5502 5503 5504
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

5505 5506 5507
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5508 5509
		if (!error)
			error = rc;
5510
		ext4_journal_stop(handle);
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5527
		/* ext4_truncate will clear the flag */
5528
		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5529
			ext4_truncate(inode);
5530 5531
	}

C
Christoph Hellwig 已提交
5532 5533 5534
	if ((attr->ia_valid & ATTR_SIZE) &&
	    attr->ia_size != i_size_read(inode))
		rc = vmtruncate(inode, attr->ia_size);
5535

C
Christoph Hellwig 已提交
5536 5537 5538 5539 5540 5541 5542 5543 5544
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
5545
	if (inode->i_nlink)
5546
		ext4_orphan_del(NULL, inode);
5547 5548

	if (!rc && (ia_valid & ATTR_MODE))
5549
		rc = ext4_acl_chmod(inode);
5550 5551

err_out:
5552
	ext4_std_error(inode->i_sb, error);
5553 5554 5555 5556 5557
	if (!error)
		error = rc;
	return error;
}

5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5584

5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5612
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5613 5614
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5615
}
5616

5617
/*
5618 5619 5620
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5621
 *
5622
 * If datablocks are discontiguous, they are possible to spread over
5623
 * different block groups too. If they are contiuguous, with flexbg,
5624
 * they could still across block group boundary.
5625
 *
5626 5627 5628 5629
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5630 5631
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5658 5659
	if (groups > ngroups)
		groups = ngroups;
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5674 5675
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5676
 *
5677
 * This could be called via ext4_write_begin()
5678
 *
5679
 * We need to consider the worse case, when
5680
 * one new block per extent.
5681
 */
A
Alex Tomas 已提交
5682
int ext4_writepage_trans_blocks(struct inode *inode)
5683
{
5684
	int bpp = ext4_journal_blocks_per_page(inode);
5685 5686
	int ret;

5687
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5688

5689
	/* Account for data blocks for journalled mode */
5690
	if (ext4_should_journal_data(inode))
5691
		ret += bpp;
5692 5693
	return ret;
}
5694 5695 5696 5697 5698

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5699
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5700 5701 5702 5703 5704 5705 5706 5707 5708
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5709
/*
5710
 * The caller must have previously called ext4_reserve_inode_write().
5711 5712
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5713
int ext4_mark_iloc_dirty(handle_t *handle,
5714
			 struct inode *inode, struct ext4_iloc *iloc)
5715 5716 5717
{
	int err = 0;

5718 5719 5720
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5721 5722 5723
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5724
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5725
	err = ext4_do_update_inode(handle, inode, iloc);
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5736 5737
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5738
{
5739 5740 5741 5742 5743 5744 5745 5746 5747
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5748 5749
		}
	}
5750
	ext4_std_error(inode->i_sb, err);
5751 5752 5753
	return err;
}

5754 5755 5756 5757
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5758 5759 5760 5761
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5774 5775
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5808
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5809
{
5810
	struct ext4_iloc iloc;
5811 5812 5813
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5814 5815

	might_sleep();
5816
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5817 5818
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5819
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5833 5834
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5835 5836
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5837
					ext4_warning(inode->i_sb,
5838 5839 5840
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5841 5842
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5843 5844 5845 5846
				}
			}
		}
	}
5847
	if (!err)
5848
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5849 5850 5851 5852
	return err;
}

/*
5853
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5854 5855 5856 5857 5858
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5859
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5860 5861 5862 5863 5864 5865
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5866
void ext4_dirty_inode(struct inode *inode)
5867 5868 5869
{
	handle_t *handle;

5870
	handle = ext4_journal_start(inode, 2);
5871 5872
	if (IS_ERR(handle))
		goto out;
5873 5874 5875

	ext4_mark_inode_dirty(handle, inode);

5876
	ext4_journal_stop(handle);
5877 5878 5879 5880 5881 5882 5883 5884
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5885
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5886 5887 5888
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5889
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5890
{
5891
	struct ext4_iloc iloc;
5892 5893 5894

	int err = 0;
	if (handle) {
5895
		err = ext4_get_inode_loc(inode, &iloc);
5896 5897
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5898
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5899
			if (!err)
5900
				err = ext4_handle_dirty_metadata(handle,
5901
								 NULL,
5902
								 iloc.bh);
5903 5904 5905
			brelse(iloc.bh);
		}
	}
5906
	ext4_std_error(inode->i_sb, err);
5907 5908 5909 5910
	return err;
}
#endif

5911
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5927
	journal = EXT4_JOURNAL(inode);
5928 5929
	if (!journal)
		return 0;
5930
	if (is_journal_aborted(journal))
5931 5932
		return -EROFS;

5933 5934
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5945
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5946
	else
5947
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5948
	ext4_set_aops(inode);
5949

5950
	jbd2_journal_unlock_updates(journal);
5951 5952 5953

	/* Finally we can mark the inode as dirty. */

5954
	handle = ext4_journal_start(inode, 1);
5955 5956 5957
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5958
	err = ext4_mark_inode_dirty(handle, inode);
5959
	ext4_handle_sync(handle);
5960 5961
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5962 5963 5964

	return err;
}
5965 5966 5967 5968 5969 5970

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5971
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5972
{
5973
	struct page *page = vmf->page;
5974 5975 5976
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5977
	void *fsdata;
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

6002 6003 6004 6005 6006 6007 6008
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
6009 6010
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
6011 6012
					ext4_bh_unmapped)) {
			unlock_page(page);
6013
			goto out_unlock;
6014
		}
6015
	}
6016
	unlock_page(page);
6017 6018 6019 6020 6021 6022 6023 6024
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6025
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6026 6027 6028
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6029
			len, len, page, fsdata);
6030 6031 6032 6033
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
6034 6035
	if (ret)
		ret = VM_FAULT_SIGBUS;
6036 6037 6038
	up_read(&inode->i_alloc_sem);
	return ret;
}