inode.c 135.6 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
53
	trace_ext4_begin_ordered_truncate(inode, new_size);
54 55 56 57 58 59 60 61 62 63 64
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
65 66
}

67
static void ext4_invalidatepage(struct page *page, unsigned long offset);
68 69 70 71 72 73
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
74 75 76
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
77

78 79 80
/*
 * Test whether an inode is a fast symlink.
 */
81
static int ext4_inode_is_fast_symlink(struct inode *inode)
82
{
83
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
84 85 86 87 88 89 90 91 92 93
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
94
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
95
				 int nblocks)
96
{
97 98 99
	int ret;

	/*
100
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
101 102 103 104
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
105
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
106
	jbd_debug(2, "restarting handle %p\n", handle);
107
	up_write(&EXT4_I(inode)->i_data_sem);
108
	ret = ext4_journal_restart(handle, nblocks);
109
	down_write(&EXT4_I(inode)->i_data_sem);
110
	ext4_discard_preallocations(inode);
111 112

	return ret;
113 114 115 116 117
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
118
void ext4_evict_inode(struct inode *inode)
119 120
{
	handle_t *handle;
121
	int err;
122

123
	trace_ext4_evict_inode(inode);
124 125 126

	ext4_ioend_wait(inode);

A
Al Viro 已提交
127
	if (inode->i_nlink) {
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
155 156 157 158
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

159
	if (!is_bad_inode(inode))
160
		dquot_initialize(inode);
161

162 163
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
164 165 166 167 168
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

169
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
170
	if (IS_ERR(handle)) {
171
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
172 173 174 175 176
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
177
		ext4_orphan_del(NULL, inode);
178 179 180 181
		goto no_delete;
	}

	if (IS_SYNC(inode))
182
		ext4_handle_sync(handle);
183
	inode->i_size = 0;
184 185
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
186
		ext4_warning(inode->i_sb,
187 188 189
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
190
	if (inode->i_blocks)
191
		ext4_truncate(inode);
192 193 194 195 196 197 198

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
199
	if (!ext4_handle_has_enough_credits(handle, 3)) {
200 201 202 203
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
204
			ext4_warning(inode->i_sb,
205 206 207
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
208
			ext4_orphan_del(NULL, inode);
209 210 211 212
			goto no_delete;
		}
	}

213
	/*
214
	 * Kill off the orphan record which ext4_truncate created.
215
	 * AKPM: I think this can be inside the above `if'.
216
	 * Note that ext4_orphan_del() has to be able to cope with the
217
	 * deletion of a non-existent orphan - this is because we don't
218
	 * know if ext4_truncate() actually created an orphan record.
219 220
	 * (Well, we could do this if we need to, but heck - it works)
	 */
221 222
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
223 224 225 226 227 228 229 230

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
231
	if (ext4_mark_inode_dirty(handle, inode))
232
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
233
		ext4_clear_inode(inode);
234
	else
235 236
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
237 238
	return;
no_delete:
A
Al Viro 已提交
239
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
240 241
}

242 243
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
244
{
245
	return &EXT4_I(inode)->i_reserved_quota;
246
}
247
#endif
248

249 250
/*
 * Calculate the number of metadata blocks need to reserve
251
 * to allocate a block located at @lblock
252
 */
253
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
254
{
255
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
256
		return ext4_ext_calc_metadata_amount(inode, lblock);
257

258
	return ext4_ind_calc_metadata_amount(inode, lblock);
259 260
}

261 262 263 264
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
265 266
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
267 268
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
269 270 271
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
272
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
273 274
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
275
			 "with only %d reserved data blocks",
276 277 278 279 280
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
281

282 283 284
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
285
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
286
			   used + ei->i_allocated_meta_blocks);
287
	ei->i_allocated_meta_blocks = 0;
288

289 290 291 292 293 294
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
295
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
296
				   ei->i_reserved_meta_blocks);
297
		ei->i_reserved_meta_blocks = 0;
298
		ei->i_da_metadata_calc_len = 0;
299
	}
300
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
301

302 303
	/* Update quota subsystem for data blocks */
	if (quota_claim)
304
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
305
	else {
306 307 308
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
309
		 * not re-claim the quota for fallocated blocks.
310
		 */
311
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
312
	}
313 314 315 316 317 318

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
319 320
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
321
		ext4_discard_preallocations(inode);
322 323
}

324
static int __check_block_validity(struct inode *inode, const char *func,
325 326
				unsigned int line,
				struct ext4_map_blocks *map)
327
{
328 329
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
330 331 332 333
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
334 335 336 337 338
		return -EIO;
	}
	return 0;
}

339
#define check_block_validity(inode, map)	\
340
	__check_block_validity((inode), __func__, __LINE__, (map))
341

342
/*
343 344
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
378 379 380 381 382 383 384 385 386
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
387 388 389 390 391
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
392 393
			if (num >= max_pages) {
				done = 1;
394
				break;
395
			}
396 397 398 399 400 401
		}
		pagevec_release(&pvec);
	}
	return num;
}

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/*
 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 */
static void set_buffers_da_mapped(struct inode *inode,
				   struct ext4_map_blocks *map)
{
	struct address_space *mapping = inode->i_mapping;
	struct pagevec pvec;
	int i, nr_pages;
	pgoff_t index, end;

	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + map->m_len - 1) >>
		(PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index,
					  min(end - index + 1,
					      (pgoff_t)PAGEVEC_SIZE));
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page))
				break;

			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					set_buffer_da_mapped(bh);
					bh = bh->b_this_page;
				} while (bh != head);
			}
			index++;
		}
		pagevec_release(&pvec);
	}
}

445
/*
446
 * The ext4_map_blocks() function tries to look up the requested blocks,
447
 * and returns if the blocks are already mapped.
448 449 450 451 452
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
453 454
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
455 456 457 458 459 460 461 462
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
463
 * that case, buffer head is unmapped
464 465 466
 *
 * It returns the error in case of allocation failure.
 */
467 468
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
469 470
{
	int retval;
471

472 473 474 475
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
476
	/*
477 478
	 * Try to see if we can get the block without requesting a new
	 * file system block.
479 480
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
481
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
482 483
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
484
	} else {
485 486
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
487
	}
488
	up_read((&EXT4_I(inode)->i_data_sem));
489

490
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
491
		int ret = check_block_validity(inode, map);
492 493 494 495
		if (ret != 0)
			return ret;
	}

496
	/* If it is only a block(s) look up */
497
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
498 499 500 501 502 503
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
504
	 * ext4_ext_get_block() returns the create = 0
505 506
	 * with buffer head unmapped.
	 */
507
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
508 509
		return retval;

510 511 512 513 514 515 516 517 518 519
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
520
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
521

522
	/*
523 524 525 526
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
527 528
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
529 530 531 532 533 534 535

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
536
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
537
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
538 539 540 541
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
542
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
543
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
544
	} else {
545
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
546

547
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
548 549 550 551 552
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
553
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
554
		}
555

556 557 558 559 560 561 562
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
563
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
564 565
			ext4_da_update_reserve_space(inode, retval, 1);
	}
566
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
567
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
568

569 570 571 572 573 574 575 576
		/* If we have successfully mapped the delayed allocated blocks,
		 * set the BH_Da_Mapped bit on them. Its important to do this
		 * under the protection of i_data_sem.
		 */
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
			set_buffers_da_mapped(inode, map);
	}

577
	up_write((&EXT4_I(inode)->i_data_sem));
578
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
579
		int ret = check_block_validity(inode, map);
580 581 582
		if (ret != 0)
			return ret;
	}
583 584 585
	return retval;
}

586 587 588
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

589 590
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
591
{
592
	handle_t *handle = ext4_journal_current_handle();
593
	struct ext4_map_blocks map;
J
Jan Kara 已提交
594
	int ret = 0, started = 0;
595
	int dio_credits;
596

597 598 599 600
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
601
		/* Direct IO write... */
602 603 604
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
605
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
606
		if (IS_ERR(handle)) {
607
			ret = PTR_ERR(handle);
608
			return ret;
609
		}
J
Jan Kara 已提交
610
		started = 1;
611 612
	}

613
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
614
	if (ret > 0) {
615 616 617
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
618
		ret = 0;
619
	}
J
Jan Kara 已提交
620 621
	if (started)
		ext4_journal_stop(handle);
622 623 624
	return ret;
}

625 626 627 628 629 630 631
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

632 633 634
/*
 * `handle' can be NULL if create is zero
 */
635
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
636
				ext4_lblk_t block, int create, int *errp)
637
{
638 639
	struct ext4_map_blocks map;
	struct buffer_head *bh;
640 641 642 643
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

644 645 646 647
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
648

649 650 651 652 653 654 655 656 657 658
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
659
	}
660 661 662
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
663

664 665 666 667 668 669 670 671 672 673 674 675 676
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
677
		}
678 679 680 681 682 683 684
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
685
	}
686 687 688 689 690 691
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
692 693
}

694
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
695
			       ext4_lblk_t block, int create, int *err)
696
{
697
	struct buffer_head *bh;
698

699
	bh = ext4_getblk(handle, inode, block, create, err);
700 701 702 703
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
704
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
705 706 707 708 709 710 711 712
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

713 714 715 716 717 718 719
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
720 721 722 723 724 725 726
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

727 728
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
729
	     block_start = block_end, bh = next) {
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
747
 * close off a transaction and start a new one between the ext4_get_block()
748
 * and the commit_write().  So doing the jbd2_journal_start at the start of
749 750
 * prepare_write() is the right place.
 *
751 752
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
753 754 755 756
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
757
 * By accident, ext4 can be reentered when a transaction is open via
758 759 760 761 762 763
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
764
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
765 766 767 768 769
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
770
				       struct buffer_head *bh)
771
{
772 773 774
	int dirty = buffer_dirty(bh);
	int ret;

775 776
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
777
	/*
C
Christoph Hellwig 已提交
778
	 * __block_write_begin() could have dirtied some buffers. Clean
779 780
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
781
	 * by __block_write_begin() isn't a real problem here as we clear
782 783 784 785 786 787 788 789 790
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
791 792
}

793 794
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
795
static int ext4_write_begin(struct file *file, struct address_space *mapping,
796 797
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
798
{
799
	struct inode *inode = mapping->host;
800
	int ret, needed_blocks;
801 802
	handle_t *handle;
	int retries = 0;
803
	struct page *page;
804
	pgoff_t index;
805
	unsigned from, to;
N
Nick Piggin 已提交
806

807
	trace_ext4_write_begin(inode, pos, len, flags);
808 809 810 811 812
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
813
	index = pos >> PAGE_CACHE_SHIFT;
814 815
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
816 817

retry:
818 819 820 821
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
822
	}
823

824 825 826 827
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

828
	page = grab_cache_page_write_begin(mapping, index, flags);
829 830 831 832 833 834 835
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

836
	if (ext4_should_dioread_nolock(inode))
837
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
838
	else
839
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
840 841

	if (!ret && ext4_should_journal_data(inode)) {
842 843 844
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
845 846

	if (ret) {
847 848
		unlock_page(page);
		page_cache_release(page);
849
		/*
850
		 * __block_write_begin may have instantiated a few blocks
851 852
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
853 854 855
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
856
		 */
857
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
858 859 860 861
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
862
			ext4_truncate_failed_write(inode);
863
			/*
864
			 * If truncate failed early the inode might
865 866 867 868 869 870 871
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
872 873
	}

874
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
875
		goto retry;
876
out:
877 878 879
	return ret;
}

N
Nick Piggin 已提交
880 881
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
882 883 884 885
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
886
	return ext4_handle_dirty_metadata(handle, NULL, bh);
887 888
}

889
static int ext4_generic_write_end(struct file *file,
890 891 892
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

935 936 937 938
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
939
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
940 941
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
942
static int ext4_ordered_write_end(struct file *file,
943 944 945
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
946
{
947
	handle_t *handle = ext4_journal_current_handle();
948
	struct inode *inode = mapping->host;
949 950
	int ret = 0, ret2;

951
	trace_ext4_ordered_write_end(inode, pos, len, copied);
952
	ret = ext4_jbd2_file_inode(handle, inode);
953 954

	if (ret == 0) {
955
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
956
							page, fsdata);
957
		copied = ret2;
958
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
959 960 961 962 963
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
964 965
		if (ret2 < 0)
			ret = ret2;
966 967 968
	} else {
		unlock_page(page);
		page_cache_release(page);
969
	}
970

971
	ret2 = ext4_journal_stop(handle);
972 973
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
974

975
	if (pos + len > inode->i_size) {
976
		ext4_truncate_failed_write(inode);
977
		/*
978
		 * If truncate failed early the inode might still be
979 980 981 982 983 984 985 986
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
987
	return ret ? ret : copied;
988 989
}

N
Nick Piggin 已提交
990
static int ext4_writeback_write_end(struct file *file,
991 992 993
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
994
{
995
	handle_t *handle = ext4_journal_current_handle();
996
	struct inode *inode = mapping->host;
997 998
	int ret = 0, ret2;

999
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1000
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1001
							page, fsdata);
1002
	copied = ret2;
1003
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1004 1005 1006 1007 1008 1009
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1010 1011
	if (ret2 < 0)
		ret = ret2;
1012

1013
	ret2 = ext4_journal_stop(handle);
1014 1015
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1016

1017
	if (pos + len > inode->i_size) {
1018
		ext4_truncate_failed_write(inode);
1019
		/*
1020
		 * If truncate failed early the inode might still be
1021 1022 1023 1024 1025 1026 1027
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1028
	return ret ? ret : copied;
1029 1030
}

N
Nick Piggin 已提交
1031
static int ext4_journalled_write_end(struct file *file,
1032 1033 1034
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1035
{
1036
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1037
	struct inode *inode = mapping->host;
1038 1039
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1040
	unsigned from, to;
1041
	loff_t new_i_size;
1042

1043
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1044 1045 1046
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1047 1048
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
1049 1050 1051 1052 1053
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1054 1055

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1056
				to, &partial, write_end_fn);
1057 1058
	if (!partial)
		SetPageUptodate(page);
1059 1060
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1061
		i_size_write(inode, pos+copied);
1062
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1063
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1064 1065
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1066
		ret2 = ext4_mark_inode_dirty(handle, inode);
1067 1068 1069
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1070

1071
	unlock_page(page);
1072
	page_cache_release(page);
1073
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1074 1075 1076 1077 1078 1079
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1080
	ret2 = ext4_journal_stop(handle);
1081 1082
	if (!ret)
		ret = ret2;
1083
	if (pos + len > inode->i_size) {
1084
		ext4_truncate_failed_write(inode);
1085
		/*
1086
		 * If truncate failed early the inode might still be
1087 1088 1089 1090 1091 1092
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1093 1094

	return ret ? ret : copied;
1095
}
1096

1097
/*
1098
 * Reserve a single cluster located at lblock
1099
 */
1100
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1101
{
A
Aneesh Kumar K.V 已提交
1102
	int retries = 0;
1103
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1104
	struct ext4_inode_info *ei = EXT4_I(inode);
1105
	unsigned int md_needed;
1106
	int ret;
1107 1108 1109 1110 1111 1112

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1113
repeat:
1114
	spin_lock(&ei->i_block_reservation_lock);
1115 1116
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1117
	trace_ext4_da_reserve_space(inode, md_needed);
1118
	spin_unlock(&ei->i_block_reservation_lock);
1119

1120
	/*
1121 1122 1123
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1124
	 */
1125
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1126 1127
	if (ret)
		return ret;
1128 1129 1130 1131
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1132
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1133
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
A
Aneesh Kumar K.V 已提交
1134 1135 1136 1137
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1138 1139
		return -ENOSPC;
	}
1140
	spin_lock(&ei->i_block_reservation_lock);
1141
	ei->i_reserved_data_blocks++;
1142 1143
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1144

1145 1146 1147
	return 0;       /* success */
}

1148
static void ext4_da_release_space(struct inode *inode, int to_free)
1149 1150
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1151
	struct ext4_inode_info *ei = EXT4_I(inode);
1152

1153 1154 1155
	if (!to_free)
		return;		/* Nothing to release, exit */

1156
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1157

L
Li Zefan 已提交
1158
	trace_ext4_da_release_space(inode, to_free);
1159
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1160
		/*
1161 1162 1163 1164
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1165
		 */
1166 1167
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
1168
			 "data blocks", inode->i_ino, to_free,
1169 1170 1171
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1172
	}
1173
	ei->i_reserved_data_blocks -= to_free;
1174

1175 1176 1177 1178 1179
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1180 1181
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1182
		 */
1183
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1184
				   ei->i_reserved_meta_blocks);
1185
		ei->i_reserved_meta_blocks = 0;
1186
		ei->i_da_metadata_calc_len = 0;
1187
	}
1188

1189
	/* update fs dirty data blocks counter */
1190
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1191 1192

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1193

1194
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1195 1196 1197
}

static void ext4_da_page_release_reservation(struct page *page,
1198
					     unsigned long offset)
1199 1200 1201 1202
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1203 1204 1205
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1206 1207 1208 1209 1210 1211 1212 1213 1214

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
1215
			clear_buffer_da_mapped(bh);
1216 1217 1218
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		ext4_fsblk_t lblk;
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
		    !ext4_find_delalloc_cluster(inode, lblk, 1))
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1233
}
1234

1235 1236 1237 1238 1239 1240
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1241
 * them with writepage() call back
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1252 1253
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1254
{
1255 1256 1257 1258 1259
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1260
	loff_t size = i_size_read(inode);
1261 1262
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1263
	int journal_data = ext4_should_journal_data(inode);
1264
	sector_t pblock = 0, cur_logical = 0;
1265
	struct ext4_io_submit io_submit;
1266 1267

	BUG_ON(mpd->next_page <= mpd->first_page);
1268
	memset(&io_submit, 0, sizeof(io_submit));
1269 1270 1271
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1272
	 * If we look at mpd->b_blocknr we would only be looking
1273 1274
	 * at the currently mapped buffer_heads.
	 */
1275 1276 1277
	index = mpd->first_page;
	end = mpd->next_page - 1;

1278
	pagevec_init(&pvec, 0);
1279
	while (index <= end) {
1280
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1281 1282 1283
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1284
			int commit_write = 0, skip_page = 0;
1285 1286
			struct page *page = pvec.pages[i];

1287 1288 1289
			index = page->index;
			if (index > end)
				break;
1290 1291 1292 1293 1294

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1295 1296 1297 1298 1299 1300
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1301 1302 1303 1304 1305
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1306
			/*
1307 1308
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1309
			 * __block_write_begin.  If this fails,
1310
			 * skip the page and move on.
1311
			 */
1312
			if (!page_has_buffers(page)) {
1313
				if (__block_write_begin(page, 0, len,
1314
						noalloc_get_block_write)) {
1315
				skip_page:
1316 1317 1318 1319 1320
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1321

1322 1323
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1324
			do {
1325
				if (!bh)
1326
					goto skip_page;
1327 1328 1329
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1330 1331 1332 1333
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1334 1335
					if (buffer_da_mapped(bh))
						clear_buffer_da_mapped(bh);
1336 1337 1338 1339 1340 1341 1342
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1343

1344 1345 1346 1347 1348
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1349
					skip_page = 1;
1350 1351
				bh = bh->b_this_page;
				block_start += bh->b_size;
1352 1353
				cur_logical++;
				pblock++;
1354 1355
			} while (bh != page_bufs);

1356 1357
			if (skip_page)
				goto skip_page;
1358 1359 1360 1361 1362

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1363
			clear_page_dirty_for_io(page);
1364 1365 1366 1367 1368 1369
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1370
				err = __ext4_journalled_writepage(page, len);
1371
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1372 1373
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1374 1375 1376 1377 1378 1379
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1380 1381
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1382 1383

			if (!err)
1384
				mpd->pages_written++;
1385 1386 1387 1388 1389 1390 1391 1392 1393
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1394
	ext4_io_submit(&io_submit);
1395 1396 1397
	return ret;
}

1398
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1399 1400 1401 1402 1403 1404 1405
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

1406 1407
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1408 1409 1410 1411 1412 1413
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1414
			if (page->index > end)
1415 1416 1417 1418 1419 1420 1421
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1422 1423
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1424 1425 1426 1427
	}
	return;
}

1428 1429 1430
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1431 1432 1433
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1434 1435
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1436 1437
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1438 1439
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1440
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1441 1442
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1443 1444 1445 1446
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1447
	       EXT4_I(inode)->i_reserved_meta_blocks);
1448 1449 1450
	return;
}

1451
/*
1452 1453
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1454
 *
1455
 * @mpd - bh describing space
1456 1457 1458 1459
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1460
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1461
{
1462
	int err, blks, get_blocks_flags;
1463
	struct ext4_map_blocks map, *mapp = NULL;
1464 1465 1466 1467
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1468 1469

	/*
1470 1471
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1472
	 */
1473 1474 1475 1476 1477
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1478 1479 1480 1481

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1482
	/*
1483
	 * Call ext4_map_blocks() to allocate any delayed allocation
1484 1485 1486 1487 1488 1489 1490 1491
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1492
	 * want to change *many* call functions, so ext4_map_blocks()
1493
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1494 1495 1496 1497 1498
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1499
	 */
1500 1501
	map.m_lblk = next;
	map.m_len = max_blocks;
1502
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1503 1504
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1505
	if (mpd->b_state & (1 << BH_Delay))
1506 1507
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1508
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1509
	if (blks < 0) {
1510 1511
		struct super_block *sb = mpd->inode->i_sb;

1512
		err = blks;
1513
		/*
1514
		 * If get block returns EAGAIN or ENOSPC and there
1515 1516
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1517 1518
		 */
		if (err == -EAGAIN)
1519
			goto submit_io;
1520

1521
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1522
			mpd->retval = err;
1523
			goto submit_io;
1524 1525
		}

1526
		/*
1527 1528 1529 1530 1531
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1532
		 */
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1544
		}
1545
		/* invalidate all the pages */
1546
		ext4_da_block_invalidatepages(mpd);
1547 1548 1549

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1550
		return;
1551
	}
1552 1553
	BUG_ON(blks == 0);

1554
	mapp = &map;
1555 1556 1557
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1558

1559 1560
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1561

1562 1563
		if (ext4_should_order_data(mpd->inode)) {
			err = ext4_jbd2_file_inode(handle, mpd->inode);
1564
			if (err) {
1565
				/* Only if the journal is aborted */
1566 1567 1568
				mpd->retval = err;
				goto submit_io;
			}
1569
		}
1570 1571 1572
	}

	/*
1573
	 * Update on-disk size along with block allocation.
1574 1575 1576 1577 1578 1579
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1580 1581 1582 1583 1584
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1585 1586
	}

1587
submit_io:
1588
	mpage_da_submit_io(mpd, mapp);
1589
	mpd->io_done = 1;
1590 1591
}

1592 1593
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1605 1606
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1607 1608
{
	sector_t next;
1609
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1610

1611 1612 1613 1614
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1615
	 * ext4_map_blocks() multiple times in a loop
1616 1617 1618 1619
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1620
	/* check if thereserved journal credits might overflow */
1621
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1642 1643 1644
	/*
	 * First block in the extent
	 */
1645 1646 1647 1648
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1649 1650 1651
		return;
	}

1652
	next = mpd->b_blocknr + nrblocks;
1653 1654 1655
	/*
	 * Can we merge the block to our big extent?
	 */
1656 1657
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1658 1659 1660
		return;
	}

1661
flush_it:
1662 1663 1664 1665
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1666
	mpage_da_map_and_submit(mpd);
1667
	return;
1668 1669
}

1670
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1671
{
1672
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1673 1674
}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1735
/*
1736 1737 1738
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1739 1740 1741 1742 1743 1744 1745
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1746 1747
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1748
				  struct buffer_head *bh, int create)
1749
{
1750
	struct ext4_map_blocks map;
1751 1752 1753
	int ret = 0;

	BUG_ON(create == 0);
1754 1755 1756 1757
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1758 1759 1760 1761 1762 1763

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1764 1765
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1766
		return ret;
1767

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1779
		set_buffer_mapped(bh);
1780 1781
	}
	return 0;
1782
}
1783

1784 1785 1786
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1787
 * callback function for block_write_begin() and block_write_full_page().
1788
 * These functions should only try to map a single block at a time.
1789 1790 1791 1792 1793
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1794 1795 1796
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1797 1798
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1799 1800
				   struct buffer_head *bh_result, int create)
{
1801
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1802
	return _ext4_get_block(inode, iblock, bh_result, 0);
1803 1804
}

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1827
	ClearPageChecked(page);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1841 1842
	BUG_ON(!ext4_handle_valid(handle));

1843 1844 1845 1846 1847 1848 1849
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1850
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1851 1852 1853 1854 1855
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1856
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1857 1858 1859 1860
out:
	return ret;
}

1861 1862 1863
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

1864
/*
1865 1866 1867 1868
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1869
 * we are writing back data modified via mmap(), no one guarantees in which
1870 1871 1872 1873
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1874 1875 1876 1877 1878
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
1879 1880 1881 1882 1883 1884 1885 1886 1887
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1888
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1904
 */
1905
static int ext4_writepage(struct page *page,
1906
			  struct writeback_control *wbc)
1907
{
T
Theodore Ts'o 已提交
1908
	int ret = 0, commit_write = 0;
1909
	loff_t size;
1910
	unsigned int len;
1911
	struct buffer_head *page_bufs = NULL;
1912 1913
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
1914
	trace_ext4_writepage(page);
1915 1916 1917 1918 1919
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1920

T
Theodore Ts'o 已提交
1921 1922
	/*
	 * If the page does not have buffers (for whatever reason),
1923
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
1924 1925
	 * fails, redirty the page and move on.
	 */
1926
	if (!page_has_buffers(page)) {
1927
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
1928 1929
					noalloc_get_block_write)) {
		redirty_page:
1930 1931 1932 1933
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
1934 1935 1936 1937 1938
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
1939
		/*
1940 1941 1942
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
1943 1944 1945
		 * We can also reach here via shrink_page_list but it
		 * should never be for direct reclaim so warn if that
		 * happens
1946
		 */
1947 1948
		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
								PF_MEMALLOC);
T
Theodore Ts'o 已提交
1949 1950 1951
		goto redirty_page;
	}
	if (commit_write)
1952
		/* now mark the buffer_heads as dirty and uptodate */
1953
		block_commit_write(page, 0, len);
1954

1955
	if (PageChecked(page) && ext4_should_journal_data(inode))
1956 1957 1958 1959
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
1960
		return __ext4_journalled_writepage(page, len);
1961

T
Theodore Ts'o 已提交
1962
	if (buffer_uninit(page_bufs)) {
1963 1964 1965 1966
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
1967 1968
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
1969 1970 1971 1972

	return ret;
}

1973
/*
1974
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
1975
 * calculate the total number of credits to reserve to fit
1976 1977 1978
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
1979
 */
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
1991
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1992 1993 1994 1995 1996
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
1997

1998 1999
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2000
 * address space and accumulate pages that need writing, and call
2001 2002
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2003 2004 2005
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2006 2007
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2008
{
2009
	struct buffer_head	*bh, *head;
2010
	struct inode		*inode = mapping->host;
2011 2012 2013 2014 2015 2016
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2017

2018 2019 2020
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2021 2022 2023 2024
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2025
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2026 2027 2028 2029
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2030
	*done_index = index;
2031
	while (index <= end) {
2032
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2033 2034
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2035
			return 0;
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2047 2048
			if (page->index > end)
				goto out;
2049

2050 2051
			*done_index = page->index + 1;

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2062 2063 2064
			lock_page(page);

			/*
2065 2066 2067 2068 2069 2070
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2071
			 */
2072 2073 2074 2075
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2076 2077 2078 2079
				unlock_page(page);
				continue;
			}

2080
			wait_on_page_writeback(page);
2081 2082
			BUG_ON(PageWriteback(page));

2083
			if (mpd->next_page != page->index)
2084 2085 2086 2087 2088 2089
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2090 2091
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2092
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2093 2094
				if (mpd->io_done)
					goto ret_extent_tail;
2095 2096
			} else {
				/*
2097 2098
				 * Page with regular buffer heads,
				 * just add all dirty ones
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2114 2115
						if (mpd->io_done)
							goto ret_extent_tail;
2116 2117
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2118 2119 2120 2121 2122 2123 2124 2125 2126
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2127 2128 2129 2130 2131 2132
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2133 2134 2135 2136 2137
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2138
				    wbc->sync_mode == WB_SYNC_NONE)
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2149
					goto out;
2150 2151 2152 2153 2154
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2155 2156 2157
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2158 2159 2160
out:
	pagevec_release(&pvec);
	cond_resched();
2161 2162 2163 2164
	return ret;
}


2165
static int ext4_da_writepages(struct address_space *mapping,
2166
			      struct writeback_control *wbc)
2167
{
2168 2169
	pgoff_t	index;
	int range_whole = 0;
2170
	handle_t *handle = NULL;
2171
	struct mpage_da_data mpd;
2172
	struct inode *inode = mapping->host;
2173
	int pages_written = 0;
2174
	unsigned int max_pages;
2175
	int range_cyclic, cycled = 1, io_done = 0;
2176 2177
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2178
	loff_t range_start = wbc->range_start;
2179
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2180
	pgoff_t done_index = 0;
2181
	pgoff_t end;
S
Shaohua Li 已提交
2182
	struct blk_plug plug;
2183

2184
	trace_ext4_da_writepages(inode, wbc);
2185

2186 2187 2188 2189 2190
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2191
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2192
		return 0;
2193 2194 2195 2196 2197

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2198
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2199 2200 2201 2202 2203
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2204
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2205 2206
		return -EROFS;

2207 2208
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2209

2210 2211
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2212
		index = mapping->writeback_index;
2213 2214 2215 2216 2217
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2218 2219
		end = -1;
	} else {
2220
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2221 2222
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2223

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2241 2242 2243 2244 2245 2246
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2257
retry:
2258
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2259 2260
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2261
	blk_start_plug(&plug);
2262
	while (!ret && wbc->nr_to_write > 0) {
2263 2264 2265 2266 2267 2268 2269 2270

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2271
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2272

2273 2274 2275 2276
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2277
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2278
			       "%ld pages, ino %lu; err %d", __func__,
2279
				wbc->nr_to_write, inode->i_ino, ret);
2280
			blk_finish_plug(&plug);
2281 2282
			goto out_writepages;
		}
2283 2284

		/*
2285
		 * Now call write_cache_pages_da() to find the next
2286
		 * contiguous region of logical blocks that need
2287
		 * blocks to be allocated by ext4 and submit them.
2288
		 */
2289
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2290
		/*
2291
		 * If we have a contiguous extent of pages and we
2292 2293 2294 2295
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2296
			mpage_da_map_and_submit(&mpd);
2297 2298
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2299
		trace_ext4_da_write_pages(inode, &mpd);
2300
		wbc->nr_to_write -= mpd.pages_written;
2301

2302
		ext4_journal_stop(handle);
2303

2304
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2305 2306 2307 2308
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2309
			jbd2_journal_force_commit_nested(sbi->s_journal);
2310 2311
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2312
			/*
2313 2314 2315
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2316
			 */
2317
			pages_written += mpd.pages_written;
2318
			ret = mpd.retval;
2319
			io_done = 1;
2320
		} else if (wbc->nr_to_write)
2321 2322 2323 2324 2325 2326
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2327
	}
S
Shaohua Li 已提交
2328
	blk_finish_plug(&plug);
2329 2330 2331 2332 2333 2334 2335
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2336 2337

	/* Update index */
2338
	wbc->range_cyclic = range_cyclic;
2339 2340 2341 2342 2343
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2344
		mapping->writeback_index = done_index;
2345

2346
out_writepages:
2347
	wbc->nr_to_write -= nr_to_writebump;
2348
	wbc->range_start = range_start;
2349
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2350
	return ret;
2351 2352
}

2353 2354 2355 2356 2357 2358 2359 2360 2361
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2362
	 * counters can get slightly wrong with percpu_counter_batch getting
2363 2364 2365 2366
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2367 2368 2369
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2370
	if (2 * free_blocks < 3 * dirty_blocks ||
2371
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2372
		/*
2373 2374
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2375 2376 2377
		 */
		return 1;
	}
2378 2379 2380 2381 2382
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
2383
		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2384

2385 2386 2387
	return 0;
}

2388
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2389 2390
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2391
{
2392
	int ret, retries = 0;
2393 2394 2395 2396 2397 2398
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2399 2400 2401 2402 2403 2404 2405

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2406
	trace_ext4_da_write_begin(inode, pos, len, flags);
2407
retry:
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2419 2420 2421
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2422

2423
	page = grab_cache_page_write_begin(mapping, index, flags);
2424 2425 2426 2427 2428
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2429 2430
	*pagep = page;

2431
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2432 2433 2434 2435
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2436 2437 2438 2439 2440 2441
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2442
			ext4_truncate_failed_write(inode);
2443 2444
	}

2445 2446
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2447 2448 2449 2450
out:
	return ret;
}

2451 2452 2453 2454 2455
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2456
					    unsigned long offset)
2457 2458 2459 2460 2461 2462 2463 2464 2465
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2466
	for (i = 0; i < idx; i++)
2467 2468
		bh = bh->b_this_page;

2469
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2470 2471 2472 2473
		return 0;
	return 1;
}

2474
static int ext4_da_write_end(struct file *file,
2475 2476 2477
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2478 2479 2480 2481 2482
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2483
	unsigned long start, end;
2484 2485 2486
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2487 2488
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2489 2490
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2491
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2492 2493
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2494
		default:
2495 2496 2497
			BUG();
		}
	}
2498

2499
	trace_ext4_da_write_end(inode, pos, len, copied);
2500
	start = pos & (PAGE_CACHE_SIZE - 1);
2501
	end = start + copied - 1;
2502 2503 2504 2505 2506 2507 2508 2509

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2510
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2521

2522 2523 2524
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2525 2526 2527 2528 2529
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2530
		}
2531
	}
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2553
	ext4_da_page_release_reservation(page, offset);
2554 2555 2556 2557 2558 2559 2560

out:
	ext4_invalidatepage(page, offset);

	return;
}

2561 2562 2563 2564 2565
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2566 2567
	trace_ext4_alloc_da_blocks(inode);

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2578
	 *
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2591
	 * the pages by calling redirty_page_for_writepage() but that
2592 2593
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2594
	 * simplifying them because we wouldn't actually intend to
2595 2596 2597
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2598
	 *
2599 2600 2601 2602 2603 2604
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2605

2606 2607 2608 2609 2610
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2611
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2612 2613 2614 2615 2616 2617 2618 2619
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2620
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2621 2622 2623 2624 2625
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2636 2637
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2649
		 * NB. EXT4_STATE_JDATA is not set on files other than
2650 2651 2652 2653 2654 2655
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2656
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2657
		journal = EXT4_JOURNAL(inode);
2658 2659 2660
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2661 2662 2663 2664 2665

		if (err)
			return 0;
	}

2666
	return generic_block_bmap(mapping, block, ext4_get_block);
2667 2668
}

2669
static int ext4_readpage(struct file *file, struct page *page)
2670
{
2671
	trace_ext4_readpage(page);
2672
	return mpage_readpage(page, ext4_get_block);
2673 2674 2675
}

static int
2676
ext4_readpages(struct file *file, struct address_space *mapping,
2677 2678
		struct list_head *pages, unsigned nr_pages)
{
2679
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2680 2681
}

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2702
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2703
{
2704
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2705

2706 2707
	trace_ext4_invalidatepage(page, offset);

2708 2709 2710 2711 2712
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2713 2714 2715 2716 2717 2718
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2719 2720 2721 2722
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2723 2724
}

2725
static int ext4_releasepage(struct page *page, gfp_t wait)
2726
{
2727
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2728

2729 2730
	trace_ext4_releasepage(page);

2731 2732 2733
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2734 2735 2736 2737
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2738 2739
}

2740 2741 2742 2743 2744
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2745
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2746 2747
		   struct buffer_head *bh_result, int create)
{
2748
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2749
		   inode->i_ino, create);
2750 2751
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2752 2753 2754
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2755 2756
			    ssize_t size, void *private, int ret,
			    bool is_async)
2757
{
2758
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2759 2760
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
2761 2762
	unsigned long flags;
	struct ext4_inode_info *ei;
2763

2764 2765
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2766
		goto out;
2767

2768
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2769
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2770 2771 2772
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2773 2774
	iocb->private = NULL;

2775
	/* if not aio dio with unwritten extents, just free io and return */
2776
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2777
		ext4_free_io_end(io_end);
2778 2779 2780
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2781
		inode_dio_done(inode);
2782
		return;
2783 2784
	}

2785 2786
	io_end->offset = offset;
	io_end->size = size;
2787 2788 2789 2790
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2791 2792
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

2793
	/* Add the io_end to per-inode completed aio dio list*/
2794 2795 2796 2797
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2798 2799

	/* queue the work to convert unwritten extents to written */
2800
	queue_work(wq, &io_end->work);
2801
}
2802

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2814 2815 2816
		ext4_msg(io_end->inode->i_sb, KERN_INFO,
			 "sb umounted, discard end_io request for inode %lu",
			 io_end->inode->i_ino);
2817 2818 2819 2820
		ext4_free_io_end(io_end);
		goto out;
	}

2821 2822 2823 2824
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2825
	inode = io_end->inode;
2826
	ext4_set_io_unwritten_flag(inode, io_end);
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2853
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2872 2873 2874 2875 2876
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2877
 * For holes, we fallocate those blocks, mark them as uninitialized
2878
 * If those blocks were preallocated, we mark sure they are splited, but
2879
 * still keep the range to write as uninitialized.
2880
 *
2881 2882
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2883
 * set up an end_io call back function, which will do the conversion
2884
 * when async direct IO completed.
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
2903 2904 2905
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
2906
 		 * to prevent parallel buffered read to expose the stale data
2907
 		 * before DIO complete the data IO.
2908 2909
		 *
 		 * As to previously fallocated extents, ext4 get_block
2910 2911 2912
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
2913 2914 2915 2916 2917 2918 2919 2920
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
2921
 		 */
2922 2923 2924
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
2925 2926 2927
			ext4_io_end_t *io_end =
				ext4_init_io_end(inode, GFP_NOFS);
			if (!io_end)
2928
				return -ENOMEM;
2929 2930
			io_end->flag |= EXT4_IO_END_DIRECT;
			iocb->private = io_end;
2931 2932
			/*
			 * we save the io structure for current async
2933
			 * direct IO, so that later ext4_map_blocks()
2934 2935 2936 2937 2938 2939 2940
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

2941
		ret = __blockdev_direct_IO(rw, iocb, inode,
2942 2943
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
2944
					 ext4_get_block_write,
2945 2946
					 ext4_end_io_dio,
					 NULL,
2947
					 DIO_LOCKING);
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
2967 2968
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
2969
			int err;
2970 2971
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
2972
			 * completed, we could do the conversion right here
2973
			 */
2974 2975 2976 2977
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
2978
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2979
		}
2980 2981
		return ret;
	}
2982 2983

	/* for write the the end of file case, we fall back to old way */
2984 2985 2986 2987 2988 2989 2990 2991 2992
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
2993
	ssize_t ret;
2994

2995 2996 2997 2998 2999 3000
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

3001
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3002
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3003 3004 3005 3006 3007 3008
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3009 3010
}

3011
/*
3012
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3024
static int ext4_journalled_set_page_dirty(struct page *page)
3025 3026 3027 3028 3029
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3030
static const struct address_space_operations ext4_ordered_aops = {
3031 3032
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3033
	.writepage		= ext4_writepage,
3034 3035 3036 3037 3038 3039 3040 3041
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3042
	.error_remove_page	= generic_error_remove_page,
3043 3044
};

3045
static const struct address_space_operations ext4_writeback_aops = {
3046 3047
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3048
	.writepage		= ext4_writepage,
3049 3050 3051 3052 3053 3054 3055 3056
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3057
	.error_remove_page	= generic_error_remove_page,
3058 3059
};

3060
static const struct address_space_operations ext4_journalled_aops = {
3061 3062
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3063
	.writepage		= ext4_writepage,
3064 3065 3066 3067 3068 3069
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
3070
	.direct_IO		= ext4_direct_IO,
3071
	.is_partially_uptodate  = block_is_partially_uptodate,
3072
	.error_remove_page	= generic_error_remove_page,
3073 3074
};

3075
static const struct address_space_operations ext4_da_aops = {
3076 3077
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3078
	.writepage		= ext4_writepage,
3079 3080 3081 3082 3083 3084 3085 3086 3087
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3088
	.error_remove_page	= generic_error_remove_page,
3089 3090
};

3091
void ext4_set_aops(struct inode *inode)
3092
{
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3107
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3108 3109 3110 3111
		break;
	default:
		BUG();
	}
3112 3113
}

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3134
		return -ENOMEM;
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
 * from:   The starting byte offset (from the begining of the file)
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
 *         for updateing the contents of a page whose blocks may
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
 * Returns zero on sucess or negative on failure.
 */
E
Eric Sandeen 已提交
3177
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3203 3204
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3217 3218
		unsigned int end_of_block, range_to_discard;

3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3304
		} else
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
		return -ENOTSUPP;

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
		return -ENOTSUPP;
	}

3350 3351 3352 3353 3354
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
		return -ENOTSUPP;
	}

3355 3356 3357
	return ext4_ext_punch_hole(file, offset, length);
}

3358
/*
3359
 * ext4_truncate()
3360
 *
3361 3362
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3363 3364
 * simultaneously on behalf of the same inode.
 *
3365
 * As we work through the truncate and commit bits of it to the journal there
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3379
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3380
 * that this inode's truncate did not complete and it will again call
3381 3382
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3383
 * that's fine - as long as they are linked from the inode, the post-crash
3384
 * ext4_truncate() run will find them and release them.
3385
 */
3386
void ext4_truncate(struct inode *inode)
3387
{
3388 3389
	trace_ext4_truncate_enter(inode);

3390
	if (!ext4_can_truncate(inode))
3391 3392
		return;

3393
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3394

3395
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3396
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3397

3398
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3399
		ext4_ext_truncate(inode);
3400 3401
	else
		ext4_ind_truncate(inode);
3402

3403
	trace_ext4_truncate_exit(inode);
3404 3405 3406
}

/*
3407
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3408 3409 3410 3411
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3412 3413
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3414
{
3415 3416 3417 3418 3419 3420
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3421
	iloc->bh = NULL;
3422 3423
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3424

3425 3426 3427
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3428 3429
		return -EIO;

3430 3431 3432
	/*
	 * Figure out the offset within the block group inode table
	 */
3433
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3434 3435 3436 3437 3438 3439
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3440
	if (!bh) {
3441 3442
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3443 3444 3445 3446
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3470
			int i, start;
3471

3472
			start = inode_offset & ~(inodes_per_block - 1);
3473

3474 3475
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3488
			for (i = start; i < start + inodes_per_block; i++) {
3489 3490
				if (i == inode_offset)
					continue;
3491
				if (ext4_test_bit(i, bitmap_bh->b_data))
3492 3493 3494
					break;
			}
			brelse(bitmap_bh);
3495
			if (i == start + inodes_per_block) {
3496 3497 3498 3499 3500 3501 3502 3503 3504
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3505 3506 3507 3508 3509 3510 3511 3512 3513
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3514
			/* s_inode_readahead_blks is always a power of 2 */
3515 3516 3517 3518 3519 3520 3521
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3522
				num -= ext4_itable_unused_count(sb, gdp);
3523 3524 3525 3526 3527 3528 3529
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3530 3531 3532 3533 3534
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3535
		trace_ext4_load_inode(inode);
3536 3537
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3538
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3539 3540
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3541 3542
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3543 3544 3545 3546 3547 3548 3549 3550 3551
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3552
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3553 3554
{
	/* We have all inode data except xattrs in memory here. */
3555
	return __ext4_get_inode_loc(inode, iloc,
3556
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3557 3558
}

3559
void ext4_set_inode_flags(struct inode *inode)
3560
{
3561
	unsigned int flags = EXT4_I(inode)->i_flags;
3562 3563

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3564
	if (flags & EXT4_SYNC_FL)
3565
		inode->i_flags |= S_SYNC;
3566
	if (flags & EXT4_APPEND_FL)
3567
		inode->i_flags |= S_APPEND;
3568
	if (flags & EXT4_IMMUTABLE_FL)
3569
		inode->i_flags |= S_IMMUTABLE;
3570
	if (flags & EXT4_NOATIME_FL)
3571
		inode->i_flags |= S_NOATIME;
3572
	if (flags & EXT4_DIRSYNC_FL)
3573 3574 3575
		inode->i_flags |= S_DIRSYNC;
}

3576 3577 3578
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3599
}
3600

3601
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3602
				  struct ext4_inode_info *ei)
3603 3604
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3605 3606
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3607 3608 3609 3610 3611 3612

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3613
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3614 3615 3616 3617 3618
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3619 3620 3621 3622
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3623

3624
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3625
{
3626 3627
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3628 3629
	struct ext4_inode_info *ei;
	struct inode *inode;
3630
	journal_t *journal = EXT4_SB(sb)->s_journal;
3631
	long ret;
3632 3633
	int block;

3634 3635 3636 3637 3638 3639 3640
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3641
	iloc.bh = NULL;
3642

3643 3644
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3645
		goto bad_inode;
3646
	raw_inode = ext4_raw_inode(&iloc);
3647 3648 3649
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3650
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3651 3652 3653
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
M
Miklos Szeredi 已提交
3654
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3655

3656
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3657 3658 3659 3660 3661 3662 3663 3664 3665
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3666
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3667
			/* this inode is deleted */
3668
			ret = -ESTALE;
3669 3670 3671 3672 3673 3674 3675 3676
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3677
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3678
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3679
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3680 3681
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3682
	inode->i_size = ext4_isize(raw_inode);
3683
	ei->i_disksize = inode->i_size;
3684 3685 3686
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3687 3688
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3689
	ei->i_last_alloc_group = ~0;
3690 3691 3692 3693
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3694
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3695 3696 3697
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3709
		read_lock(&journal->j_state_lock);
3710 3711 3712 3713 3714 3715 3716 3717
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3718
		read_unlock(&journal->j_state_lock);
3719 3720 3721 3722
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3723
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3724
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3725
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3726
		    EXT4_INODE_SIZE(inode->i_sb)) {
3727
			ret = -EIO;
3728
			goto bad_inode;
3729
		}
3730 3731
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3732 3733
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3734 3735
		} else {
			__le32 *magic = (void *)raw_inode +
3736
					EXT4_GOOD_OLD_INODE_SIZE +
3737
					ei->i_extra_isize;
3738
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3739
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3740 3741 3742 3743
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
3744 3745 3746 3747 3748
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3749 3750 3751 3752 3753 3754 3755
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3756
	ret = 0;
3757
	if (ei->i_file_acl &&
3758
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3759 3760
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3761 3762
		ret = -EIO;
		goto bad_inode;
3763
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3764 3765 3766 3767 3768
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3769
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3770 3771
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3772
		/* Validate block references which are part of inode */
3773
		ret = ext4_ind_check_inode(inode);
3774
	}
3775
	if (ret)
3776
		goto bad_inode;
3777

3778
	if (S_ISREG(inode->i_mode)) {
3779 3780 3781
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3782
	} else if (S_ISDIR(inode->i_mode)) {
3783 3784
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3785
	} else if (S_ISLNK(inode->i_mode)) {
3786
		if (ext4_inode_is_fast_symlink(inode)) {
3787
			inode->i_op = &ext4_fast_symlink_inode_operations;
3788 3789 3790
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3791 3792
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3793
		}
3794 3795
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3796
		inode->i_op = &ext4_special_inode_operations;
3797 3798 3799 3800 3801 3802
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3803 3804
	} else {
		ret = -EIO;
3805
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3806
		goto bad_inode;
3807
	}
3808
	brelse(iloc.bh);
3809
	ext4_set_inode_flags(inode);
3810 3811
	unlock_new_inode(inode);
	return inode;
3812 3813

bad_inode:
3814
	brelse(iloc.bh);
3815 3816
	iget_failed(inode);
	return ERR_PTR(ret);
3817 3818
}

3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3832
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3833
		raw_inode->i_blocks_high = 0;
3834
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3835 3836 3837 3838 3839 3840
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3841 3842 3843 3844
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3845
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3846
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3847
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3848
	} else {
3849
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3850 3851 3852 3853
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3854
	}
3855
	return 0;
3856 3857
}

3858 3859 3860 3861 3862 3863 3864
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3865
static int ext4_do_update_inode(handle_t *handle,
3866
				struct inode *inode,
3867
				struct ext4_iloc *iloc)
3868
{
3869 3870
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3871 3872 3873 3874 3875
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3876
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3877
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3878

3879
	ext4_get_inode_flags(ei);
3880
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3881
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3882 3883 3884 3885 3886 3887
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
3888
		if (!ei->i_dtime) {
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
3906 3907 3908 3909 3910 3911

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

3912 3913
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
3914
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3915
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3916 3917
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
3918 3919
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
3920
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
3937
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3938
			sb->s_dirt = 1;
3939
			ext4_handle_sync(handle);
3940
			err = ext4_handle_dirty_metadata(handle, NULL,
3941
					EXT4_SB(sb)->s_sbh);
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
3956 3957 3958
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
3959

3960 3961 3962 3963 3964
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
3965
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3966 3967
	}

3968
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3969
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3970 3971
	if (!err)
		err = rc;
3972
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3973

3974
	ext4_update_inode_fsync_trans(handle, inode, 0);
3975
out_brelse:
3976
	brelse(bh);
3977
	ext4_std_error(inode->i_sb, err);
3978 3979 3980 3981
	return err;
}

/*
3982
 * ext4_write_inode()
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
3999
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4016
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4017
{
4018 4019
	int err;

4020 4021 4022
	if (current->flags & PF_MEMALLOC)
		return 0;

4023 4024 4025 4026 4027 4028
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4029

4030
		if (wbc->sync_mode != WB_SYNC_ALL)
4031 4032 4033 4034 4035
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4036

4037
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4038 4039
		if (err)
			return err;
4040
		if (wbc->sync_mode == WB_SYNC_ALL)
4041 4042
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4043 4044
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4045 4046
			err = -EIO;
		}
4047
		brelse(iloc.bh);
4048 4049
	}
	return err;
4050 4051 4052
}

/*
4053
 * ext4_setattr()
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4067 4068 4069 4070 4071 4072 4073 4074
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4075
 */
4076
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4077 4078 4079
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4080
	int orphan = 0;
4081 4082 4083 4084 4085 4086
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4087
	if (is_quota_modification(inode, attr))
4088
		dquot_initialize(inode);
4089 4090 4091 4092 4093 4094
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4095
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4096
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4097 4098 4099 4100
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4101
		error = dquot_transfer(inode, attr);
4102
		if (error) {
4103
			ext4_journal_stop(handle);
4104 4105 4106 4107 4108 4109 4110 4111
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4112 4113
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4114 4115
	}

4116
	if (attr->ia_valid & ATTR_SIZE) {
4117 4118
		inode_dio_wait(inode);

4119
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4120 4121
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4122 4123
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4124 4125 4126
		}
	}

4127
	if (S_ISREG(inode->i_mode) &&
4128
	    attr->ia_valid & ATTR_SIZE &&
4129
	    (attr->ia_size < inode->i_size)) {
4130 4131
		handle_t *handle;

4132
		handle = ext4_journal_start(inode, 3);
4133 4134 4135 4136
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4137 4138 4139 4140
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4141 4142
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4143 4144
		if (!error)
			error = rc;
4145
		ext4_journal_stop(handle);
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4158
				orphan = 0;
4159 4160 4161 4162
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4163 4164
	}

4165 4166 4167 4168 4169 4170 4171
	if (attr->ia_valid & ATTR_SIZE) {
		if (attr->ia_size != i_size_read(inode)) {
			truncate_setsize(inode, attr->ia_size);
			ext4_truncate(inode);
		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
			ext4_truncate(inode);
	}
4172

C
Christoph Hellwig 已提交
4173 4174 4175 4176 4177 4178 4179 4180 4181
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4182
	if (orphan && inode->i_nlink)
4183
		ext4_orphan_del(NULL, inode);
4184 4185

	if (!rc && (ia_valid & ATTR_MODE))
4186
		rc = ext4_acl_chmod(inode);
4187 4188

err_out:
4189
	ext4_std_error(inode->i_sb, error);
4190 4191 4192 4193 4194
	if (!error)
		error = rc;
	return error;
}

4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4219

4220 4221
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4222
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4223
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4224
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4225
}
4226

4227
/*
4228 4229 4230
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4231
 *
4232
 * If datablocks are discontiguous, they are possible to spread over
4233
 * different block groups too. If they are contiuguous, with flexbg,
4234
 * they could still across block group boundary.
4235
 *
4236 4237
 * Also account for superblock, inode, quota and xattr blocks
 */
4238
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4239
{
4240 4241
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4268 4269
	if (groups > ngroups)
		groups = ngroups;
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4283
 * Calculate the total number of credits to reserve to fit
4284 4285
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4286
 *
4287
 * This could be called via ext4_write_begin()
4288
 *
4289
 * We need to consider the worse case, when
4290
 * one new block per extent.
4291
 */
A
Alex Tomas 已提交
4292
int ext4_writepage_trans_blocks(struct inode *inode)
4293
{
4294
	int bpp = ext4_journal_blocks_per_page(inode);
4295 4296
	int ret;

4297
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4298

4299
	/* Account for data blocks for journalled mode */
4300
	if (ext4_should_journal_data(inode))
4301
		ret += bpp;
4302 4303
	return ret;
}
4304 4305 4306 4307 4308

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4309
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4310 4311 4312 4313 4314 4315 4316 4317 4318
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4319
/*
4320
 * The caller must have previously called ext4_reserve_inode_write().
4321 4322
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4323
int ext4_mark_iloc_dirty(handle_t *handle,
4324
			 struct inode *inode, struct ext4_iloc *iloc)
4325 4326 4327
{
	int err = 0;

4328
	if (IS_I_VERSION(inode))
4329 4330
		inode_inc_iversion(inode);

4331 4332 4333
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4334
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4335
	err = ext4_do_update_inode(handle, inode, iloc);
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4346 4347
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4348
{
4349 4350 4351 4352 4353 4354 4355 4356 4357
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4358 4359
		}
	}
4360
	ext4_std_error(inode->i_sb, err);
4361 4362 4363
	return err;
}

4364 4365 4366 4367
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4368 4369 4370 4371
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4384 4385
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4418
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4419
{
4420
	struct ext4_iloc iloc;
4421 4422 4423
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4424 4425

	might_sleep();
4426
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4427
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4428 4429
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4430
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4444 4445
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4446 4447
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4448
					ext4_warning(inode->i_sb,
4449 4450 4451
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4452 4453
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4454 4455 4456 4457
				}
			}
		}
	}
4458
	if (!err)
4459
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4460 4461 4462 4463
	return err;
}

/*
4464
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4465 4466 4467 4468 4469
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4470
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4471 4472 4473 4474 4475 4476
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4477
void ext4_dirty_inode(struct inode *inode, int flags)
4478 4479 4480
{
	handle_t *handle;

4481
	handle = ext4_journal_start(inode, 2);
4482 4483
	if (IS_ERR(handle))
		goto out;
4484 4485 4486

	ext4_mark_inode_dirty(handle, inode);

4487
	ext4_journal_stop(handle);
4488 4489 4490 4491 4492 4493 4494 4495
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4496
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4497 4498 4499
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4500
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4501
{
4502
	struct ext4_iloc iloc;
4503 4504 4505

	int err = 0;
	if (handle) {
4506
		err = ext4_get_inode_loc(inode, &iloc);
4507 4508
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4509
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4510
			if (!err)
4511
				err = ext4_handle_dirty_metadata(handle,
4512
								 NULL,
4513
								 iloc.bh);
4514 4515 4516
			brelse(iloc.bh);
		}
	}
4517
	ext4_std_error(inode->i_sb, err);
4518 4519 4520 4521
	return err;
}
#endif

4522
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4538
	journal = EXT4_JOURNAL(inode);
4539 4540
	if (!journal)
		return 0;
4541
	if (is_journal_aborted(journal))
4542
		return -EROFS;
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4554

4555
	jbd2_journal_lock_updates(journal);
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4566
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4567 4568
	else {
		jbd2_journal_flush(journal);
4569
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4570
	}
4571
	ext4_set_aops(inode);
4572

4573
	jbd2_journal_unlock_updates(journal);
4574 4575 4576

	/* Finally we can mark the inode as dirty. */

4577
	handle = ext4_journal_start(inode, 1);
4578 4579 4580
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4581
	err = ext4_mark_inode_dirty(handle, inode);
4582
	ext4_handle_sync(handle);
4583 4584
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4585 4586 4587

	return err;
}
4588 4589 4590 4591 4592 4593

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4594
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4595
{
4596
	struct page *page = vmf->page;
4597 4598
	loff_t size;
	unsigned long len;
4599
	int ret;
4600 4601 4602
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4603 4604 4605
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4606 4607

	/*
4608 4609
	 * This check is racy but catches the common case. We rely on
	 * __block_page_mkwrite() to do a reliable check.
4610
	 */
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4622
	}
4623 4624

	lock_page(page);
4625 4626 4627 4628 4629 4630
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4631
	}
4632 4633 4634 4635 4636

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4637
	/*
4638 4639
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4640
	 */
4641 4642
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4643
					ext4_bh_unmapped)) {
4644 4645 4646 4647
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4648
		}
4649
	}
4650
	unlock_page(page);
4651 4652 4653 4654 4655 4656 4657 4658
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4659
		ret = VM_FAULT_SIGBUS;
4660 4661 4662 4663 4664 4665 4666 4667
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4668
			ext4_journal_stop(handle);
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4679 4680
	return ret;
}