inode.c 138.5 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22 23
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
24
#include <linux/jbd2.h>
25 26 27 28 29 30
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
31
#include <linux/pagevec.h>
32
#include <linux/mpage.h>
33
#include <linux/namei.h>
34 35
#include <linux/uio.h>
#include <linux/bio.h>
36
#include <linux/workqueue.h>
37
#include <linux/kernel.h>
38
#include <linux/printk.h>
39
#include <linux/slab.h>
40
#include <linux/ratelimit.h>
41

42
#include "ext4_jbd2.h"
43 44
#include "xattr.h"
#include "acl.h"
45
#include "truncate.h"
46

47 48
#include <trace/events/ext4.h>

49 50
#define MPAGE_DA_EXTENT_TAIL 0x01

51 52 53
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
54
	trace_ext4_begin_ordered_truncate(inode, new_size);
55 56 57 58 59 60 61 62 63 64 65
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
66 67
}

68
static void ext4_invalidatepage(struct page *page, unsigned long offset);
69 70 71 72 73 74
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
75

76 77 78
/*
 * Test whether an inode is a fast symlink.
 */
79
static int ext4_inode_is_fast_symlink(struct inode *inode)
80
{
81
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
82 83 84 85 86 87 88 89 90 91
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
92
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
93
				 int nblocks)
94
{
95 96 97
	int ret;

	/*
98
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
99 100 101 102
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
103
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
104
	jbd_debug(2, "restarting handle %p\n", handle);
105
	up_write(&EXT4_I(inode)->i_data_sem);
106
	ret = ext4_journal_restart(handle, nblocks);
107
	down_write(&EXT4_I(inode)->i_data_sem);
108
	ext4_discard_preallocations(inode);
109 110

	return ret;
111 112 113 114 115
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
116
void ext4_evict_inode(struct inode *inode)
117 118
{
	handle_t *handle;
119
	int err;
120

121
	trace_ext4_evict_inode(inode);
122 123 124

	ext4_ioend_wait(inode);

A
Al Viro 已提交
125
	if (inode->i_nlink) {
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
153 154 155 156
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

157
	if (!is_bad_inode(inode))
158
		dquot_initialize(inode);
159

160 161
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
162 163 164 165 166
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

167
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168
	if (IS_ERR(handle)) {
169
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
170 171 172 173 174
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
175
		ext4_orphan_del(NULL, inode);
176 177 178 179
		goto no_delete;
	}

	if (IS_SYNC(inode))
180
		ext4_handle_sync(handle);
181
	inode->i_size = 0;
182 183
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
184
		ext4_warning(inode->i_sb,
185 186 187
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
188
	if (inode->i_blocks)
189
		ext4_truncate(inode);
190 191 192 193 194 195 196

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
197
	if (!ext4_handle_has_enough_credits(handle, 3)) {
198 199 200 201
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
202
			ext4_warning(inode->i_sb,
203 204 205
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
206
			ext4_orphan_del(NULL, inode);
207 208 209 210
			goto no_delete;
		}
	}

211
	/*
212
	 * Kill off the orphan record which ext4_truncate created.
213
	 * AKPM: I think this can be inside the above `if'.
214
	 * Note that ext4_orphan_del() has to be able to cope with the
215
	 * deletion of a non-existent orphan - this is because we don't
216
	 * know if ext4_truncate() actually created an orphan record.
217 218
	 * (Well, we could do this if we need to, but heck - it works)
	 */
219 220
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
221 222 223 224 225 226 227 228

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
229
	if (ext4_mark_inode_dirty(handle, inode))
230
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
231
		ext4_clear_inode(inode);
232
	else
233 234
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
235 236
	return;
no_delete:
A
Al Viro 已提交
237
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
238 239
}

240 241
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
242
{
243
	return &EXT4_I(inode)->i_reserved_quota;
244
}
245
#endif
246

247 248
/*
 * Calculate the number of metadata blocks need to reserve
249
 * to allocate a block located at @lblock
250
 */
251
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252
{
253
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254
		return ext4_ext_calc_metadata_amount(inode, lblock);
255

256
	return ext4_ind_calc_metadata_amount(inode, lblock);
257 258
}

259 260 261 262
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
263 264
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
265 266
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267 268 269
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
270
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271 272 273 274 275 276 277 278
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
279

280 281 282
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
283
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
284
			   used + ei->i_allocated_meta_blocks);
285
	ei->i_allocated_meta_blocks = 0;
286

287 288 289 290 291 292
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
293
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294
				   ei->i_reserved_meta_blocks);
295
		ei->i_reserved_meta_blocks = 0;
296
		ei->i_da_metadata_calc_len = 0;
297
	}
298
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
299

300 301
	/* Update quota subsystem for data blocks */
	if (quota_claim)
302
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
303
	else {
304 305 306
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
307
		 * not re-claim the quota for fallocated blocks.
308
		 */
309
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
310
	}
311 312 313 314 315 316

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
317 318
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
319
		ext4_discard_preallocations(inode);
320 321
}

322
static int __check_block_validity(struct inode *inode, const char *func,
323 324
				unsigned int line,
				struct ext4_map_blocks *map)
325
{
326 327
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
328 329 330 331
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
332 333 334 335 336
		return -EIO;
	}
	return 0;
}

337
#define check_block_validity(inode, map)	\
338
	__check_block_validity((inode), __func__, __LINE__, (map))
339

340
/*
341 342
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
376 377 378 379 380 381 382 383 384
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
385 386 387 388 389
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
390 391
			if (num >= max_pages) {
				done = 1;
392
				break;
393
			}
394 395 396 397 398 399
		}
		pagevec_release(&pvec);
	}
	return num;
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/*
 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 */
static void set_buffers_da_mapped(struct inode *inode,
				   struct ext4_map_blocks *map)
{
	struct address_space *mapping = inode->i_mapping;
	struct pagevec pvec;
	int i, nr_pages;
	pgoff_t index, end;

	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + map->m_len - 1) >>
		(PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index,
					  min(end - index + 1,
					      (pgoff_t)PAGEVEC_SIZE));
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page))
				break;

			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					set_buffer_da_mapped(bh);
					bh = bh->b_this_page;
				} while (bh != head);
			}
			index++;
		}
		pagevec_release(&pvec);
	}
}

443
/*
444
 * The ext4_map_blocks() function tries to look up the requested blocks,
445
 * and returns if the blocks are already mapped.
446 447 448 449 450
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
451 452
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453 454 455 456 457 458 459 460
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
461
 * that case, buffer head is unmapped
462 463 464
 *
 * It returns the error in case of allocation failure.
 */
465 466
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
467 468
{
	int retval;
469

470 471 472 473
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
474
	/*
475 476
	 * Try to see if we can get the block without requesting a new
	 * file system block.
477 478
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
479
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
480
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
481
	} else {
482
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
483
	}
484
	up_read((&EXT4_I(inode)->i_data_sem));
485

486
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
487
		int ret = check_block_validity(inode, map);
488 489 490 491
		if (ret != 0)
			return ret;
	}

492
	/* If it is only a block(s) look up */
493
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
494 495 496 497 498 499
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
500
	 * ext4_ext_get_block() returns the create = 0
501 502
	 * with buffer head unmapped.
	 */
503
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
504 505
		return retval;

506 507 508 509 510 511 512 513 514 515
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
516
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
517

518
	/*
519 520 521 522
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
523 524
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
525 526 527 528 529 530 531

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
532
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
533
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
534 535 536 537
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
538
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
539
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
540
	} else {
541
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
542

543
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
544 545 546 547 548
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
549
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
550
		}
551

552 553 554 555 556 557 558
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
559
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
560 561
			ext4_da_update_reserve_space(inode, retval, 1);
	}
562
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
563
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
564

565 566 567 568 569 570 571 572
		/* If we have successfully mapped the delayed allocated blocks,
		 * set the BH_Da_Mapped bit on them. Its important to do this
		 * under the protection of i_data_sem.
		 */
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
			set_buffers_da_mapped(inode, map);
	}

573
	up_write((&EXT4_I(inode)->i_data_sem));
574
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575
		int ret = check_block_validity(inode, map);
576 577 578
		if (ret != 0)
			return ret;
	}
579 580 581
	return retval;
}

582 583 584
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

585 586
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
587
{
588
	handle_t *handle = ext4_journal_current_handle();
589
	struct ext4_map_blocks map;
J
Jan Kara 已提交
590
	int ret = 0, started = 0;
591
	int dio_credits;
592

593 594 595 596
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
597
		/* Direct IO write... */
598 599 600
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
601
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
602
		if (IS_ERR(handle)) {
603
			ret = PTR_ERR(handle);
604
			return ret;
605
		}
J
Jan Kara 已提交
606
		started = 1;
607 608
	}

609
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
610
	if (ret > 0) {
611 612 613
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
614
		ret = 0;
615
	}
J
Jan Kara 已提交
616 617
	if (started)
		ext4_journal_stop(handle);
618 619 620
	return ret;
}

621 622 623 624 625 626 627
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

628 629 630
/*
 * `handle' can be NULL if create is zero
 */
631
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
632
				ext4_lblk_t block, int create, int *errp)
633
{
634 635
	struct ext4_map_blocks map;
	struct buffer_head *bh;
636 637 638 639
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

640 641 642 643
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
644

645 646 647 648 649 650 651 652 653 654
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
655
	}
656 657 658
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
659

660 661 662 663 664 665 666 667 668 669 670 671 672
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
673
		}
674 675 676 677 678 679 680
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
681
	}
682 683 684 685 686 687
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
688 689
}

690
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
691
			       ext4_lblk_t block, int create, int *err)
692
{
693
	struct buffer_head *bh;
694

695
	bh = ext4_getblk(handle, inode, block, create, err);
696 697 698 699 700 701 702 703 704 705 706 707 708
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

709 710 711 712 713 714 715
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
716 717 718 719 720 721 722
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

723 724
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
725
	     block_start = block_end, bh = next) {
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
743
 * close off a transaction and start a new one between the ext4_get_block()
744
 * and the commit_write().  So doing the jbd2_journal_start at the start of
745 746
 * prepare_write() is the right place.
 *
747 748
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
749 750 751 752
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
753
 * By accident, ext4 can be reentered when a transaction is open via
754 755 756 757 758 759
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
760
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
761 762 763 764 765
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
766
				       struct buffer_head *bh)
767
{
768 769 770
	int dirty = buffer_dirty(bh);
	int ret;

771 772
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
773
	/*
C
Christoph Hellwig 已提交
774
	 * __block_write_begin() could have dirtied some buffers. Clean
775 776
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
777
	 * by __block_write_begin() isn't a real problem here as we clear
778 779 780 781 782 783 784 785 786
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
787 788
}

789 790
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
791
static int ext4_write_begin(struct file *file, struct address_space *mapping,
792 793
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
794
{
795
	struct inode *inode = mapping->host;
796
	int ret, needed_blocks;
797 798
	handle_t *handle;
	int retries = 0;
799
	struct page *page;
800
	pgoff_t index;
801
	unsigned from, to;
N
Nick Piggin 已提交
802

803
	trace_ext4_write_begin(inode, pos, len, flags);
804 805 806 807 808
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
809
	index = pos >> PAGE_CACHE_SHIFT;
810 811
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
812 813

retry:
814 815 816 817
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
818
	}
819

820 821 822 823
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

824
	page = grab_cache_page_write_begin(mapping, index, flags);
825 826 827 828 829 830 831
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

832
	if (ext4_should_dioread_nolock(inode))
833
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
834
	else
835
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
836 837

	if (!ret && ext4_should_journal_data(inode)) {
838 839 840
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
841 842

	if (ret) {
843 844
		unlock_page(page);
		page_cache_release(page);
845
		/*
846
		 * __block_write_begin may have instantiated a few blocks
847 848
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
849 850 851
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
852
		 */
853
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
854 855 856 857
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
858
			ext4_truncate_failed_write(inode);
859
			/*
860
			 * If truncate failed early the inode might
861 862 863 864 865 866 867
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
868 869
	}

870
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
871
		goto retry;
872
out:
873 874 875
	return ret;
}

N
Nick Piggin 已提交
876 877
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
878 879 880 881
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
882
	return ext4_handle_dirty_metadata(handle, NULL, bh);
883 884
}

885
static int ext4_generic_write_end(struct file *file,
886 887 888
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

931 932 933 934
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
935
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
936 937
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
938
static int ext4_ordered_write_end(struct file *file,
939 940 941
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
942
{
943
	handle_t *handle = ext4_journal_current_handle();
944
	struct inode *inode = mapping->host;
945 946
	int ret = 0, ret2;

947
	trace_ext4_ordered_write_end(inode, pos, len, copied);
948
	ret = ext4_jbd2_file_inode(handle, inode);
949 950

	if (ret == 0) {
951
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
952
							page, fsdata);
953
		copied = ret2;
954
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
955 956 957 958 959
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
960 961
		if (ret2 < 0)
			ret = ret2;
962 963 964
	} else {
		unlock_page(page);
		page_cache_release(page);
965
	}
966

967
	ret2 = ext4_journal_stop(handle);
968 969
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
970

971
	if (pos + len > inode->i_size) {
972
		ext4_truncate_failed_write(inode);
973
		/*
974
		 * If truncate failed early the inode might still be
975 976 977 978 979 980 981 982
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
983
	return ret ? ret : copied;
984 985
}

N
Nick Piggin 已提交
986
static int ext4_writeback_write_end(struct file *file,
987 988 989
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
990
{
991
	handle_t *handle = ext4_journal_current_handle();
992
	struct inode *inode = mapping->host;
993 994
	int ret = 0, ret2;

995
	trace_ext4_writeback_write_end(inode, pos, len, copied);
996
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
997
							page, fsdata);
998
	copied = ret2;
999
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1000 1001 1002 1003 1004 1005
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1006 1007
	if (ret2 < 0)
		ret = ret2;
1008

1009
	ret2 = ext4_journal_stop(handle);
1010 1011
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1012

1013
	if (pos + len > inode->i_size) {
1014
		ext4_truncate_failed_write(inode);
1015
		/*
1016
		 * If truncate failed early the inode might still be
1017 1018 1019 1020 1021 1022 1023
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1024
	return ret ? ret : copied;
1025 1026
}

N
Nick Piggin 已提交
1027
static int ext4_journalled_write_end(struct file *file,
1028 1029 1030
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1031
{
1032
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1033
	struct inode *inode = mapping->host;
1034 1035
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1036
	unsigned from, to;
1037
	loff_t new_i_size;
1038

1039
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1040 1041 1042
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1043 1044
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
1045 1046 1047 1048 1049
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1050 1051

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1052
				to, &partial, write_end_fn);
1053 1054
	if (!partial)
		SetPageUptodate(page);
1055 1056
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1057
		i_size_write(inode, pos+copied);
1058
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1059
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1060 1061
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1062
		ret2 = ext4_mark_inode_dirty(handle, inode);
1063 1064 1065
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1066

1067
	unlock_page(page);
1068
	page_cache_release(page);
1069
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1070 1071 1072 1073 1074 1075
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1076
	ret2 = ext4_journal_stop(handle);
1077 1078
	if (!ret)
		ret = ret2;
1079
	if (pos + len > inode->i_size) {
1080
		ext4_truncate_failed_write(inode);
1081
		/*
1082
		 * If truncate failed early the inode might still be
1083 1084 1085 1086 1087 1088
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1089 1090

	return ret ? ret : copied;
1091
}
1092

1093
/*
1094
 * Reserve a single cluster located at lblock
1095
 */
1096
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1097
{
A
Aneesh Kumar K.V 已提交
1098
	int retries = 0;
1099
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1100
	struct ext4_inode_info *ei = EXT4_I(inode);
1101
	unsigned int md_needed;
1102
	int ret;
1103 1104 1105 1106 1107 1108

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1109
repeat:
1110
	spin_lock(&ei->i_block_reservation_lock);
1111 1112
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1113
	trace_ext4_da_reserve_space(inode, md_needed);
1114
	spin_unlock(&ei->i_block_reservation_lock);
1115

1116
	/*
1117 1118 1119
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1120
	 */
1121
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1122 1123
	if (ret)
		return ret;
1124 1125 1126 1127
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1128
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1129
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
A
Aneesh Kumar K.V 已提交
1130 1131 1132 1133
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1134 1135
		return -ENOSPC;
	}
1136
	spin_lock(&ei->i_block_reservation_lock);
1137
	ei->i_reserved_data_blocks++;
1138 1139
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1140

1141 1142 1143
	return 0;       /* success */
}

1144
static void ext4_da_release_space(struct inode *inode, int to_free)
1145 1146
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1147
	struct ext4_inode_info *ei = EXT4_I(inode);
1148

1149 1150 1151
	if (!to_free)
		return;		/* Nothing to release, exit */

1152
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1153

L
Li Zefan 已提交
1154
	trace_ext4_da_release_space(inode, to_free);
1155
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1156
		/*
1157 1158 1159 1160
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1161
		 */
1162 1163 1164 1165 1166 1167
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1168
	}
1169
	ei->i_reserved_data_blocks -= to_free;
1170

1171 1172 1173 1174 1175
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1176 1177
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1178
		 */
1179
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1180
				   ei->i_reserved_meta_blocks);
1181
		ei->i_reserved_meta_blocks = 0;
1182
		ei->i_da_metadata_calc_len = 0;
1183
	}
1184

1185
	/* update fs dirty data blocks counter */
1186
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1187 1188

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1189

1190
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1191 1192 1193
}

static void ext4_da_page_release_reservation(struct page *page,
1194
					     unsigned long offset)
1195 1196 1197 1198
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1199 1200 1201
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1202 1203 1204 1205 1206 1207 1208 1209 1210

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
1211
			clear_buffer_da_mapped(bh);
1212 1213 1214
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		ext4_fsblk_t lblk;
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
		    !ext4_find_delalloc_cluster(inode, lblk, 1))
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1229
}
1230

1231 1232 1233 1234 1235 1236
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1237
 * them with writepage() call back
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1248 1249
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1250
{
1251 1252 1253 1254 1255
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1256
	loff_t size = i_size_read(inode);
1257 1258
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1259
	int journal_data = ext4_should_journal_data(inode);
1260
	sector_t pblock = 0, cur_logical = 0;
1261
	struct ext4_io_submit io_submit;
1262 1263

	BUG_ON(mpd->next_page <= mpd->first_page);
1264
	memset(&io_submit, 0, sizeof(io_submit));
1265 1266 1267
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1268
	 * If we look at mpd->b_blocknr we would only be looking
1269 1270
	 * at the currently mapped buffer_heads.
	 */
1271 1272 1273
	index = mpd->first_page;
	end = mpd->next_page - 1;

1274
	pagevec_init(&pvec, 0);
1275
	while (index <= end) {
1276
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1277 1278 1279
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1280
			int commit_write = 0, skip_page = 0;
1281 1282
			struct page *page = pvec.pages[i];

1283 1284 1285
			index = page->index;
			if (index > end)
				break;
1286 1287 1288 1289 1290

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1291 1292 1293 1294 1295 1296
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1297 1298 1299 1300 1301
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1302
			/*
1303 1304
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1305
			 * __block_write_begin.  If this fails,
1306
			 * skip the page and move on.
1307
			 */
1308
			if (!page_has_buffers(page)) {
1309
				if (__block_write_begin(page, 0, len,
1310
						noalloc_get_block_write)) {
1311
				skip_page:
1312 1313 1314 1315 1316
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1317

1318 1319
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1320
			do {
1321
				if (!bh)
1322
					goto skip_page;
1323 1324 1325
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1326 1327 1328 1329
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1330 1331
					if (buffer_da_mapped(bh))
						clear_buffer_da_mapped(bh);
1332 1333 1334 1335 1336 1337 1338
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1339

1340
				/* skip page if block allocation undone */
1341
				if (buffer_delay(bh) || buffer_unwritten(bh))
1342
					skip_page = 1;
1343 1344
				bh = bh->b_this_page;
				block_start += bh->b_size;
1345 1346
				cur_logical++;
				pblock++;
1347 1348
			} while (bh != page_bufs);

1349 1350
			if (skip_page)
				goto skip_page;
1351 1352 1353 1354 1355

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1356
			clear_page_dirty_for_io(page);
1357 1358 1359 1360 1361 1362
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1363
				err = __ext4_journalled_writepage(page, len);
1364
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1365 1366
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1367 1368 1369 1370 1371 1372
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1373 1374
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1375 1376

			if (!err)
1377
				mpd->pages_written++;
1378 1379 1380 1381 1382 1383 1384 1385 1386
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1387
	ext4_io_submit(&io_submit);
1388 1389 1390
	return ret;
}

1391
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1392 1393 1394 1395 1396 1397 1398
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

1399 1400
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1401 1402 1403 1404 1405 1406
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1407
			if (page->index > end)
1408 1409 1410 1411 1412 1413 1414
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1415 1416
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1417 1418 1419 1420
	}
	return;
}

1421 1422 1423
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1424
	printk(KERN_CRIT "Total free blocks count %lld\n",
1425 1426
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1427 1428
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
1429 1430
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1431
	printk(KERN_CRIT "dirty_blocks=%lld\n",
1432 1433
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1434 1435 1436 1437 1438
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
1439 1440 1441
	return;
}

1442
/*
1443 1444
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1445
 *
1446
 * @mpd - bh describing space
1447 1448 1449 1450
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1451
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1452
{
1453
	int err, blks, get_blocks_flags;
1454
	struct ext4_map_blocks map, *mapp = NULL;
1455 1456 1457 1458
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1459 1460

	/*
1461 1462
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1463
	 */
1464 1465 1466 1467 1468
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1469 1470 1471 1472

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1473
	/*
1474
	 * Call ext4_map_blocks() to allocate any delayed allocation
1475 1476 1477 1478 1479 1480 1481 1482
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1483
	 * want to change *many* call functions, so ext4_map_blocks()
1484
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1485 1486 1487 1488 1489
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1490
	 */
1491 1492
	map.m_lblk = next;
	map.m_len = max_blocks;
1493
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1494 1495
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1496
	if (mpd->b_state & (1 << BH_Delay))
1497 1498
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1499
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1500
	if (blks < 0) {
1501 1502
		struct super_block *sb = mpd->inode->i_sb;

1503
		err = blks;
1504
		/*
1505
		 * If get block returns EAGAIN or ENOSPC and there
1506 1507
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1508 1509
		 */
		if (err == -EAGAIN)
1510
			goto submit_io;
1511

1512
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1513
			mpd->retval = err;
1514
			goto submit_io;
1515 1516
		}

1517
		/*
1518 1519 1520 1521 1522
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1523
		 */
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1535
		}
1536
		/* invalidate all the pages */
1537
		ext4_da_block_invalidatepages(mpd);
1538 1539 1540

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1541
		return;
1542
	}
1543 1544
	BUG_ON(blks == 0);

1545
	mapp = &map;
1546 1547 1548
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1549

1550 1551
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1552

1553 1554 1555 1556 1557 1558
		if (ext4_should_order_data(mpd->inode)) {
			err = ext4_jbd2_file_inode(handle, mpd->inode);
			if (err)
				/* Only if the journal is aborted */
				return;
		}
1559 1560 1561
	}

	/*
1562
	 * Update on-disk size along with block allocation.
1563 1564 1565 1566 1567 1568
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1569 1570 1571 1572 1573
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1574 1575
	}

1576
submit_io:
1577
	mpage_da_submit_io(mpd, mapp);
1578
	mpd->io_done = 1;
1579 1580
}

1581 1582
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1594 1595
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1596 1597
{
	sector_t next;
1598
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1599

1600 1601 1602 1603
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1604
	 * ext4_map_blocks() multiple times in a loop
1605 1606 1607 1608
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1609
	/* check if thereserved journal credits might overflow */
1610
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1631 1632 1633
	/*
	 * First block in the extent
	 */
1634 1635 1636 1637
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1638 1639 1640
		return;
	}

1641
	next = mpd->b_blocknr + nrblocks;
1642 1643 1644
	/*
	 * Can we merge the block to our big extent?
	 */
1645 1646
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1647 1648 1649
		return;
	}

1650
flush_it:
1651 1652 1653 1654
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1655
	mpage_da_map_and_submit(mpd);
1656
	return;
1657 1658
}

1659
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1660
{
1661
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1662 1663
}

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1724
/*
1725 1726 1727
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1728 1729 1730 1731 1732 1733 1734
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1735 1736
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1737
				  struct buffer_head *bh, int create)
1738
{
1739
	struct ext4_map_blocks map;
1740 1741 1742
	int ret = 0;

	BUG_ON(create == 0);
1743 1744 1745 1746
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1747 1748 1749 1750 1751 1752

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1753 1754
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1755
		return ret;
1756

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1768
		set_buffer_mapped(bh);
1769 1770
	}
	return 0;
1771
}
1772

1773 1774 1775
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1776
 * callback function for block_write_begin() and block_write_full_page().
1777
 * These functions should only try to map a single block at a time.
1778 1779 1780 1781 1782
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1783 1784 1785
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1786 1787
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1788 1789
				   struct buffer_head *bh_result, int create)
{
1790
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1791
	return _ext4_get_block(inode, iblock, bh_result, 0);
1792 1793
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1816
	ClearPageChecked(page);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1830 1831
	BUG_ON(!ext4_handle_valid(handle));

1832 1833 1834 1835 1836 1837 1838
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1839
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1840 1841 1842 1843 1844
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1845
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1846 1847 1848 1849
out:
	return ret;
}

1850 1851 1852
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

1853
/*
1854 1855 1856 1857
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1858
 * we are writing back data modified via mmap(), no one guarantees in which
1859 1860 1861 1862
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1863 1864 1865 1866 1867
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1893
 */
1894
static int ext4_writepage(struct page *page,
1895
			  struct writeback_control *wbc)
1896
{
T
Theodore Ts'o 已提交
1897
	int ret = 0, commit_write = 0;
1898
	loff_t size;
1899
	unsigned int len;
1900
	struct buffer_head *page_bufs = NULL;
1901 1902
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
1903
	trace_ext4_writepage(page);
1904 1905 1906 1907 1908
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1909

T
Theodore Ts'o 已提交
1910 1911
	/*
	 * If the page does not have buffers (for whatever reason),
1912
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
1913 1914
	 * fails, redirty the page and move on.
	 */
1915
	if (!page_has_buffers(page)) {
1916
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
1917 1918
					noalloc_get_block_write)) {
		redirty_page:
1919 1920 1921 1922
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
1923 1924 1925 1926 1927
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
1928
		/*
1929 1930 1931 1932
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
1933
		 */
T
Theodore Ts'o 已提交
1934 1935 1936
		goto redirty_page;
	}
	if (commit_write)
1937
		/* now mark the buffer_heads as dirty and uptodate */
1938
		block_commit_write(page, 0, len);
1939

1940
	if (PageChecked(page) && ext4_should_journal_data(inode))
1941 1942 1943 1944
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
1945
		return __ext4_journalled_writepage(page, len);
1946

T
Theodore Ts'o 已提交
1947
	if (buffer_uninit(page_bufs)) {
1948 1949 1950 1951
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
1952 1953
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
1954 1955 1956 1957

	return ret;
}

1958
/*
1959
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
1960
 * calculate the total number of credits to reserve to fit
1961 1962 1963
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
1964
 */
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
1976
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1977 1978 1979 1980 1981
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
1982

1983 1984
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
1985
 * address space and accumulate pages that need writing, and call
1986 1987
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
1988 1989 1990
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
1991 1992
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
1993
{
1994
	struct buffer_head	*bh, *head;
1995
	struct inode		*inode = mapping->host;
1996 1997 1998 1999 2000 2001
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2002

2003 2004 2005
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2006 2007 2008 2009
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2010
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2011 2012 2013 2014
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2015
	*done_index = index;
2016
	while (index <= end) {
2017
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2018 2019
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2020
			return 0;
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2032 2033
			if (page->index > end)
				goto out;
2034

2035 2036
			*done_index = page->index + 1;

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2047 2048 2049
			lock_page(page);

			/*
2050 2051 2052 2053 2054 2055
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2056
			 */
2057 2058 2059 2060
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2061 2062 2063 2064
				unlock_page(page);
				continue;
			}

2065
			wait_on_page_writeback(page);
2066 2067
			BUG_ON(PageWriteback(page));

2068
			if (mpd->next_page != page->index)
2069 2070 2071 2072 2073 2074
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2075 2076
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2077
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2078 2079
				if (mpd->io_done)
					goto ret_extent_tail;
2080 2081
			} else {
				/*
2082 2083
				 * Page with regular buffer heads,
				 * just add all dirty ones
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2099 2100
						if (mpd->io_done)
							goto ret_extent_tail;
2101 2102
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2103 2104 2105 2106 2107 2108 2109 2110 2111
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2112 2113 2114 2115 2116 2117
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2118 2119 2120 2121 2122
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2123
				    wbc->sync_mode == WB_SYNC_NONE)
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2134
					goto out;
2135 2136 2137 2138 2139
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2140 2141 2142
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2143 2144 2145
out:
	pagevec_release(&pvec);
	cond_resched();
2146 2147 2148 2149
	return ret;
}


2150
static int ext4_da_writepages(struct address_space *mapping,
2151
			      struct writeback_control *wbc)
2152
{
2153 2154
	pgoff_t	index;
	int range_whole = 0;
2155
	handle_t *handle = NULL;
2156
	struct mpage_da_data mpd;
2157
	struct inode *inode = mapping->host;
2158
	int pages_written = 0;
2159
	unsigned int max_pages;
2160
	int range_cyclic, cycled = 1, io_done = 0;
2161 2162
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2163
	loff_t range_start = wbc->range_start;
2164
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2165
	pgoff_t done_index = 0;
2166
	pgoff_t end;
S
Shaohua Li 已提交
2167
	struct blk_plug plug;
2168

2169
	trace_ext4_da_writepages(inode, wbc);
2170

2171 2172 2173 2174 2175
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2176
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2177
		return 0;
2178 2179 2180 2181 2182

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2183
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2184 2185 2186 2187 2188
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2189
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2190 2191
		return -EROFS;

2192 2193
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2194

2195 2196
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2197
		index = mapping->writeback_index;
2198 2199 2200 2201 2202
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2203 2204
		end = -1;
	} else {
2205
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2206 2207
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2208

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2226 2227 2228 2229 2230 2231
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2242
retry:
2243
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2244 2245
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2246
	blk_start_plug(&plug);
2247
	while (!ret && wbc->nr_to_write > 0) {
2248 2249 2250 2251 2252 2253 2254 2255

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2256
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2257

2258 2259 2260 2261
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2262
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2263
			       "%ld pages, ino %lu; err %d", __func__,
2264
				wbc->nr_to_write, inode->i_ino, ret);
2265 2266
			goto out_writepages;
		}
2267 2268

		/*
2269
		 * Now call write_cache_pages_da() to find the next
2270
		 * contiguous region of logical blocks that need
2271
		 * blocks to be allocated by ext4 and submit them.
2272
		 */
2273
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2274
		/*
2275
		 * If we have a contiguous extent of pages and we
2276 2277 2278 2279
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2280
			mpage_da_map_and_submit(&mpd);
2281 2282
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2283
		trace_ext4_da_write_pages(inode, &mpd);
2284
		wbc->nr_to_write -= mpd.pages_written;
2285

2286
		ext4_journal_stop(handle);
2287

2288
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2289 2290 2291 2292
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2293
			jbd2_journal_force_commit_nested(sbi->s_journal);
2294 2295
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2296 2297 2298 2299
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2300
			pages_written += mpd.pages_written;
2301
			ret = 0;
2302
			io_done = 1;
2303
		} else if (wbc->nr_to_write)
2304 2305 2306 2307 2308 2309
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2310
	}
S
Shaohua Li 已提交
2311
	blk_finish_plug(&plug);
2312 2313 2314 2315 2316 2317 2318
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2319 2320

	/* Update index */
2321
	wbc->range_cyclic = range_cyclic;
2322 2323 2324 2325 2326
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2327
		mapping->writeback_index = done_index;
2328

2329
out_writepages:
2330
	wbc->nr_to_write -= nr_to_writebump;
2331
	wbc->range_start = range_start;
2332
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2333
	return ret;
2334 2335
}

2336 2337 2338 2339 2340 2341 2342 2343 2344
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2345
	 * counters can get slightly wrong with percpu_counter_batch getting
2346 2347 2348 2349
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2350 2351 2352
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2353
	if (2 * free_blocks < 3 * dirty_blocks ||
2354
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2355
		/*
2356 2357
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2358 2359 2360
		 */
		return 1;
	}
2361 2362 2363 2364 2365 2366 2367
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

2368 2369 2370
	return 0;
}

2371
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2372 2373
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2374
{
2375
	int ret, retries = 0;
2376 2377 2378 2379
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;
2380
	loff_t page_len;
2381 2382

	index = pos >> PAGE_CACHE_SHIFT;
2383 2384 2385 2386 2387 2388 2389

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2390
	trace_ext4_da_write_begin(inode, pos, len, flags);
2391
retry:
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2403 2404 2405
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2406

2407
	page = grab_cache_page_write_begin(mapping, index, flags);
2408 2409 2410 2411 2412
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2413 2414
	*pagep = page;

2415
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2416 2417 2418 2419
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2420 2421 2422 2423 2424 2425
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2426
			ext4_truncate_failed_write(inode);
2427 2428 2429 2430 2431 2432 2433
	} else {
		page_len = pos & (PAGE_CACHE_SIZE - 1);
		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers_no_lock(handle,
				inode, page, pos - page_len, page_len,
				EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
		}
2434 2435
	}

2436 2437
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2438 2439 2440 2441
out:
	return ret;
}

2442 2443 2444 2445 2446
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2447
					    unsigned long offset)
2448 2449 2450 2451 2452 2453 2454 2455 2456
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2457
	for (i = 0; i < idx; i++)
2458 2459
		bh = bh->b_this_page;

2460
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2461 2462 2463 2464
		return 0;
	return 1;
}

2465
static int ext4_da_write_end(struct file *file,
2466 2467 2468
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2469 2470 2471 2472 2473
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2474
	unsigned long start, end;
2475
	int write_mode = (int)(unsigned long)fsdata;
2476
	loff_t page_len;
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2489

2490
	trace_ext4_da_write_end(inode, pos, len, copied);
2491
	start = pos & (PAGE_CACHE_SIZE - 1);
2492
	end = start + copied - 1;
2493 2494 2495 2496 2497 2498 2499 2500

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2512

2513 2514 2515
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2516 2517 2518 2519 2520
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2521
		}
2522
	}
2523 2524
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

	page_len = PAGE_CACHE_SIZE -
			((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));

	if (page_len > 0) {
		ret = ext4_discard_partial_page_buffers_no_lock(handle,
			inode, page, pos + copied - 1, page_len,
			EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
	}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2554
	ext4_da_page_release_reservation(page, offset);
2555 2556 2557 2558 2559 2560 2561

out:
	ext4_invalidatepage(page, offset);

	return;
}

2562 2563 2564 2565 2566
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2567 2568
	trace_ext4_alloc_da_blocks(inode);

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2579
	 *
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2592
	 * the pages by calling redirty_page_for_writepage() but that
2593 2594
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2595
	 * simplifying them because we wouldn't actually intend to
2596 2597 2598
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2599
	 *
2600 2601 2602 2603 2604 2605
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2606

2607 2608 2609 2610 2611
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2612
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2613 2614 2615 2616 2617 2618 2619 2620
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2621
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2622 2623 2624 2625 2626
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2637 2638
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2650
		 * NB. EXT4_STATE_JDATA is not set on files other than
2651 2652 2653 2654 2655 2656
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2657
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2658
		journal = EXT4_JOURNAL(inode);
2659 2660 2661
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2662 2663 2664 2665 2666

		if (err)
			return 0;
	}

2667
	return generic_block_bmap(mapping, block, ext4_get_block);
2668 2669
}

2670
static int ext4_readpage(struct file *file, struct page *page)
2671
{
2672
	trace_ext4_readpage(page);
2673
	return mpage_readpage(page, ext4_get_block);
2674 2675 2676
}

static int
2677
ext4_readpages(struct file *file, struct address_space *mapping,
2678 2679
		struct list_head *pages, unsigned nr_pages)
{
2680
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2681 2682
}

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2703
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2704
{
2705
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2706

2707 2708
	trace_ext4_invalidatepage(page, offset);

2709 2710 2711 2712 2713
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2714 2715 2716 2717 2718 2719
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2720 2721 2722 2723
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2724 2725
}

2726
static int ext4_releasepage(struct page *page, gfp_t wait)
2727
{
2728
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2729

2730 2731
	trace_ext4_releasepage(page);

2732 2733 2734
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2735 2736 2737 2738
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2739 2740
}

2741 2742 2743 2744 2745
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2746
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2747 2748
		   struct buffer_head *bh_result, int create)
{
2749
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2750
		   inode->i_ino, create);
2751 2752
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2753 2754 2755
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2756 2757
			    ssize_t size, void *private, int ret,
			    bool is_async)
2758
{
2759
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2760 2761
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
2762 2763
	unsigned long flags;
	struct ext4_inode_info *ei;
2764

2765 2766
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2767
		goto out;
2768

2769 2770 2771 2772 2773 2774
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
2775
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2776 2777
		ext4_free_io_end(io_end);
		iocb->private = NULL;
2778 2779 2780
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2781
		inode_dio_done(inode);
2782
		return;
2783 2784
	}

2785 2786
	io_end->offset = offset;
	io_end->size = size;
2787 2788 2789 2790
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2791 2792
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

2793
	/* Add the io_end to per-inode completed aio dio list*/
2794 2795 2796 2797
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2798 2799 2800

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
2801
	iocb->private = NULL;
2802 2803 2804

	/* XXX: probably should move into the real I/O completion handler */
	inode_dio_done(inode);
2805
}
2806

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

2824 2825 2826 2827
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2828
	inode = io_end->inode;
2829 2830 2831 2832
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
		io_end->flag |= EXT4_IO_END_UNWRITTEN;
		atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
	}
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2859
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2878 2879 2880 2881 2882
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2883
 * For holes, we fallocate those blocks, mark them as uninitialized
2884
 * If those blocks were preallocated, we mark sure they are splited, but
2885
 * still keep the range to write as uninitialized.
2886
 *
2887 2888
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2889
 * set up an end_io call back function, which will do the conversion
2890
 * when async direct IO completed.
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
2909 2910 2911
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
2912
 		 * to prevent parallel buffered read to expose the stale data
2913
 		 * before DIO complete the data IO.
2914 2915
		 *
 		 * As to previously fallocated extents, ext4 get_block
2916 2917 2918
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
2919 2920 2921 2922 2923 2924 2925 2926
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
2927
 		 */
2928 2929 2930
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
2931
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2932 2933 2934 2935
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
2936
			 * direct IO, so that later ext4_map_blocks()
2937 2938 2939 2940 2941 2942 2943
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

2944
		ret = __blockdev_direct_IO(rw, iocb, inode,
2945 2946
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
2947
					 ext4_get_block_write,
2948 2949 2950
					 ext4_end_io_dio,
					 NULL,
					 DIO_LOCKING | DIO_SKIP_HOLES);
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
2970 2971
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
2972
			int err;
2973 2974
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
2975
			 * completed, we could do the conversion right here
2976
			 */
2977 2978 2979 2980
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
2981
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2982
		}
2983 2984
		return ret;
	}
2985 2986

	/* for write the the end of file case, we fall back to old way */
2987 2988 2989 2990 2991 2992 2993 2994 2995
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
2996
	ssize_t ret;
2997

2998 2999 3000 3001 3002 3003
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

3004
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3005
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3006 3007 3008 3009 3010 3011
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3012 3013
}

3014
/*
3015
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3027
static int ext4_journalled_set_page_dirty(struct page *page)
3028 3029 3030 3031 3032
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3033
static const struct address_space_operations ext4_ordered_aops = {
3034 3035
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3036
	.writepage		= ext4_writepage,
3037 3038 3039 3040 3041 3042 3043 3044
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3045
	.error_remove_page	= generic_error_remove_page,
3046 3047
};

3048
static const struct address_space_operations ext4_writeback_aops = {
3049 3050
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3051
	.writepage		= ext4_writepage,
3052 3053 3054 3055 3056 3057 3058 3059
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3060
	.error_remove_page	= generic_error_remove_page,
3061 3062
};

3063
static const struct address_space_operations ext4_journalled_aops = {
3064 3065
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3066
	.writepage		= ext4_writepage,
3067 3068 3069 3070 3071 3072
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
3073
	.direct_IO		= ext4_direct_IO,
3074
	.is_partially_uptodate  = block_is_partially_uptodate,
3075
	.error_remove_page	= generic_error_remove_page,
3076 3077
};

3078
static const struct address_space_operations ext4_da_aops = {
3079 3080
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3081
	.writepage		= ext4_writepage,
3082 3083 3084 3085 3086 3087 3088 3089 3090
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3091
	.error_remove_page	= generic_error_remove_page,
3092 3093
};

3094
void ext4_set_aops(struct inode *inode)
3095
{
3096 3097 3098 3099
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3100
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3101 3102 3103
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3104 3105
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3106
	else
3107
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3108 3109
}

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
		return -EINVAL;

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
 * from:   The starting byte offset (from the begining of the file)
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
 *         for updateing the contents of a page whose blocks may
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
 * Returns zero on sucess or negative on failure.
 */
int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	unsigned int end_of_block, range_to_discard;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page)) {
		/*
		 * If the range to be discarded covers a partial block
		 * we need to get the page buffers.  This is because
		 * partial blocks cannot be released and the page needs
		 * to be updated with the contents of the block before
		 * we write the zeros on top of it.
		 */
		if (!(from & (blocksize - 1)) ||
		    !((from + length) & (blocksize - 1))) {
			create_empty_buffers(page, blocksize, 0);
		} else {
			/*
			 * If there are no partial blocks,
			 * there is nothing to update,
			 * so we can return now
			 */
			return 0;
		}
	}

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3317
		} else
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3330
/*
3331
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3332 3333 3334 3335
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3336
int ext4_block_truncate_page(handle_t *handle,
3337
		struct address_space *mapping, loff_t from)
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
{
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	unsigned length;
	unsigned blocksize;
	struct inode *inode = mapping->host;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));

	return ext4_block_zero_page_range(handle, mapping, from, length);
}

/*
 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
 * starting from file offset 'from'.  The range to be zero'd must
 * be contained with in one block.  If the specified range exceeds
 * the end of the block it will be shortened to end of the block
 * that cooresponds to 'from'
 */
int ext4_block_zero_page_range(handle_t *handle,
		struct address_space *mapping, loff_t from, loff_t length)
3359
{
3360
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3361
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3362
	unsigned blocksize, max, pos;
A
Aneesh Kumar K.V 已提交
3363
	ext4_lblk_t iblock;
3364 3365
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3366
	struct page *page;
3367 3368
	int err = 0;

3369 3370
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3371 3372 3373
	if (!page)
		return -EINVAL;

3374
	blocksize = inode->i_sb->s_blocksize;
3375 3376 3377 3378 3379 3380 3381 3382 3383
	max = blocksize - (offset & (blocksize - 1));

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the block
	 */
	if (length > max || length < 0)
		length = max;

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3406
		ext4_get_block(inode, iblock, bh, 0);
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3427
	if (ext4_should_journal_data(inode)) {
3428
		BUFFER_TRACE(bh, "get write access");
3429
		err = ext4_journal_get_write_access(handle, bh);
3430 3431 3432 3433
		if (err)
			goto unlock;
	}

3434
	zero_user(page, offset, length);
3435 3436 3437 3438

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3439
	if (ext4_should_journal_data(inode)) {
3440
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3441
	} else
3442 3443 3444 3445 3446 3447 3448 3449
		mark_buffer_dirty(bh);

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
		return -ENOTSUPP;

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
		return -ENOTSUPP;
	}

3483 3484 3485 3486 3487
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
		return -ENOTSUPP;
	}

3488 3489 3490
	return ext4_ext_punch_hole(file, offset, length);
}

3491
/*
3492
 * ext4_truncate()
3493
 *
3494 3495
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3512
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3513
 * that this inode's truncate did not complete and it will again call
3514 3515
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3516
 * that's fine - as long as they are linked from the inode, the post-crash
3517
 * ext4_truncate() run will find them and release them.
3518
 */
3519
void ext4_truncate(struct inode *inode)
3520
{
3521 3522
	trace_ext4_truncate_enter(inode);

3523
	if (!ext4_can_truncate(inode))
3524 3525
		return;

3526
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3527

3528
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3529
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3530

3531
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3532
		ext4_ext_truncate(inode);
3533 3534
	else
		ext4_ind_truncate(inode);
3535

3536
	trace_ext4_truncate_exit(inode);
3537 3538 3539
}

/*
3540
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3541 3542 3543 3544
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3545 3546
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3547
{
3548 3549 3550 3551 3552 3553
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3554
	iloc->bh = NULL;
3555 3556
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3557

3558 3559 3560
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3561 3562
		return -EIO;

3563 3564 3565
	/*
	 * Figure out the offset within the block group inode table
	 */
3566
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3567 3568 3569 3570 3571 3572
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3573
	if (!bh) {
3574 3575
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3576 3577 3578 3579
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3603
			int i, start;
3604

3605
			start = inode_offset & ~(inodes_per_block - 1);
3606

3607 3608
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3621
			for (i = start; i < start + inodes_per_block; i++) {
3622 3623
				if (i == inode_offset)
					continue;
3624
				if (ext4_test_bit(i, bitmap_bh->b_data))
3625 3626 3627
					break;
			}
			brelse(bitmap_bh);
3628
			if (i == start + inodes_per_block) {
3629 3630 3631 3632 3633 3634 3635 3636 3637
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3638 3639 3640 3641 3642 3643 3644 3645 3646
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3647
			/* s_inode_readahead_blks is always a power of 2 */
3648 3649 3650 3651 3652 3653 3654
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3655
				num -= ext4_itable_unused_count(sb, gdp);
3656 3657 3658 3659 3660 3661 3662
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3663 3664 3665 3666 3667
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3668
		trace_ext4_load_inode(inode);
3669 3670 3671 3672 3673
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3674 3675
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3676 3677 3678 3679 3680 3681 3682 3683 3684
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3685
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3686 3687
{
	/* We have all inode data except xattrs in memory here. */
3688
	return __ext4_get_inode_loc(inode, iloc,
3689
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3690 3691
}

3692
void ext4_set_inode_flags(struct inode *inode)
3693
{
3694
	unsigned int flags = EXT4_I(inode)->i_flags;
3695 3696

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3697
	if (flags & EXT4_SYNC_FL)
3698
		inode->i_flags |= S_SYNC;
3699
	if (flags & EXT4_APPEND_FL)
3700
		inode->i_flags |= S_APPEND;
3701
	if (flags & EXT4_IMMUTABLE_FL)
3702
		inode->i_flags |= S_IMMUTABLE;
3703
	if (flags & EXT4_NOATIME_FL)
3704
		inode->i_flags |= S_NOATIME;
3705
	if (flags & EXT4_DIRSYNC_FL)
3706 3707 3708
		inode->i_flags |= S_DIRSYNC;
}

3709 3710 3711
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3732
}
3733

3734
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3735
				  struct ext4_inode_info *ei)
3736 3737
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3738 3739
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3740 3741 3742 3743 3744 3745

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3746
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3747 3748 3749 3750 3751
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3752 3753 3754 3755
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3756

3757
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3758
{
3759 3760
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3761 3762
	struct ext4_inode_info *ei;
	struct inode *inode;
3763
	journal_t *journal = EXT4_SB(sb)->s_journal;
3764
	long ret;
3765 3766
	int block;

3767 3768 3769 3770 3771 3772 3773
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3774
	iloc.bh = NULL;
3775

3776 3777
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3778
		goto bad_inode;
3779
	raw_inode = ext4_raw_inode(&iloc);
3780 3781 3782
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3783
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3784 3785 3786 3787 3788
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

3789
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3790 3791 3792 3793 3794 3795 3796 3797 3798
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3799
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3800
			/* this inode is deleted */
3801
			ret = -ESTALE;
3802 3803 3804 3805 3806 3807 3808 3809
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3810
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3811
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3812
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3813 3814
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3815
	inode->i_size = ext4_isize(raw_inode);
3816
	ei->i_disksize = inode->i_size;
3817 3818 3819
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3820 3821
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3822
	ei->i_last_alloc_group = ~0;
3823 3824 3825 3826
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3827
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3828 3829 3830
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3842
		read_lock(&journal->j_state_lock);
3843 3844 3845 3846 3847 3848 3849 3850
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3851
		read_unlock(&journal->j_state_lock);
3852 3853 3854 3855
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3856
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3857
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3858
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3859
		    EXT4_INODE_SIZE(inode->i_sb)) {
3860
			ret = -EIO;
3861
			goto bad_inode;
3862
		}
3863 3864
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3865 3866
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3867 3868
		} else {
			__le32 *magic = (void *)raw_inode +
3869
					EXT4_GOOD_OLD_INODE_SIZE +
3870
					ei->i_extra_isize;
3871
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3872
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3873 3874 3875 3876
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
3877 3878 3879 3880 3881
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3882 3883 3884 3885 3886 3887 3888
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3889
	ret = 0;
3890
	if (ei->i_file_acl &&
3891
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3892 3893
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3894 3895
		ret = -EIO;
		goto bad_inode;
3896
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3897 3898 3899 3900 3901
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3902
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3903 3904
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3905
		/* Validate block references which are part of inode */
3906
		ret = ext4_ind_check_inode(inode);
3907
	}
3908
	if (ret)
3909
		goto bad_inode;
3910

3911
	if (S_ISREG(inode->i_mode)) {
3912 3913 3914
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3915
	} else if (S_ISDIR(inode->i_mode)) {
3916 3917
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3918
	} else if (S_ISLNK(inode->i_mode)) {
3919
		if (ext4_inode_is_fast_symlink(inode)) {
3920
			inode->i_op = &ext4_fast_symlink_inode_operations;
3921 3922 3923
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3924 3925
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3926
		}
3927 3928
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3929
		inode->i_op = &ext4_special_inode_operations;
3930 3931 3932 3933 3934 3935
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3936 3937
	} else {
		ret = -EIO;
3938
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3939
		goto bad_inode;
3940
	}
3941
	brelse(iloc.bh);
3942
	ext4_set_inode_flags(inode);
3943 3944
	unlock_new_inode(inode);
	return inode;
3945 3946

bad_inode:
3947
	brelse(iloc.bh);
3948 3949
	iget_failed(inode);
	return ERR_PTR(ret);
3950 3951
}

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3965
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3966
		raw_inode->i_blocks_high = 0;
3967
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3968 3969 3970 3971 3972 3973
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3974 3975 3976 3977
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3978
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3979
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3980
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3981
	} else {
3982
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3983 3984 3985 3986
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3987
	}
3988
	return 0;
3989 3990
}

3991 3992 3993 3994 3995 3996 3997
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3998
static int ext4_do_update_inode(handle_t *handle,
3999
				struct inode *inode,
4000
				struct ext4_iloc *iloc)
4001
{
4002 4003
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4004 4005 4006 4007 4008
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4009
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4010
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4011

4012
	ext4_get_inode_flags(ei);
4013
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4014
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4015 4016 4017 4018 4019 4020
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4021
		if (!ei->i_dtime) {
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4039 4040 4041 4042 4043 4044

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4045 4046
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4047
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4048
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4049 4050
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4051 4052
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4053
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4070
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4071
			sb->s_dirt = 1;
4072
			ext4_handle_sync(handle);
4073
			err = ext4_handle_dirty_metadata(handle, NULL,
4074
					EXT4_SB(sb)->s_sbh);
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4089 4090 4091
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4092

4093 4094 4095 4096 4097
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4098
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4099 4100
	}

4101
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4102
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4103 4104
	if (!err)
		err = rc;
4105
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4106

4107
	ext4_update_inode_fsync_trans(handle, inode, 0);
4108
out_brelse:
4109
	brelse(bh);
4110
	ext4_std_error(inode->i_sb, err);
4111 4112 4113 4114
	return err;
}

/*
4115
 * ext4_write_inode()
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4132
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4149
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4150
{
4151 4152
	int err;

4153 4154 4155
	if (current->flags & PF_MEMALLOC)
		return 0;

4156 4157 4158 4159 4160 4161
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4162

4163
		if (wbc->sync_mode != WB_SYNC_ALL)
4164 4165 4166 4167 4168
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4169

4170
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4171 4172
		if (err)
			return err;
4173
		if (wbc->sync_mode == WB_SYNC_ALL)
4174 4175
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4176 4177
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4178 4179
			err = -EIO;
		}
4180
		brelse(iloc.bh);
4181 4182
	}
	return err;
4183 4184 4185
}

/*
4186
 * ext4_setattr()
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4200 4201 4202 4203 4204 4205 4206 4207
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4208
 */
4209
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4210 4211 4212
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4213
	int orphan = 0;
4214 4215 4216 4217 4218 4219
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4220
	if (is_quota_modification(inode, attr))
4221
		dquot_initialize(inode);
4222 4223 4224 4225 4226 4227
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4228
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4229
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4230 4231 4232 4233
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4234
		error = dquot_transfer(inode, attr);
4235
		if (error) {
4236
			ext4_journal_stop(handle);
4237 4238 4239 4240 4241 4242 4243 4244
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4245 4246
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4247 4248
	}

4249
	if (attr->ia_valid & ATTR_SIZE) {
4250 4251
		inode_dio_wait(inode);

4252
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4253 4254
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4255 4256
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4257 4258 4259
		}
	}

4260
	if (S_ISREG(inode->i_mode) &&
4261
	    attr->ia_valid & ATTR_SIZE &&
4262
	    (attr->ia_size < inode->i_size)) {
4263 4264
		handle_t *handle;

4265
		handle = ext4_journal_start(inode, 3);
4266 4267 4268 4269
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4270 4271 4272 4273
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4274 4275
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4276 4277
		if (!error)
			error = rc;
4278
		ext4_journal_stop(handle);
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4291
				orphan = 0;
4292 4293 4294 4295
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4296 4297
	}

4298 4299 4300 4301 4302 4303 4304
	if (attr->ia_valid & ATTR_SIZE) {
		if (attr->ia_size != i_size_read(inode)) {
			truncate_setsize(inode, attr->ia_size);
			ext4_truncate(inode);
		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
			ext4_truncate(inode);
	}
4305

C
Christoph Hellwig 已提交
4306 4307 4308 4309 4310 4311 4312 4313 4314
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4315
	if (orphan && inode->i_nlink)
4316
		ext4_orphan_del(NULL, inode);
4317 4318

	if (!rc && (ia_valid & ATTR_MODE))
4319
		rc = ext4_acl_chmod(inode);
4320 4321

err_out:
4322
	ext4_std_error(inode->i_sb, error);
4323 4324 4325 4326 4327
	if (!error)
		error = rc;
	return error;
}

4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4352

4353 4354
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4355
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4356
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4357
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4358
}
4359

4360
/*
4361 4362 4363
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4364
 *
4365
 * If datablocks are discontiguous, they are possible to spread over
4366
 * different block groups too. If they are contiuguous, with flexbg,
4367
 * they could still across block group boundary.
4368
 *
4369 4370
 * Also account for superblock, inode, quota and xattr blocks
 */
4371
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4372
{
4373 4374
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4401 4402
	if (groups > ngroups)
		groups = ngroups;
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4416
 * Calculate the total number of credits to reserve to fit
4417 4418
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4419
 *
4420
 * This could be called via ext4_write_begin()
4421
 *
4422
 * We need to consider the worse case, when
4423
 * one new block per extent.
4424
 */
A
Alex Tomas 已提交
4425
int ext4_writepage_trans_blocks(struct inode *inode)
4426
{
4427
	int bpp = ext4_journal_blocks_per_page(inode);
4428 4429
	int ret;

4430
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4431

4432
	/* Account for data blocks for journalled mode */
4433
	if (ext4_should_journal_data(inode))
4434
		ret += bpp;
4435 4436
	return ret;
}
4437 4438 4439 4440 4441

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4442
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4443 4444 4445 4446 4447 4448 4449 4450 4451
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4452
/*
4453
 * The caller must have previously called ext4_reserve_inode_write().
4454 4455
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4456
int ext4_mark_iloc_dirty(handle_t *handle,
4457
			 struct inode *inode, struct ext4_iloc *iloc)
4458 4459 4460
{
	int err = 0;

4461 4462 4463
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4464 4465 4466
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4467
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4468
	err = ext4_do_update_inode(handle, inode, iloc);
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4479 4480
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4481
{
4482 4483 4484 4485 4486 4487 4488 4489 4490
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4491 4492
		}
	}
4493
	ext4_std_error(inode->i_sb, err);
4494 4495 4496
	return err;
}

4497 4498 4499 4500
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4501 4502 4503 4504
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4517 4518
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4551
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4552
{
4553
	struct ext4_iloc iloc;
4554 4555 4556
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4557 4558

	might_sleep();
4559
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4560
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4561 4562
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4563
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4577 4578
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4579 4580
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4581
					ext4_warning(inode->i_sb,
4582 4583 4584
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4585 4586
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4587 4588 4589 4590
				}
			}
		}
	}
4591
	if (!err)
4592
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4593 4594 4595 4596
	return err;
}

/*
4597
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4598 4599 4600 4601 4602
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4603
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4604 4605 4606 4607 4608 4609
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4610
void ext4_dirty_inode(struct inode *inode, int flags)
4611 4612 4613
{
	handle_t *handle;

4614
	handle = ext4_journal_start(inode, 2);
4615 4616
	if (IS_ERR(handle))
		goto out;
4617 4618 4619

	ext4_mark_inode_dirty(handle, inode);

4620
	ext4_journal_stop(handle);
4621 4622 4623 4624 4625 4626 4627 4628
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4629
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4630 4631 4632
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4633
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4634
{
4635
	struct ext4_iloc iloc;
4636 4637 4638

	int err = 0;
	if (handle) {
4639
		err = ext4_get_inode_loc(inode, &iloc);
4640 4641
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4642
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4643
			if (!err)
4644
				err = ext4_handle_dirty_metadata(handle,
4645
								 NULL,
4646
								 iloc.bh);
4647 4648 4649
			brelse(iloc.bh);
		}
	}
4650
	ext4_std_error(inode->i_sb, err);
4651 4652 4653 4654
	return err;
}
#endif

4655
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4671
	journal = EXT4_JOURNAL(inode);
4672 4673
	if (!journal)
		return 0;
4674
	if (is_journal_aborted(journal))
4675 4676
		return -EROFS;

4677 4678
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4689
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4690
	else
4691
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4692
	ext4_set_aops(inode);
4693

4694
	jbd2_journal_unlock_updates(journal);
4695 4696 4697

	/* Finally we can mark the inode as dirty. */

4698
	handle = ext4_journal_start(inode, 1);
4699 4700 4701
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4702
	err = ext4_mark_inode_dirty(handle, inode);
4703
	ext4_handle_sync(handle);
4704 4705
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4706 4707 4708

	return err;
}
4709 4710 4711 4712 4713 4714

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4715
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4716
{
4717
	struct page *page = vmf->page;
4718 4719
	loff_t size;
	unsigned long len;
4720
	int ret;
4721 4722 4723
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4724 4725 4726
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4727 4728

	/*
4729 4730
	 * This check is racy but catches the common case. We rely on
	 * __block_page_mkwrite() to do a reliable check.
4731
	 */
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4743
	}
4744 4745

	lock_page(page);
4746 4747 4748 4749 4750 4751
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4752
	}
4753 4754 4755 4756 4757

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4758
	/*
4759 4760
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4761
	 */
4762 4763
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4764
					ext4_bh_unmapped)) {
4765 4766 4767 4768
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4769
		}
4770
	}
4771
	unlock_page(page);
4772 4773 4774 4775 4776 4777 4778 4779
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4780
		ret = VM_FAULT_SIGBUS;
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4799 4800
	return ret;
}