inode.c 93.5 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/ext4_jbd.h>
29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include <linux/jbd.h>
#include <linux/smp_lock.h>
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/mpage.h>
#include <linux/uio.h>
#include <linux/bio.h>
#include "xattr.h"
#include "acl.h"

43
static int ext4_writepage_trans_blocks(struct inode *inode);
44 45 46 47

/*
 * Test whether an inode is a fast symlink.
 */
48
static int ext4_inode_is_fast_symlink(struct inode *inode)
49
{
50
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
51 52 53 54 55 56
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
57
 * The ext4 forget function must perform a revoke if we are freeing data
58 59 60 61 62 63 64
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
 */
65 66
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

84 85
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
86 87
		if (bh) {
			BUFFER_TRACE(bh, "call journal_forget");
88
			return ext4_journal_forget(handle, bh);
89 90 91 92 93 94 95
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
96 97
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
98
	if (err)
99
		ext4_abort(inode->i_sb, __FUNCTION__,
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
	unsigned long needed;

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
118
	 * like a regular file for ext4 to try to delete it.  Things
119 120 121 122 123 124 125
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
126 127
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
128

129
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

146
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
147 148 149
	if (!IS_ERR(result))
		return result;

150
	ext4_std_error(inode->i_sb, PTR_ERR(result));
151 152 153 154 155 156 157 158 159 160 161
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
162
	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
163
		return 0;
164
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
165 166 167 168 169 170 171 172 173
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
174
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
175 176
{
	jbd_debug(2, "restarting handle %p\n", handle);
177
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
178 179 180 181 182
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
183
void ext4_delete_inode (struct inode * inode)
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
{
	handle_t *handle;

	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
199
		ext4_orphan_del(NULL, inode);
200 201 202 203 204 205 206
		goto no_delete;
	}

	if (IS_SYNC(inode))
		handle->h_sync = 1;
	inode->i_size = 0;
	if (inode->i_blocks)
207
		ext4_truncate(inode);
208
	/*
209
	 * Kill off the orphan record which ext4_truncate created.
210
	 * AKPM: I think this can be inside the above `if'.
211
	 * Note that ext4_orphan_del() has to be able to cope with the
212
	 * deletion of a non-existent orphan - this is because we don't
213
	 * know if ext4_truncate() actually created an orphan record.
214 215
	 * (Well, we could do this if we need to, but heck - it works)
	 */
216 217
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
218 219 220 221 222 223 224 225

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
226
	if (ext4_mark_inode_dirty(handle, inode))
227 228 229
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
230 231
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

static int verify_chain(Indirect *from, Indirect *to)
{
	while (from <= to && from->key == *from->p)
		from++;
	return (from > to);
}

/**
257
 *	ext4_block_to_path - parse the block number into array of offsets
258 259 260 261 262 263
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
 *      @boundary: set this non-zero if the referred-to block is likely to be
 *             followed (on disk) by an indirect block.
 *
264
 *	To store the locations of file's data ext4 uses a data structure common
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

287
static int ext4_block_to_path(struct inode *inode,
288 289
			long i_block, int offsets[4], int *boundary)
{
290 291 292
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
293 294 295 296 297 298
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
299
		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
300 301 302 303
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
304
		offsets[n++] = EXT4_IND_BLOCK;
305 306 307
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
308
		offsets[n++] = EXT4_DIND_BLOCK;
309 310 311 312
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
313
		offsets[n++] = EXT4_TIND_BLOCK;
314 315 316 317 318
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
319
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block > big");
320 321 322 323 324 325 326
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
327
 *	ext4_get_branch - read the chain of indirect blocks leading to data
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it notices that chain had been changed while it was reading
 *		(ditto, *@err == -EAGAIN)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
 */
355
static Indirect *ext4_get_branch(struct inode *inode, int depth, int *offsets,
356 357 358 359 360 361 362 363
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
364
	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
		/* Reader: pointers */
		if (!verify_chain(chain, p))
			goto changed;
		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

changed:
	brelse(bh);
	*err = -EAGAIN;
	goto no_block;
failure:
	*err = -EIO;
no_block:
	return p;
}

/**
392
 *	ext4_find_near - find a place for allocation with sufficient locality
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
 *	This function returns the prefered place for block allocation.
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
411
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
412
{
413
	struct ext4_inode_info *ei = EXT4_I(inode);
414 415
	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
	__le32 *p;
416 417
	ext4_fsblk_t bg_start;
	ext4_grpblk_t colour;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
433
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
434
	colour = (current->pid % 16) *
435
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
436 437 438 439
	return bg_start + colour;
}

/**
440
 *	ext4_find_goal - find a prefered place for allocation.
441 442 443 444 445 446 447 448 449 450
 *	@inode: owner
 *	@block:  block we want
 *	@chain:  chain of indirect blocks
 *	@partial: pointer to the last triple within a chain
 *	@goal:	place to store the result.
 *
 *	Normally this function find the prefered place for block allocation,
 *	stores it in *@goal and returns zero.
 */

451
static ext4_fsblk_t ext4_find_goal(struct inode *inode, long block,
452 453
		Indirect chain[4], Indirect *partial)
{
454
	struct ext4_block_alloc_info *block_i;
455

456
	block_i =  EXT4_I(inode)->i_block_alloc_info;
457 458 459 460 461 462 463 464 465 466

	/*
	 * try the heuristic for sequential allocation,
	 * failing that at least try to get decent locality.
	 */
	if (block_i && (block == block_i->last_alloc_logical_block + 1)
		&& (block_i->last_alloc_physical_block != 0)) {
		return block_i->last_alloc_physical_block + 1;
	}

467
	return ext4_find_near(inode, partial);
468 469 470
}

/**
471
 *	ext4_blks_to_allocate: Look up the block map and count the number
472 473 474 475 476 477 478 479 480 481
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
482
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
		int blocks_to_boundary)
{
	unsigned long count = 0;

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
509
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
510 511 512 513 514 515 516 517
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
518 519 520
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
			ext4_fsblk_t goal, int indirect_blks, int blks,
			ext4_fsblk_t new_blocks[4], int *err)
521 522 523 524
{
	int target, i;
	unsigned long count = 0;
	int index = 0;
525
	ext4_fsblk_t current_block = 0;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
	target = blks + indirect_blks;

	while (1) {
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
541
		current_block = ext4_new_blocks(handle,inode,goal,&count,err);
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}

		if (count > 0)
			break;
	}

	/* save the new block number for the first direct block */
	new_blocks[index] = current_block;

	/* total number of blocks allocated for direct blocks */
	ret = count;
	*err = 0;
	return ret;
failed_out:
	for (i = 0; i <index; i++)
565
		ext4_free_blocks(handle, inode, new_blocks[i], 1);
566 567 568 569
	return ret;
}

/**
570
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
571 572 573 574 575 576 577 578 579 580
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
581
 *	the same format as ext4_get_branch() would do. We are calling it after
582 583
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
584
 *	picture as after the successful ext4_get_block(), except that in one
585 586 587 588 589 590
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
591
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
592 593
 *	as described above and return 0.
 */
594 595
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
			int indirect_blks, int *blks, ext4_fsblk_t goal,
596 597 598 599 600 601 602
			int *offsets, Indirect *branch)
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
603 604
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
605

606
	num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
625
		err = ext4_journal_get_create_access(handle, bh);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
		if ( n == indirect_blks) {
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

650 651
		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, bh);
652 653 654 655 656 657 658 659 660
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
		BUFFER_TRACE(branch[i].bh, "call journal_forget");
661
		ext4_journal_forget(handle, branch[i].bh);
662 663
	}
	for (i = 0; i <indirect_blks; i++)
664
		ext4_free_blocks(handle, inode, new_blocks[i], 1);
665

666
	ext4_free_blocks(handle, inode, new_blocks[i], num);
667 668 669 670 671

	return err;
}

/**
672
 * ext4_splice_branch - splice the allocated branch onto inode.
673 674 675
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
676
 *	ext4_alloc_branch)
677 678 679 680 681 682 683 684
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
685
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
686 687 688 689
			long block, Indirect *where, int num, int blks)
{
	int i;
	int err = 0;
690 691
	struct ext4_block_alloc_info *block_i;
	ext4_fsblk_t current_block;
692

693
	block_i = EXT4_I(inode)->i_block_alloc_info;
694 695 696 697 698 699 700
	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
701
		err = ext4_journal_get_write_access(handle, where->bh);
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
			*(where->p + i ) = cpu_to_le32(current_block++);
	}

	/*
	 * update the most recently allocated logical & physical block
	 * in i_block_alloc_info, to assist find the proper goal block for next
	 * allocation
	 */
	if (block_i) {
		block_i->last_alloc_logical_block = block + blks - 1;
		block_i->last_alloc_physical_block =
				le32_to_cpu(where[num].key) + blks - 1;
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

	inode->i_ctime = CURRENT_TIME_SEC;
733
	ext4_mark_inode_dirty(handle, inode);
734 735 736 737 738 739 740 741 742

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
743
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
744 745
		 */
		jbd_debug(5, "splicing indirect only\n");
746 747
		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, where->bh);
748 749 750 751 752 753 754 755 756 757 758 759 760 761
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
		BUFFER_TRACE(where[i].bh, "call journal_forget");
762 763
		ext4_journal_forget(handle, where[i].bh);
		ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
764
	}
765
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * The BKL may not be held on entry here.  Be sure to take it early.
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
 */
789
int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
790 791 792 793 794 795 796 797
		sector_t iblock, unsigned long maxblocks,
		struct buffer_head *bh_result,
		int create, int extend_disksize)
{
	int err = -EIO;
	int offsets[4];
	Indirect chain[4];
	Indirect *partial;
798
	ext4_fsblk_t goal;
799 800 801
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
802
	struct ext4_inode_info *ei = EXT4_I(inode);
803
	int count = 0;
804
	ext4_fsblk_t first_block = 0;
805 806 807


	J_ASSERT(handle != NULL || create == 0);
808
	depth = ext4_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
809 810 811 812

	if (depth == 0)
		goto out;

813
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
814 815 816 817 818 819 820 821

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
822
			ext4_fsblk_t blk;
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854

			if (!verify_chain(chain, partial)) {
				/*
				 * Indirect block might be removed by
				 * truncate while we were reading it.
				 * Handling of that case: forget what we've
				 * got now. Flag the err as EAGAIN, so it
				 * will reread.
				 */
				err = -EAGAIN;
				count = 0;
				break;
			}
			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
		if (err != -EAGAIN)
			goto got_it;
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	mutex_lock(&ei->truncate_mutex);

	/*
	 * If the indirect block is missing while we are reading
855
	 * the chain(ext4_get_branch() returns -EAGAIN err), or
856 857 858 859 860 861 862 863 864 865 866 867 868 869
	 * if the chain has been changed after we grab the semaphore,
	 * (either because another process truncated this branch, or
	 * another get_block allocated this branch) re-grab the chain to see if
	 * the request block has been allocated or not.
	 *
	 * Since we already block the truncate/other get_block
	 * at this point, we will have the current copy of the chain when we
	 * splice the branch into the tree.
	 */
	if (err == -EAGAIN || !verify_chain(chain, partial)) {
		while (partial > chain) {
			brelse(partial->bh);
			partial--;
		}
870
		partial = ext4_get_branch(inode, depth, offsets, chain, &err);
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
		if (!partial) {
			count++;
			mutex_unlock(&ei->truncate_mutex);
			if (err)
				goto cleanup;
			clear_buffer_new(bh_result);
			goto got_it;
		}
	}

	/*
	 * Okay, we need to do block allocation.  Lazily initialize the block
	 * allocation info here if necessary
	*/
	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
886
		ext4_init_block_alloc_info(inode);
887

888
	goal = ext4_find_goal(inode, iblock, chain, partial);
889 890 891 892 893 894 895 896

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
897
	count = ext4_blks_to_allocate(partial, indirect_blks,
898 899
					maxblocks, blocks_to_boundary);
	/*
900
	 * Block out ext4_truncate while we alter the tree
901
	 */
902
	err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
903 904 905
				offsets + (partial - chain), partial);

	/*
906
	 * The ext4_splice_branch call will free and forget any buffers
907 908 909 910 911 912
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
913
		err = ext4_splice_branch(handle, inode, iblock,
914 915 916 917
					partial, indirect_blks, count);
	/*
	 * i_disksize growing is protected by truncate_mutex.  Don't forget to
	 * protect it if you're about to implement concurrent
918
	 * ext4_get_block() -bzzz
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	*/
	if (!err && extend_disksize && inode->i_size > ei->i_disksize)
		ei->i_disksize = inode->i_size;
	mutex_unlock(&ei->truncate_mutex);
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

945
#define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
946

947
static int ext4_get_block(struct inode *inode, sector_t iblock,
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
			struct buffer_head *bh_result, int create)
{
	handle_t *handle = journal_current_handle();
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

	if (!create)
		goto get_block;		/* A read */

	if (max_blocks == 1)
		goto get_block;		/* A single block get */

	if (handle->h_transaction->t_state == T_LOCKED) {
		/*
		 * Huge direct-io writes can hold off commits for long
		 * periods of time.  Let this commit run.
		 */
965 966
		ext4_journal_stop(handle);
		handle = ext4_journal_start(inode, DIO_CREDITS);
967 968 969 970 971
		if (IS_ERR(handle))
			ret = PTR_ERR(handle);
		goto get_block;
	}

972
	if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
973 974 975
		/*
		 * Getting low on buffer credits...
		 */
976
		ret = ext4_journal_extend(handle, DIO_CREDITS);
977 978 979 980
		if (ret > 0) {
			/*
			 * Couldn't extend the transaction.  Start a new one.
			 */
981
			ret = ext4_journal_restart(handle, DIO_CREDITS);
982 983 984 985 986
		}
	}

get_block:
	if (ret == 0) {
987
		ret = ext4_get_blocks_handle(handle, inode, iblock,
988 989 990 991 992 993 994 995 996 997 998 999
					max_blocks, bh_result, create, 0);
		if (ret > 0) {
			bh_result->b_size = (ret << inode->i_blkbits);
			ret = 0;
		}
	}
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1000
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
				long block, int create, int *errp)
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
1011
	err = ext4_get_blocks_handle(handle, inode, block, 1,
1012 1013
					&dummy, create, 1);
	/*
1014
	 * ext4_get_blocks_handle() returns number of blocks
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
			J_ASSERT(handle != 0);

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1038
			 * writes use ext4_get_block instead, so it's not a
1039 1040 1041 1042
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1043
			fatal = ext4_journal_get_create_access(handle, bh);
1044 1045 1046 1047 1048
			if (!fatal && !buffer_uptodate(bh)) {
				memset(bh->b_data,0,inode->i_sb->s_blocksize);
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1049 1050
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			err = ext4_journal_dirty_metadata(handle, bh);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1067
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1068 1069 1070 1071
			       int block, int create, int *err)
{
	struct buffer_head * bh;

1072
	bh = ext4_getblk(handle, inode, block, create, err);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

static int walk_page_buffers(	handle_t *handle,
				struct buffer_head *head,
				unsigned from,
				unsigned to,
				int *partial,
				int (*fn)(	handle_t *handle,
						struct buffer_head *bh))
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

	for (	bh = head, block_start = 0;
		ret == 0 && (bh != head || !block_start);
		block_start = block_end, bh = next)
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1121
 * close off a transaction and start a new one between the ext4_get_block()
1122 1123 1124
 * and the commit_write().  So doing the journal_start at the start of
 * prepare_write() is the right place.
 *
1125 1126
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1127 1128 1129 1130
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1131
 * By accident, ext4 can be reentered when a transaction is open via
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
 * So what we do is to rely on the fact that journal_stop/journal_start
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1148
	return ext4_journal_get_write_access(handle, bh);
1149 1150
}

1151
static int ext4_prepare_write(struct file *file, struct page *page,
1152 1153 1154
			      unsigned from, unsigned to)
{
	struct inode *inode = page->mapping->host;
1155
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1156 1157 1158 1159
	handle_t *handle;
	int retries = 0;

retry:
1160
	handle = ext4_journal_start(inode, needed_blocks);
1161 1162 1163 1164
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
1165 1166
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
		ret = nobh_prepare_write(page, from, to, ext4_get_block);
1167
	else
1168
		ret = block_prepare_write(page, from, to, ext4_get_block);
1169 1170 1171
	if (ret)
		goto prepare_write_failed;

1172
	if (ext4_should_journal_data(inode)) {
1173 1174 1175 1176 1177
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
prepare_write_failed:
	if (ret)
1178 1179
		ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1180 1181 1182 1183 1184
		goto retry;
out:
	return ret;
}

1185
int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1186 1187 1188
{
	int err = journal_dirty_data(handle, bh);
	if (err)
1189
		ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
						bh, handle,err);
	return err;
}

/* For commit_write() in data=journal mode */
static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1200
	return ext4_journal_dirty_metadata(handle, bh);
1201 1202 1203 1204 1205 1206
}

/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1207
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1208 1209
 * buffers are managed internally.
 */
1210
static int ext4_ordered_commit_write(struct file *file, struct page *page,
1211 1212
			     unsigned from, unsigned to)
{
1213
	handle_t *handle = ext4_journal_current_handle();
1214 1215 1216 1217
	struct inode *inode = page->mapping->host;
	int ret = 0, ret2;

	ret = walk_page_buffers(handle, page_buffers(page),
1218
		from, to, NULL, ext4_journal_dirty_data);
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

	if (ret == 0) {
		/*
		 * generic_commit_write() will run mark_inode_dirty() if i_size
		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
		 * into that.
		 */
		loff_t new_i_size;

		new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1229 1230
		if (new_i_size > EXT4_I(inode)->i_disksize)
			EXT4_I(inode)->i_disksize = new_i_size;
1231 1232
		ret = generic_commit_write(file, page, from, to);
	}
1233
	ret2 = ext4_journal_stop(handle);
1234 1235 1236 1237 1238
	if (!ret)
		ret = ret2;
	return ret;
}

1239
static int ext4_writeback_commit_write(struct file *file, struct page *page,
1240 1241
			     unsigned from, unsigned to)
{
1242
	handle_t *handle = ext4_journal_current_handle();
1243 1244 1245 1246 1247
	struct inode *inode = page->mapping->host;
	int ret = 0, ret2;
	loff_t new_i_size;

	new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1248 1249
	if (new_i_size > EXT4_I(inode)->i_disksize)
		EXT4_I(inode)->i_disksize = new_i_size;
1250

1251
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1252 1253 1254 1255
		ret = nobh_commit_write(file, page, from, to);
	else
		ret = generic_commit_write(file, page, from, to);

1256
	ret2 = ext4_journal_stop(handle);
1257 1258 1259 1260 1261
	if (!ret)
		ret = ret2;
	return ret;
}

1262
static int ext4_journalled_commit_write(struct file *file,
1263 1264
			struct page *page, unsigned from, unsigned to)
{
1265
	handle_t *handle = ext4_journal_current_handle();
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	struct inode *inode = page->mapping->host;
	int ret = 0, ret2;
	int partial = 0;
	loff_t pos;

	/*
	 * Here we duplicate the generic_commit_write() functionality
	 */
	pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;

	ret = walk_page_buffers(handle, page_buffers(page), from,
				to, &partial, commit_write_fn);
	if (!partial)
		SetPageUptodate(page);
	if (pos > inode->i_size)
		i_size_write(inode, pos);
1282 1283 1284 1285
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	if (inode->i_size > EXT4_I(inode)->i_disksize) {
		EXT4_I(inode)->i_disksize = inode->i_size;
		ret2 = ext4_mark_inode_dirty(handle, inode);
1286 1287 1288
		if (!ret)
			ret = ret2;
	}
1289
	ret2 = ext4_journal_stop(handle);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	if (!ret)
		ret = ret2;
	return ret;
}

/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
1300
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
1301 1302 1303 1304 1305 1306 1307 1308
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
1309
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1310 1311 1312 1313 1314
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

1315
	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
1327
		 * NB. EXT4_STATE_JDATA is not set on files other than
1328 1329 1330 1331 1332 1333
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

1334 1335
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
1336 1337 1338 1339 1340 1341 1342 1343
		journal_lock_updates(journal);
		err = journal_flush(journal);
		journal_unlock_updates(journal);

		if (err)
			return 0;
	}

1344
	return generic_block_bmap(mapping,block,ext4_get_block);
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
{
	if (buffer_mapped(bh))
1362
		return ext4_journal_dirty_data(handle, bh);
1363 1364 1365 1366 1367 1368
	return 0;
}

/*
 * Note that we always start a transaction even if we're not journalling
 * data.  This is to preserve ordering: any hole instantiation within
1369
 * __block_write_full_page -> ext4_get_block() should be journalled
1370 1371 1372 1373 1374 1375 1376
 * along with the data so we don't crash and then get metadata which
 * refers to old data.
 *
 * In all journalling modes block_write_full_page() will start the I/O.
 *
 * Problem:
 *
1377 1378
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
1379 1380 1381
 *
 * Similar for:
 *
1382
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1383
 *
1384
 * Same applies to ext4_get_block().  We will deadlock on various things like
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
 * lock_journal and i_truncate_mutex.
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
 * we don't need to open a transaction here.
 */
1418
static int ext4_ordered_writepage(struct page *page,
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	J_ASSERT(PageLocked(page));

	/*
	 * We give up here if we're reentered, because it might be for a
	 * different filesystem.
	 */
1433
	if (ext4_journal_current_handle())
1434 1435
		goto out_fail;

1436
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

	if (!page_has_buffers(page)) {
		create_empty_buffers(page, inode->i_sb->s_blocksize,
				(1 << BH_Dirty)|(1 << BH_Uptodate));
	}
	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, bget_one);

1451
	ret = block_write_full_page(page, ext4_get_block, wbc);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

	/*
	 * The page can become unlocked at any point now, and
	 * truncate can then come in and change things.  So we
	 * can't touch *page from now on.  But *page_bufs is
	 * safe due to elevated refcount.
	 */

	/*
	 * And attach them to the current transaction.  But only if
	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
	 * and generally junk.
	 */
	if (ret == 0) {
		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
					NULL, journal_dirty_data_fn);
		if (!ret)
			ret = err;
	}
	walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, bput_one);
1473
	err = ext4_journal_stop(handle);
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

1484
static int ext4_writeback_writepage(struct page *page,
1485 1486 1487 1488 1489 1490 1491
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1492
	if (ext4_journal_current_handle())
1493 1494
		goto out_fail;

1495
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1496 1497 1498 1499 1500
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

1501 1502
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
		ret = nobh_writepage(page, ext4_get_block, wbc);
1503
	else
1504
		ret = block_write_full_page(page, ext4_get_block, wbc);
1505

1506
	err = ext4_journal_stop(handle);
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

1517
static int ext4_journalled_writepage(struct page *page,
1518 1519 1520 1521 1522 1523 1524
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1525
	if (ext4_journal_current_handle())
1526 1527
		goto no_write;

1528
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto no_write;
	}

	if (!page_has_buffers(page) || PageChecked(page)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1541
					ext4_get_block);
1542
		if (ret != 0) {
1543
			ext4_journal_stop(handle);
1544 1545 1546 1547 1548 1549 1550 1551 1552
			goto out_unlock;
		}
		ret = walk_page_buffers(handle, page_buffers(page), 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);

		err = walk_page_buffers(handle, page_buffers(page), 0,
				PAGE_CACHE_SIZE, NULL, commit_write_fn);
		if (ret == 0)
			ret = err;
1553
		EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1554 1555 1556 1557 1558 1559 1560
		unlock_page(page);
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
1561
		ret = block_write_full_page(page, ext4_get_block, wbc);
1562
	}
1563
	err = ext4_journal_stop(handle);
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	if (!ret)
		ret = err;
out:
	return ret;

no_write:
	redirty_page_for_writepage(wbc, page);
out_unlock:
	unlock_page(page);
	goto out;
}

1576
static int ext4_readpage(struct file *file, struct page *page)
1577
{
1578
	return mpage_readpage(page, ext4_get_block);
1579 1580 1581
}

static int
1582
ext4_readpages(struct file *file, struct address_space *mapping,
1583 1584
		struct list_head *pages, unsigned nr_pages)
{
1585
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1586 1587
}

1588
static void ext4_invalidatepage(struct page *page, unsigned long offset)
1589
{
1590
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

	journal_invalidatepage(journal, page, offset);
}

1601
static int ext4_releasepage(struct page *page, gfp_t wait)
1602
{
1603
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
	return journal_try_to_free_buffers(journal, page, wait);
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
 * crashes then stale disk data _may_ be exposed inside the file.
 */
1619
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1620 1621 1622 1623 1624
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
1625
	struct ext4_inode_info *ei = EXT4_I(inode);
1626 1627 1628 1629 1630 1631 1632 1633
	handle_t *handle = NULL;
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

1634
		handle = ext4_journal_start(inode, DIO_CREDITS);
1635 1636 1637 1638 1639
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
			goto out;
		}
		if (final_size > inode->i_size) {
1640
			ret = ext4_orphan_add(handle, inode);
1641 1642 1643 1644 1645 1646 1647 1648 1649
			if (ret)
				goto out_stop;
			orphan = 1;
			ei->i_disksize = inode->i_size;
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
1650
				 ext4_get_block, NULL);
1651 1652

	/*
1653
	 * Reacquire the handle: ext4_get_block() can restart the transaction
1654 1655 1656 1657 1658 1659 1660 1661
	 */
	handle = journal_current_handle();

out_stop:
	if (handle) {
		int err;

		if (orphan && inode->i_nlink)
1662
			ext4_orphan_del(handle, inode);
1663 1664 1665 1666 1667 1668 1669 1670 1671
		if (orphan && ret > 0) {
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
1672
				 * ext4_mark_inode_dirty() to userspace.  So
1673 1674
				 * ignore it.
				 */
1675
				ext4_mark_inode_dirty(handle, inode);
1676 1677
			}
		}
1678
		err = ext4_journal_stop(handle);
1679 1680 1681 1682 1683 1684 1685 1686
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
1687
 * Pages can be marked dirty completely asynchronously from ext4's journalling
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
1699
static int ext4_journalled_set_page_dirty(struct page *page)
1700 1701 1702 1703 1704
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

1705 1706 1707 1708
static const struct address_space_operations ext4_ordered_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_ordered_writepage,
1709
	.sync_page	= block_sync_page,
1710 1711 1712 1713 1714 1715
	.prepare_write	= ext4_prepare_write,
	.commit_write	= ext4_ordered_commit_write,
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1716 1717 1718
	.migratepage	= buffer_migrate_page,
};

1719 1720 1721 1722
static const struct address_space_operations ext4_writeback_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_writeback_writepage,
1723
	.sync_page	= block_sync_page,
1724 1725 1726 1727 1728 1729
	.prepare_write	= ext4_prepare_write,
	.commit_write	= ext4_writeback_commit_write,
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1730 1731 1732
	.migratepage	= buffer_migrate_page,
};

1733 1734 1735 1736
static const struct address_space_operations ext4_journalled_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_journalled_writepage,
1737
	.sync_page	= block_sync_page,
1738 1739 1740 1741 1742 1743
	.prepare_write	= ext4_prepare_write,
	.commit_write	= ext4_journalled_commit_write,
	.set_page_dirty	= ext4_journalled_set_page_dirty,
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
1744 1745
};

1746
void ext4_set_aops(struct inode *inode)
1747
{
1748 1749 1750 1751
	if (ext4_should_order_data(inode))
		inode->i_mapping->a_ops = &ext4_ordered_aops;
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
1752
	else
1753
		inode->i_mapping->a_ops = &ext4_journalled_aops;
1754 1755 1756
}

/*
1757
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1758 1759 1760 1761
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
1762
static int ext4_block_truncate_page(handle_t *handle, struct page *page,
1763 1764
		struct address_space *mapping, loff_t from)
{
1765
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	unsigned blocksize, iblock, length, pos;
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
	int err = 0;
	void *kaddr;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1782
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
		kaddr = kmap_atomic(page, KM_USER0);
		memset(kaddr + offset, 0, length);
		flush_dcache_page(page);
		kunmap_atomic(kaddr, KM_USER0);
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
1811
		ext4_get_block(inode, iblock, bh, 0);
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

1832
	if (ext4_should_journal_data(inode)) {
1833
		BUFFER_TRACE(bh, "get write access");
1834
		err = ext4_journal_get_write_access(handle, bh);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
		if (err)
			goto unlock;
	}

	kaddr = kmap_atomic(page, KM_USER0);
	memset(kaddr + offset, 0, length);
	flush_dcache_page(page);
	kunmap_atomic(kaddr, KM_USER0);

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
1847 1848
	if (ext4_should_journal_data(inode)) {
		err = ext4_journal_dirty_metadata(handle, bh);
1849
	} else {
1850 1851
		if (ext4_should_order_data(inode))
			err = ext4_journal_dirty_data(handle, bh);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
1875
 *	ext4_find_shared - find the indirect blocks for partial truncation.
1876 1877
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
1878
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
1879 1880 1881
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
1882
 *	This is a helper function used by ext4_truncate().
1883 1884 1885 1886 1887 1888 1889
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
1890
 *	past the truncation point is possible until ext4_truncate()
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

1909
static Indirect *ext4_find_shared(struct inode *inode, int depth,
1910 1911 1912 1913 1914 1915 1916 1917 1918
			int offsets[4], Indirect chain[4], __le32 *top)
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
1919
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
1942
		/* Nope, don't do this in ext4.  Must leave the tree intact */
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

	while(partial > p) {
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
1965 1966
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
1967 1968 1969 1970 1971
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
1972 1973
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			ext4_journal_dirty_metadata(handle, bh);
1974
		}
1975 1976
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
1977 1978
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
1979
			ext4_journal_get_write_access(handle, bh);
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
	 * them on the hash table so journal_revoke() will run journal_forget()
	 * on them.  We've already detached each block from the file, so
	 * bforget() in journal_forget() should be safe.
	 *
	 * AKPM: turn on bforget in journal_forget()!!!
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
			struct buffer_head *bh;

			*p = 0;
			bh = sb_find_get_block(inode->i_sb, nr);
1998
			ext4_forget(handle, 0, inode, bh, nr);
1999 2000 2001
		}
	}

2002
	ext4_free_blocks(handle, inode, block_to_free, count);
2003 2004 2005
}

/**
2006
 * ext4_free_data - free a list of data blocks
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
2024
static void ext4_free_data(handle_t *handle, struct inode *inode,
2025 2026 2027
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
2028
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2029 2030 2031 2032
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
2033
	ext4_fsblk_t nr;		    /* Current block # */
2034 2035 2036 2037 2038 2039
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
2040
		err = ext4_journal_get_write_access(handle, this_bh);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
2058
				ext4_clear_blocks(handle, inode, this_bh,
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
2069
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2070 2071 2072
				  count, block_to_free_p, p);

	if (this_bh) {
2073 2074
		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
		ext4_journal_dirty_metadata(handle, this_bh);
2075 2076 2077 2078
	}
}

/**
2079
 *	ext4_free_branches - free an array of branches
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
2091
static void ext4_free_branches(handle_t *handle, struct inode *inode,
2092 2093 2094
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
2095
	ext4_fsblk_t nr;
2096 2097 2098 2099 2100 2101 2102
	__le32 *p;

	if (is_handle_aborted(handle))
		return;

	if (depth--) {
		struct buffer_head *bh;
2103
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
2118
				ext4_error(inode->i_sb, "ext4_free_branches",
2119 2120 2121 2122 2123 2124 2125
					   "Read failure, inode=%lu, block="E3FSBLK,
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
2126
			ext4_free_branches(handle, inode, bh,
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
					   (__le32*)bh->b_data,
					   (__le32*)bh->b_data + addr_per_block,
					   depth);

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
			 * journal_revoke().
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
			 * transaction then journal_forget() will simply
			 * brelse() it.  That means that if the underlying
2141
			 * block is reallocated in ext4_get_block(),
2142 2143 2144 2145 2146 2147 2148 2149
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
2150
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
			if (is_handle_aborted(handle))
				return;
			if (try_to_extend_transaction(handle, inode)) {
2171 2172
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
2173 2174
			}

2175
			ext4_free_blocks(handle, inode, nr, 1);
2176 2177 2178 2179 2180 2181 2182

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
2183
				if (!ext4_journal_get_write_access(handle,
2184 2185 2186
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
2187 2188
					"call ext4_journal_dirty_metadata");
					ext4_journal_dirty_metadata(handle,
2189 2190 2191 2192 2193 2194 2195
								    parent_bh);
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
2196
		ext4_free_data(handle, inode, parent_bh, first, last);
2197 2198 2199 2200
	}
}

/*
2201
 * ext4_truncate()
2202
 *
2203 2204
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
2221
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2222
 * that this inode's truncate did not complete and it will again call
2223 2224
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
2225
 * that's fine - as long as they are linked from the inode, the post-crash
2226
 * ext4_truncate() run will find them and release them.
2227
 */
2228
void ext4_truncate(struct inode *inode)
2229 2230
{
	handle_t *handle;
2231
	struct ext4_inode_info *ei = EXT4_I(inode);
2232
	__le32 *i_data = ei->i_data;
2233
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	struct address_space *mapping = inode->i_mapping;
	int offsets[4];
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
	long last_block;
	unsigned blocksize = inode->i_sb->s_blocksize;
	struct page *page;

	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
	    S_ISLNK(inode->i_mode)))
		return;
2247
	if (ext4_inode_is_fast_symlink(inode))
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
		return;
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return;

	/*
	 * We have to lock the EOF page here, because lock_page() nests
	 * outside journal_start().
	 */
	if ((inode->i_size & (blocksize - 1)) == 0) {
		/* Block boundary? Nothing to do */
		page = NULL;
	} else {
		page = grab_cache_page(mapping,
				inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
	}

	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		if (page) {
			clear_highpage(page);
			flush_dcache_page(page);
			unlock_page(page);
			page_cache_release(page);
		}
		return;		/* AKPM: return what? */
	}

	last_block = (inode->i_size + blocksize-1)
2278
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2279 2280

	if (page)
2281
		ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2282

2283
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
2296
	if (ext4_orphan_add(handle, inode))
2297 2298 2299 2300 2301 2302 2303
		goto out_stop;

	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
2304
	 * ext4 *really* writes onto the disk inode.
2305 2306 2307 2308
	 */
	ei->i_disksize = inode->i_size;

	/*
2309
	 * From here we block out all ext4_get_block() callers who want to
2310 2311 2312 2313 2314
	 * modify the block allocation tree.
	 */
	mutex_lock(&ei->truncate_mutex);

	if (n == 1) {		/* direct blocks */
2315 2316
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
2317 2318 2319
		goto do_indirects;
	}

2320
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2321 2322 2323 2324
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
2325
			ext4_free_branches(handle, inode, NULL,
2326 2327 2328 2329 2330 2331 2332 2333 2334
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
2335
			ext4_free_branches(handle, inode, partial->bh,
2336 2337 2338 2339 2340 2341
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
2342
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
2353
		nr = i_data[EXT4_IND_BLOCK];
2354
		if (nr) {
2355 2356
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
2357
		}
2358 2359
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
2360
		if (nr) {
2361 2362
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
2363
		}
2364 2365
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
2366
		if (nr) {
2367 2368
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
2369
		}
2370
	case EXT4_TIND_BLOCK:
2371 2372 2373
		;
	}

2374
	ext4_discard_reservation(inode);
2375 2376 2377

	mutex_unlock(&ei->truncate_mutex);
	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2378
	ext4_mark_inode_dirty(handle, inode);
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
		handle->h_sync = 1;
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
2391
	 * ext4_delete_inode(), and we allow that function to clean up the
2392 2393 2394
	 * orphan info for us.
	 */
	if (inode->i_nlink)
2395
		ext4_orphan_del(handle, inode);
2396

2397
	ext4_journal_stop(handle);
2398 2399
}

2400 2401
static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
		unsigned long ino, struct ext4_iloc *iloc)
2402 2403 2404
{
	unsigned long desc, group_desc, block_group;
	unsigned long offset;
2405
	ext4_fsblk_t block;
2406
	struct buffer_head *bh;
2407
	struct ext4_group_desc * gdp;
2408

2409
	if (!ext4_valid_inum(sb, ino)) {
2410 2411 2412 2413 2414 2415 2416 2417
		/*
		 * This error is already checked for in namei.c unless we are
		 * looking at an NFS filehandle, in which case no error
		 * report is needed
		 */
		return 0;
	}

2418 2419 2420
	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
	if (block_group >= EXT4_SB(sb)->s_groups_count) {
		ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2421 2422 2423
		return 0;
	}
	smp_rmb();
2424 2425 2426
	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
	desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
	bh = EXT4_SB(sb)->s_group_desc[group_desc];
2427
	if (!bh) {
2428
		ext4_error (sb, "ext4_get_inode_block",
2429 2430 2431 2432
			    "Descriptor not loaded");
		return 0;
	}

2433
	gdp = (struct ext4_group_desc *)bh->b_data;
2434 2435 2436
	/*
	 * Figure out the offset within the block group inode table
	 */
2437 2438
	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
		EXT4_INODE_SIZE(sb);
2439
	block = le32_to_cpu(gdp[desc].bg_inode_table) +
2440
		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
2441 2442

	iloc->block_group = block_group;
2443
	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2444 2445 2446 2447
	return block;
}

/*
2448
 * ext4_get_inode_loc returns with an extra refcount against the inode's
2449 2450 2451 2452
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
2453 2454
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
2455
{
2456
	ext4_fsblk_t block;
2457 2458
	struct buffer_head *bh;

2459
	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2460 2461 2462 2463 2464
	if (!block)
		return -EIO;

	bh = sb_getblk(inode->i_sb, block);
	if (!bh) {
2465
		ext4_error (inode->i_sb, "ext4_get_inode_loc",
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
				"unable to read inode block - "
				"inode=%lu, block="E3FSBLK,
				 inode->i_ino, block);
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
2486
			struct ext4_group_desc *desc;
2487 2488 2489 2490 2491 2492
			int inodes_per_buffer;
			int inode_offset, i;
			int block_group;
			int start;

			block_group = (inode->i_ino - 1) /
2493
					EXT4_INODES_PER_GROUP(inode->i_sb);
2494
			inodes_per_buffer = bh->b_size /
2495
				EXT4_INODE_SIZE(inode->i_sb);
2496
			inode_offset = ((inode->i_ino - 1) %
2497
					EXT4_INODES_PER_GROUP(inode->i_sb));
2498 2499 2500
			start = inode_offset & ~(inodes_per_buffer - 1);

			/* Is the inode bitmap in cache? */
2501
			desc = ext4_get_group_desc(inode->i_sb,
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
						block_group, NULL);
			if (!desc)
				goto make_io;

			bitmap_bh = sb_getblk(inode->i_sb,
					le32_to_cpu(desc->bg_inode_bitmap));
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
			for (i = start; i < start + inodes_per_buffer; i++) {
				if (i == inode_offset)
					continue;
2523
				if (ext4_test_bit(i, bitmap_bh->b_data))
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
					break;
			}
			brelse(bitmap_bh);
			if (i == start + inodes_per_buffer) {
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
2547
			ext4_error(inode->i_sb, "ext4_get_inode_loc",
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
					"unable to read inode block - "
					"inode=%lu, block="E3FSBLK,
					inode->i_ino, block);
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

2560
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2561 2562
{
	/* We have all inode data except xattrs in memory here. */
2563 2564
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2565 2566
}

2567
void ext4_set_inode_flags(struct inode *inode)
2568
{
2569
	unsigned int flags = EXT4_I(inode)->i_flags;
2570 2571

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2572
	if (flags & EXT4_SYNC_FL)
2573
		inode->i_flags |= S_SYNC;
2574
	if (flags & EXT4_APPEND_FL)
2575
		inode->i_flags |= S_APPEND;
2576
	if (flags & EXT4_IMMUTABLE_FL)
2577
		inode->i_flags |= S_IMMUTABLE;
2578
	if (flags & EXT4_NOATIME_FL)
2579
		inode->i_flags |= S_NOATIME;
2580
	if (flags & EXT4_DIRSYNC_FL)
2581 2582 2583
		inode->i_flags |= S_DIRSYNC;
}

2584
void ext4_read_inode(struct inode * inode)
2585
{
2586 2587 2588
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
	struct ext4_inode_info *ei = EXT4_I(inode);
2589 2590 2591
	struct buffer_head *bh;
	int block;

2592 2593 2594
#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2595 2596 2597
#endif
	ei->i_block_alloc_info = NULL;

2598
	if (__ext4_get_inode_loc(inode, &iloc, 0))
2599 2600
		goto bad_inode;
	bh = iloc.bh;
2601
	raw_inode = ext4_raw_inode(&iloc);
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
	if(!(test_opt (inode->i_sb, NO_UID32))) {
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
	inode->i_size = le32_to_cpu(raw_inode->i_size);
	inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
	inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
	inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
	inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
2626
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
			/* this inode is deleted */
			brelse (bh);
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2638
#ifdef EXT4_FRAGMENTS
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
	ei->i_frag_no = raw_inode->i_frag;
	ei->i_frag_size = raw_inode->i_fsize;
#endif
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
	if (!S_ISREG(inode->i_mode)) {
		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
	} else {
		inode->i_size |=
			((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
	}
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
2657
	for (block = 0; block < EXT4_N_BLOCKS; block++)
2658 2659 2660
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

2661 2662
	if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
	    EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2663 2664
		/*
		 * When mke2fs creates big inodes it does not zero out
2665
		 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2666 2667 2668
		 * so ignore those first few inodes.
		 */
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2669 2670
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb))
2671 2672 2673
			goto bad_inode;
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
2674 2675
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
2676 2677
		} else {
			__le32 *magic = (void *)raw_inode +
2678
					EXT4_GOOD_OLD_INODE_SIZE +
2679
					ei->i_extra_isize;
2680 2681
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
2682 2683 2684 2685 2686
		}
	} else
		ei->i_extra_isize = 0;

	if (S_ISREG(inode->i_mode)) {
2687 2688 2689
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
2690
	} else if (S_ISDIR(inode->i_mode)) {
2691 2692
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
2693
	} else if (S_ISLNK(inode->i_mode)) {
2694 2695
		if (ext4_inode_is_fast_symlink(inode))
			inode->i_op = &ext4_fast_symlink_inode_operations;
2696
		else {
2697 2698
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
2699 2700
		}
	} else {
2701
		inode->i_op = &ext4_special_inode_operations;
2702 2703 2704 2705 2706 2707 2708 2709
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
	brelse (iloc.bh);
2710
	ext4_set_inode_flags(inode);
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	return;

bad_inode:
	make_bad_inode(inode);
	return;
}

/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
2725
static int ext4_do_update_inode(handle_t *handle,
2726
				struct inode *inode,
2727
				struct ext4_iloc *iloc)
2728
{
2729 2730
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
2731 2732 2733 2734 2735
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
2736 2737
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771

	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
	if(!(test_opt(inode->i_sb, NO_UID32))) {
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
		if(!ei->i_dtime) {
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
	raw_inode->i_size = cpu_to_le32(ei->i_disksize);
	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2772
#ifdef EXT4_FRAGMENTS
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
	raw_inode->i_frag = ei->i_frag_no;
	raw_inode->i_fsize = ei->i_frag_size;
#endif
	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
	if (!S_ISREG(inode->i_mode)) {
		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
	} else {
		raw_inode->i_size_high =
			cpu_to_le32(ei->i_disksize >> 32);
		if (ei->i_disksize > 0x7fffffffULL) {
			struct super_block *sb = inode->i_sb;
2785 2786 2787 2788
			if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
			    EXT4_SB(sb)->s_es->s_rev_level ==
					cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2789 2790 2791
			       /* If this is the first large file
				* created, add a flag to the superblock.
				*/
2792 2793
				err = ext4_journal_get_write_access(handle,
						EXT4_SB(sb)->s_sbh);
2794 2795
				if (err)
					goto out_brelse;
2796 2797 2798
				ext4_update_dynamic_rev(sb);
				EXT4_SET_RO_COMPAT_FEATURE(sb,
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2799 2800
				sb->s_dirt = 1;
				handle->h_sync = 1;
2801 2802
				err = ext4_journal_dirty_metadata(handle,
						EXT4_SB(sb)->s_sbh);
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
			}
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
2818
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
2819 2820 2821 2822 2823
		raw_inode->i_block[block] = ei->i_data[block];

	if (ei->i_extra_isize)
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);

2824 2825
	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
	rc = ext4_journal_dirty_metadata(handle, bh);
2826 2827
	if (!err)
		err = rc;
2828
	ei->i_state &= ~EXT4_STATE_NEW;
2829 2830 2831

out_brelse:
	brelse (bh);
2832
	ext4_std_error(inode->i_sb, err);
2833 2834 2835 2836
	return err;
}

/*
2837
 * ext4_write_inode()
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
2854
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
2871
int ext4_write_inode(struct inode *inode, int wait)
2872 2873 2874 2875
{
	if (current->flags & PF_MEMALLOC)
		return 0;

2876
	if (ext4_journal_current_handle()) {
2877 2878 2879 2880 2881 2882 2883 2884
		jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

2885
	return ext4_force_commit(inode->i_sb);
2886 2887 2888
}

/*
2889
 * ext4_setattr()
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
 * Called with inode->sem down.
 */
2905
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
2921 2922
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
2923 2924 2925 2926 2927 2928
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
		if (error) {
2929
			ext4_journal_stop(handle);
2930 2931 2932 2933 2934 2935 2936 2937
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
2938 2939
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
2940 2941 2942 2943 2944 2945
	}

	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

2946
		handle = ext4_journal_start(inode, 3);
2947 2948 2949 2950 2951
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

2952 2953 2954
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
2955 2956
		if (!error)
			error = rc;
2957
		ext4_journal_stop(handle);
2958 2959 2960 2961
	}

	rc = inode_setattr(inode, attr);

2962
	/* If inode_setattr's call to ext4_truncate failed to get a
2963 2964 2965
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
2966
		ext4_orphan_del(NULL, inode);
2967 2968

	if (!rc && (ia_valid & ATTR_MODE))
2969
		rc = ext4_acl_chmod(inode);
2970 2971

err_out:
2972
	ext4_std_error(inode->i_sb, error);
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
	if (!error)
		error = rc;
	return error;
}


/*
 * How many blocks doth make a writepage()?
 *
 * With N blocks per page, it may be:
 * N data blocks
 * 2 indirect block
 * 2 dindirect
 * 1 tindirect
 * N+5 bitmap blocks (from the above)
 * N+5 group descriptor summary blocks
 * 1 inode block
 * 1 superblock.
2991
 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
2992
 *
2993
 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
 *
 * With ordered or writeback data it's the same, less the N data blocks.
 *
 * If the inode's direct blocks can hold an integral number of pages then a
 * page cannot straddle two indirect blocks, and we can only touch one indirect
 * and dindirect block, and the "5" above becomes "3".
 *
 * This still overestimates under most circumstances.  If we were to pass the
 * start and end offsets in here as well we could do block_to_path() on each
 * block and work out the exact number of indirects which are touched.  Pah.
 */

3006
static int ext4_writepage_trans_blocks(struct inode *inode)
3007
{
3008 3009
	int bpp = ext4_journal_blocks_per_page(inode);
	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3010 3011
	int ret;

3012
	if (ext4_should_journal_data(inode))
3013 3014 3015 3016 3017 3018 3019
		ret = 3 * (bpp + indirects) + 2;
	else
		ret = 2 * (bpp + indirects) + 2;

#ifdef CONFIG_QUOTA
	/* We know that structure was already allocated during DQUOT_INIT so
	 * we will be updating only the data blocks + inodes */
3020
	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3021 3022 3023 3024 3025 3026
#endif

	return ret;
}

/*
3027
 * The caller must have previously called ext4_reserve_inode_write().
3028 3029
 * Give this, we know that the caller already has write access to iloc->bh.
 */
3030 3031
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
3032 3033 3034 3035 3036 3037
{
	int err = 0;

	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

3038 3039
	/* ext4_do_update_inode() does journal_dirty_metadata */
	err = ext4_do_update_inode(handle, inode, iloc);
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
3050 3051
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
3052 3053 3054
{
	int err = 0;
	if (handle) {
3055
		err = ext4_get_inode_loc(inode, iloc);
3056 3057
		if (!err) {
			BUFFER_TRACE(iloc->bh, "get_write_access");
3058
			err = ext4_journal_get_write_access(handle, iloc->bh);
3059 3060 3061 3062 3063 3064
			if (err) {
				brelse(iloc->bh);
				iloc->bh = NULL;
			}
		}
	}
3065
	ext4_std_error(inode->i_sb, err);
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
	return err;
}

/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
3090
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3091
{
3092
	struct ext4_iloc iloc;
3093 3094 3095
	int err;

	might_sleep();
3096
	err = ext4_reserve_inode_write(handle, inode, &iloc);
3097
	if (!err)
3098
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3099 3100 3101 3102
	return err;
}

/*
3103
 * ext4_dirty_inode() is called from __mark_inode_dirty()
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
3116
void ext4_dirty_inode(struct inode *inode)
3117
{
3118
	handle_t *current_handle = ext4_journal_current_handle();
3119 3120
	handle_t *handle;

3121
	handle = ext4_journal_start(inode, 2);
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
		       __FUNCTION__);
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
3132
		ext4_mark_inode_dirty(handle, inode);
3133
	}
3134
	ext4_journal_stop(handle);
3135 3136 3137 3138 3139 3140 3141 3142
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
3143
 * ext4_reserve_inode_write, this leaves behind no bh reference and
3144 3145 3146
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
3147
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3148
{
3149
	struct ext4_iloc iloc;
3150 3151 3152

	int err = 0;
	if (handle) {
3153
		err = ext4_get_inode_loc(inode, &iloc);
3154 3155 3156 3157
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
			err = journal_get_write_access(handle, iloc.bh);
			if (!err)
3158
				err = ext4_journal_dirty_metadata(handle,
3159 3160 3161 3162
								  iloc.bh);
			brelse(iloc.bh);
		}
	}
3163
	ext4_std_error(inode->i_sb, err);
3164 3165 3166 3167
	return err;
}
#endif

3168
int ext4_change_inode_journal_flag(struct inode *inode, int val)
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

3184
	journal = EXT4_JOURNAL(inode);
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	if (is_journal_aborted(journal) || IS_RDONLY(inode))
		return -EROFS;

	journal_lock_updates(journal);
	journal_flush(journal);

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
3200
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3201
	else
3202 3203
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
3204 3205 3206 3207 3208

	journal_unlock_updates(journal);

	/* Finally we can mark the inode as dirty. */

3209
	handle = ext4_journal_start(inode, 1);
3210 3211 3212
	if (IS_ERR(handle))
		return PTR_ERR(handle);

3213
	err = ext4_mark_inode_dirty(handle, inode);
3214
	handle->h_sync = 1;
3215 3216
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
3217 3218 3219

	return err;
}