inode.c 153.7 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "ext4_extents.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
53 54 55 56
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
57 58
}

59 60
static void ext4_invalidatepage(struct page *page, unsigned long offset);

61 62 63
/*
 * Test whether an inode is a fast symlink.
 */
64
static int ext4_inode_is_fast_symlink(struct inode *inode)
65
{
66
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
67 68 69 70 71 72
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
73
 * The ext4 forget function must perform a revoke if we are freeing data
74 75 76 77 78 79
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
80
 *
81 82
 * If the handle isn't valid we're not journaling, but we still need to
 * call into ext4_journal_revoke() to put the buffer head.
83
 */
84
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
85
		struct buffer_head *bh, ext4_fsblk_t blocknr)
86 87 88 89 90 91 92 93
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
94
		  "data mode %x\n",
95 96 97 98 99 100 101 102
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

103 104
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
105
		if (bh) {
106
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
107
			return ext4_journal_forget(handle, bh);
108 109 110 111 112 113 114
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
115 116
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
117
	if (err)
118
		ext4_abort(inode->i_sb, __func__,
119 120 121 122 123 124 125 126 127 128 129
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
130
	ext4_lblk_t needed;
131 132 133 134 135 136

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
137
	 * like a regular file for ext4 to try to delete it.  Things
138 139 140 141 142 143 144
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
145 146
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
147

148
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

165
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
166 167 168
	if (!IS_ERR(result))
		return result;

169
	ext4_std_error(inode->i_sb, PTR_ERR(result));
170 171 172 173 174 175 176 177 178 179 180
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
181 182 183
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
184
		return 0;
185
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
186 187 188 189 190 191 192 193 194
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
195
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
196
{
197
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
198
	jbd_debug(2, "restarting handle %p\n", handle);
199
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
200 201 202 203 204
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
205
void ext4_delete_inode(struct inode *inode)
206 207
{
	handle_t *handle;
208
	int err;
209

210 211
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
212 213 214 215 216
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

217
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
218
	if (IS_ERR(handle)) {
219
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
220 221 222 223 224
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
225
		ext4_orphan_del(NULL, inode);
226 227 228 229
		goto no_delete;
	}

	if (IS_SYNC(inode))
230
		ext4_handle_sync(handle);
231
	inode->i_size = 0;
232 233 234 235 236 237
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
238
	if (inode->i_blocks)
239
		ext4_truncate(inode);
240 241 242 243 244 245 246

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
247
	if (!ext4_handle_has_enough_credits(handle, 3)) {
248 249 250 251 252 253 254 255 256 257 258 259
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

260
	/*
261
	 * Kill off the orphan record which ext4_truncate created.
262
	 * AKPM: I think this can be inside the above `if'.
263
	 * Note that ext4_orphan_del() has to be able to cope with the
264
	 * deletion of a non-existent orphan - this is because we don't
265
	 * know if ext4_truncate() actually created an orphan record.
266 267
	 * (Well, we could do this if we need to, but heck - it works)
	 */
268 269
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
270 271 272 273 274 275 276 277

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
278
	if (ext4_mark_inode_dirty(handle, inode))
279 280 281
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
282 283
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
302
 *	ext4_block_to_path - parse the block number into array of offsets
303 304 305
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
306 307
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
308
 *
309
 *	To store the locations of file's data ext4 uses a data structure common
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

332
static int ext4_block_to_path(struct inode *inode,
333 334
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
335
{
336 337 338
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
339 340 341 342 343
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

344
	if (i_block < direct_blocks) {
345 346
		offsets[n++] = i_block;
		final = direct_blocks;
347
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
348
		offsets[n++] = EXT4_IND_BLOCK;
349 350 351
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
352
		offsets[n++] = EXT4_DIND_BLOCK;
353 354 355 356
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
357
		offsets[n++] = EXT4_TIND_BLOCK;
358 359 360 361 362
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
363
		ext4_warning(inode->i_sb, "ext4_block_to_path",
364 365 366
			     "block %lu > max in inode %lu",
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
367 368 369 370 371 372
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

373
static int __ext4_check_blockref(const char *function, struct inode *inode,
374 375
				 __le32 *p, unsigned int max)
{
376
	__le32 *bref = p;
377 378
	unsigned int blk;

379
	while (bref < p+max) {
380
		blk = le32_to_cpu(*bref++);
381 382
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
383
						    blk, 1))) {
384
			ext4_error(inode->i_sb, function,
385 386
				   "invalid block reference %u "
				   "in inode #%lu", blk, inode->i_ino);
387 388 389 390
			return -EIO;
		}
	}
	return 0;
391 392 393 394
}


#define ext4_check_indirect_blockref(inode, bh)                         \
395
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396 397 398
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
399
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400 401
			      EXT4_NDIR_BLOCKS)

402
/**
403
 *	ext4_get_branch - read the chain of indirect blocks leading to data
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
428 429
 *
 *      Need to be called with
430
 *      down_read(&EXT4_I(inode)->i_data_sem)
431
 */
A
Aneesh Kumar K.V 已提交
432 433
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
434 435 436 437 438 439 440 441
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
442
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443 444 445
	if (!p->key)
		goto no_block;
	while (--depth) {
446 447
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
448
			goto failure;
449

450 451 452 453 454 455 456 457 458 459 460
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
461

462
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463 464 465 466 467 468 469 470 471 472 473 474 475
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
476
 *	ext4_find_near - find a place for allocation with sufficient locality
477 478 479
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
480
 *	This function returns the preferred place for block allocation.
481 482 483 484 485 486 487 488 489 490 491 492 493 494
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
495
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496
{
497
	struct ext4_inode_info *ei = EXT4_I(inode);
498
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499
	__le32 *p;
500
	ext4_fsblk_t bg_start;
501
	ext4_fsblk_t last_block;
502
	ext4_grpblk_t colour;
503 504
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
520 521 522 523 524 525 526
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527 528
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

529 530 531 532 533 534 535
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

536 537
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
538
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539 540
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541 542 543 544
	return bg_start + colour;
}

/**
545
 *	ext4_find_goal - find a preferred place for allocation.
546 547 548 549
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
550
 *	Normally this function find the preferred place for block allocation,
551
 *	returns it.
552
 */
A
Aneesh Kumar K.V 已提交
553
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554
				   Indirect *partial)
555 556
{
	/*
557
	 * XXX need to get goal block from mballoc's data structures
558 559
	 */

560
	return ext4_find_near(inode, partial);
561 562 563
}

/**
564
 *	ext4_blks_to_allocate: Look up the block map and count the number
565 566 567 568 569 570 571 572 573 574
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
575
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576
				 int blocks_to_boundary)
577
{
578
	unsigned int count = 0;
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
602
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
603 604 605 606 607 608 609 610
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
611
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612 613 614
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
615
{
616
	struct ext4_allocation_request ar;
617
	int target, i;
618
	unsigned long count = 0, blk_allocated = 0;
619
	int index = 0;
620
	ext4_fsblk_t current_block = 0;
621 622 623 624 625 626 627 628 629 630
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
631 632 633
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
634 635
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
636 637
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
638 639 640 641 642 643 644 645 646
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
647 648 649 650 651 652 653 654 655
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
656
			break;
657
		}
658 659
	}

660 661 662 663 664
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
665 666 667 668 669 670 671 672 673 674 675
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

676 677 678 679 680 681 682 683 684
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
685 686 687 688
			/*
			 * save the new block number
			 * for the first direct block
			 */
689 690
			new_blocks[index] = current_block;
		}
691
		blk_allocated += ar.len;
692 693
	}
allocated:
694
	/* total number of blocks allocated for direct blocks */
695
	ret = blk_allocated;
696 697 698
	*err = 0;
	return ret;
failed_out:
699
	for (i = 0; i < index; i++)
700
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701 702 703 704
	return ret;
}

/**
705
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
706 707 708 709 710 711 712 713 714 715
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
716
 *	the same format as ext4_get_branch() would do. We are calling it after
717 718
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
719
 *	picture as after the successful ext4_get_block(), except that in one
720 721 722 723 724 725
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
726
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727 728
 *	as described above and return 0.
 */
729
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730 731 732
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
733 734 735 736 737 738
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
739 740
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
741

742
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
761
		err = ext4_journal_get_create_access(handle, bh);
762
		if (err) {
763 764
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
765 766 767 768 769 770 771 772
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
773
		if (n == indirect_blks) {
774 775 776 777 778 779
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
780
			for (i = 1; i < num; i++)
781 782 783 784 785 786
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

787 788
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
789 790 791 792 793 794 795 796
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
797
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
798
		ext4_journal_forget(handle, branch[i].bh);
799
	}
800
	for (i = 0; i < indirect_blks; i++)
801
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
802

803
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
804 805 806 807 808

	return err;
}

/**
809
 * ext4_splice_branch - splice the allocated branch onto inode.
810 811 812
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
813
 *	ext4_alloc_branch)
814 815 816 817 818 819 820 821
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
822
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
823 824
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
825 826 827
{
	int i;
	int err = 0;
828
	ext4_fsblk_t current_block;
829 830 831 832 833 834 835 836

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
837
		err = ext4_journal_get_write_access(handle, where->bh);
838 839 840 841 842 843 844 845 846 847 848 849 850 851
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
852
			*(where->p + i) = cpu_to_le32(current_block++);
853 854 855 856 857 858 859 860 861 862 863
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
864
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
865 866
		 */
		jbd_debug(5, "splicing indirect only\n");
867 868
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
869 870 871 872 873 874
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
875
		ext4_mark_inode_dirty(handle, inode);
876 877 878 879 880 881
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
882
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
883
		ext4_journal_forget(handle, where[i].bh);
884 885
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
886
	}
887
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
888 889 890 891 892

	return err;
}

/*
893 894 895 896
 * The ext4_ind_get_blocks() function handles non-extents inodes
 * (i.e., using the traditional indirect/double-indirect i_blocks
 * scheme) for ext4_get_blocks().
 *
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
913
 *
914 915 916 917 918
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
919
 */
920
static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
921 922 923
			       ext4_lblk_t iblock, unsigned int maxblocks,
			       struct buffer_head *bh_result,
			       int flags)
924 925
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
926
	ext4_lblk_t offsets[4];
927 928
	Indirect chain[4];
	Indirect *partial;
929
	ext4_fsblk_t goal;
930 931 932 933
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
934
	ext4_fsblk_t first_block = 0;
935

A
Alex Tomas 已提交
936
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
A
Aneesh Kumar K.V 已提交
938
	depth = ext4_block_to_path(inode, iblock, offsets,
939
				   &blocks_to_boundary);
940 941 942 943

	if (depth == 0)
		goto out;

944
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945 946 947 948 949 950 951 952

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
953
			ext4_fsblk_t blk;
954 955 956 957 958 959 960 961

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
962
		goto got_it;
963 964 965
	}

	/* Next simple case - plain lookup or failed read of indirect block */
966
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
967 968 969
		goto cleanup;

	/*
970
	 * Okay, we need to do block allocation.
971
	*/
972
	goal = ext4_find_goal(inode, iblock, partial);
973 974 975 976 977 978 979 980

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
981
	count = ext4_blks_to_allocate(partial, indirect_blks,
982 983
					maxblocks, blocks_to_boundary);
	/*
984
	 * Block out ext4_truncate while we alter the tree
985
	 */
986
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987 988
				&count, goal,
				offsets + (partial - chain), partial);
989 990

	/*
991
	 * The ext4_splice_branch call will free and forget any buffers
992 993 994 995 996 997
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
998
		err = ext4_splice_branch(handle, inode, iblock,
999 1000
					 partial, indirect_blks, count);
	else
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
qsize_t ext4_get_reserved_space(struct inode *inode)
{
	unsigned long long total;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks +
		EXT4_I(inode)->i_reserved_meta_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	return total;
}
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1058 1059 1060
	if (!blocks)
		return 0;

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1081 1082 1083 1084 1085 1086 1087 1088 1089
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1090 1091 1092 1093 1094

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1095 1096 1097 1098 1099 1100

	/*
	 * free those over-booking quota for metadata blocks
	 */
	if (mdb_free)
		vfs_dq_release_reservation_block(inode, mdb_free);
1101 1102 1103 1104 1105 1106 1107 1108

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
	if (!total && (atomic_read(&inode->i_writecount) == 0))
		ext4_discard_preallocations(inode);
1109 1110
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
static int check_block_validity(struct inode *inode, sector_t logical,
				sector_t phys, int len)
{
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
		ext4_error(inode->i_sb, "check_block_validity",
			   "inode #%lu logical block %llu mapped to %llu "
			   "(size %d)", inode->i_ino,
			   (unsigned long long) logical,
			   (unsigned long long) phys, len);
		WARN_ON(1);
		return -EIO;
	}
	return 0;
}

1126
/*
1127
 * The ext4_get_blocks() function tries to look up the requested blocks,
1128
 * and returns if the blocks are already mapped.
1129 1130 1131 1132 1133 1134
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
1135
 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1148 1149
int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
		    unsigned int max_blocks, struct buffer_head *bh,
1150
		    int flags)
1151 1152
{
	int retval;
1153 1154

	clear_buffer_mapped(bh);
1155
	clear_buffer_unwritten(bh);
1156

1157
	/*
1158 1159
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1160 1161 1162 1163
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1164
				bh, 0);
1165
	} else {
1166
		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1167
					     bh, 0);
1168
	}
1169
	up_read((&EXT4_I(inode)->i_data_sem));
1170

1171
	if (retval > 0 && buffer_mapped(bh)) {
1172
		int ret = check_block_validity(inode, block,
1173 1174 1175 1176 1177
					       bh->b_blocknr, retval);
		if (ret != 0)
			return ret;
	}

1178
	/* If it is only a block(s) look up */
1179
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1190 1191
		return retval;

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
	clear_buffer_unwritten(bh);

1204
	/*
1205 1206 1207 1208
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1209 1210
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1211 1212 1213 1214 1215 1216 1217

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1218
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1219
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1220 1221 1222 1223
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1224 1225
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1226
					      bh, flags);
1227
	} else {
1228
		retval = ext4_ind_get_blocks(handle, inode, block,
1229
					     max_blocks, bh, flags);
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1240
	}
1241

1242
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1243
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1244 1245 1246 1247 1248 1249 1250

	/*
	 * Update reserved blocks/metadata blocks after successful
	 * block allocation which had been deferred till now.
	 */
	if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
		ext4_da_update_reserve_space(inode, retval);
1251

1252
	up_write((&EXT4_I(inode)->i_data_sem));
1253
	if (retval > 0 && buffer_mapped(bh)) {
1254
		int ret = check_block_validity(inode, block,
1255 1256 1257 1258
					       bh->b_blocknr, retval);
		if (ret != 0)
			return ret;
	}
1259 1260 1261
	return retval;
}

1262 1263 1264
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1265 1266
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1267
{
1268
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1269
	int ret = 0, started = 0;
1270
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1271
	int dio_credits;
1272

J
Jan Kara 已提交
1273 1274 1275 1276
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1277 1278
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1279
		if (IS_ERR(handle)) {
1280
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1281
			goto out;
1282
		}
J
Jan Kara 已提交
1283
		started = 1;
1284 1285
	}

1286
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1287
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
J
Jan Kara 已提交
1288 1289 1290
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1291
	}
J
Jan Kara 已提交
1292 1293 1294
	if (started)
		ext4_journal_stop(handle);
out:
1295 1296 1297 1298 1299 1300
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1301
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1302
				ext4_lblk_t block, int create, int *errp)
1303 1304 1305
{
	struct buffer_head dummy;
	int fatal = 0, err;
1306
	int flags = 0;
1307 1308 1309 1310 1311 1312

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
1313 1314 1315
	if (create)
		flags |= EXT4_GET_BLOCKS_CREATE;
	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1316
	/*
1317 1318
	 * ext4_get_blocks() returns number of blocks mapped. 0 in
	 * case of a HOLE.
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1335
			J_ASSERT(handle != NULL);
1336 1337 1338 1339 1340

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1341
			 * writes use ext4_get_block instead, so it's not a
1342 1343 1344 1345
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1346
			fatal = ext4_journal_get_create_access(handle, bh);
1347
			if (!fatal && !buffer_uptodate(bh)) {
1348
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1349 1350 1351
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1352 1353
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1370
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1371
			       ext4_lblk_t block, int create, int *err)
1372
{
1373
	struct buffer_head *bh;
1374

1375
	bh = ext4_getblk(handle, inode, block, create, err);
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1389 1390 1391 1392 1393 1394 1395
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1396 1397 1398 1399 1400 1401 1402
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1403 1404
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1405
	     block_start = block_end, bh = next) {
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1423
 * close off a transaction and start a new one between the ext4_get_block()
1424
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1425 1426
 * prepare_write() is the right place.
 *
1427 1428
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1429 1430 1431 1432
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1433
 * By accident, ext4 can be reentered when a transaction is open via
1434 1435 1436 1437 1438 1439
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1440
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1441 1442 1443 1444 1445
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1446
				       struct buffer_head *bh)
1447 1448 1449
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1450
	return ext4_journal_get_write_access(handle, bh);
1451 1452
}

N
Nick Piggin 已提交
1453
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1454 1455
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1456
{
1457
	struct inode *inode = mapping->host;
1458
	int ret, needed_blocks;
1459 1460
	handle_t *handle;
	int retries = 0;
1461
	struct page *page;
1462
	pgoff_t index;
1463
	unsigned from, to;
N
Nick Piggin 已提交
1464

1465
	trace_ext4_write_begin(inode, pos, len, flags);
1466 1467 1468 1469 1470
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1471
	index = pos >> PAGE_CACHE_SHIFT;
1472 1473
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1474 1475

retry:
1476 1477 1478 1479
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1480
	}
1481

1482 1483 1484 1485
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1486
	page = grab_cache_page_write_begin(mapping, index, flags);
1487 1488 1489 1490 1491 1492 1493
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1494
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1495
				ext4_get_block);
N
Nick Piggin 已提交
1496 1497

	if (!ret && ext4_should_journal_data(inode)) {
1498 1499 1500
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1501 1502

	if (ret) {
1503 1504
		unlock_page(page);
		page_cache_release(page);
1505 1506 1507 1508
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1509 1510 1511
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1512
		 */
1513
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1514 1515 1516 1517
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1518
			ext4_truncate(inode);
1519
			/*
1520
			 * If truncate failed early the inode might
1521 1522 1523 1524 1525 1526 1527
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1528 1529
	}

1530
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1531
		goto retry;
1532
out:
1533 1534 1535
	return ret;
}

N
Nick Piggin 已提交
1536 1537
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1538 1539 1540 1541
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1542
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1543 1544
}

1545
static int ext4_generic_write_end(struct file *file,
1546 1547 1548
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1591 1592 1593 1594
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1595
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1596 1597
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1598
static int ext4_ordered_write_end(struct file *file,
1599 1600 1601
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1602
{
1603
	handle_t *handle = ext4_journal_current_handle();
1604
	struct inode *inode = mapping->host;
1605 1606
	int ret = 0, ret2;

1607
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1608
	ret = ext4_jbd2_file_inode(handle, inode);
1609 1610

	if (ret == 0) {
1611
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1612
							page, fsdata);
1613
		copied = ret2;
1614
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1615 1616 1617 1618 1619
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1620 1621
		if (ret2 < 0)
			ret = ret2;
1622
	}
1623
	ret2 = ext4_journal_stop(handle);
1624 1625
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1626

1627
	if (pos + len > inode->i_size) {
1628
		ext4_truncate(inode);
1629
		/*
1630
		 * If truncate failed early the inode might still be
1631 1632 1633 1634 1635 1636 1637 1638
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1639
	return ret ? ret : copied;
1640 1641
}

N
Nick Piggin 已提交
1642
static int ext4_writeback_write_end(struct file *file,
1643 1644 1645
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1646
{
1647
	handle_t *handle = ext4_journal_current_handle();
1648
	struct inode *inode = mapping->host;
1649 1650
	int ret = 0, ret2;

1651
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1652
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1653
							page, fsdata);
1654
	copied = ret2;
1655
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1656 1657 1658 1659 1660 1661
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1662 1663
	if (ret2 < 0)
		ret = ret2;
1664

1665
	ret2 = ext4_journal_stop(handle);
1666 1667
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1668

1669
	if (pos + len > inode->i_size) {
1670
		ext4_truncate(inode);
1671
		/*
1672
		 * If truncate failed early the inode might still be
1673 1674 1675 1676 1677 1678 1679
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1680
	return ret ? ret : copied;
1681 1682
}

N
Nick Piggin 已提交
1683
static int ext4_journalled_write_end(struct file *file,
1684 1685 1686
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1687
{
1688
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1689
	struct inode *inode = mapping->host;
1690 1691
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1692
	unsigned from, to;
1693
	loff_t new_i_size;
1694

1695
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1696 1697 1698 1699 1700 1701 1702 1703
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1704 1705

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1706
				to, &partial, write_end_fn);
1707 1708
	if (!partial)
		SetPageUptodate(page);
1709 1710
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1711
		i_size_write(inode, pos+copied);
1712
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1713 1714
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1715
		ret2 = ext4_mark_inode_dirty(handle, inode);
1716 1717 1718
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1719

1720
	unlock_page(page);
1721
	page_cache_release(page);
1722
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1723 1724 1725 1726 1727 1728
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1729
	ret2 = ext4_journal_stop(handle);
1730 1731
	if (!ret)
		ret = ret2;
1732
	if (pos + len > inode->i_size) {
1733
		ext4_truncate(inode);
1734
		/*
1735
		 * If truncate failed early the inode might still be
1736 1737 1738 1739 1740 1741
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1742 1743

	return ret ? ret : copied;
1744
}
1745 1746 1747

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1748
	int retries = 0;
1749 1750
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	unsigned long md_needed, mdblocks, total = 0;
1751 1752 1753 1754 1755 1756

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1757
repeat:
1758 1759 1760 1761 1762 1763 1764 1765
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
	if (vfs_dq_reserve_block(inode, total)) {
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return -EDQUOT;
	}

1776
	if (ext4_claim_free_blocks(sbi, total)) {
1777
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1778 1779 1780 1781
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1782
		vfs_dq_release_reservation_block(inode, total);
1783 1784 1785 1786 1787 1788 1789 1790 1791
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1792
static void ext4_da_release_space(struct inode *inode, int to_free)
1793 1794 1795 1796
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1797 1798 1799
	if (!to_free)
		return;		/* Nothing to release, exit */

1800
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1816
	/* recalculate the number of metablocks still need to be reserved */
1817
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1818 1819 1820 1821 1822 1823 1824 1825
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1826 1827
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1828 1829

	/* update per-inode reservations */
1830 1831
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1832 1833 1834 1835

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1836 1837

	vfs_dq_release_reservation_block(inode, release);
1838 1839 1840
}

static void ext4_da_page_release_reservation(struct page *page,
1841
					     unsigned long offset)
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1858
	ext4_da_release_space(page->mapping->host, to_release);
1859
}
1860

1861 1862 1863 1864 1865 1866
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
1867 1868 1869
	sector_t b_blocknr;		/* start block number of extent */
	size_t b_size;			/* size of extent */
	unsigned long b_state;		/* state of the extent */
1870 1871
	unsigned long first_page, next_page;	/* extent of pages */
	struct writeback_control *wbc;
1872
	int io_done;
1873
	int pages_written;
1874
	int retval;
1875 1876 1877 1878
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1879
 * them with writepage() call back
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1892
	long pages_skipped;
1893 1894 1895 1896 1897
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1898 1899

	BUG_ON(mpd->next_page <= mpd->first_page);
1900 1901 1902
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1903
	 * If we look at mpd->b_blocknr we would only be looking
1904 1905
	 * at the currently mapped buffer_heads.
	 */
1906 1907 1908
	index = mpd->first_page;
	end = mpd->next_page - 1;

1909
	pagevec_init(&pvec, 0);
1910
	while (index <= end) {
1911
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1912 1913 1914 1915 1916
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1917 1918 1919 1920 1921 1922 1923 1924
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1925
			pages_skipped = mpd->wbc->pages_skipped;
1926
			err = mapping->a_ops->writepage(page, mpd->wbc);
1927 1928 1929 1930 1931
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1932
				mpd->pages_written++;
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
1955
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1956 1957 1958 1959 1960 1961 1962 1963 1964
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1965
	pgoff_t index, end;
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

				if (buffer_delay(bh) ||
						buffer_unwritten(bh)) {

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2023
				} else if (buffer_mapped(bh))
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

2083 2084 2085 2086 2087 2088 2089
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	printk(KERN_EMERG "Total free blocks count %lld\n",
			ext4_count_free_blocks(inode->i_sb));
	printk(KERN_EMERG "Free/Dirty block details\n");
	printk(KERN_EMERG "free_blocks=%lld\n",
2090
			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2091
	printk(KERN_EMERG "dirty_blocks=%lld\n",
2092
			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2093
	printk(KERN_EMERG "Block reservation details\n");
2094
	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2095
			EXT4_I(inode)->i_reserved_data_blocks);
2096
	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2097 2098 2099 2100
			EXT4_I(inode)->i_reserved_meta_blocks);
	return;
}

2101 2102 2103
/*
 * mpage_da_map_blocks - go through given space
 *
2104
 * @mpd - bh describing space
2105 2106 2107 2108
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2109
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2110
{
2111
	int err, blks, get_blocks_flags;
A
Aneesh Kumar K.V 已提交
2112
	struct buffer_head new;
2113 2114 2115 2116
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2117 2118 2119 2120

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2121
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2122 2123
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2124
		return 0;
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2135
	/*
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	 * Call ext4_get_blocks() to allocate any delayed allocation
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
	 * want to change *many* call functions, so ext4_get_blocks()
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2152
	 */
2153 2154 2155 2156 2157
	new.b_state = 0;
	get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
			    EXT4_GET_BLOCKS_DELALLOC_RESERVE);
	if (mpd->b_state & (1 << BH_Delay))
		get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2158
	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2159
			       &new, get_blocks_flags);
2160 2161
	if (blks < 0) {
		err = blks;
2162 2163 2164 2165
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2166 2167 2168
		 */
		if (err == -EAGAIN)
			return 0;
2169 2170

		if (err == -ENOSPC &&
2171
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2172 2173 2174 2175
			mpd->retval = err;
			return 0;
		}

2176
		/*
2177 2178 2179 2180 2181
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2182 2183 2184 2185 2186 2187
		 */
		printk(KERN_EMERG "%s block allocation failed for inode %lu "
				  "at logical offset %llu with max blocks "
				  "%zd with error %d\n",
				  __func__, mpd->inode->i_ino,
				  (unsigned long long)next,
2188
				  mpd->b_size >> mpd->inode->i_blkbits, err);
2189 2190
		printk(KERN_EMERG "This should not happen.!! "
					"Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2191
		if (err == -ENOSPC) {
2192
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2193
		}
2194
		/* invalidate all the pages */
2195
		ext4_da_block_invalidatepages(mpd, next,
2196
				mpd->b_size >> mpd->inode->i_blkbits);
2197 2198
		return err;
	}
2199 2200 2201
	BUG_ON(blks == 0);

	new.b_size = (blks << mpd->inode->i_blkbits);
2202

2203 2204
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2205

2206 2207 2208 2209
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2210 2211
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2212
		mpage_put_bnr_to_bhs(mpd, next, &new);
2213

2214 2215 2216 2217 2218 2219 2220
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2221
	 * Update on-disk size along with block allocation.
2222 2223 2224 2225 2226 2227 2228 2229 2230
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2231
	return 0;
2232 2233
}

2234 2235
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2247 2248
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2249 2250
{
	sector_t next;
2251
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2275 2276 2277
	/*
	 * First block in the extent
	 */
2278 2279 2280 2281
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2282 2283 2284
		return;
	}

2285
	next = mpd->b_blocknr + nrblocks;
2286 2287 2288
	/*
	 * Can we merge the block to our big extent?
	 */
2289 2290
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2291 2292 2293
		return;
	}

2294
flush_it:
2295 2296 2297 2298
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2299 2300
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2301 2302
	mpd->io_done = 1;
	return;
2303 2304
}

2305
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2306
{
2307
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2308 2309
}

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2324
	struct buffer_head *bh, *head;
2325 2326
	sector_t logical;

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
		 * try to to write them again after
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2338 2339 2340 2341 2342 2343
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2344
		 * and start IO on them using writepage()
2345 2346
		 */
		if (mpd->next_page != mpd->first_page) {
2347 2348
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2349 2350 2351 2352 2353 2354 2355
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2366 2367 2368
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2369 2370 2371 2372 2373 2374 2375
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2376 2377
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2378 2379
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2380 2381 2382 2383 2384 2385 2386 2387
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2388 2389 2390 2391
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2392
			 * with the page in ext4_writepage
2393
			 */
2394
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2395 2396 2397
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2398 2399
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2400 2401 2402 2403 2404 2405 2406 2407 2408
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2409 2410
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2411
			}
2412 2413 2414 2415 2416 2417 2418 2419
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2420 2421 2422
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2423 2424 2425 2426 2427 2428 2429
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2430 2431 2432 2433 2434
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;
2435 2436 2437 2438
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2439 2440 2441 2442 2443 2444 2445 2446 2447

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2448
	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2449 2450
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2451 2452 2453 2454
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2455 2456 2457 2458 2459
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2460
		map_bh(bh_result, inode->i_sb, invalid_block);
2461 2462 2463 2464
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
2465 2466 2467 2468 2469 2470 2471 2472
		if (buffer_unwritten(bh_result)) {
			/* A delayed write to unwritten bh should
			 * be marked new and mapped.  Mapped ensures
			 * that we don't do get_block multiple times
			 * when we write to the same offset and new
			 * ensures that we do proper zero out for
			 * partial write.
			 */
2473
			set_buffer_new(bh_result);
2474 2475
			set_buffer_mapped(bh_result);
		}
2476 2477 2478 2479 2480
		ret = 0;
	}

	return ret;
}
2481

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
 * callback function for block_prepare_write(), nobh_writepage(), and
 * block_write_full_page().  These functions should only try to map a
 * single block at a time.
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
 * delayed allocation before calling nobh_writepage() or
 * block_write_full_page().  Otherwise, b_blocknr could be left
 * unitialized, and the page write functions will be taken by
 * surprise.
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2499 2500 2501 2502 2503
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

2504 2505
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

2506 2507 2508 2509
	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
2510
	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2511 2512 2513 2514 2515
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2516 2517
}

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       struct writeback_control *wbc,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
out:
	return ret;
}

2571
/*
2572 2573 2574 2575 2576 2577 2578 2579 2580
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2581 2582 2583 2584 2585
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2611
 */
2612
static int ext4_writepage(struct page *page,
2613
			  struct writeback_control *wbc)
2614 2615
{
	int ret = 0;
2616
	loff_t size;
2617
	unsigned int len;
2618 2619 2620
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2621
	trace_ext4_writepage(inode, page);
2622 2623 2624 2625 2626
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2627

2628
	if (page_has_buffers(page)) {
2629
		page_bufs = page_buffers(page);
2630
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2631
					ext4_bh_delay_or_unwritten)) {
2632
			/*
2633 2634
			 * We don't want to do  block allocation
			 * So redirty the page and return
2635 2636 2637
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2658
		ret = block_prepare_write(page, 0, len,
2659
					  noalloc_get_block_write);
2660 2661 2662 2663
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2664
						ext4_bh_delay_or_unwritten)) {
2665 2666 2667 2668 2669 2670 2671 2672 2673
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2674 2675 2676 2677 2678
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2679
		/* now mark the buffer_heads as dirty and uptodate */
2680
		block_commit_write(page, 0, len);
2681 2682
	}

2683 2684 2685 2686 2687 2688 2689 2690 2691
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
		return __ext4_journalled_writepage(page, wbc, len);
	}

2692
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2693
		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2694
	else
2695 2696
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2697 2698 2699 2700

	return ret;
}

2701
/*
2702 2703 2704 2705 2706
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2707
 */
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2725

2726
static int ext4_da_writepages(struct address_space *mapping,
2727
			      struct writeback_control *wbc)
2728
{
2729 2730
	pgoff_t	index;
	int range_whole = 0;
2731
	handle_t *handle = NULL;
2732
	struct mpage_da_data mpd;
2733
	struct inode *inode = mapping->host;
2734
	int no_nrwrite_index_update;
2735 2736
	int pages_written = 0;
	long pages_skipped;
2737
	int range_cyclic, cycled = 1, io_done = 0;
2738 2739
	int needed_blocks, ret = 0, nr_to_writebump = 0;
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2740

2741
	trace_ext4_da_writepages(inode, wbc);
2742

2743 2744 2745 2746 2747
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2748
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2749
		return 0;
2750 2751 2752 2753 2754

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2755
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2756 2757 2758 2759 2760
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2761
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2762 2763
		return -EROFS;

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
	/*
	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
	 * This make sure small files blocks are allocated in
	 * single attempt. This ensure that small files
	 * get less fragmented.
	 */
	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
		wbc->nr_to_write = sbi->s_mb_stream_request;
	}
2774 2775
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2776

2777 2778
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2779
		index = mapping->writeback_index;
2780 2781 2782 2783 2784 2785
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2786
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2787

2788 2789 2790
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2791 2792 2793 2794 2795 2796 2797 2798
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2799
retry:
2800
	while (!ret && wbc->nr_to_write > 0) {
2801 2802 2803 2804 2805 2806 2807 2808

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2809
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2810

2811 2812 2813 2814
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2815
			printk(KERN_CRIT "%s: jbd2_start: "
2816 2817 2818
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
			dump_stack();
2819 2820
			goto out_writepages;
		}
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
		 * If we have a contigous extent of pages and we
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
		wbc->nr_to_write -= mpd.pages_written;
2853

2854
		ext4_journal_stop(handle);
2855

2856
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2857 2858 2859 2860
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2861
			jbd2_journal_force_commit_nested(sbi->s_journal);
2862 2863 2864
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2865 2866 2867 2868
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2869 2870
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2871
			ret = 0;
2872
			io_done = 1;
2873
		} else if (wbc->nr_to_write)
2874 2875 2876 2877 2878 2879
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2880
	}
2881 2882 2883 2884 2885 2886 2887
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2888 2889 2890 2891 2892 2893 2894
	if (pages_skipped != wbc->pages_skipped)
		printk(KERN_EMERG "This should not happen leaving %s "
				"with nr_to_write = %ld ret = %d\n",
				__func__, wbc->nr_to_write, ret);

	/* Update index */
	index += pages_written;
2895
	wbc->range_cyclic = range_cyclic;
2896 2897 2898 2899 2900 2901
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2902

2903
out_writepages:
2904 2905 2906
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
	wbc->nr_to_write -= nr_to_writebump;
2907
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2908
	return ret;
2909 2910
}

2911 2912 2913 2914 2915 2916 2917 2918 2919
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2920
	 * counters can get slightly wrong with percpu_counter_batch getting
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2938
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2939 2940
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2941
{
2942
	int ret, retries = 0;
2943 2944 2945 2946 2947 2948 2949 2950 2951
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
2952 2953 2954 2955 2956 2957 2958

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2959
	trace_ext4_da_write_begin(inode, pos, len, flags);
2960
retry:
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2972 2973 2974
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2975

2976
	page = grab_cache_page_write_begin(mapping, index, flags);
2977 2978 2979 2980 2981
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2982 2983 2984
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2985
				ext4_da_get_block_prep);
2986 2987 2988 2989
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2990 2991 2992 2993 2994 2995
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2996
			ext4_truncate(inode);
2997 2998
	}

2999 3000
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3001 3002 3003 3004
out:
	return ret;
}

3005 3006 3007 3008 3009
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3010
					    unsigned long offset)
3011 3012 3013 3014 3015 3016 3017 3018 3019
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3020
	for (i = 0; i < idx; i++)
3021 3022
		bh = bh->b_this_page;

3023
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3024 3025 3026 3027
		return 0;
	return 1;
}

3028
static int ext4_da_write_end(struct file *file,
3029 3030 3031
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3032 3033 3034 3035 3036
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3037
	unsigned long start, end;
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3051

3052
	trace_ext4_da_write_end(inode, pos, len, copied);
3053
	start = pos & (PAGE_CACHE_SIZE - 1);
3054
	end = start + copied - 1;
3055 3056 3057 3058 3059 3060 3061 3062

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3074

3075 3076 3077
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3078 3079 3080 3081 3082
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3083
		}
3084
	}
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3106
	ext4_da_page_release_reservation(page, offset);
3107 3108 3109 3110 3111 3112 3113

out:
	ext4_invalidatepage(page, offset);

	return;
}

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3129
	 *
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3149
	 *
3150 3151 3152 3153 3154 3155
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3156

3157 3158 3159 3160 3161
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3162
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3163 3164 3165 3166 3167 3168 3169 3170
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3171
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3172 3173 3174 3175 3176
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3187
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3199
		 * NB. EXT4_STATE_JDATA is not set on files other than
3200 3201 3202 3203 3204 3205
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3206 3207
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
3208 3209 3210
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3211 3212 3213 3214 3215

		if (err)
			return 0;
	}

3216
	return generic_block_bmap(mapping, block, ext4_get_block);
3217 3218
}

3219
static int ext4_readpage(struct file *file, struct page *page)
3220
{
3221
	return mpage_readpage(page, ext4_get_block);
3222 3223 3224
}

static int
3225
ext4_readpages(struct file *file, struct address_space *mapping,
3226 3227
		struct list_head *pages, unsigned nr_pages)
{
3228
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3229 3230
}

3231
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3232
{
3233
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3234 3235 3236 3237 3238 3239 3240

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3241 3242 3243 3244
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3245 3246
}

3247
static int ext4_releasepage(struct page *page, gfp_t wait)
3248
{
3249
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3250 3251 3252 3253

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3254 3255 3256 3257
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3258 3259 3260 3261 3262 3263 3264 3265
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3266 3267
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3268
 */
3269
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3270 3271
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3272 3273 3274
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3275
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3276
	handle_t *handle;
3277 3278 3279 3280 3281 3282 3283 3284
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3285 3286 3287 3288 3289 3290
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3291
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3292 3293 3294 3295
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3296 3297
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3298
			ext4_journal_stop(handle);
3299 3300 3301 3302 3303
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3304
				 ext4_get_block, NULL);
3305

J
Jan Kara 已提交
3306
	if (orphan) {
3307 3308
		int err;

J
Jan Kara 已提交
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3319
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3320
		if (ret > 0) {
3321 3322 3323 3324 3325 3326 3327 3328
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3329
				 * ext4_mark_inode_dirty() to userspace.  So
3330 3331
				 * ignore it.
				 */
3332
				ext4_mark_inode_dirty(handle, inode);
3333 3334
			}
		}
3335
		err = ext4_journal_stop(handle);
3336 3337 3338 3339 3340 3341 3342 3343
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3344
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3356
static int ext4_journalled_set_page_dirty(struct page *page)
3357 3358 3359 3360 3361
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3362
static const struct address_space_operations ext4_ordered_aops = {
3363 3364
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3365
	.writepage		= ext4_writepage,
3366 3367 3368 3369 3370 3371 3372 3373 3374
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3375 3376
};

3377
static const struct address_space_operations ext4_writeback_aops = {
3378 3379
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3380
	.writepage		= ext4_writepage,
3381 3382 3383 3384 3385 3386 3387 3388 3389
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3390 3391
};

3392
static const struct address_space_operations ext4_journalled_aops = {
3393 3394
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3395
	.writepage		= ext4_writepage,
3396 3397 3398 3399 3400 3401 3402 3403
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3404 3405
};

3406
static const struct address_space_operations ext4_da_aops = {
3407 3408
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3409
	.writepage		= ext4_writepage,
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3420 3421
};

3422
void ext4_set_aops(struct inode *inode)
3423
{
3424 3425 3426 3427
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3428
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3429 3430 3431
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3432 3433
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3434
	else
3435
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3436 3437 3438
}

/*
3439
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3440 3441 3442 3443
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3444
int ext4_block_truncate_page(handle_t *handle,
3445 3446
		struct address_space *mapping, loff_t from)
{
3447
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3448
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3449 3450
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3451 3452
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3453
	struct page *page;
3454 3455
	int err = 0;

3456 3457
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3458 3459 3460
	if (!page)
		return -EINVAL;

3461 3462 3463 3464 3465 3466 3467 3468 3469
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3470
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3471
		zero_user(page, offset, length);
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3496
		ext4_get_block(inode, iblock, bh, 0);
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3517
	if (ext4_should_journal_data(inode)) {
3518
		BUFFER_TRACE(bh, "get write access");
3519
		err = ext4_journal_get_write_access(handle, bh);
3520 3521 3522 3523
		if (err)
			goto unlock;
	}

3524
	zero_user(page, offset, length);
3525 3526 3527 3528

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3529
	if (ext4_should_journal_data(inode)) {
3530
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3531
	} else {
3532
		if (ext4_should_order_data(inode))
3533
			err = ext4_jbd2_file_inode(handle, inode);
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3557
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3558 3559
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3560
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3561 3562 3563
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3564
 *	This is a helper function used by ext4_truncate().
3565 3566 3567 3568 3569 3570 3571
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3572
 *	past the truncation point is possible until ext4_truncate()
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3591
static Indirect *ext4_find_shared(struct inode *inode, int depth,
3592 3593
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
3594 3595 3596 3597 3598 3599 3600 3601
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3602
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3613
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3625
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3626 3627 3628 3629 3630 3631
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3632
	while (partial > p) {
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3648
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3649 3650 3651 3652
			      struct buffer_head *bh,
			      ext4_fsblk_t block_to_free,
			      unsigned long count, __le32 *first,
			      __le32 *last)
3653 3654 3655 3656
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3657 3658
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
3659
		}
3660 3661
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3662 3663
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3664
			ext4_journal_get_write_access(handle, bh);
3665 3666 3667 3668
		}
	}

	/*
3669 3670 3671 3672 3673
	 * Any buffers which are on the journal will be in memory. We
	 * find them on the hash table so jbd2_journal_revoke() will
	 * run jbd2_journal_forget() on them.  We've already detached
	 * each block from the file, so bforget() in
	 * jbd2_journal_forget() should be safe.
3674
	 *
3675
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3676 3677 3678 3679
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3680
			struct buffer_head *tbh;
3681 3682

			*p = 0;
A
Aneesh Kumar K.V 已提交
3683 3684
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3685 3686 3687
		}
	}

3688
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3689 3690 3691
}

/**
3692
 * ext4_free_data - free a list of data blocks
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3710
static void ext4_free_data(handle_t *handle, struct inode *inode,
3711 3712 3713
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3714
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3715 3716 3717 3718
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3719
	ext4_fsblk_t nr;		    /* Current block # */
3720 3721 3722 3723 3724 3725
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3726
		err = ext4_journal_get_write_access(handle, this_bh);
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3744
				ext4_clear_blocks(handle, inode, this_bh,
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3755
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3756 3757 3758
				  count, block_to_free_p, p);

	if (this_bh) {
3759
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3760 3761 3762 3763 3764 3765 3766

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
3767
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3768
			ext4_handle_dirty_metadata(handle, inode, this_bh);
3769 3770 3771 3772 3773 3774
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3775 3776 3777 3778
	}
}

/**
3779
 *	ext4_free_branches - free an array of branches
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3791
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3792 3793 3794
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3795
	ext4_fsblk_t nr;
3796 3797
	__le32 *p;

3798
	if (ext4_handle_is_aborted(handle))
3799 3800 3801 3802
		return;

	if (depth--) {
		struct buffer_head *bh;
3803
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3818
				ext4_error(inode->i_sb, "ext4_free_branches",
3819
					   "Read failure, inode=%lu, block=%llu",
3820 3821 3822 3823 3824 3825
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3826
			ext4_free_branches(handle, inode, bh,
3827 3828 3829
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
3830 3831 3832 3833 3834

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3835
			 * jbd2_journal_revoke().
3836 3837 3838
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3839
			 * transaction then jbd2_journal_forget() will simply
3840
			 * brelse() it.  That means that if the underlying
3841
			 * block is reallocated in ext4_get_block(),
3842 3843 3844 3845 3846 3847 3848 3849
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3850
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
3868
			if (ext4_handle_is_aborted(handle))
3869 3870
				return;
			if (try_to_extend_transaction(handle, inode)) {
3871 3872
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
3873 3874
			}

3875
			ext4_free_blocks(handle, inode, nr, 1, 1);
3876 3877 3878 3879 3880 3881 3882

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
3883
				if (!ext4_journal_get_write_access(handle,
3884 3885 3886
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
3887 3888 3889 3890
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
3891 3892 3893 3894 3895 3896
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
3897
		ext4_free_data(handle, inode, parent_bh, first, last);
3898 3899 3900
	}
}

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3914
/*
3915
 * ext4_truncate()
3916
 *
3917 3918
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3935
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3936
 * that this inode's truncate did not complete and it will again call
3937 3938
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3939
 * that's fine - as long as they are linked from the inode, the post-crash
3940
 * ext4_truncate() run will find them and release them.
3941
 */
3942
void ext4_truncate(struct inode *inode)
3943 3944
{
	handle_t *handle;
3945
	struct ext4_inode_info *ei = EXT4_I(inode);
3946
	__le32 *i_data = ei->i_data;
3947
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3948
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
3949
	ext4_lblk_t offsets[4];
3950 3951 3952 3953
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
3954
	ext4_lblk_t last_block;
3955 3956
	unsigned blocksize = inode->i_sb->s_blocksize;

3957
	if (!ext4_can_truncate(inode))
3958 3959
		return;

3960 3961
	if (ei->i_disksize && inode->i_size == 0 &&
	    !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3962 3963
		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;

A
Aneesh Kumar K.V 已提交
3964
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3965
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
3966 3967
		return;
	}
A
Alex Tomas 已提交
3968

3969
	handle = start_transaction(inode);
3970
	if (IS_ERR(handle))
3971 3972 3973
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
3974
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3975

3976 3977 3978
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
3979

3980
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
3993
	if (ext4_orphan_add(handle, inode))
3994 3995
		goto out_stop;

3996 3997 3998 3999 4000
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4001

4002
	ext4_discard_preallocations(inode);
4003

4004 4005 4006 4007 4008
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4009
	 * ext4 *really* writes onto the disk inode.
4010 4011 4012 4013
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4014 4015
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4016 4017 4018
		goto do_indirects;
	}

4019
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4020 4021 4022 4023
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4024
			ext4_free_branches(handle, inode, NULL,
4025 4026 4027 4028 4029 4030 4031 4032 4033
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4034
			ext4_free_branches(handle, inode, partial->bh,
4035 4036 4037 4038 4039 4040
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4041
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4042 4043 4044
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4045
		brelse(partial->bh);
4046 4047 4048 4049 4050 4051
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4052
		nr = i_data[EXT4_IND_BLOCK];
4053
		if (nr) {
4054 4055
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4056
		}
4057 4058
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4059
		if (nr) {
4060 4061
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4062
		}
4063 4064
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4065
		if (nr) {
4066 4067
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4068
		}
4069
	case EXT4_TIND_BLOCK:
4070 4071 4072
		;
	}

4073
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4074
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4075
	ext4_mark_inode_dirty(handle, inode);
4076 4077 4078 4079 4080 4081

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4082
		ext4_handle_sync(handle);
4083 4084 4085 4086 4087
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4088
	 * ext4_delete_inode(), and we allow that function to clean up the
4089 4090 4091
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4092
		ext4_orphan_del(handle, inode);
4093

4094
	ext4_journal_stop(handle);
4095 4096 4097
}

/*
4098
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4099 4100 4101 4102
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4103 4104
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4105
{
4106 4107 4108 4109 4110 4111
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4112
	iloc->bh = NULL;
4113 4114
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4115

4116 4117 4118
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4119 4120
		return -EIO;

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4131
	if (!bh) {
4132 4133 4134
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
4135 4136 4137 4138
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4162
			int i, start;
4163

4164
			start = inode_offset & ~(inodes_per_block - 1);
4165

4166 4167
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4180
			for (i = start; i < start + inodes_per_block; i++) {
4181 4182
				if (i == inode_offset)
					continue;
4183
				if (ext4_test_bit(i, bitmap_bh->b_data))
4184 4185 4186
					break;
			}
			brelse(bitmap_bh);
4187
			if (i == start + inodes_per_block) {
4188 4189 4190 4191 4192 4193 4194 4195 4196
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4197 4198 4199 4200 4201 4202 4203 4204 4205
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4206
			/* s_inode_readahead_blks is always a power of 2 */
4207 4208 4209 4210 4211 4212 4213
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4214
				num -= ext4_itable_unused_count(sb, gdp);
4215 4216 4217 4218 4219 4220 4221
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4232 4233 4234
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4235 4236 4237 4238 4239 4240 4241 4242 4243
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4244
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4245 4246
{
	/* We have all inode data except xattrs in memory here. */
4247 4248
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4249 4250
}

4251
void ext4_set_inode_flags(struct inode *inode)
4252
{
4253
	unsigned int flags = EXT4_I(inode)->i_flags;
4254 4255

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4256
	if (flags & EXT4_SYNC_FL)
4257
		inode->i_flags |= S_SYNC;
4258
	if (flags & EXT4_APPEND_FL)
4259
		inode->i_flags |= S_APPEND;
4260
	if (flags & EXT4_IMMUTABLE_FL)
4261
		inode->i_flags |= S_IMMUTABLE;
4262
	if (flags & EXT4_NOATIME_FL)
4263
		inode->i_flags |= S_NOATIME;
4264
	if (flags & EXT4_DIRSYNC_FL)
4265 4266 4267
		inode->i_flags |= S_DIRSYNC;
}

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4286

4287
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4288
				  struct ext4_inode_info *ei)
4289 4290
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4291 4292
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4293 4294 4295 4296 4297 4298

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4299 4300 4301 4302 4303 4304
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4305 4306 4307 4308
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4309

4310
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4311
{
4312 4313
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4314
	struct ext4_inode_info *ei;
4315
	struct buffer_head *bh;
4316 4317
	struct inode *inode;
	long ret;
4318 4319
	int block;

4320 4321 4322 4323 4324 4325 4326
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4327

4328 4329
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4330 4331
		goto bad_inode;
	bh = iloc.bh;
4332
	raw_inode = ext4_raw_inode(&iloc);
4333 4334 4335
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4336
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4352
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4353
			/* this inode is deleted */
4354
			brelse(bh);
4355
			ret = -ESTALE;
4356 4357 4358 4359 4360 4361 4362 4363
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4364
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4365
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4366
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4367 4368
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4369
	inode->i_size = ext4_isize(raw_inode);
4370 4371 4372
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4373
	ei->i_last_alloc_group = ~0;
4374 4375 4376 4377
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4378
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4379 4380 4381
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4382
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4383
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4384
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4385
		    EXT4_INODE_SIZE(inode->i_sb)) {
4386
			brelse(bh);
4387
			ret = -EIO;
4388
			goto bad_inode;
4389
		}
4390 4391
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4392 4393
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4394 4395
		} else {
			__le32 *magic = (void *)raw_inode +
4396
					EXT4_GOOD_OLD_INODE_SIZE +
4397
					ei->i_extra_isize;
4398
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4399
				ei->i_state |= EXT4_STATE_XATTR;
4400 4401 4402 4403
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4404 4405 4406 4407 4408
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4409 4410 4411 4412 4413 4414 4415
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4416
	ret = 0;
4417
	if (ei->i_file_acl &&
4418
	    ((ei->i_file_acl <
4419 4420 4421 4422 4423 4424 4425 4426 4427
	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
	       EXT4_SB(sb)->s_gdb_count)) ||
	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
		ext4_error(sb, __func__,
			   "bad extended attribute block %llu in inode #%lu",
			   ei->i_file_acl, inode->i_ino);
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4428 4429 4430 4431 4432
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4433
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4434 4435
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4436
		/* Validate block references which are part of inode */
4437 4438 4439
		ret = ext4_check_inode_blockref(inode);
	}
	if (ret) {
4440 4441
		brelse(bh);
		goto bad_inode;
4442 4443
	}

4444
	if (S_ISREG(inode->i_mode)) {
4445 4446 4447
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4448
	} else if (S_ISDIR(inode->i_mode)) {
4449 4450
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4451
	} else if (S_ISLNK(inode->i_mode)) {
4452
		if (ext4_inode_is_fast_symlink(inode)) {
4453
			inode->i_op = &ext4_fast_symlink_inode_operations;
4454 4455 4456
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4457 4458
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4459
		}
4460 4461
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4462
		inode->i_op = &ext4_special_inode_operations;
4463 4464 4465 4466 4467 4468
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4469 4470 4471
	} else {
		brelse(bh);
		ret = -EIO;
4472
		ext4_error(inode->i_sb, __func__,
4473 4474 4475
			   "bogus i_mode (%o) for inode=%lu",
			   inode->i_mode, inode->i_ino);
		goto bad_inode;
4476
	}
4477
	brelse(iloc.bh);
4478
	ext4_set_inode_flags(inode);
4479 4480
	unlock_new_inode(inode);
	return inode;
4481 4482

bad_inode:
4483 4484
	iget_failed(inode);
	return ERR_PTR(ret);
4485 4486
}

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4500
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4501
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4502
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4503 4504 4505 4506 4507 4508
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4509 4510 4511 4512
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4513
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4514
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4515
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4516
	} else {
A
Aneesh Kumar K.V 已提交
4517 4518 4519 4520 4521
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4522
	}
4523
	return 0;
4524 4525
}

4526 4527 4528 4529 4530 4531 4532
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4533
static int ext4_do_update_inode(handle_t *handle,
4534
				struct inode *inode,
4535
				struct ext4_iloc *iloc)
4536
{
4537 4538
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4539 4540 4541 4542 4543
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4544 4545
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4546

4547
	ext4_get_inode_flags(ei);
4548
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4549
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4550 4551 4552 4553 4554 4555
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4556
		if (!ei->i_dtime) {
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4574 4575 4576 4577 4578 4579

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4580 4581
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4582
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4583 4584
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4585 4586
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4587 4588
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4589
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4606
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4607
			sb->s_dirt = 1;
4608 4609
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
4610
					EXT4_SB(sb)->s_sbh);
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4625 4626 4627
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4628

4629 4630 4631 4632 4633
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4634
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4635 4636
	}

4637 4638
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4639 4640
	if (!err)
		err = rc;
4641
	ei->i_state &= ~EXT4_STATE_NEW;
4642 4643

out_brelse:
4644
	brelse(bh);
4645
	ext4_std_error(inode->i_sb, err);
4646 4647 4648 4649
	return err;
}

/*
4650
 * ext4_write_inode()
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4667
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4684
int ext4_write_inode(struct inode *inode, int wait)
4685 4686 4687 4688
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4689
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4690
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4691 4692 4693 4694 4695 4696 4697
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4698
	return ext4_force_commit(inode->i_sb);
4699 4700 4701
}

/*
4702
 * ext4_setattr()
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4716 4717 4718 4719 4720 4721 4722 4723
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4724
 */
4725
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4741 4742
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4743 4744 4745 4746
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4747
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4748
		if (error) {
4749
			ext4_journal_stop(handle);
4750 4751 4752 4753 4754 4755 4756 4757
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4758 4759
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4760 4761
	}

4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4773 4774 4775 4776
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4777
		handle = ext4_journal_start(inode, 3);
4778 4779 4780 4781 4782
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4783 4784 4785
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4786 4787
		if (!error)
			error = rc;
4788
		ext4_journal_stop(handle);
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4805 4806 4807 4808
	}

	rc = inode_setattr(inode, attr);

4809
	/* If inode_setattr's call to ext4_truncate failed to get a
4810 4811 4812
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4813
		ext4_orphan_del(NULL, inode);
4814 4815

	if (!rc && (ia_valid & ATTR_MODE))
4816
		rc = ext4_acl_chmod(inode);
4817 4818

err_out:
4819
	ext4_std_error(inode->i_sb, error);
4820 4821 4822 4823 4824
	if (!error)
		error = rc;
	return error;
}

4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4851

4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4880 4881
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4882
}
4883

4884
/*
4885 4886 4887
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4888
 *
4889 4890 4891
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
4892
 *
4893 4894 4895 4896
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4897 4898
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4925 4926
	if (groups > ngroups)
		groups = ngroups;
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
4941 4942
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4943
 *
4944
 * This could be called via ext4_write_begin()
4945
 *
4946
 * We need to consider the worse case, when
4947
 * one new block per extent.
4948
 */
A
Alex Tomas 已提交
4949
int ext4_writepage_trans_blocks(struct inode *inode)
4950
{
4951
	int bpp = ext4_journal_blocks_per_page(inode);
4952 4953
	int ret;

4954
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4955

4956
	/* Account for data blocks for journalled mode */
4957
	if (ext4_should_journal_data(inode))
4958
		ret += bpp;
4959 4960
	return ret;
}
4961 4962 4963 4964 4965

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4966
 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
4967 4968 4969 4970 4971 4972 4973 4974 4975
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4976
/*
4977
 * The caller must have previously called ext4_reserve_inode_write().
4978 4979
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4980
int ext4_mark_iloc_dirty(handle_t *handle,
4981
			 struct inode *inode, struct ext4_iloc *iloc)
4982 4983 4984
{
	int err = 0;

4985 4986 4987
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4988 4989 4990
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4991
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4992
	err = ext4_do_update_inode(handle, inode, iloc);
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5003 5004
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5005
{
5006 5007 5008 5009 5010 5011 5012 5013 5014
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5015 5016
		}
	}
5017
	ext4_std_error(inode->i_sb, err);
5018 5019 5020
	return err;
}

5021 5022 5023 5024
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5025 5026 5027 5028
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5077
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5078
{
5079
	struct ext4_iloc iloc;
5080 5081 5082
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5083 5084

	might_sleep();
5085
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5086 5087
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
5103 5104
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5105
					ext4_warning(inode->i_sb, __func__,
5106 5107 5108
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5109 5110
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5111 5112 5113 5114
				}
			}
		}
	}
5115
	if (!err)
5116
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5117 5118 5119 5120
	return err;
}

/*
5121
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5122 5123 5124 5125 5126
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5127
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5128 5129 5130 5131 5132 5133
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5134
void ext4_dirty_inode(struct inode *inode)
5135
{
5136
	handle_t *current_handle = ext4_journal_current_handle();
5137 5138
	handle_t *handle;

5139 5140 5141 5142 5143
	if (!ext4_handle_valid(current_handle)) {
		ext4_mark_inode_dirty(current_handle, inode);
		return;
	}

5144
	handle = ext4_journal_start(inode, 2);
5145 5146 5147 5148 5149 5150
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
5151
		       __func__);
5152 5153 5154
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
5155
		ext4_mark_inode_dirty(handle, inode);
5156
	}
5157
	ext4_journal_stop(handle);
5158 5159 5160 5161 5162 5163 5164 5165
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5166
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5167 5168 5169
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5170
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5171
{
5172
	struct ext4_iloc iloc;
5173 5174 5175

	int err = 0;
	if (handle) {
5176
		err = ext4_get_inode_loc(inode, &iloc);
5177 5178
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5179
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5180
			if (!err)
5181 5182 5183
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5184 5185 5186
			brelse(iloc.bh);
		}
	}
5187
	ext4_std_error(inode->i_sb, err);
5188 5189 5190 5191
	return err;
}
#endif

5192
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5208
	journal = EXT4_JOURNAL(inode);
5209 5210
	if (!journal)
		return 0;
5211
	if (is_journal_aborted(journal))
5212 5213
		return -EROFS;

5214 5215
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5226
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5227
	else
5228 5229
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5230

5231
	jbd2_journal_unlock_updates(journal);
5232 5233 5234

	/* Finally we can mark the inode as dirty. */

5235
	handle = ext4_journal_start(inode, 1);
5236 5237 5238
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5239
	err = ext4_mark_inode_dirty(handle, inode);
5240
	ext4_handle_sync(handle);
5241 5242
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5243 5244 5245

	return err;
}
5246 5247 5248 5249 5250 5251

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5252
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5253
{
5254
	struct page *page = vmf->page;
5255 5256 5257
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5258
	void *fsdata;
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5297
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5298 5299 5300
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5301
			len, len, page, fsdata);
5302 5303 5304 5305
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5306 5307
	if (ret)
		ret = VM_FAULT_SIGBUS;
5308 5309 5310
	up_read(&inode->i_alloc_sem);
	return ret;
}