inode.c 149.4 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include "ext4_jbd2.h"
41 42
#include "xattr.h"
#include "acl.h"
43
#include "ext4_extents.h"
44

45 46
#define MPAGE_DA_EXTENT_TAIL 0x01

47 48 49
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
50 51 52 53
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
54 55
}

56 57
static void ext4_invalidatepage(struct page *page, unsigned long offset);

58 59 60
/*
 * Test whether an inode is a fast symlink.
 */
61
static int ext4_inode_is_fast_symlink(struct inode *inode)
62
{
63
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 65 66 67 68 69
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
70
 * The ext4 forget function must perform a revoke if we are freeing data
71 72 73 74 75 76
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
77 78
 *
 * If the handle isn't valid we're not journaling so there's nothing to do.
79
 */
80 81
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
82 83 84
{
	int err;

85 86 87
	if (!ext4_handle_valid(handle))
		return 0;

88 89 90 91 92 93 94 95 96 97 98 99 100 101
	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

102 103
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
104
		if (bh) {
105
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
106
			return ext4_journal_forget(handle, bh);
107 108 109 110 111 112 113
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
114 115
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
116
	if (err)
117
		ext4_abort(inode->i_sb, __func__,
118 119 120 121 122 123 124 125 126 127 128
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
129
	ext4_lblk_t needed;
130 131 132 133 134 135

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
136
	 * like a regular file for ext4 to try to delete it.  Things
137 138 139 140 141 142 143
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
144 145
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
146

147
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

164
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 166 167
	if (!IS_ERR(result))
		return result;

168
	ext4_std_error(inode->i_sb, PTR_ERR(result));
169 170 171 172 173 174 175 176 177 178 179
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
180 181 182
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183
		return 0;
184
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 186 187 188 189 190 191 192 193
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
194
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195
{
196
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
197
	jbd_debug(2, "restarting handle %p\n", handle);
198
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 200 201 202 203
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
204
void ext4_delete_inode(struct inode *inode)
205 206
{
	handle_t *handle;
207
	int err;
208

209 210
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
211 212 213 214 215
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

216
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217
	if (IS_ERR(handle)) {
218
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 220 221 222 223
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
224
		ext4_orphan_del(NULL, inode);
225 226 227 228
		goto no_delete;
	}

	if (IS_SYNC(inode))
229
		ext4_handle_sync(handle);
230
	inode->i_size = 0;
231 232 233 234 235 236
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
237
	if (inode->i_blocks)
238
		ext4_truncate(inode);
239 240 241 242 243 244 245

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
246
	if (!ext4_handle_has_enough_credits(handle, 3)) {
247 248 249 250 251 252 253 254 255 256 257 258
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

259
	/*
260
	 * Kill off the orphan record which ext4_truncate created.
261
	 * AKPM: I think this can be inside the above `if'.
262
	 * Note that ext4_orphan_del() has to be able to cope with the
263
	 * deletion of a non-existent orphan - this is because we don't
264
	 * know if ext4_truncate() actually created an orphan record.
265 266
	 * (Well, we could do this if we need to, but heck - it works)
	 */
267 268
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
269 270 271 272 273 274 275 276

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
277
	if (ext4_mark_inode_dirty(handle, inode))
278 279 280
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
281 282
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
301
 *	ext4_block_to_path - parse the block number into array of offsets
302 303 304
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
305 306
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
307
 *
308
 *	To store the locations of file's data ext4 uses a data structure common
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

331
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
332 333
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
334
{
335 336 337
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
338 339 340 341 342 343
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
344
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 346 347
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
348
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
349
		offsets[n++] = EXT4_IND_BLOCK;
350 351 352
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
353
		offsets[n++] = EXT4_DIND_BLOCK;
354 355 356 357
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358
		offsets[n++] = EXT4_TIND_BLOCK;
359 360 361 362 363
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
364
		ext4_warning(inode->i_sb, "ext4_block_to_path",
365
				"block %lu > max in inode %lu",
366
				i_block + direct_blocks +
367
				indirect_blocks + double_blocks, inode->i_ino);
368 369 370 371 372 373 374
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
375
 *	ext4_get_branch - read the chain of indirect blocks leading to data
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
400 401
 *
 *      Need to be called with
402
 *      down_read(&EXT4_I(inode)->i_data_sem)
403
 */
A
Aneesh Kumar K.V 已提交
404 405
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
406 407 408 409 410 411 412 413
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
414
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
415 416 417 418 419 420
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
421
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
422 423 424 425 426 427 428 429 430 431 432 433 434
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
435
 *	ext4_find_near - find a place for allocation with sufficient locality
436 437 438
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
439
 *	This function returns the preferred place for block allocation.
440 441 442 443 444 445 446 447 448 449 450 451 452 453
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
454
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
455
{
456
	struct ext4_inode_info *ei = EXT4_I(inode);
457
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
458
	__le32 *p;
459
	ext4_fsblk_t bg_start;
460
	ext4_fsblk_t last_block;
461
	ext4_grpblk_t colour;
462 463
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
479 480 481 482 483 484 485
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
486 487
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

488 489 490 491 492 493 494
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

495 496
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
497
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
498 499
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
500 501 502 503
	return bg_start + colour;
}

/**
504
 *	ext4_find_goal - find a preferred place for allocation.
505 506 507 508
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
509
 *	Normally this function find the preferred place for block allocation,
510
 *	returns it.
511
 */
A
Aneesh Kumar K.V 已提交
512
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
513
		Indirect *partial)
514 515
{
	/*
516
	 * XXX need to get goal block from mballoc's data structures
517 518
	 */

519
	return ext4_find_near(inode, partial);
520 521 522
}

/**
523
 *	ext4_blks_to_allocate: Look up the block map and count the number
524 525 526 527 528 529 530 531 532 533
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
534
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
535 536
		int blocks_to_boundary)
{
537
	unsigned int count = 0;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
561
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
562 563 564 565 566 567 568 569
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
570
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
571 572 573
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
574
{
575
	struct ext4_allocation_request ar;
576
	int target, i;
577
	unsigned long count = 0, blk_allocated = 0;
578
	int index = 0;
579
	ext4_fsblk_t current_block = 0;
580 581 582 583 584 585 586 587 588 589
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
590 591 592
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
593 594
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
595 596
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
597 598 599 600 601 602 603 604 605
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
606 607 608 609 610 611 612 613 614
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
615
			break;
616
		}
617 618
	}

619 620 621 622 623
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
624 625 626 627 628 629 630 631 632 633 634
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
650
		blk_allocated += ar.len;
651 652
	}
allocated:
653
	/* total number of blocks allocated for direct blocks */
654
	ret = blk_allocated;
655 656 657
	*err = 0;
	return ret;
failed_out:
658
	for (i = 0; i < index; i++)
659
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
660 661 662 663
	return ret;
}

/**
664
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
665 666 667 668 669 670 671 672 673 674
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
675
 *	the same format as ext4_get_branch() would do. We are calling it after
676 677
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
678
 *	picture as after the successful ext4_get_block(), except that in one
679 680 681 682 683 684
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
685
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
686 687
 *	as described above and return 0.
 */
688
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
689 690 691
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
692 693 694 695 696 697
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
698 699
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
700

701
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
720
		err = ext4_journal_get_create_access(handle, bh);
721 722 723 724 725 726 727 728 729 730
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
731
		if (n == indirect_blks) {
732 733 734 735 736 737 738 739 740 741 742 743 744
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

745 746
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
747 748 749 750 751 752 753 754
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
755
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
756
		ext4_journal_forget(handle, branch[i].bh);
757
	}
758
	for (i = 0; i < indirect_blks; i++)
759
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
760

761
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
762 763 764 765 766

	return err;
}

/**
767
 * ext4_splice_branch - splice the allocated branch onto inode.
768 769 770
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
771
 *	ext4_alloc_branch)
772 773 774 775 776 777 778 779
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
780
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
781
			ext4_lblk_t block, Indirect *where, int num, int blks)
782 783 784
{
	int i;
	int err = 0;
785
	ext4_fsblk_t current_block;
786 787 788 789 790 791 792 793

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
794
		err = ext4_journal_get_write_access(handle, where->bh);
795 796 797 798 799 800 801 802 803 804 805 806 807 808
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
809
			*(where->p + i) = cpu_to_le32(current_block++);
810 811 812 813
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
814
	inode->i_ctime = ext4_current_time(inode);
815
	ext4_mark_inode_dirty(handle, inode);
816 817 818 819 820 821 822 823 824

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
825
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
826 827
		 */
		jbd_debug(5, "splicing indirect only\n");
828 829
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
830 831 832 833 834 835 836 837 838 839 840 841 842
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
843
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
844
		ext4_journal_forget(handle, where[i].bh);
845 846
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
847
	}
848
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
870 871 872
 *
 *
 * Need to be called with
873 874
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
875
 */
876 877 878 879
static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
				  ext4_lblk_t iblock, unsigned int maxblocks,
				  struct buffer_head *bh_result,
				  int create, int extend_disksize)
880 881
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
882
	ext4_lblk_t offsets[4];
883 884
	Indirect chain[4];
	Indirect *partial;
885
	ext4_fsblk_t goal;
886 887 888
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
889
	struct ext4_inode_info *ei = EXT4_I(inode);
890
	int count = 0;
891
	ext4_fsblk_t first_block = 0;
892
	loff_t disksize;
893 894


A
Alex Tomas 已提交
895
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
896
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
897 898
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
899 900 901 902

	if (depth == 0)
		goto out;

903
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
904 905 906 907 908 909 910 911

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
912
			ext4_fsblk_t blk;
913 914 915 916 917 918 919 920

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
921
		goto got_it;
922 923 924 925 926 927 928
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
929
	 * Okay, we need to do block allocation.
930
	*/
931
	goal = ext4_find_goal(inode, iblock, partial);
932 933 934 935 936 937 938 939

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
940
	count = ext4_blks_to_allocate(partial, indirect_blks,
941 942
					maxblocks, blocks_to_boundary);
	/*
943
	 * Block out ext4_truncate while we alter the tree
944
	 */
945 946 947
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
948 949

	/*
950
	 * The ext4_splice_branch call will free and forget any buffers
951 952 953 954 955 956
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
957
		err = ext4_splice_branch(handle, inode, iblock,
958 959
					partial, indirect_blks, count);
	/*
960
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
961
	 * protect it if you're about to implement concurrent
962
	 * ext4_get_block() -bzzz
963
	*/
964 965 966 967 968 969 970
	if (!err && extend_disksize) {
		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > ei->i_disksize)
			ei->i_disksize = disksize;
	}
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

993 994 995 996 997 998 999 1000 1001 1002 1003
qsize_t ext4_get_reserved_space(struct inode *inode)
{
	unsigned long long total;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks +
		EXT4_I(inode)->i_reserved_meta_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	return total;
}
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1029 1030 1031
	if (!blocks)
		return 0;

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1052 1053 1054 1055 1056 1057 1058 1059 1060
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1061 1062 1063 1064 1065

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1066 1067 1068 1069 1070 1071 1072

	/*
	 * free those over-booking quota for metadata blocks
	 */

	if (mdb_free)
		vfs_dq_release_reservation_block(inode, mdb_free);
1073 1074
}

1075
/*
1076 1077
 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
 * and returns if the blocks are already mapped.
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1097
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1098
			unsigned int max_blocks, struct buffer_head *bh,
1099
			int create, int extend_disksize, int flag)
1100 1101
{
	int retval;
1102 1103 1104

	clear_buffer_mapped(bh);

1105 1106 1107 1108 1109 1110 1111 1112
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, 0, 0);
1113
	} else {
1114 1115
		retval = ext4_get_blocks_handle(handle,
				inode, block, max_blocks, bh, 0, 0);
1116
	}
1117
	up_read((&EXT4_I(inode)->i_data_sem));
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

	/* If it is only a block(s) look up */
	if (!create)
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1131 1132 1133
		return retval;

	/*
1134 1135 1136 1137
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1138 1139
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1140 1141 1142 1143 1144 1145 1146 1147 1148

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
	if (flag)
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1149 1150 1151 1152
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1153 1154 1155 1156 1157 1158
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1169
	}
1170 1171 1172 1173 1174 1175 1176 1177 1178

	if (flag) {
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
		/*
		 * Update reserved blocks/metadata blocks
		 * after successful block allocation
		 * which were deferred till now
		 */
		if ((retval > 0) && buffer_delay(bh))
1179
			ext4_da_update_reserve_space(inode, retval);
1180 1181
	}

1182
	up_write((&EXT4_I(inode)->i_data_sem));
1183 1184 1185
	return retval;
}

1186 1187 1188
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1189 1190
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1191
{
1192
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1193
	int ret = 0, started = 0;
1194
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1195
	int dio_credits;
1196

J
Jan Kara 已提交
1197 1198 1199 1200
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1201 1202
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1203
		if (IS_ERR(handle)) {
1204
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1205
			goto out;
1206
		}
J
Jan Kara 已提交
1207
		started = 1;
1208 1209
	}

J
Jan Kara 已提交
1210
	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1211
					max_blocks, bh_result, create, 0, 0);
J
Jan Kara 已提交
1212 1213 1214
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1215
	}
J
Jan Kara 已提交
1216 1217 1218
	if (started)
		ext4_journal_stop(handle);
out:
1219 1220 1221 1222 1223 1224
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1225
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1226
				ext4_lblk_t block, int create, int *errp)
1227 1228 1229 1230 1231 1232 1233 1234 1235
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1236
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1237
					&dummy, create, 1, 0);
1238
	/*
1239
	 * ext4_get_blocks_handle() returns number of blocks
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1257
			J_ASSERT(handle != NULL);
1258 1259 1260 1261 1262

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1263
			 * writes use ext4_get_block instead, so it's not a
1264 1265 1266 1267
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1268
			fatal = ext4_journal_get_create_access(handle, bh);
1269
			if (!fatal && !buffer_uptodate(bh)) {
1270
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1271 1272 1273
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1274 1275
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1292
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1293
			       ext4_lblk_t block, int create, int *err)
1294
{
1295
	struct buffer_head *bh;
1296

1297
	bh = ext4_getblk(handle, inode, block, create, err);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1311 1312 1313 1314 1315 1316 1317
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1318 1319 1320 1321 1322 1323 1324
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1325 1326 1327
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
	     block_start = block_end, bh = next)
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1346
 * close off a transaction and start a new one between the ext4_get_block()
1347
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1348 1349
 * prepare_write() is the right place.
 *
1350 1351
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1352 1353 1354 1355
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1356
 * By accident, ext4 can be reentered when a transaction is open via
1357 1358 1359 1360 1361 1362
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1363
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1364 1365 1366 1367 1368 1369 1370 1371 1372
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1373
	return ext4_journal_get_write_access(handle, bh);
1374 1375
}

N
Nick Piggin 已提交
1376 1377 1378
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1379
{
1380
	struct inode *inode = mapping->host;
1381
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1382 1383
	handle_t *handle;
	int retries = 0;
1384
	struct page *page;
N
Nick Piggin 已提交
1385
 	pgoff_t index;
1386
	unsigned from, to;
N
Nick Piggin 已提交
1387

1388 1389 1390 1391
	trace_mark(ext4_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
N
Nick Piggin 已提交
1392
 	index = pos >> PAGE_CACHE_SHIFT;
1393 1394
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1395 1396

retry:
1397 1398 1399 1400
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1401
	}
1402

1403 1404 1405 1406
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1407
	page = grab_cache_page_write_begin(mapping, index, flags);
1408 1409 1410 1411 1412 1413 1414
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1415
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1416
				ext4_get_block);
N
Nick Piggin 已提交
1417 1418

	if (!ret && ext4_should_journal_data(inode)) {
1419 1420 1421
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1422 1423

	if (ret) {
1424
		unlock_page(page);
1425
		ext4_journal_stop(handle);
1426
		page_cache_release(page);
1427 1428 1429 1430 1431 1432 1433
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
N
Nick Piggin 已提交
1434 1435
	}

1436
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1437
		goto retry;
1438
out:
1439 1440 1441
	return ret;
}

N
Nick Piggin 已提交
1442 1443
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1444 1445 1446 1447
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1448
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1449 1450 1451 1452 1453 1454
}

/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1455
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1456 1457
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1458 1459 1460 1461
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1462
{
1463
	handle_t *handle = ext4_journal_current_handle();
1464
	struct inode *inode = mapping->host;
1465 1466
	int ret = 0, ret2;

1467 1468 1469 1470
	trace_mark(ext4_ordered_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
1471
	ret = ext4_jbd2_file_inode(handle, inode);
1472 1473 1474 1475

	if (ret == 0) {
		loff_t new_i_size;

N
Nick Piggin 已提交
1476
		new_i_size = pos + copied;
1477 1478 1479 1480 1481 1482 1483 1484 1485
		if (new_i_size > EXT4_I(inode)->i_disksize) {
			ext4_update_i_disksize(inode, new_i_size);
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
		}

1486
		ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1487
							page, fsdata);
1488 1489 1490
		copied = ret2;
		if (ret2 < 0)
			ret = ret2;
1491
	}
1492
	ret2 = ext4_journal_stop(handle);
1493 1494
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1495 1496

	return ret ? ret : copied;
1497 1498
}

N
Nick Piggin 已提交
1499 1500 1501 1502
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1503
{
1504
	handle_t *handle = ext4_journal_current_handle();
1505
	struct inode *inode = mapping->host;
1506 1507 1508
	int ret = 0, ret2;
	loff_t new_i_size;

1509 1510 1511 1512
	trace_mark(ext4_writeback_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1513
	new_i_size = pos + copied;
1514 1515 1516 1517 1518 1519 1520 1521
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_mark_inode_dirty(handle, inode);
	}
1522

1523
	ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1524
							page, fsdata);
1525 1526 1527
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
1528

1529
	ret2 = ext4_journal_stop(handle);
1530 1531
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1532 1533

	return ret ? ret : copied;
1534 1535
}

N
Nick Piggin 已提交
1536 1537 1538 1539
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1540
{
1541
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1542
	struct inode *inode = mapping->host;
1543 1544
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1545
	unsigned from, to;
1546
	loff_t new_i_size;
1547

1548 1549 1550 1551
	trace_mark(ext4_journalled_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1552 1553 1554 1555 1556 1557 1558 1559
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1560 1561

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1562
				to, &partial, write_end_fn);
1563 1564
	if (!partial)
		SetPageUptodate(page);
1565 1566
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1567
		i_size_write(inode, pos+copied);
1568
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1569 1570
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1571
		ret2 = ext4_mark_inode_dirty(handle, inode);
1572 1573 1574
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1575

1576
	unlock_page(page);
1577
	ret2 = ext4_journal_stop(handle);
1578 1579
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1580 1581 1582
	page_cache_release(page);

	return ret ? ret : copied;
1583
}
1584 1585 1586

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1587
	int retries = 0;
1588 1589
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	unsigned long md_needed, mdblocks, total = 0;
1590 1591 1592 1593 1594 1595

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1596
repeat:
1597 1598 1599 1600 1601 1602 1603 1604
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
	if (vfs_dq_reserve_block(inode, total)) {
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return -EDQUOT;
	}

1615
	if (ext4_claim_free_blocks(sbi, total)) {
1616
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1617 1618 1619 1620
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1621
		vfs_dq_release_reservation_block(inode, total);
1622 1623 1624 1625 1626 1627 1628 1629 1630
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1631
static void ext4_da_release_space(struct inode *inode, int to_free)
1632 1633 1634 1635
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1636 1637 1638
	if (!to_free)
		return;		/* Nothing to release, exit */

1639
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1655
	/* recalculate the number of metablocks still need to be reserved */
1656
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1657 1658 1659 1660 1661 1662 1663 1664
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1665 1666
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1667 1668

	/* update per-inode reservations */
1669 1670
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1671 1672 1673 1674

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1675 1676

	vfs_dq_release_reservation_block(inode, release);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
}

static void ext4_da_page_release_reservation(struct page *page,
						unsigned long offset)
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1697
	ext4_da_release_space(page->mapping->host, to_release);
1698
}
1699

1700 1701 1702 1703 1704 1705 1706 1707 1708
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
	struct buffer_head lbh;			/* extent of blocks */
	unsigned long first_page, next_page;	/* extent of pages */
	struct writeback_control *wbc;
1709
	int io_done;
1710
	int pages_written;
1711
	int retval;
1712 1713 1714 1715
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1716
 * them with writepage() call back
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1729
	long pages_skipped;
1730 1731 1732 1733 1734
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1735 1736

	BUG_ON(mpd->next_page <= mpd->first_page);
1737 1738 1739 1740 1741 1742
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
	 * If we look at mpd->lbh.b_blocknr we would only be looking
	 * at the currently mapped buffer_heads.
	 */
1743 1744 1745
	index = mpd->first_page;
	end = mpd->next_page - 1;

1746
	pagevec_init(&pvec, 0);
1747
	while (index <= end) {
1748
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1749 1750 1751 1752 1753
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1754 1755 1756 1757 1758 1759 1760 1761
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1762
			pages_skipped = mpd->wbc->pages_skipped;
1763
			err = mapping->a_ops->writepage(page, mpd->wbc);
1764 1765 1766 1767 1768
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1769
				mpd->pages_written++;
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
 * block numbers into buffer heads, dropping BH_Delay
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1802
	pgoff_t index, end;
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
				if (buffer_delay(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_delay(bh);
1845 1846 1847 1848 1849 1850 1851
					bh->b_bdev = inode->i_sb->s_bdev;
				} else if (buffer_unwritten(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_unwritten(bh);
					set_buffer_mapped(bh);
					set_buffer_new(bh);
					bh->b_bdev = inode->i_sb->s_bdev;
1852
				} else if (buffer_mapped(bh))
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

1912 1913 1914 1915 1916 1917 1918
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	printk(KERN_EMERG "Total free blocks count %lld\n",
			ext4_count_free_blocks(inode->i_sb));
	printk(KERN_EMERG "Free/Dirty block details\n");
	printk(KERN_EMERG "free_blocks=%lld\n",
1919
			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1920
	printk(KERN_EMERG "dirty_blocks=%lld\n",
1921
			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1922
	printk(KERN_EMERG "Block reservation details\n");
1923
	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1924
			EXT4_I(inode)->i_reserved_data_blocks);
1925
	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1926 1927 1928 1929
			EXT4_I(inode)->i_reserved_meta_blocks);
	return;
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
#define		EXT4_DELALLOC_RSVED	1
static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	loff_t disksize = EXT4_I(inode)->i_disksize;
	handle_t *handle = NULL;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);
	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
				   bh_result, create, 0, EXT4_DELALLOC_RSVED);
	if (ret <= 0)
		return ret;

	bh_result->b_size = (ret << inode->i_blkbits);

	if (ext4_should_order_data(inode)) {
		int retval;
		retval = ext4_jbd2_file_inode(handle, inode);
		if (retval)
			/*
			 * Failed to add inode for ordered mode. Don't
			 * update file size
			 */
			return retval;
	}

	/*
	 * Update on-disk size along with block allocation we don't
	 * use 'extend_disksize' as size may change within already
	 * allocated block -bzzz
	 */
	disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
	if (disksize > i_size_read(inode))
		disksize = i_size_read(inode);
	if (disksize > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, disksize);
		ret = ext4_mark_inode_dirty(handle, inode);
		return ret;
	}
	return 0;
}

1975 1976 1977 1978 1979 1980 1981 1982
/*
 * mpage_da_map_blocks - go through given space
 *
 * @mpd->lbh - bh describing space
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1983
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
1984
{
1985
	int err = 0;
A
Aneesh Kumar K.V 已提交
1986
	struct buffer_head new;
1987
	struct buffer_head *lbh = &mpd->lbh;
1988
	sector_t next;
1989 1990 1991 1992 1993

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1994
		return 0;
1995 1996 1997
	new.b_state = lbh->b_state;
	new.b_blocknr = 0;
	new.b_size = lbh->b_size;
1998
	next = lbh->b_blocknr;
1999 2000 2001 2002 2003
	/*
	 * If we didn't accumulate anything
	 * to write simply return
	 */
	if (!new.b_size)
2004 2005
		return 0;

2006 2007 2008 2009 2010 2011
	err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
	if (err) {
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2012 2013 2014
		 */
		if (err == -EAGAIN)
			return 0;
2015 2016

		if (err == -ENOSPC &&
2017
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2018 2019 2020 2021
			mpd->retval = err;
			return 0;
		}

2022
		/*
2023 2024 2025 2026 2027
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2028 2029 2030 2031 2032 2033 2034 2035 2036
		 */
		printk(KERN_EMERG "%s block allocation failed for inode %lu "
				  "at logical offset %llu with max blocks "
				  "%zd with error %d\n",
				  __func__, mpd->inode->i_ino,
				  (unsigned long long)next,
				  lbh->b_size >> mpd->inode->i_blkbits, err);
		printk(KERN_EMERG "This should not happen.!! "
					"Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2037
		if (err == -ENOSPC) {
2038
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2039
		}
2040 2041 2042 2043 2044
		/* invlaidate all the pages */
		ext4_da_block_invalidatepages(mpd, next,
				lbh->b_size >> mpd->inode->i_blkbits);
		return err;
	}
2045
	BUG_ON(new.b_size == 0);
2046

2047 2048
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2049

2050 2051 2052 2053 2054 2055
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
	if (buffer_delay(lbh) || buffer_unwritten(lbh))
		mpage_put_bnr_to_bhs(mpd, next, &new);
2056

2057
	return 0;
2058 2059
}

2060 2061
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
				   sector_t logical, struct buffer_head *bh)
{
	sector_t next;
2076 2077 2078
	size_t b_size = bh->b_size;
	struct buffer_head *lbh = &mpd->lbh;
	int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
2079

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2102 2103 2104 2105 2106
	/*
	 * First block in the extent
	 */
	if (lbh->b_size == 0) {
		lbh->b_blocknr = logical;
2107
		lbh->b_size = b_size;
2108 2109 2110 2111
		lbh->b_state = bh->b_state & BH_FLAGS;
		return;
	}

2112
	next = lbh->b_blocknr + nrblocks;
2113 2114 2115 2116
	/*
	 * Can we merge the block to our big extent?
	 */
	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
2117
		lbh->b_size += b_size;
2118 2119 2120
		return;
	}

2121
flush_it:
2122 2123 2124 2125
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2126 2127
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2128 2129
	mpd->io_done = 1;
	return;
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
}

/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
	struct buffer_head *bh, *head, fake;
	sector_t logical;

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
		 * try to to write them again after
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2160 2161 2162 2163 2164 2165
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2166
		 * and start IO on them using writepage()
2167 2168
		 */
		if (mpd->next_page != mpd->first_page) {
2169 2170
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2171 2172 2173 2174 2175 2176 2177
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
		mpd->lbh.b_size = 0;
		mpd->lbh.b_state = 0;
		mpd->lbh.b_blocknr = 0;
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
		/*
		 * There is no attached buffer heads yet (mmap?)
		 * we treat the page asfull of dirty blocks
		 */
		bh = &fake;
		bh->b_size = PAGE_CACHE_SIZE;
		bh->b_state = 0;
		set_buffer_dirty(bh);
		set_buffer_uptodate(bh);
		mpage_add_bh_to_extent(mpd, logical, bh);
2208 2209
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2210 2211 2212 2213 2214 2215 2216 2217
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2218 2219 2220 2221 2222 2223
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
			 * with the page in ext4_da_writepage
			 */
2224 2225
			if (buffer_dirty(bh) &&
				(!buffer_mapped(bh) || buffer_delay(bh))) {
2226
				mpage_add_bh_to_extent(mpd, logical, bh);
2227 2228
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
				if (mpd->lbh.b_size == 0)
					mpd->lbh.b_state =
						bh->b_state & BH_FLAGS;
2241
			}
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
 * mpage_da_writepages - walk the list of dirty pages of the given
 * address space, allocates non-allocated blocks, maps newly-allocated
 * blocks to existing bhs and issue IO them
 *
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
static int mpage_da_writepages(struct address_space *mapping,
			       struct writeback_control *wbc,
2262
			       struct mpage_da_data *mpd)
2263 2264 2265
{
	int ret;

2266 2267 2268 2269 2270 2271 2272 2273
	mpd->lbh.b_size = 0;
	mpd->lbh.b_state = 0;
	mpd->lbh.b_blocknr = 0;
	mpd->first_page = 0;
	mpd->next_page = 0;
	mpd->io_done = 0;
	mpd->pages_written = 0;
	mpd->retval = 0;
2274

2275
	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2276 2277 2278
	/*
	 * Handle last extent of pages
	 */
2279 2280 2281
	if (!mpd->io_done && mpd->next_page != mpd->first_page) {
		if (mpage_da_map_blocks(mpd) == 0)
			mpage_da_submit_io(mpd);
2282

2283 2284 2285 2286
		mpd->io_done = 1;
		ret = MPAGE_DA_EXTENT_TAIL;
	}
	wbc->nr_to_write -= mpd->pages_written;
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	return ret;
}

/*
 * this is a special callback for ->write_begin() only
 * it's intention is to return mapped block or reserve space
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2307 2308 2309
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2310 2311 2312 2313
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2314 2315 2316 2317 2318
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
		map_bh(bh_result, inode->i_sb, 0);
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}

	return ret;
}
2329 2330 2331

static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
{
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	/*
	 * unmapped buffer is possible for holes.
	 * delay buffer is possible with delayed allocation
	 */
	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
}

static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
				   bh_result, 0, 0, 0);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2356 2357 2358
}

/*
2359 2360 2361 2362
 * get called vi ext4_da_writepages after taking page lock (have journal handle)
 * get called via journal_submit_inode_data_buffers (no journal handle)
 * get called via shrink_page_list via pdflush (no journal handle)
 * or grab_page_cache when doing write_begin (have journal handle)
2363
 */
2364 2365 2366 2367
static int ext4_da_writepage(struct page *page,
				struct writeback_control *wbc)
{
	int ret = 0;
2368
	loff_t size;
2369
	unsigned int len;
2370 2371 2372
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2373 2374 2375
	trace_mark(ext4_da_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
2376 2377 2378 2379 2380
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2381

2382
	if (page_has_buffers(page)) {
2383
		page_bufs = page_buffers(page);
2384 2385
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
					ext4_bh_unmapped_or_delay)) {
2386
			/*
2387 2388
			 * We don't want to do  block allocation
			 * So redirty the page and return
2389 2390 2391
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
						ext4_normal_get_block_write);
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
						ext4_bh_unmapped_or_delay)) {
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2428 2429 2430 2431 2432
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2433 2434
		/* now mark the buffer_heads as dirty and uptodate */
		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2435 2436 2437
	}

	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2438
		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2439
	else
2440 2441 2442
		ret = block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2443 2444 2445 2446

	return ret;
}

2447
/*
2448 2449 2450 2451 2452
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2453
 */
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2471

2472
static int ext4_da_writepages(struct address_space *mapping,
2473
			      struct writeback_control *wbc)
2474
{
2475 2476
	pgoff_t	index;
	int range_whole = 0;
2477
	handle_t *handle = NULL;
2478
	struct mpage_da_data mpd;
2479
	struct inode *inode = mapping->host;
2480
	int no_nrwrite_index_update;
2481 2482
	int pages_written = 0;
	long pages_skipped;
2483
	int range_cyclic, cycled = 1, io_done = 0;
2484 2485
	int needed_blocks, ret = 0, nr_to_writebump = 0;
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2486

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	trace_mark(ext4_da_writepages,
		   "dev %s ino %lu nr_t_write %ld "
		   "pages_skipped %ld range_start %llu "
		   "range_end %llu nonblocking %d "
		   "for_kupdate %d for_reclaim %d "
		   "for_writepages %d range_cyclic %d",
		   inode->i_sb->s_id, inode->i_ino,
		   wbc->nr_to_write, wbc->pages_skipped,
		   (unsigned long long) wbc->range_start,
		   (unsigned long long) wbc->range_end,
		   wbc->nonblocking, wbc->for_kupdate,
		   wbc->for_reclaim, wbc->for_writepages,
		   wbc->range_cyclic);

2501 2502 2503 2504 2505
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2506
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2507
		return 0;
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
		return -EROFS;

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
	/*
	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
	 * This make sure small files blocks are allocated in
	 * single attempt. This ensure that small files
	 * get less fragmented.
	 */
	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
		wbc->nr_to_write = sbi->s_mb_stream_request;
	}
2532 2533
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2534

2535 2536
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2537
		index = mapping->writeback_index;
2538 2539 2540 2541 2542 2543
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2544
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2545

2546 2547 2548
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2549 2550 2551 2552 2553 2554 2555 2556
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2557
retry:
2558
	while (!ret && wbc->nr_to_write > 0) {
2559 2560 2561 2562 2563 2564 2565 2566

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2567
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2568

2569 2570 2571 2572
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2573
			printk(KERN_CRIT "%s: jbd2_start: "
2574 2575 2576
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
			dump_stack();
2577 2578
			goto out_writepages;
		}
2579 2580
		ret = mpage_da_writepages(mapping, wbc, &mpd);

2581
		ext4_journal_stop(handle);
2582

2583
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2584 2585 2586 2587
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2588
			jbd2_journal_force_commit_nested(sbi->s_journal);
2589 2590 2591
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2592 2593 2594 2595
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2596 2597
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2598
			ret = 0;
2599
			io_done = 1;
2600
		} else if (wbc->nr_to_write)
2601 2602 2603 2604 2605 2606
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2607
	}
2608 2609 2610 2611 2612 2613 2614
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2615 2616 2617 2618 2619 2620 2621
	if (pages_skipped != wbc->pages_skipped)
		printk(KERN_EMERG "This should not happen leaving %s "
				"with nr_to_write = %ld ret = %d\n",
				__func__, wbc->nr_to_write, ret);

	/* Update index */
	index += pages_written;
2622
	wbc->range_cyclic = range_cyclic;
2623 2624 2625 2626 2627 2628
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2629

2630
out_writepages:
2631 2632 2633
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
	wbc->nr_to_write -= nr_to_writebump;
2634 2635 2636 2637 2638 2639 2640 2641
	trace_mark(ext4_da_writepage_result,
		   "dev %s ino %lu ret %d pages_written %d "
		   "pages_skipped %ld congestion %d "
		   "more_io %d no_nrwrite_index_update %d",
		   inode->i_sb->s_id, inode->i_ino, ret,
		   pages_written, wbc->pages_skipped,
		   wbc->encountered_congestion, wbc->more_io,
		   wbc->no_nrwrite_index_update);
2642
	return ret;
2643 2644
}

2645 2646 2647 2648 2649 2650 2651 2652 2653
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2654
	 * counters can get slightly wrong with percpu_counter_batch getting
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2672 2673 2674 2675
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
2676
	int ret, retries = 0;
2677 2678 2679 2680 2681 2682 2683 2684 2685
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
2686 2687 2688 2689 2690 2691 2692

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2693 2694 2695 2696 2697

	trace_mark(ext4_da_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
2698
retry:
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2710 2711 2712
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2713

2714
	page = grab_cache_page_write_begin(mapping, index, flags);
2715 2716 2717 2718 2719
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2720 2721 2722 2723 2724 2725 2726 2727
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_da_get_block_prep);
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2728 2729 2730 2731 2732 2733 2734
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
2735 2736
	}

2737 2738
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2739 2740 2741 2742
out:
	return ret;
}

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
					 unsigned long offset)
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2758
	for (i = 0; i < idx; i++)
2759 2760 2761 2762 2763 2764 2765
		bh = bh->b_this_page;

	if (!buffer_mapped(bh) || (buffer_delay(bh)))
		return 0;
	return 1;
}

2766 2767 2768 2769 2770 2771 2772 2773 2774
static int ext4_da_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2775
	unsigned long start, end;
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2789

2790 2791 2792 2793
	trace_mark(ext4_da_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
2794
	start = pos & (PAGE_CACHE_SIZE - 1);
2795
	end = start + copied - 1;
2796 2797 2798 2799 2800 2801 2802 2803

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2815

2816 2817 2818
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2819 2820 2821 2822 2823
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2824
		}
2825
	}
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2847
	ext4_da_page_release_reservation(page, offset);
2848 2849 2850 2851 2852 2853 2854 2855

out:
	ext4_invalidatepage(page, offset);

	return;
}


2856 2857 2858 2859 2860
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2861
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2862 2863 2864 2865 2866 2867 2868 2869
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2870
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2871 2872 2873 2874 2875
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2886
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2898
		 * NB. EXT4_STATE_JDATA is not set on files other than
2899 2900 2901 2902 2903 2904
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2905 2906
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
2907 2908 2909
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2910 2911 2912 2913 2914

		if (err)
			return 0;
	}

2915
	return generic_block_bmap(mapping, block, ext4_get_block);
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

/*
2931 2932 2933 2934 2935 2936 2937 2938
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
2939
 *
2940
 * In all journaling modes block_write_full_page() will start the I/O.
2941 2942 2943
 *
 * Problem:
 *
2944 2945
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
2946 2947 2948
 *
 * Similar for:
 *
2949
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2950
 *
2951
 * Same applies to ext4_get_block().  We will deadlock on various things like
2952
 * lock_journal and i_data_sem
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 */
2983
static int __ext4_normal_writepage(struct page *page,
2984 2985 2986 2987 2988
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;

	if (test_opt(inode->i_sb, NOBH))
2989 2990
		return nobh_writepage(page,
					ext4_normal_get_block_write, wbc);
2991
	else
2992 2993 2994
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2995 2996
}

2997
static int ext4_normal_writepage(struct page *page,
2998 2999 3000
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
3001 3002 3003
	loff_t size = i_size_read(inode);
	loff_t len;

3004 3005 3006
	trace_mark(ext4_normal_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
3007 3008 3009 3010 3011
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3026 3027

	if (!ext4_journal_current_handle())
3028
		return __ext4_normal_writepage(page, wbc);
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				struct writeback_control *wbc)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
3041 3042 3043 3044
	handle_t *handle = NULL;
	int ret = 0;
	int err;

3045 3046
	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
					ext4_normal_get_block_write);
3047 3048 3049 3050 3051 3052 3053 3054 3055
	if (ret != 0)
		goto out_unlock;

	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
								bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
3056

3057
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3058 3059
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
3060
		goto out;
3061 3062
	}

3063 3064
	ret = walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3065

3066 3067 3068 3069
	err = walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, write_end_fn);
	if (ret == 0)
		ret = err;
3070
	err = ext4_journal_stop(handle);
3071 3072 3073
	if (!ret)
		ret = err;

3074 3075 3076 3077 3078 3079
	walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	goto out;

out_unlock:
3080
	unlock_page(page);
3081
out:
3082 3083 3084
	return ret;
}

3085
static int ext4_journalled_writepage(struct page *page,
3086 3087 3088
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
3089 3090
	loff_t size = i_size_read(inode);
	loff_t len;
3091

3092 3093 3094
	trace_mark(ext4_journalled_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
3095 3096 3097 3098 3099
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3114

3115
	if (ext4_journal_current_handle())
3116 3117
		goto no_write;

3118
	if (PageChecked(page)) {
3119 3120 3121 3122 3123
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
3124
		return __ext4_journalled_writepage(page, wbc);
3125 3126 3127 3128 3129 3130
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
3131 3132 3133
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
3134 3135 3136 3137
	}
no_write:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
3138
	return 0;
3139 3140
}

3141
static int ext4_readpage(struct file *file, struct page *page)
3142
{
3143
	return mpage_readpage(page, ext4_get_block);
3144 3145 3146
}

static int
3147
ext4_readpages(struct file *file, struct address_space *mapping,
3148 3149
		struct list_head *pages, unsigned nr_pages)
{
3150
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3151 3152
}

3153
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3154
{
3155
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3156 3157 3158 3159 3160 3161 3162

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3163 3164 3165 3166
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3167 3168
}

3169
static int ext4_releasepage(struct page *page, gfp_t wait)
3170
{
3171
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3172 3173 3174 3175

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3176 3177 3178 3179
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3180 3181 3182 3183 3184 3185 3186 3187
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3188 3189
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3190
 */
3191
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3192 3193 3194 3195 3196
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3197
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3198
	handle_t *handle;
3199 3200 3201 3202 3203 3204 3205 3206
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3207 3208 3209 3210 3211 3212
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3213
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3214 3215 3216 3217
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3218 3219
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3220
			ext4_journal_stop(handle);
3221 3222 3223 3224 3225
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3226
				 ext4_get_block, NULL);
3227

J
Jan Kara 已提交
3228
	if (orphan) {
3229 3230
		int err;

J
Jan Kara 已提交
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3241
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3242
		if (ret > 0) {
3243 3244 3245 3246 3247 3248 3249 3250
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3251
				 * ext4_mark_inode_dirty() to userspace.  So
3252 3253
				 * ignore it.
				 */
3254
				ext4_mark_inode_dirty(handle, inode);
3255 3256
			}
		}
3257
		err = ext4_journal_stop(handle);
3258 3259 3260 3261 3262 3263 3264 3265
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3266
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3278
static int ext4_journalled_set_page_dirty(struct page *page)
3279 3280 3281 3282 3283
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3284
static const struct address_space_operations ext4_ordered_aops = {
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3297 3298
};

3299
static const struct address_space_operations ext4_writeback_aops = {
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3312 3313
};

3314
static const struct address_space_operations ext4_journalled_aops = {
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_journalled_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3326 3327
};

3328
static const struct address_space_operations ext4_da_aops = {
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_da_writepage,
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3342 3343
};

3344
void ext4_set_aops(struct inode *inode)
3345
{
3346 3347 3348 3349
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3350
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3351 3352 3353
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3354 3355
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3356
	else
3357
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3358 3359 3360
}

/*
3361
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3362 3363 3364 3365
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3366
int ext4_block_truncate_page(handle_t *handle,
3367 3368
		struct address_space *mapping, loff_t from)
{
3369
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3370
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3371 3372
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3373 3374
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3375
	struct page *page;
3376 3377
	int err = 0;

3378 3379 3380 3381
	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
	if (!page)
		return -EINVAL;

3382 3383 3384 3385 3386 3387 3388 3389 3390
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3391
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3392
		zero_user(page, offset, length);
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3417
		ext4_get_block(inode, iblock, bh, 0);
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3438
	if (ext4_should_journal_data(inode)) {
3439
		BUFFER_TRACE(bh, "get write access");
3440
		err = ext4_journal_get_write_access(handle, bh);
3441 3442 3443 3444
		if (err)
			goto unlock;
	}

3445
	zero_user(page, offset, length);
3446 3447 3448 3449

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3450
	if (ext4_should_journal_data(inode)) {
3451
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3452
	} else {
3453
		if (ext4_should_order_data(inode))
3454
			err = ext4_jbd2_file_inode(handle, inode);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3478
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3479 3480
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3481
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3482 3483 3484
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3485
 *	This is a helper function used by ext4_truncate().
3486 3487 3488 3489 3490 3491 3492
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3493
 *	past the truncation point is possible until ext4_truncate()
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3512
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
3513
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3514 3515 3516 3517 3518 3519 3520 3521
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3522
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3533
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3545
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3546 3547 3548 3549 3550 3551
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3552
	while (partial > p) {
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3568 3569
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3570 3571 3572 3573 3574
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3575 3576
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
3577
		}
3578 3579
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3580 3581
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3582
			ext4_journal_get_write_access(handle, bh);
3583 3584 3585 3586 3587
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
3588
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3589
	 * on them.  We've already detached each block from the file, so
3590
	 * bforget() in jbd2_journal_forget() should be safe.
3591
	 *
3592
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3593 3594 3595 3596
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3597
			struct buffer_head *tbh;
3598 3599

			*p = 0;
A
Aneesh Kumar K.V 已提交
3600 3601
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3602 3603 3604
		}
	}

3605
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3606 3607 3608
}

/**
3609
 * ext4_free_data - free a list of data blocks
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3627
static void ext4_free_data(handle_t *handle, struct inode *inode,
3628 3629 3630
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3631
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3632 3633 3634 3635
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3636
	ext4_fsblk_t nr;		    /* Current block # */
3637 3638 3639 3640 3641 3642
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3643
		err = ext4_journal_get_write_access(handle, this_bh);
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3661
				ext4_clear_blocks(handle, inode, this_bh,
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3672
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3673 3674 3675
				  count, block_to_free_p, p);

	if (this_bh) {
3676
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3677 3678 3679 3680 3681 3682 3683

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
3684
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3685
			ext4_handle_dirty_metadata(handle, inode, this_bh);
3686 3687 3688 3689 3690 3691
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3692 3693 3694 3695
	}
}

/**
3696
 *	ext4_free_branches - free an array of branches
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3708
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3709 3710 3711
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3712
	ext4_fsblk_t nr;
3713 3714
	__le32 *p;

3715
	if (ext4_handle_is_aborted(handle))
3716 3717 3718 3719
		return;

	if (depth--) {
		struct buffer_head *bh;
3720
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3735
				ext4_error(inode->i_sb, "ext4_free_branches",
3736
					   "Read failure, inode=%lu, block=%llu",
3737 3738 3739 3740 3741 3742
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3743
			ext4_free_branches(handle, inode, bh,
3744 3745 3746
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
3747 3748 3749 3750 3751

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3752
			 * jbd2_journal_revoke().
3753 3754 3755
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3756
			 * transaction then jbd2_journal_forget() will simply
3757
			 * brelse() it.  That means that if the underlying
3758
			 * block is reallocated in ext4_get_block(),
3759 3760 3761 3762 3763 3764 3765 3766
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3767
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
3785
			if (ext4_handle_is_aborted(handle))
3786 3787
				return;
			if (try_to_extend_transaction(handle, inode)) {
3788 3789
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
3790 3791
			}

3792
			ext4_free_blocks(handle, inode, nr, 1, 1);
3793 3794 3795 3796 3797 3798 3799

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
3800
				if (!ext4_journal_get_write_access(handle,
3801 3802 3803
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
3804 3805 3806 3807
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
3808 3809 3810 3811 3812 3813
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
3814
		ext4_free_data(handle, inode, parent_bh, first, last);
3815 3816 3817
	}
}

3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3831
/*
3832
 * ext4_truncate()
3833
 *
3834 3835
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3852
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3853
 * that this inode's truncate did not complete and it will again call
3854 3855
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3856
 * that's fine - as long as they are linked from the inode, the post-crash
3857
 * ext4_truncate() run will find them and release them.
3858
 */
3859
void ext4_truncate(struct inode *inode)
3860 3861
{
	handle_t *handle;
3862
	struct ext4_inode_info *ei = EXT4_I(inode);
3863
	__le32 *i_data = ei->i_data;
3864
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3865
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
3866
	ext4_lblk_t offsets[4];
3867 3868 3869 3870
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
3871
	ext4_lblk_t last_block;
3872 3873
	unsigned blocksize = inode->i_sb->s_blocksize;

3874
	if (!ext4_can_truncate(inode))
3875 3876
		return;

A
Aneesh Kumar K.V 已提交
3877
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3878
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
3879 3880
		return;
	}
A
Alex Tomas 已提交
3881

3882
	handle = start_transaction(inode);
3883
	if (IS_ERR(handle))
3884 3885 3886
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
3887
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3888

3889 3890 3891
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
3892

3893
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
3906
	if (ext4_orphan_add(handle, inode))
3907 3908
		goto out_stop;

3909 3910 3911 3912 3913
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
3914

3915
	ext4_discard_preallocations(inode);
3916

3917 3918 3919 3920 3921
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
3922
	 * ext4 *really* writes onto the disk inode.
3923 3924 3925 3926
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
3927 3928
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
3929 3930 3931
		goto do_indirects;
	}

3932
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3933 3934 3935 3936
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
3937
			ext4_free_branches(handle, inode, NULL,
3938 3939 3940 3941 3942 3943 3944 3945 3946
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
3947
			ext4_free_branches(handle, inode, partial->bh,
3948 3949 3950 3951 3952 3953
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
3954
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
3965
		nr = i_data[EXT4_IND_BLOCK];
3966
		if (nr) {
3967 3968
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
3969
		}
3970 3971
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
3972
		if (nr) {
3973 3974
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
3975
		}
3976 3977
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
3978
		if (nr) {
3979 3980
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
3981
		}
3982
	case EXT4_TIND_BLOCK:
3983 3984 3985
		;
	}

3986
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
3987
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3988
	ext4_mark_inode_dirty(handle, inode);
3989 3990 3991 3992 3993 3994

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
3995
		ext4_handle_sync(handle);
3996 3997 3998 3999 4000
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4001
	 * ext4_delete_inode(), and we allow that function to clean up the
4002 4003 4004
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4005
		ext4_orphan_del(handle, inode);
4006

4007
	ext4_journal_stop(handle);
4008 4009 4010
}

/*
4011
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4012 4013 4014 4015
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4016 4017
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4018
{
4019 4020 4021 4022 4023 4024
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4025
	iloc->bh = NULL;
4026 4027
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4028

4029 4030 4031
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4032 4033
		return -EIO;

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4044
	if (!bh) {
4045 4046 4047
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
4048 4049 4050 4051
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4075
			int i, start;
4076

4077
			start = inode_offset & ~(inodes_per_block - 1);
4078

4079 4080
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4093
			for (i = start; i < start + inodes_per_block; i++) {
4094 4095
				if (i == inode_offset)
					continue;
4096
				if (ext4_test_bit(i, bitmap_bh->b_data))
4097 4098 4099
					break;
			}
			brelse(bitmap_bh);
4100
			if (i == start + inodes_per_block) {
4101 4102 4103 4104 4105 4106 4107 4108 4109
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
			/* Make sure s_inode_readahead_blks is a power of 2 */
			while (EXT4_SB(sb)->s_inode_readahead_blks &
			       (EXT4_SB(sb)->s_inode_readahead_blks-1))
				EXT4_SB(sb)->s_inode_readahead_blks = 
				   (EXT4_SB(sb)->s_inode_readahead_blks &
				    (EXT4_SB(sb)->s_inode_readahead_blks-1));
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4132
				num -= ext4_itable_unused_count(sb, gdp);
4133 4134 4135 4136 4137 4138 4139
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4150 4151 4152
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4153 4154 4155 4156 4157 4158 4159 4160 4161
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4162
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4163 4164
{
	/* We have all inode data except xattrs in memory here. */
4165 4166
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4167 4168
}

4169
void ext4_set_inode_flags(struct inode *inode)
4170
{
4171
	unsigned int flags = EXT4_I(inode)->i_flags;
4172 4173

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4174
	if (flags & EXT4_SYNC_FL)
4175
		inode->i_flags |= S_SYNC;
4176
	if (flags & EXT4_APPEND_FL)
4177
		inode->i_flags |= S_APPEND;
4178
	if (flags & EXT4_IMMUTABLE_FL)
4179
		inode->i_flags |= S_IMMUTABLE;
4180
	if (flags & EXT4_NOATIME_FL)
4181
		inode->i_flags |= S_NOATIME;
4182
	if (flags & EXT4_DIRSYNC_FL)
4183 4184 4185
		inode->i_flags |= S_DIRSYNC;
}

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4204 4205 4206 4207
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4208 4209
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4210 4211 4212 4213 4214 4215

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4216 4217 4218 4219 4220 4221
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4222 4223 4224 4225
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4226

4227
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4228
{
4229 4230
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4231
	struct ext4_inode_info *ei;
4232
	struct buffer_head *bh;
4233 4234
	struct inode *inode;
	long ret;
4235 4236
	int block;

4237 4238 4239 4240 4241 4242 4243
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
T
Theodore Ts'o 已提交
4244
#ifdef CONFIG_EXT4_FS_POSIX_ACL
4245 4246
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4247 4248
#endif

4249 4250
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4251 4252
		goto bad_inode;
	bh = iloc.bh;
4253
	raw_inode = ext4_raw_inode(&iloc);
4254 4255 4256
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4257
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4273
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4274
			/* this inode is deleted */
4275
			brelse(bh);
4276
			ret = -ESTALE;
4277 4278 4279 4280 4281 4282 4283 4284
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4285
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4286
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4287
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4288
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
4289 4290
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4291
	}
4292
	inode->i_size = ext4_isize(raw_inode);
4293 4294 4295
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4296
	ei->i_last_alloc_group = ~0;
4297 4298 4299 4300
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4301
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4302 4303 4304
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4305
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4306
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4307
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4308
		    EXT4_INODE_SIZE(inode->i_sb)) {
4309
			brelse(bh);
4310
			ret = -EIO;
4311
			goto bad_inode;
4312
		}
4313 4314
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4315 4316
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4317 4318
		} else {
			__le32 *magic = (void *)raw_inode +
4319
					EXT4_GOOD_OLD_INODE_SIZE +
4320
					ei->i_extra_isize;
4321 4322
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
4323 4324 4325 4326
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4327 4328 4329 4330 4331
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4332 4333 4334 4335 4336 4337 4338
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
	if (ei->i_flags & EXT4_EXTENTS_FL) {
		/* Validate extent which is part of inode */
		ret = ext4_ext_check_inode(inode);
		if (ret) {
			brelse(bh);
			goto bad_inode;
		}

	}

4349
	if (S_ISREG(inode->i_mode)) {
4350 4351 4352
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4353
	} else if (S_ISDIR(inode->i_mode)) {
4354 4355
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4356
	} else if (S_ISLNK(inode->i_mode)) {
4357
		if (ext4_inode_is_fast_symlink(inode)) {
4358
			inode->i_op = &ext4_fast_symlink_inode_operations;
4359 4360 4361
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4362 4363
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4364 4365
		}
	} else {
4366
		inode->i_op = &ext4_special_inode_operations;
4367 4368 4369 4370 4371 4372 4373
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
4374
	brelse(iloc.bh);
4375
	ext4_set_inode_flags(inode);
4376 4377
	unlock_new_inode(inode);
	return inode;
4378 4379

bad_inode:
4380 4381
	iget_failed(inode);
	return ERR_PTR(ret);
4382 4383
}

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4397
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4398
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4399
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4400 4401 4402 4403 4404 4405
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4406 4407 4408 4409
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4410
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4411
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4412
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4413
	} else {
A
Aneesh Kumar K.V 已提交
4414 4415 4416 4417 4418
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4419
	}
4420
	return 0;
4421 4422
}

4423 4424 4425 4426 4427 4428 4429
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4430
static int ext4_do_update_inode(handle_t *handle,
4431
				struct inode *inode,
4432
				struct ext4_iloc *iloc)
4433
{
4434 4435
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4436 4437 4438 4439 4440
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4441 4442
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4443

4444
	ext4_get_inode_flags(ei);
4445
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4446
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4447 4448 4449 4450 4451 4452
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4453
		if (!ei->i_dtime) {
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4471 4472 4473 4474 4475 4476

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4477 4478
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4479
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4480 4481
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4482 4483
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4484 4485
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4486
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4503
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4504
			sb->s_dirt = 1;
4505 4506
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
4507
					EXT4_SB(sb)->s_sbh);
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4522
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4523 4524
		raw_inode->i_block[block] = ei->i_data[block];

4525 4526 4527 4528 4529
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4530
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4531 4532
	}

4533 4534
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4535 4536
	if (!err)
		err = rc;
4537
	ei->i_state &= ~EXT4_STATE_NEW;
4538 4539

out_brelse:
4540
	brelse(bh);
4541
	ext4_std_error(inode->i_sb, err);
4542 4543 4544 4545
	return err;
}

/*
4546
 * ext4_write_inode()
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4563
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4580
int ext4_write_inode(struct inode *inode, int wait)
4581 4582 4583 4584
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4585
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4586
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4587 4588 4589 4590 4591 4592 4593
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4594
	return ext4_force_commit(inode->i_sb);
4595 4596
}

4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
{
	int err = 0;

	mark_buffer_dirty(bh);
	if (inode && inode_needs_sync(inode)) {
		sync_dirty_buffer(bh);
		if (buffer_req(bh) && !buffer_uptodate(bh)) {
			ext4_error(inode->i_sb, __func__,
				   "IO error syncing inode, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long)bh->b_blocknr);
			err = -EIO;
		}
	}
	return err;
}

4616
/*
4617
 * ext4_setattr()
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4631 4632 4633 4634 4635 4636 4637 4638
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4639
 */
4640
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4656 4657
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4658 4659 4660 4661
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4662
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4663
		if (error) {
4664
			ext4_journal_stop(handle);
4665 4666 4667 4668 4669 4670 4671 4672
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4673 4674
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4675 4676
	}

4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4688 4689 4690 4691
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4692
		handle = ext4_journal_start(inode, 3);
4693 4694 4695 4696 4697
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4698 4699 4700
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4701 4702
		if (!error)
			error = rc;
4703
		ext4_journal_stop(handle);
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4720 4721 4722 4723
	}

	rc = inode_setattr(inode, attr);

4724
	/* If inode_setattr's call to ext4_truncate failed to get a
4725 4726 4727
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4728
		ext4_orphan_del(NULL, inode);
4729 4730

	if (!rc && (ia_valid & ATTR_MODE))
4731
		rc = ext4_acl_chmod(inode);
4732 4733

err_out:
4734
	ext4_std_error(inode->i_sb, error);
4735 4736 4737 4738 4739
	if (!error)
		error = rc;
	return error;
}

4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4766

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4795 4796
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4797
}
4798

4799
/*
4800 4801 4802
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4803
 *
4804 4805 4806
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
4807
 *
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	int groups, gdpblocks;
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
		groups = EXT4_SB(inode->i_sb)->s_groups_count;
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
4855 4856
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4857
 *
4858
 * This could be called via ext4_write_begin()
4859
 *
4860
 * We need to consider the worse case, when
4861
 * one new block per extent.
4862
 */
A
Alex Tomas 已提交
4863
int ext4_writepage_trans_blocks(struct inode *inode)
4864
{
4865
	int bpp = ext4_journal_blocks_per_page(inode);
4866 4867
	int ret;

4868
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4869

4870
	/* Account for data blocks for journalled mode */
4871
	if (ext4_should_journal_data(inode))
4872
		ret += bpp;
4873 4874
	return ret;
}
4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4890
/*
4891
 * The caller must have previously called ext4_reserve_inode_write().
4892 4893
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4894 4895
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
4896 4897 4898
{
	int err = 0;

4899 4900 4901
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4902 4903 4904
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4905
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4906
	err = ext4_do_update_inode(handle, inode, iloc);
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4917 4918
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4919
{
4920 4921 4922 4923 4924 4925 4926 4927 4928
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4929 4930
		}
	}
4931
	ext4_std_error(inode->i_sb, err);
4932 4933 4934
	return err;
}

4935 4936 4937 4938
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4939 4940 4941 4942
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4991
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4992
{
4993
	struct ext4_iloc iloc;
4994 4995 4996
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4997 4998

	might_sleep();
4999
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5000 5001
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
5017 5018
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5019
					ext4_warning(inode->i_sb, __func__,
5020 5021 5022
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5023 5024
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5025 5026 5027 5028
				}
			}
		}
	}
5029
	if (!err)
5030
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5031 5032 5033 5034
	return err;
}

/*
5035
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5036 5037 5038 5039 5040
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5041
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5042 5043 5044 5045 5046 5047
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5048
void ext4_dirty_inode(struct inode *inode)
5049
{
5050
	handle_t *current_handle = ext4_journal_current_handle();
5051 5052
	handle_t *handle;

5053 5054 5055 5056 5057
	if (!ext4_handle_valid(current_handle)) {
		ext4_mark_inode_dirty(current_handle, inode);
		return;
	}

5058
	handle = ext4_journal_start(inode, 2);
5059 5060 5061 5062 5063 5064
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
5065
		       __func__);
5066 5067 5068
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
5069
		ext4_mark_inode_dirty(handle, inode);
5070
	}
5071
	ext4_journal_stop(handle);
5072 5073 5074 5075 5076 5077 5078 5079
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5080
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5081 5082 5083
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5084
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5085
{
5086
	struct ext4_iloc iloc;
5087 5088 5089

	int err = 0;
	if (handle) {
5090
		err = ext4_get_inode_loc(inode, &iloc);
5091 5092
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5093
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5094
			if (!err)
5095 5096 5097
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5098 5099 5100
			brelse(iloc.bh);
		}
	}
5101
	ext4_std_error(inode->i_sb, err);
5102 5103 5104 5105
	return err;
}
#endif

5106
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5122
	journal = EXT4_JOURNAL(inode);
5123 5124
	if (!journal)
		return 0;
5125
	if (is_journal_aborted(journal))
5126 5127
		return -EROFS;

5128 5129
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5140
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5141
	else
5142 5143
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5144

5145
	jbd2_journal_unlock_updates(journal);
5146 5147 5148

	/* Finally we can mark the inode as dirty. */

5149
	handle = ext4_journal_start(inode, 1);
5150 5151 5152
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5153
	err = ext4_mark_inode_dirty(handle, inode);
5154
	ext4_handle_sync(handle);
5155 5156
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5157 5158 5159

	return err;
}
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
{
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5171
	void *fsdata;
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5210
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5211 5212 5213
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5214
			len, len, page, fsdata);
5215 5216 5217 5218 5219 5220 5221
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
	up_read(&inode->i_alloc_sem);
	return ret;
}