core.c 244.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
T
Thomas Gleixner 已提交
49

50 51
#include "internal.h"

52 53
#include <asm/irq_regs.h>

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
69 70 71 72 73 74 75 76 77 78 79
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
100
task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 102
{
	struct remote_function_call data = {
103 104 105
		.p	= p,
		.func	= func,
		.info	= info,
106
		.ret	= -EAGAIN,
107
	};
108
	int ret;
109

110 111 112 113 114
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
115

116
	return ret;
117 118 119 120 121 122 123 124 125 126 127
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
128
static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 130
{
	struct remote_function_call data = {
131 132 133 134
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
135 136 137 138 139 140 141
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

142 143 144 145 146 147 148 149
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
150
{
151 152 153 154 155 156 157 158 159 160 161 162 163
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

164 165 166 167
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
168
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 170
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

190 191 192 193 194 195 196 197 198 199 200 201 202
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
203
	struct perf_event_context *ctx = event->ctx;
204 205
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206
	int ret = 0;
207 208 209

	WARN_ON_ONCE(!irqs_disabled());

210
	perf_ctx_lock(cpuctx, task_ctx);
211 212 213 214 215
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
216
		if (ctx->task != current) {
217
			ret = -ESRCH;
218 219
			goto unlock;
		}
220 221 222 223 224 225 226 227 228 229 230 231 232

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
233 234 235
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236
	}
237

238
	efs->func(event, cpuctx, ctx, efs->data);
239
unlock:
240 241
	perf_ctx_unlock(cpuctx, task_ctx);

242
	return ret;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
258 259
{
	struct perf_event_context *ctx = event->ctx;
260
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 262 263 264 265
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
266

P
Peter Zijlstra 已提交
267 268 269 270 271 272 273 274
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
275 276

	if (!task) {
277
		cpu_function_call(event->cpu, event_function, &efs);
278 279 280
		return;
	}

281 282 283
	if (task == TASK_TOMBSTONE)
		return;

284
again:
285
	if (!task_function_call(task, event_function, &efs))
286 287 288
		return;

	raw_spin_lock_irq(&ctx->lock);
289 290 291 292 293
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
294 295 296
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
297
	}
298 299 300 301 302
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
303 304 305
	raw_spin_unlock_irq(&ctx->lock);
}

S
Stephane Eranian 已提交
306 307
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
308 309
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
310

311 312 313 314 315 316 317
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

318 319 320
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
321
	EVENT_TIME = 0x4,
322 323 324
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
325 326 327 328
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
329 330 331 332 333 334 335

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
336
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
338

339 340 341
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
342
static atomic_t nr_freq_events __read_mostly;
343
static atomic_t nr_switch_events __read_mostly;
344

P
Peter Zijlstra 已提交
345 346 347 348
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

349
/*
350
 * perf event paranoia level:
351 352
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
353
 *   1 - disallow cpu events for unpriv
354
 *   2 - disallow kernel profiling for unpriv
355
 */
356
int sysctl_perf_event_paranoid __read_mostly = 2;
357

358 359
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
360 361

/*
362
 * max perf event sample rate
363
 */
364 365 366 367 368 369 370 371 372
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
373 374
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
375

376
static void update_perf_cpu_limits(void)
377 378 379 380
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
381 382 383 384 385
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
386
}
P
Peter Zijlstra 已提交
387

388 389
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
390 391 392 393
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
394
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
395 396 397 398 399

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

417 418
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
419 420 421 422 423 424
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
425 426 427

	return 0;
}
428

429 430 431 432 433 434 435
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
436
static DEFINE_PER_CPU(u64, running_sample_length);
437

438 439 440
static u64 __report_avg;
static u64 __report_allowed;

441
static void perf_duration_warn(struct irq_work *w)
442
{
443
	printk_ratelimited(KERN_WARNING
444 445 446 447
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
448 449 450 451 452 453
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
454 455 456 457
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
458

459
	if (max_len == 0)
460 461
		return;

462 463 464 465 466
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
467 468

	/*
469 470
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
471 472
	 * from having to maintain a count.
	 */
473 474
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
475 476
		return;

477 478
	__report_avg = avg_len;
	__report_allowed = max_len;
479

480 481 482 483 484 485 486 487 488
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
489

490 491 492 493 494
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
495

496
	if (!irq_work_queue(&perf_duration_work)) {
497
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
498
			     "kernel.perf_event_max_sample_rate to %d\n",
499
			     __report_avg, __report_allowed,
500 501
			     sysctl_perf_event_sample_rate);
	}
502 503
}

504
static atomic64_t perf_event_id;
505

506 507 508 509
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
510 511 512 513 514
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
515

516
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
517

518
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
519
{
520
	return "pmu";
T
Thomas Gleixner 已提交
521 522
}

523 524 525 526 527
static inline u64 perf_clock(void)
{
	return local_clock();
}

528 529 530 531 532
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
533 534 535 536 537 538 539 540
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
557 558 559 560
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
561
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
600 601
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
602
	/*
603 604
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
605
	 */
606
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
607 608
		return;

609
	cgrp = perf_cgroup_from_task(current, event->ctx);
610 611 612 613 614
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
615 616 617
}

static inline void
618 619
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
620 621 622 623
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

624 625 626 627 628 629
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
630 631
		return;

632
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
633
	info = this_cpu_ptr(cgrp->info);
634
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
635 636 637 638 639 640 641 642 643 644 645
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
646
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
666 667
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
668 669 670 671 672 673 674 675 676

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
677 678
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
679 680 681 682 683 684 685 686 687 688 689

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
690
				WARN_ON_ONCE(cpuctx->cgrp);
691 692 693 694
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
695 696
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
697
				 */
698
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
699 700
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
701 702
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
703 704 705 706 707 708
		}
	}

	local_irq_restore(flags);
}

709 710
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
711
{
712 713 714
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

715
	rcu_read_lock();
716 717
	/*
	 * we come here when we know perf_cgroup_events > 0
718 719
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
720
	 */
721
	cgrp1 = perf_cgroup_from_task(task, NULL);
722
	cgrp2 = perf_cgroup_from_task(next, NULL);
723 724 725 726 727 728 729 730

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
731 732

	rcu_read_unlock();
S
Stephane Eranian 已提交
733 734
}

735 736
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
737
{
738 739 740
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

741
	rcu_read_lock();
742 743
	/*
	 * we come here when we know perf_cgroup_events > 0
744 745
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
746
	 */
747 748
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
749 750 751 752 753 754 755 756

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
757 758

	rcu_read_unlock();
S
Stephane Eranian 已提交
759 760 761 762 763 764 765 766
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
767 768
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
769

770
	if (!f.file)
S
Stephane Eranian 已提交
771 772
		return -EBADF;

A
Al Viro 已提交
773
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
774
					 &perf_event_cgrp_subsys);
775 776 777 778
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
792
out:
793
	fdput(f);
S
Stephane Eranian 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

867 868
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
869 870 871
{
}

872 873
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
874 875 876 877 878 879 880 881 882 883 884
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
885 886
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

917 918 919 920 921 922 923 924
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
925
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
926 927 928 929 930 931 932 933 934
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
935 936
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
937
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
938 939 940
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
941

P
Peter Zijlstra 已提交
942
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
943 944
}

945
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
946
{
947
	struct hrtimer *timer = &cpuctx->hrtimer;
948
	struct pmu *pmu = cpuctx->ctx.pmu;
949
	u64 interval;
950 951 952 953 954

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

955 956 957 958
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
959 960 961
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
962

963
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
964

P
Peter Zijlstra 已提交
965 966
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
967
	timer->function = perf_mux_hrtimer_handler;
968 969
}

970
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
971
{
972
	struct hrtimer *timer = &cpuctx->hrtimer;
973
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
974
	unsigned long flags;
975 976 977

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
978
		return 0;
979

P
Peter Zijlstra 已提交
980 981 982 983 984 985 986
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
987

988
	return 0;
989 990
}

P
Peter Zijlstra 已提交
991
void perf_pmu_disable(struct pmu *pmu)
992
{
P
Peter Zijlstra 已提交
993 994 995
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
996 997
}

P
Peter Zijlstra 已提交
998
void perf_pmu_enable(struct pmu *pmu)
999
{
P
Peter Zijlstra 已提交
1000 1001 1002
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1003 1004
}

1005
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1006 1007

/*
1008 1009 1010 1011
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1012
 */
1013
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1014
{
1015
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1016

1017
	WARN_ON(!irqs_disabled());
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1031 1032
}

1033
static void get_ctx(struct perf_event_context *ctx)
1034
{
1035
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1036 1037
}

1038 1039 1040 1041 1042 1043 1044 1045 1046
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1047
static void put_ctx(struct perf_event_context *ctx)
1048
{
1049 1050 1051
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1052
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1053
			put_task_struct(ctx->task);
1054
		call_rcu(&ctx->rcu_head, free_ctx);
1055
	}
1056 1057
}

P
Peter Zijlstra 已提交
1058 1059 1060 1061 1062 1063 1064
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1065 1066 1067 1068
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1069 1070
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1111
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1112 1113 1114
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1115
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1116 1117 1118
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1119 1120
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1133
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1143 1144 1145 1146 1147 1148
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1149 1150 1151 1152 1153 1154 1155
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1156 1157 1158 1159 1160 1161 1162
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1163
{
1164 1165 1166 1167 1168
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1169
		ctx->parent_ctx = NULL;
1170
	ctx->generation++;
1171 1172

	return parent_ctx;
1173 1174
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1197
/*
1198
 * If we inherit events we want to return the parent event id
1199 1200
 * to userspace.
 */
1201
static u64 primary_event_id(struct perf_event *event)
1202
{
1203
	u64 id = event->id;
1204

1205 1206
	if (event->parent)
		id = event->parent->id;
1207 1208 1209 1210

	return id;
}

1211
/*
1212
 * Get the perf_event_context for a task and lock it.
1213
 *
1214 1215 1216
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1217
static struct perf_event_context *
P
Peter Zijlstra 已提交
1218
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1219
{
1220
	struct perf_event_context *ctx;
1221

P
Peter Zijlstra 已提交
1222
retry:
1223 1224 1225
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1226
	 * part of the read side critical section was irqs-enabled -- see
1227 1228 1229
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1230
	 * side critical section has interrupts disabled.
1231
	 */
1232
	local_irq_save(*flags);
1233
	rcu_read_lock();
P
Peter Zijlstra 已提交
1234
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1235 1236 1237 1238
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1239
		 * perf_event_task_sched_out, though the
1240 1241 1242 1243 1244 1245
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1246
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1247
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1248
			raw_spin_unlock(&ctx->lock);
1249
			rcu_read_unlock();
1250
			local_irq_restore(*flags);
1251 1252
			goto retry;
		}
1253

1254 1255
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1256
			raw_spin_unlock(&ctx->lock);
1257
			ctx = NULL;
P
Peter Zijlstra 已提交
1258 1259
		} else {
			WARN_ON_ONCE(ctx->task != task);
1260
		}
1261 1262
	}
	rcu_read_unlock();
1263 1264
	if (!ctx)
		local_irq_restore(*flags);
1265 1266 1267 1268 1269 1270 1271 1272
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1273 1274
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1275
{
1276
	struct perf_event_context *ctx;
1277 1278
	unsigned long flags;

P
Peter Zijlstra 已提交
1279
	ctx = perf_lock_task_context(task, ctxn, &flags);
1280 1281
	if (ctx) {
		++ctx->pin_count;
1282
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1283 1284 1285 1286
	}
	return ctx;
}

1287
static void perf_unpin_context(struct perf_event_context *ctx)
1288 1289 1290
{
	unsigned long flags;

1291
	raw_spin_lock_irqsave(&ctx->lock, flags);
1292
	--ctx->pin_count;
1293
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1294 1295
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1307 1308 1309
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1310 1311 1312 1313

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1314 1315 1316
	return ctx ? ctx->time : 0;
}

1317 1318 1319 1320 1321 1322 1323 1324
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1325 1326
	lockdep_assert_held(&ctx->lock);

1327 1328 1329
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1330

S
Stephane Eranian 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1342
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1343 1344
	else if (ctx->is_active)
		run_end = ctx->time;
1345 1346 1347 1348
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1349 1350 1351 1352

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1353
		run_end = perf_event_time(event);
1354 1355

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1356

1357 1358
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1371 1372 1373 1374 1375 1376 1377 1378 1379
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1380
/*
1381
 * Add a event from the lists for its context.
1382 1383
 * Must be called with ctx->mutex and ctx->lock held.
 */
1384
static void
1385
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1386
{
P
Peter Zijlstra 已提交
1387 1388
	lockdep_assert_held(&ctx->lock);

1389 1390
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1391 1392

	/*
1393 1394 1395
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1396
	 */
1397
	if (event->group_leader == event) {
1398 1399
		struct list_head *list;

1400 1401 1402
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1403 1404
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1405
	}
P
Peter Zijlstra 已提交
1406

1407
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1408 1409
		ctx->nr_cgroups++;

1410 1411 1412
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1413
		ctx->nr_stat++;
1414 1415

	ctx->generation++;
1416 1417
}

J
Jiri Olsa 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1427
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1443
		nr += nr_siblings;
1444 1445 1446 1447 1448 1449 1450
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1451
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1452 1453 1454 1455 1456 1457 1458
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1459 1460 1461 1462 1463 1464
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1465 1466 1467
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1468 1469 1470
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1471 1472 1473
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1474 1475 1476
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1477 1478 1479
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1491 1492 1493 1494 1495 1496
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1497 1498 1499 1500 1501 1502
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1503 1504 1505
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1506 1507 1508 1509 1510 1511 1512 1513 1514
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1515
	event->id_header_size = size;
1516 1517
}

P
Peter Zijlstra 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1539 1540
static void perf_group_attach(struct perf_event *event)
{
1541
	struct perf_event *group_leader = event->group_leader, *pos;
1542

P
Peter Zijlstra 已提交
1543 1544 1545 1546 1547 1548
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1549 1550 1551 1552 1553
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1554 1555
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1556 1557 1558 1559 1560 1561
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1562 1563 1564 1565 1566

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1567 1568
}

1569
/*
1570
 * Remove a event from the lists for its context.
1571
 * Must be called with ctx->mutex and ctx->lock held.
1572
 */
1573
static void
1574
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1575
{
1576
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1577 1578 1579 1580

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1581 1582 1583 1584
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1585
		return;
1586 1587 1588

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1589
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1590
		ctx->nr_cgroups--;
1591 1592 1593 1594
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1595 1596
		cpuctx = __get_cpu_context(ctx);
		/*
1597 1598
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1599 1600 1601 1602
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1603

1604 1605
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1606
		ctx->nr_stat--;
1607

1608
	list_del_rcu(&event->event_entry);
1609

1610 1611
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1612

1613
	update_group_times(event);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1624 1625

	ctx->generation++;
1626 1627
}

1628
static void perf_group_detach(struct perf_event *event)
1629 1630
{
	struct perf_event *sibling, *tmp;
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1647
		goto out;
1648 1649 1650 1651
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1652

1653
	/*
1654 1655
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1656
	 * to whatever list we are on.
1657
	 */
1658
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1659 1660
		if (list)
			list_move_tail(&sibling->group_entry, list);
1661
		sibling->group_leader = sibling;
1662 1663 1664

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1665 1666

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1667
	}
1668 1669 1670 1671 1672 1673

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1674 1675
}

1676 1677
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1678
	return event->state == PERF_EVENT_STATE_DEAD;
1679 1680
}

1681 1682 1683 1684 1685 1686
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1687 1688 1689
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1690
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1691
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1692 1693
}

1694 1695
static void
event_sched_out(struct perf_event *event,
1696
		  struct perf_cpu_context *cpuctx,
1697
		  struct perf_event_context *ctx)
1698
{
1699
	u64 tstamp = perf_event_time(event);
1700
	u64 delta;
P
Peter Zijlstra 已提交
1701 1702 1703 1704

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1705 1706 1707 1708 1709 1710 1711 1712
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1713
		delta = tstamp - event->tstamp_stopped;
1714
		event->tstamp_running += delta;
1715
		event->tstamp_stopped = tstamp;
1716 1717
	}

1718
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1719
		return;
1720

1721 1722
	perf_pmu_disable(event->pmu);

1723 1724 1725
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1726 1727 1728 1729
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1730
	}
1731

1732
	if (!is_software_event(event))
1733
		cpuctx->active_oncpu--;
1734 1735
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1736 1737
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1738
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1739
		cpuctx->exclusive = 0;
1740 1741

	perf_pmu_enable(event->pmu);
1742 1743
}

1744
static void
1745
group_sched_out(struct perf_event *group_event,
1746
		struct perf_cpu_context *cpuctx,
1747
		struct perf_event_context *ctx)
1748
{
1749
	struct perf_event *event;
1750
	int state = group_event->state;
1751

1752
	event_sched_out(group_event, cpuctx, ctx);
1753 1754 1755 1756

	/*
	 * Schedule out siblings (if any):
	 */
1757 1758
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1759

1760
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1761 1762 1763
		cpuctx->exclusive = 0;
}

1764
#define DETACH_GROUP	0x01UL
1765

T
Thomas Gleixner 已提交
1766
/*
1767
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1768
 *
1769
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1770 1771
 * remove it from the context list.
 */
1772 1773 1774 1775 1776
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1777
{
1778
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1779

1780
	event_sched_out(event, cpuctx, ctx);
1781
	if (flags & DETACH_GROUP)
1782
		perf_group_detach(event);
1783
	list_del_event(event, ctx);
1784 1785

	if (!ctx->nr_events && ctx->is_active) {
1786
		ctx->is_active = 0;
1787 1788 1789 1790
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1791
	}
T
Thomas Gleixner 已提交
1792 1793 1794
}

/*
1795
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1796
 *
1797 1798
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1799 1800
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1801
 * When called from perf_event_exit_task, it's OK because the
1802
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1803
 */
1804
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1805
{
1806
	lockdep_assert_held(&event->ctx->mutex);
T
Thomas Gleixner 已提交
1807

1808
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1809 1810
}

1811
/*
1812
 * Cross CPU call to disable a performance event
1813
 */
1814 1815 1816 1817
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1818
{
1819 1820
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1821

1822 1823 1824 1825 1826 1827 1828 1829
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1830 1831
}

1832
/*
1833
 * Disable a event.
1834
 *
1835 1836
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1837
 * remains valid.  This condition is satisifed when called through
1838 1839
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1840 1841
 * goes to exit will block in perf_event_exit_event().
 *
1842
 * When called from perf_pending_event it's OK because event->ctx
1843
 * is the current context on this CPU and preemption is disabled,
1844
 * hence we can't get into perf_event_task_sched_out for this context.
1845
 */
P
Peter Zijlstra 已提交
1846
static void _perf_event_disable(struct perf_event *event)
1847
{
1848
	struct perf_event_context *ctx = event->ctx;
1849

1850
	raw_spin_lock_irq(&ctx->lock);
1851
	if (event->state <= PERF_EVENT_STATE_OFF) {
1852
		raw_spin_unlock_irq(&ctx->lock);
1853
		return;
1854
	}
1855
	raw_spin_unlock_irq(&ctx->lock);
1856

1857 1858 1859 1860 1861 1862
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1863
}
P
Peter Zijlstra 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1877
EXPORT_SYMBOL_GPL(perf_event_disable);
1878

S
Stephane Eranian 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1914 1915 1916
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1917
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1918

1919
static int
1920
event_sched_in(struct perf_event *event,
1921
		 struct perf_cpu_context *cpuctx,
1922
		 struct perf_event_context *ctx)
1923
{
1924
	u64 tstamp = perf_event_time(event);
1925
	int ret = 0;
1926

1927 1928
	lockdep_assert_held(&ctx->lock);

1929
	if (event->state <= PERF_EVENT_STATE_OFF)
1930 1931
		return 0;

1932 1933 1934 1935 1936 1937 1938
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1950 1951 1952 1953 1954
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1955 1956
	perf_pmu_disable(event->pmu);

1957 1958
	perf_set_shadow_time(event, ctx, tstamp);

1959 1960
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1961
	if (event->pmu->add(event, PERF_EF_START)) {
1962 1963
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1964 1965
		ret = -EAGAIN;
		goto out;
1966 1967
	}

1968 1969
	event->tstamp_running += tstamp - event->tstamp_stopped;

1970
	if (!is_software_event(event))
1971
		cpuctx->active_oncpu++;
1972 1973
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1974 1975
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1976

1977
	if (event->attr.exclusive)
1978 1979
		cpuctx->exclusive = 1;

1980 1981 1982 1983
out:
	perf_pmu_enable(event->pmu);

	return ret;
1984 1985
}

1986
static int
1987
group_sched_in(struct perf_event *group_event,
1988
	       struct perf_cpu_context *cpuctx,
1989
	       struct perf_event_context *ctx)
1990
{
1991
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1992
	struct pmu *pmu = ctx->pmu;
1993 1994
	u64 now = ctx->time;
	bool simulate = false;
1995

1996
	if (group_event->state == PERF_EVENT_STATE_OFF)
1997 1998
		return 0;

1999
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2000

2001
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2002
		pmu->cancel_txn(pmu);
2003
		perf_mux_hrtimer_restart(cpuctx);
2004
		return -EAGAIN;
2005
	}
2006 2007 2008 2009

	/*
	 * Schedule in siblings as one group (if any):
	 */
2010
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2011
		if (event_sched_in(event, cpuctx, ctx)) {
2012
			partial_group = event;
2013 2014 2015 2016
			goto group_error;
		}
	}

2017
	if (!pmu->commit_txn(pmu))
2018
		return 0;
2019

2020 2021 2022 2023
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2034
	 */
2035 2036
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2037 2038 2039 2040 2041 2042 2043 2044
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2045
	}
2046
	event_sched_out(group_event, cpuctx, ctx);
2047

P
Peter Zijlstra 已提交
2048
	pmu->cancel_txn(pmu);
2049

2050
	perf_mux_hrtimer_restart(cpuctx);
2051

2052 2053 2054
	return -EAGAIN;
}

2055
/*
2056
 * Work out whether we can put this event group on the CPU now.
2057
 */
2058
static int group_can_go_on(struct perf_event *event,
2059 2060 2061 2062
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2063
	 * Groups consisting entirely of software events can always go on.
2064
	 */
2065
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2066 2067 2068
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2069
	 * events can go on.
2070 2071 2072 2073 2074
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2075
	 * events on the CPU, it can't go on.
2076
	 */
2077
	if (event->attr.exclusive && cpuctx->active_oncpu)
2078 2079 2080 2081 2082 2083 2084 2085
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2086 2087
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2088
{
2089 2090
	u64 tstamp = perf_event_time(event);

2091
	list_add_event(event, ctx);
2092
	perf_group_attach(event);
2093 2094 2095
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2096 2097
}

2098 2099 2100
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2101 2102 2103 2104 2105
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2106

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
}

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2131 2132
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2133
{
2134 2135 2136 2137 2138 2139
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2140 2141
}

T
Thomas Gleixner 已提交
2142
/*
2143
 * Cross CPU call to install and enable a performance event
2144
 *
2145 2146
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2147
 */
2148
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2149
{
2150 2151
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2152
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2153
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2154 2155
	bool activate = true;
	int ret = 0;
T
Thomas Gleixner 已提交
2156

2157
	raw_spin_lock(&cpuctx->ctx.lock);
2158
	if (ctx->task) {
2159 2160
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2161 2162 2163 2164

		/* If we're on the wrong CPU, try again */
		if (task_cpu(ctx->task) != smp_processor_id()) {
			ret = -ESRCH;
2165
			goto unlock;
2166
		}
2167

2168
		/*
2169 2170 2171
		 * If we're on the right CPU, see if the task we target is
		 * current, if not we don't have to activate the ctx, a future
		 * context switch will do that for us.
2172
		 */
2173 2174 2175 2176 2177
		if (ctx->task != current)
			activate = false;
		else
			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);

2178 2179
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2180
	}
2181

2182 2183 2184 2185 2186 2187 2188 2189
	if (activate) {
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
		ctx_resched(cpuctx, task_ctx);
	} else {
		add_event_to_ctx(event, ctx);
	}

2190
unlock:
2191
	perf_ctx_unlock(cpuctx, task_ctx);
2192

2193
	return ret;
T
Thomas Gleixner 已提交
2194 2195 2196
}

/*
2197 2198 2199
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2200 2201
 */
static void
2202 2203
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2204 2205
			int cpu)
{
2206
	struct task_struct *task = READ_ONCE(ctx->task);
2207

2208 2209
	lockdep_assert_held(&ctx->mutex);

2210
	event->ctx = ctx;
2211 2212
	if (event->cpu != -1)
		event->cpu = cpu;
2213

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2225 2226 2227 2228
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 */
2229
again:
2230
	/*
2231 2232
	 * Cannot use task_function_call() because we need to run on the task's
	 * CPU regardless of whether its current or not.
2233
	 */
2234 2235 2236 2237 2238
	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2239
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2240 2241 2242 2243 2244
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2245 2246 2247
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2248 2249
	raw_spin_unlock_irq(&ctx->lock);
	/*
2250 2251
	 * Since !ctx->is_active doesn't mean anything, we must IPI
	 * unconditionally.
2252
	 */
2253
	goto again;
T
Thomas Gleixner 已提交
2254 2255
}

2256
/*
2257
 * Put a event into inactive state and update time fields.
2258 2259 2260 2261 2262 2263
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2264
static void __perf_event_mark_enabled(struct perf_event *event)
2265
{
2266
	struct perf_event *sub;
2267
	u64 tstamp = perf_event_time(event);
2268

2269
	event->state = PERF_EVENT_STATE_INACTIVE;
2270
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2271
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2272 2273
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2274
	}
2275 2276
}

2277
/*
2278
 * Cross CPU call to enable a performance event
2279
 */
2280 2281 2282 2283
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2284
{
2285
	struct perf_event *leader = event->group_leader;
2286
	struct perf_event_context *task_ctx;
2287

P
Peter Zijlstra 已提交
2288 2289
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2290
		return;
2291

2292 2293 2294
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2295
	__perf_event_mark_enabled(event);
2296

2297 2298 2299
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2300
	if (!event_filter_match(event)) {
2301
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2302
			perf_cgroup_defer_enabled(event);
2303
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2304
		return;
S
Stephane Eranian 已提交
2305
	}
2306

2307
	/*
2308
	 * If the event is in a group and isn't the group leader,
2309
	 * then don't put it on unless the group is on.
2310
	 */
2311 2312
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2313
		return;
2314
	}
2315

2316 2317 2318
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2319

2320
	ctx_resched(cpuctx, task_ctx);
2321 2322
}

2323
/*
2324
 * Enable a event.
2325
 *
2326 2327
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2328
 * remains valid.  This condition is satisfied when called through
2329 2330
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2331
 */
P
Peter Zijlstra 已提交
2332
static void _perf_event_enable(struct perf_event *event)
2333
{
2334
	struct perf_event_context *ctx = event->ctx;
2335

2336
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2337 2338
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2339
		raw_spin_unlock_irq(&ctx->lock);
2340 2341 2342 2343
		return;
	}

	/*
2344
	 * If the event is in error state, clear that first.
2345 2346 2347 2348
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2349
	 */
2350 2351
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2352
	raw_spin_unlock_irq(&ctx->lock);
2353

2354
	event_function_call(event, __perf_event_enable, NULL);
2355
}
P
Peter Zijlstra 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2368
EXPORT_SYMBOL_GPL(perf_event_enable);
2369

2370 2371 2372 2373 2374
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2375 2376
static int __perf_event_stop(void *info)
{
2377 2378
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2379

2380
	/* if it's already INACTIVE, do nothing */
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
		event->pmu->start(event, PERF_EF_START);

2408 2409 2410
	return 0;
}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
static int perf_event_restart(struct perf_event *event)
{
	struct stop_event_data sd = {
		.event		= event,
		.restart	= 1,
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2476
static int _perf_event_refresh(struct perf_event *event, int refresh)
2477
{
2478
	/*
2479
	 * not supported on inherited events
2480
	 */
2481
	if (event->attr.inherit || !is_sampling_event(event))
2482 2483
		return -EINVAL;

2484
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2485
	_perf_event_enable(event);
2486 2487

	return 0;
2488
}
P
Peter Zijlstra 已提交
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2504
EXPORT_SYMBOL_GPL(perf_event_refresh);
2505

2506 2507 2508
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2509
{
2510
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2511
	struct perf_event *event;
2512

P
Peter Zijlstra 已提交
2513
	lockdep_assert_held(&ctx->lock);
2514

2515 2516 2517 2518 2519 2520 2521
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2522
		return;
2523 2524
	}

2525
	ctx->is_active &= ~event_type;
2526 2527 2528
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2529 2530 2531 2532 2533
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2534

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2545 2546 2547 2548 2549 2550
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2551 2552
	is_active ^= ctx->is_active; /* changed bits */

2553
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2554
		return;
2555

P
Peter Zijlstra 已提交
2556
	perf_pmu_disable(ctx->pmu);
2557
	if (is_active & EVENT_PINNED) {
2558 2559
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2560
	}
2561

2562
	if (is_active & EVENT_FLEXIBLE) {
2563
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2564
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2565
	}
P
Peter Zijlstra 已提交
2566
	perf_pmu_enable(ctx->pmu);
2567 2568
}

2569
/*
2570 2571 2572 2573 2574 2575
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2576
 */
2577 2578
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2579
{
2580 2581 2582
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2605 2606
}

2607 2608
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2609 2610 2611
{
	u64 value;

2612
	if (!event->attr.inherit_stat)
2613 2614 2615
		return;

	/*
2616
	 * Update the event value, we cannot use perf_event_read()
2617 2618
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2619
	 * we know the event must be on the current CPU, therefore we
2620 2621
	 * don't need to use it.
	 */
2622 2623
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2624 2625
		event->pmu->read(event);
		/* fall-through */
2626

2627 2628
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2629 2630 2631 2632 2633 2634 2635
		break;

	default:
		break;
	}

	/*
2636
	 * In order to keep per-task stats reliable we need to flip the event
2637 2638
	 * values when we flip the contexts.
	 */
2639 2640 2641
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2642

2643 2644
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2645

2646
	/*
2647
	 * Since we swizzled the values, update the user visible data too.
2648
	 */
2649 2650
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2651 2652
}

2653 2654
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2655
{
2656
	struct perf_event *event, *next_event;
2657 2658 2659 2660

	if (!ctx->nr_stat)
		return;

2661 2662
	update_context_time(ctx);

2663 2664
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2665

2666 2667
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2668

2669 2670
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2671

2672
		__perf_event_sync_stat(event, next_event);
2673

2674 2675
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2676 2677 2678
	}
}

2679 2680
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2681
{
P
Peter Zijlstra 已提交
2682
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2683
	struct perf_event_context *next_ctx;
2684
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2685
	struct perf_cpu_context *cpuctx;
2686
	int do_switch = 1;
T
Thomas Gleixner 已提交
2687

P
Peter Zijlstra 已提交
2688 2689
	if (likely(!ctx))
		return;
2690

P
Peter Zijlstra 已提交
2691 2692
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2693 2694
		return;

2695
	rcu_read_lock();
P
Peter Zijlstra 已提交
2696
	next_ctx = next->perf_event_ctxp[ctxn];
2697 2698 2699 2700 2701 2702 2703
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2704
	if (!parent && !next_parent)
2705 2706 2707
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2708 2709 2710 2711 2712 2713 2714 2715 2716
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2717 2718
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2719
		if (context_equiv(ctx, next_ctx)) {
2720 2721
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2722 2723 2724

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2735
			do_switch = 0;
2736

2737
			perf_event_sync_stat(ctx, next_ctx);
2738
		}
2739 2740
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2741
	}
2742
unlock:
2743
	rcu_read_unlock();
2744

2745
	if (do_switch) {
2746
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2747
		task_ctx_sched_out(cpuctx, ctx);
2748
		raw_spin_unlock(&ctx->lock);
2749
	}
T
Thomas Gleixner 已提交
2750 2751
}

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2802 2803 2804
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2819 2820
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2821 2822 2823
{
	int ctxn;

2824 2825 2826
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2827 2828 2829
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2830 2831
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2832 2833 2834 2835 2836 2837

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2838
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2840 2841
}

2842 2843 2844 2845 2846 2847 2848
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2849 2850
}

2851
static void
2852
ctx_pinned_sched_in(struct perf_event_context *ctx,
2853
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2854
{
2855
	struct perf_event *event;
T
Thomas Gleixner 已提交
2856

2857 2858
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2859
			continue;
2860
		if (!event_filter_match(event))
2861 2862
			continue;

S
Stephane Eranian 已提交
2863 2864 2865 2866
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2867
		if (group_can_go_on(event, cpuctx, 1))
2868
			group_sched_in(event, cpuctx, ctx);
2869 2870 2871 2872 2873

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2874 2875 2876
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2877
		}
2878
	}
2879 2880 2881 2882
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2883
		      struct perf_cpu_context *cpuctx)
2884 2885 2886
{
	struct perf_event *event;
	int can_add_hw = 1;
2887

2888 2889 2890
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2891
			continue;
2892 2893
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2894
		 * of events:
2895
		 */
2896
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2897 2898
			continue;

S
Stephane Eranian 已提交
2899 2900 2901 2902
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2903
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2904
			if (group_sched_in(event, cpuctx, ctx))
2905
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2906
		}
T
Thomas Gleixner 已提交
2907
	}
2908 2909 2910 2911 2912
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2913 2914
	     enum event_type_t event_type,
	     struct task_struct *task)
2915
{
2916
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2917 2918 2919
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2920

2921
	if (likely(!ctx->nr_events))
2922
		return;
2923

2924
	ctx->is_active |= (event_type | EVENT_TIME);
2925 2926 2927 2928 2929 2930 2931
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

2932 2933 2934 2935 2936 2937 2938 2939 2940
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

2941 2942 2943 2944
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2945
	if (is_active & EVENT_PINNED)
2946
		ctx_pinned_sched_in(ctx, cpuctx);
2947 2948

	/* Then walk through the lower prio flexible groups */
2949
	if (is_active & EVENT_FLEXIBLE)
2950
		ctx_flexible_sched_in(ctx, cpuctx);
2951 2952
}

2953
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2954 2955
			     enum event_type_t event_type,
			     struct task_struct *task)
2956 2957 2958
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2959
	ctx_sched_in(ctx, cpuctx, event_type, task);
2960 2961
}

S
Stephane Eranian 已提交
2962 2963
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2964
{
P
Peter Zijlstra 已提交
2965
	struct perf_cpu_context *cpuctx;
2966

P
Peter Zijlstra 已提交
2967
	cpuctx = __get_cpu_context(ctx);
2968 2969 2970
	if (cpuctx->task_ctx == ctx)
		return;

2971
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2972
	perf_pmu_disable(ctx->pmu);
2973 2974 2975 2976 2977 2978
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2979
	perf_event_sched_in(cpuctx, ctx, task);
2980 2981
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2982 2983
}

P
Peter Zijlstra 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2995 2996
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2997 2998 2999 3000
{
	struct perf_event_context *ctx;
	int ctxn;

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3011 3012 3013 3014 3015
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3016
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3017
	}
3018

3019 3020 3021
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3022 3023
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3024 3025
}

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3053
#define REDUCE_FLS(a, b)		\
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3093 3094 3095
	if (!divisor)
		return dividend;

3096 3097 3098
	return div64_u64(dividend, divisor);
}

3099 3100 3101
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3102
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3103
{
3104
	struct hw_perf_event *hwc = &event->hw;
3105
	s64 period, sample_period;
3106 3107
	s64 delta;

3108
	period = perf_calculate_period(event, nsec, count);
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3119

3120
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3121 3122 3123
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3124
		local64_set(&hwc->period_left, 0);
3125 3126 3127

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3128
	}
3129 3130
}

3131 3132 3133 3134 3135 3136 3137
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3138
{
3139 3140
	struct perf_event *event;
	struct hw_perf_event *hwc;
3141
	u64 now, period = TICK_NSEC;
3142
	s64 delta;
3143

3144 3145 3146 3147 3148 3149
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3150 3151
		return;

3152
	raw_spin_lock(&ctx->lock);
3153
	perf_pmu_disable(ctx->pmu);
3154

3155
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3156
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3157 3158
			continue;

3159
		if (!event_filter_match(event))
3160 3161
			continue;

3162 3163
		perf_pmu_disable(event->pmu);

3164
		hwc = &event->hw;
3165

3166
		if (hwc->interrupts == MAX_INTERRUPTS) {
3167
			hwc->interrupts = 0;
3168
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3169
			event->pmu->start(event, 0);
3170 3171
		}

3172
		if (!event->attr.freq || !event->attr.sample_freq)
3173
			goto next;
3174

3175 3176 3177 3178 3179
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3180
		now = local64_read(&event->count);
3181 3182
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3183

3184 3185 3186
		/*
		 * restart the event
		 * reload only if value has changed
3187 3188 3189
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3190
		 */
3191
		if (delta > 0)
3192
			perf_adjust_period(event, period, delta, false);
3193 3194

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3195 3196
	next:
		perf_pmu_enable(event->pmu);
3197
	}
3198

3199
	perf_pmu_enable(ctx->pmu);
3200
	raw_spin_unlock(&ctx->lock);
3201 3202
}

3203
/*
3204
 * Round-robin a context's events:
3205
 */
3206
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3207
{
3208 3209 3210 3211 3212 3213
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3214 3215
}

3216
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3217
{
P
Peter Zijlstra 已提交
3218
	struct perf_event_context *ctx = NULL;
3219
	int rotate = 0;
3220

3221 3222 3223 3224
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3225

P
Peter Zijlstra 已提交
3226
	ctx = cpuctx->task_ctx;
3227 3228 3229 3230
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3231

3232
	if (!rotate)
3233 3234
		goto done;

3235
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3236
	perf_pmu_disable(cpuctx->ctx.pmu);
3237

3238 3239 3240
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3241

3242 3243 3244
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3245

3246
	perf_event_sched_in(cpuctx, ctx, current);
3247

3248 3249
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3250
done:
3251 3252

	return rotate;
3253 3254 3255 3256
}

void perf_event_task_tick(void)
{
3257 3258
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3259
	int throttled;
3260

3261 3262
	WARN_ON(!irqs_disabled());

3263 3264
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3265
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3266

3267
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3268
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3269 3270
}

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3281
	__perf_event_mark_enabled(event);
3282 3283 3284 3285

	return 1;
}

3286
/*
3287
 * Enable all of a task's events that have been marked enable-on-exec.
3288 3289
 * This expects task == current.
 */
3290
static void perf_event_enable_on_exec(int ctxn)
3291
{
3292
	struct perf_event_context *ctx, *clone_ctx = NULL;
3293
	struct perf_cpu_context *cpuctx;
3294
	struct perf_event *event;
3295 3296 3297 3298
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3299
	ctx = current->perf_event_ctxp[ctxn];
3300
	if (!ctx || !ctx->nr_events)
3301 3302
		goto out;

3303 3304
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3305
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3306 3307
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3308 3309

	/*
3310
	 * Unclone and reschedule this context if we enabled any event.
3311
	 */
3312
	if (enabled) {
3313
		clone_ctx = unclone_ctx(ctx);
3314 3315 3316
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3317

P
Peter Zijlstra 已提交
3318
out:
3319
	local_irq_restore(flags);
3320 3321 3322

	if (clone_ctx)
		put_ctx(clone_ctx);
3323 3324
}

3325 3326 3327
struct perf_read_data {
	struct perf_event *event;
	bool group;
3328
	int ret;
3329 3330
};

T
Thomas Gleixner 已提交
3331
/*
3332
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3333
 */
3334
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3335
{
3336 3337
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3338
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3339
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3340
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3341

3342 3343 3344 3345
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3346 3347
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3348 3349 3350 3351
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3352
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3353
	if (ctx->is_active) {
3354
		update_context_time(ctx);
S
Stephane Eranian 已提交
3355 3356
		update_cgrp_time_from_event(event);
	}
3357

3358
	update_event_times(event);
3359 3360
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3361

3362 3363 3364
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3365
		goto unlock;
3366 3367 3368 3369 3370
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3371 3372 3373

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3374 3375 3376 3377 3378
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3379
			sub->pmu->read(sub);
3380
		}
3381
	}
3382 3383

	data->ret = pmu->commit_txn(pmu);
3384 3385

unlock:
3386
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3387 3388
}

P
Peter Zijlstra 已提交
3389 3390
static inline u64 perf_event_count(struct perf_event *event)
{
3391 3392 3393 3394
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3395 3396
}

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3450
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3451
{
3452 3453
	int ret = 0;

T
Thomas Gleixner 已提交
3454
	/*
3455 3456
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3457
	 */
3458
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3459 3460 3461
		struct perf_read_data data = {
			.event = event,
			.group = group,
3462
			.ret = 0,
3463
		};
3464
		smp_call_function_single(event->oncpu,
3465
					 __perf_event_read, &data, 1);
3466
		ret = data.ret;
3467
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3468 3469 3470
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3471
		raw_spin_lock_irqsave(&ctx->lock, flags);
3472 3473 3474 3475 3476
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3477
		if (ctx->is_active) {
3478
			update_context_time(ctx);
S
Stephane Eranian 已提交
3479 3480
			update_cgrp_time_from_event(event);
		}
3481 3482 3483 3484
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3485
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3486
	}
3487 3488

	return ret;
T
Thomas Gleixner 已提交
3489 3490
}

3491
/*
3492
 * Initialize the perf_event context in a task_struct:
3493
 */
3494
static void __perf_event_init_context(struct perf_event_context *ctx)
3495
{
3496
	raw_spin_lock_init(&ctx->lock);
3497
	mutex_init(&ctx->mutex);
3498
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3499 3500
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3501 3502
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3518
	}
3519 3520 3521
	ctx->pmu = pmu;

	return ctx;
3522 3523
}

3524 3525 3526 3527
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3528 3529

	rcu_read_lock();
3530
	if (!vpid)
T
Thomas Gleixner 已提交
3531 3532
		task = current;
	else
3533
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3534 3535 3536 3537 3538 3539 3540
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3541 3542 3543
	return task;
}

3544 3545 3546
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3547
static struct perf_event_context *
3548 3549
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3550
{
3551
	struct perf_event_context *ctx, *clone_ctx = NULL;
3552
	struct perf_cpu_context *cpuctx;
3553
	void *task_ctx_data = NULL;
3554
	unsigned long flags;
P
Peter Zijlstra 已提交
3555
	int ctxn, err;
3556
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3557

3558
	if (!task) {
3559
		/* Must be root to operate on a CPU event: */
3560
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3561 3562 3563
			return ERR_PTR(-EACCES);

		/*
3564
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3565 3566 3567
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3568
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3569 3570
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3571
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3572
		ctx = &cpuctx->ctx;
3573
		get_ctx(ctx);
3574
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3575 3576 3577 3578

		return ctx;
	}

P
Peter Zijlstra 已提交
3579 3580 3581 3582 3583
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3584 3585 3586 3587 3588 3589 3590 3591
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3592
retry:
P
Peter Zijlstra 已提交
3593
	ctx = perf_lock_task_context(task, ctxn, &flags);
3594
	if (ctx) {
3595
		clone_ctx = unclone_ctx(ctx);
3596
		++ctx->pin_count;
3597 3598 3599 3600 3601

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3602
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3603 3604 3605

		if (clone_ctx)
			put_ctx(clone_ctx);
3606
	} else {
3607
		ctx = alloc_perf_context(pmu, task);
3608 3609 3610
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3611

3612 3613 3614 3615 3616
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3627
		else {
3628
			get_ctx(ctx);
3629
			++ctx->pin_count;
3630
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3631
		}
3632 3633 3634
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3635
			put_ctx(ctx);
3636 3637 3638 3639

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3640 3641 3642
		}
	}

3643
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3644
	return ctx;
3645

P
Peter Zijlstra 已提交
3646
errout:
3647
	kfree(task_ctx_data);
3648
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3649 3650
}

L
Li Zefan 已提交
3651
static void perf_event_free_filter(struct perf_event *event);
3652
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3653

3654
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3655
{
3656
	struct perf_event *event;
P
Peter Zijlstra 已提交
3657

3658 3659 3660
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3661
	perf_event_free_filter(event);
3662
	kfree(event);
P
Peter Zijlstra 已提交
3663 3664
}

3665 3666
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3667

3668
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3669
{
3670 3671 3672 3673 3674 3675
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3676

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3699 3700
static void unaccount_event(struct perf_event *event)
{
3701 3702
	bool dec = false;

3703 3704 3705 3706
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3707
		dec = true;
3708 3709 3710 3711 3712 3713
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3714
	if (event->attr.freq)
3715
		unaccount_freq_event();
3716
	if (event->attr.context_switch) {
3717
		dec = true;
3718 3719
		atomic_dec(&nr_switch_events);
	}
3720
	if (is_cgroup_event(event))
3721
		dec = true;
3722
	if (has_branch_stack(event))
3723 3724
		dec = true;

3725 3726 3727 3728
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3729 3730 3731

	unaccount_event_cpu(event, event->cpu);
}
3732

3733 3734 3735 3736 3737 3738 3739 3740
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3751
 * _free_event()), the latter -- before the first perf_install_in_context().
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3826 3827 3828
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
3829
static void _free_event(struct perf_event *event)
3830
{
3831
	irq_work_sync(&event->pending);
3832

3833
	unaccount_event(event);
3834

3835
	if (event->rb) {
3836 3837 3838 3839 3840 3841 3842
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3843
		ring_buffer_attach(event, NULL);
3844
		mutex_unlock(&event->mmap_mutex);
3845 3846
	}

S
Stephane Eranian 已提交
3847 3848 3849
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3850 3851 3852 3853 3854 3855
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
3856 3857
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	if (event->pmu) {
		exclusive_event_destroy(event);
		module_put(event->pmu->module);
	}

	call_rcu(&event->rcu_head, free_event_rcu);
3871 3872
}

P
Peter Zijlstra 已提交
3873 3874 3875 3876 3877
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3878
{
P
Peter Zijlstra 已提交
3879 3880 3881 3882 3883 3884
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3885

P
Peter Zijlstra 已提交
3886
	_free_event(event);
T
Thomas Gleixner 已提交
3887 3888
}

3889
/*
3890
 * Remove user event from the owner task.
3891
 */
3892
static void perf_remove_from_owner(struct perf_event *event)
3893
{
P
Peter Zijlstra 已提交
3894
	struct task_struct *owner;
3895

P
Peter Zijlstra 已提交
3896 3897
	rcu_read_lock();
	/*
3898 3899 3900
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
3901 3902
	 * owner->perf_event_mutex.
	 */
3903
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3925 3926 3927 3928 3929 3930
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
3931
		if (event->owner) {
P
Peter Zijlstra 已提交
3932
			list_del_init(&event->owner_entry);
3933 3934
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
3935 3936 3937
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3938 3939 3940 3941 3942 3943 3944
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
3955
	struct perf_event_context *ctx = event->ctx;
3956 3957
	struct perf_event *child, *tmp;

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

3968 3969
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3970

3971
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
3972
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3973
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
3974

P
Peter Zijlstra 已提交
3975
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
3976
	/*
P
Peter Zijlstra 已提交
3977 3978
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
3979
	 *
P
Peter Zijlstra 已提交
3980 3981 3982
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
3983
	 *
3984 3985
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
3986
	 */
P
Peter Zijlstra 已提交
3987 3988 3989 3990
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3991

3992 3993 3994
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
3995

3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4045 4046
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4047 4048 4049 4050
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4051 4052 4053
/*
 * Called when the last reference to the file is gone.
 */
4054 4055
static int perf_release(struct inode *inode, struct file *file)
{
4056
	perf_event_release_kernel(file->private_data);
4057
	return 0;
4058 4059
}

4060
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4061
{
4062
	struct perf_event *child;
4063 4064
	u64 total = 0;

4065 4066 4067
	*enabled = 0;
	*running = 0;

4068
	mutex_lock(&event->child_mutex);
4069

4070
	(void)perf_event_read(event, false);
4071 4072
	total += perf_event_count(event);

4073 4074 4075 4076 4077 4078
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4079
		(void)perf_event_read(child, false);
4080
		total += perf_event_count(child);
4081 4082 4083
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4084
	mutex_unlock(&event->child_mutex);
4085 4086 4087

	return total;
}
4088
EXPORT_SYMBOL_GPL(perf_event_read_value);
4089

4090
static int __perf_read_group_add(struct perf_event *leader,
4091
					u64 read_format, u64 *values)
4092
{
4093 4094
	struct perf_event *sub;
	int n = 1; /* skip @nr */
4095
	int ret;
P
Peter Zijlstra 已提交
4096

4097 4098 4099
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4100

4101 4102 4103 4104 4105 4106 4107 4108 4109
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4110

4111 4112 4113 4114 4115 4116 4117 4118 4119
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4120 4121
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4122

4123 4124 4125 4126 4127
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4128 4129

	return 0;
4130
}
4131

4132 4133 4134 4135 4136
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4137
	int ret;
4138
	u64 *values;
4139

4140
	lockdep_assert_held(&ctx->mutex);
4141

4142 4143 4144
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4145

4146 4147 4148 4149 4150 4151 4152
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4153

4154 4155 4156 4157 4158 4159 4160 4161 4162
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4163

4164
	mutex_unlock(&leader->child_mutex);
4165

4166
	ret = event->read_size;
4167 4168
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4169
	goto out;
4170

4171 4172 4173
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4174
	kfree(values);
4175
	return ret;
4176 4177
}

4178
static int perf_read_one(struct perf_event *event,
4179 4180
				 u64 read_format, char __user *buf)
{
4181
	u64 enabled, running;
4182 4183 4184
	u64 values[4];
	int n = 0;

4185 4186 4187 4188 4189
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4190
	if (read_format & PERF_FORMAT_ID)
4191
		values[n++] = primary_event_id(event);
4192 4193 4194 4195 4196 4197 4198

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4199 4200 4201 4202
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4203
	if (event->state > PERF_EVENT_STATE_EXIT)
4204 4205 4206 4207 4208 4209 4210 4211
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4212
/*
4213
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4214 4215
 */
static ssize_t
4216
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4217
{
4218
	u64 read_format = event->attr.read_format;
4219
	int ret;
T
Thomas Gleixner 已提交
4220

4221
	/*
4222
	 * Return end-of-file for a read on a event that is in
4223 4224 4225
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4226
	if (event->state == PERF_EVENT_STATE_ERROR)
4227 4228
		return 0;

4229
	if (count < event->read_size)
4230 4231
		return -ENOSPC;

4232
	WARN_ON_ONCE(event->ctx->parent_ctx);
4233
	if (read_format & PERF_FORMAT_GROUP)
4234
		ret = perf_read_group(event, read_format, buf);
4235
	else
4236
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4237

4238
	return ret;
T
Thomas Gleixner 已提交
4239 4240 4241 4242 4243
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4244
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4245 4246
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4247

P
Peter Zijlstra 已提交
4248
	ctx = perf_event_ctx_lock(event);
4249
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4250 4251 4252
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4253 4254 4255 4256
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4257
	struct perf_event *event = file->private_data;
4258
	struct ring_buffer *rb;
4259
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4260

4261
	poll_wait(file, &event->waitq, wait);
4262

4263
	if (is_event_hup(event))
4264
		return events;
P
Peter Zijlstra 已提交
4265

4266
	/*
4267 4268
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4269 4270
	 */
	mutex_lock(&event->mmap_mutex);
4271 4272
	rb = event->rb;
	if (rb)
4273
		events = atomic_xchg(&rb->poll, 0);
4274
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4275 4276 4277
	return events;
}

P
Peter Zijlstra 已提交
4278
static void _perf_event_reset(struct perf_event *event)
4279
{
4280
	(void)perf_event_read(event, false);
4281
	local64_set(&event->count, 0);
4282
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4283 4284
}

4285
/*
4286 4287
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4288
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4289
 * task existence requirements of perf_event_enable/disable.
4290
 */
4291 4292
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4293
{
4294
	struct perf_event *child;
P
Peter Zijlstra 已提交
4295

4296
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4297

4298 4299 4300
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4301
		func(child);
4302
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4303 4304
}

4305 4306
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4307
{
4308 4309
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4310

P
Peter Zijlstra 已提交
4311 4312
	lockdep_assert_held(&ctx->mutex);

4313
	event = event->group_leader;
4314

4315 4316
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4317
		perf_event_for_each_child(sibling, func);
4318 4319
}

4320 4321 4322 4323
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4324
{
4325
	u64 value = *((u64 *)info);
4326
	bool active;
4327

4328 4329
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4330
	} else {
4331 4332
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4333
	}
4334 4335 4336 4337

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4338 4339 4340 4341 4342 4343 4344 4345
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4346 4347 4348 4349 4350 4351 4352 4353 4354
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4373
	event_function_call(event, __perf_event_period, &value);
4374

4375
	return 0;
4376 4377
}

4378 4379
static const struct file_operations perf_fops;

4380
static inline int perf_fget_light(int fd, struct fd *p)
4381
{
4382 4383 4384
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4385

4386 4387 4388
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4389
	}
4390 4391
	*p = f;
	return 0;
4392 4393 4394 4395
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4396
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4397
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4398

P
Peter Zijlstra 已提交
4399
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4400
{
4401
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4402
	u32 flags = arg;
4403 4404

	switch (cmd) {
4405
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4406
		func = _perf_event_enable;
4407
		break;
4408
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4409
		func = _perf_event_disable;
4410
		break;
4411
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4412
		func = _perf_event_reset;
4413
		break;
P
Peter Zijlstra 已提交
4414

4415
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4416
		return _perf_event_refresh(event, arg);
4417

4418 4419
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4420

4421 4422 4423 4424 4425 4426 4427 4428 4429
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4430
	case PERF_EVENT_IOC_SET_OUTPUT:
4431 4432 4433
	{
		int ret;
		if (arg != -1) {
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4444 4445 4446
		}
		return ret;
	}
4447

L
Li Zefan 已提交
4448 4449 4450
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4451 4452 4453
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4467
	default:
P
Peter Zijlstra 已提交
4468
		return -ENOTTY;
4469
	}
P
Peter Zijlstra 已提交
4470 4471

	if (flags & PERF_IOC_FLAG_GROUP)
4472
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4473
	else
4474
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4475 4476

	return 0;
4477 4478
}

P
Peter Zijlstra 已提交
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4512
int perf_event_task_enable(void)
4513
{
P
Peter Zijlstra 已提交
4514
	struct perf_event_context *ctx;
4515
	struct perf_event *event;
4516

4517
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4518 4519 4520 4521 4522
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4523
	mutex_unlock(&current->perf_event_mutex);
4524 4525 4526 4527

	return 0;
}

4528
int perf_event_task_disable(void)
4529
{
P
Peter Zijlstra 已提交
4530
	struct perf_event_context *ctx;
4531
	struct perf_event *event;
4532

4533
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4534 4535 4536 4537 4538
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4539
	mutex_unlock(&current->perf_event_mutex);
4540 4541 4542 4543

	return 0;
}

4544
static int perf_event_index(struct perf_event *event)
4545
{
P
Peter Zijlstra 已提交
4546 4547 4548
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4549
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4550 4551
		return 0;

4552
	return event->pmu->event_idx(event);
4553 4554
}

4555
static void calc_timer_values(struct perf_event *event,
4556
				u64 *now,
4557 4558
				u64 *enabled,
				u64 *running)
4559
{
4560
	u64 ctx_time;
4561

4562 4563
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4564 4565 4566 4567
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4583 4584
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4585 4586 4587 4588 4589

unlock:
	rcu_read_unlock();
}

4590 4591
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4592 4593 4594
{
}

4595 4596 4597 4598 4599
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4600
void perf_event_update_userpage(struct perf_event *event)
4601
{
4602
	struct perf_event_mmap_page *userpg;
4603
	struct ring_buffer *rb;
4604
	u64 enabled, running, now;
4605 4606

	rcu_read_lock();
4607 4608 4609 4610
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4611 4612 4613 4614 4615 4616 4617 4618 4619
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4620
	calc_timer_values(event, &now, &enabled, &running);
4621

4622
	userpg = rb->user_page;
4623 4624 4625 4626 4627
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4628
	++userpg->lock;
4629
	barrier();
4630
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4631
	userpg->offset = perf_event_count(event);
4632
	if (userpg->index)
4633
		userpg->offset -= local64_read(&event->hw.prev_count);
4634

4635
	userpg->time_enabled = enabled +
4636
			atomic64_read(&event->child_total_time_enabled);
4637

4638
	userpg->time_running = running +
4639
			atomic64_read(&event->child_total_time_running);
4640

4641
	arch_perf_update_userpage(event, userpg, now);
4642

4643
	barrier();
4644
	++userpg->lock;
4645
	preempt_enable();
4646
unlock:
4647
	rcu_read_unlock();
4648 4649
}

4650 4651 4652
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4653
	struct ring_buffer *rb;
4654 4655 4656 4657 4658 4659 4660 4661 4662
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4663 4664
	rb = rcu_dereference(event->rb);
	if (!rb)
4665 4666 4667 4668 4669
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4670
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4685 4686 4687
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4688
	struct ring_buffer *old_rb = NULL;
4689 4690
	unsigned long flags;

4691 4692 4693 4694 4695 4696
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4697

4698 4699 4700 4701
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4702

4703 4704
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4705
	}
4706

4707
	if (rb) {
4708 4709 4710 4711 4712
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4729 4730 4731 4732 4733 4734 4735 4736
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4737 4738 4739 4740
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4741 4742 4743
	rcu_read_unlock();
}

4744
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4745
{
4746
	struct ring_buffer *rb;
4747

4748
	rcu_read_lock();
4749 4750 4751 4752
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4753 4754 4755
	}
	rcu_read_unlock();

4756
	return rb;
4757 4758
}

4759
void ring_buffer_put(struct ring_buffer *rb)
4760
{
4761
	if (!atomic_dec_and_test(&rb->refcount))
4762
		return;
4763

4764
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4765

4766
	call_rcu(&rb->rcu_head, rb_free_rcu);
4767 4768 4769 4770
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4771
	struct perf_event *event = vma->vm_file->private_data;
4772

4773
	atomic_inc(&event->mmap_count);
4774
	atomic_inc(&event->rb->mmap_count);
4775

4776 4777 4778
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4779 4780
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4781 4782
}

4783 4784
static void perf_pmu_output_stop(struct perf_event *event);

4785 4786 4787 4788 4789 4790 4791 4792
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4793 4794
static void perf_mmap_close(struct vm_area_struct *vma)
{
4795
	struct perf_event *event = vma->vm_file->private_data;
4796

4797
	struct ring_buffer *rb = ring_buffer_get(event);
4798 4799 4800
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4801

4802 4803 4804
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4805 4806 4807 4808 4809 4810 4811
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4812 4813 4814 4815 4816 4817 4818 4819 4820
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
4821 4822 4823
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

4824
		/* this has to be the last one */
4825
		rb_free_aux(rb);
4826 4827
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

4828 4829 4830
		mutex_unlock(&event->mmap_mutex);
	}

4831 4832 4833
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4834
		goto out_put;
4835

4836
	ring_buffer_attach(event, NULL);
4837 4838 4839
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4840 4841
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4842

4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4859

4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4871 4872 4873
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4874
		mutex_unlock(&event->mmap_mutex);
4875
		put_event(event);
4876

4877 4878 4879 4880 4881
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4882
	}
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4898
out_put:
4899
	ring_buffer_put(rb); /* could be last */
4900 4901
}

4902
static const struct vm_operations_struct perf_mmap_vmops = {
4903
	.open		= perf_mmap_open,
4904
	.close		= perf_mmap_close, /* non mergable */
4905 4906
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4907 4908 4909 4910
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4911
	struct perf_event *event = file->private_data;
4912
	unsigned long user_locked, user_lock_limit;
4913
	struct user_struct *user = current_user();
4914
	unsigned long locked, lock_limit;
4915
	struct ring_buffer *rb = NULL;
4916 4917
	unsigned long vma_size;
	unsigned long nr_pages;
4918
	long user_extra = 0, extra = 0;
4919
	int ret = 0, flags = 0;
4920

4921 4922 4923
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4924
	 * same rb.
4925 4926 4927 4928
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4929
	if (!(vma->vm_flags & VM_SHARED))
4930
		return -EINVAL;
4931 4932

	vma_size = vma->vm_end - vma->vm_start;
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4993

4994
	/*
4995
	 * If we have rb pages ensure they're a power-of-two number, so we
4996 4997
	 * can do bitmasks instead of modulo.
	 */
4998
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4999 5000
		return -EINVAL;

5001
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5002 5003
		return -EINVAL;

5004
	WARN_ON_ONCE(event->ctx->parent_ctx);
5005
again:
5006
	mutex_lock(&event->mmap_mutex);
5007
	if (event->rb) {
5008
		if (event->rb->nr_pages != nr_pages) {
5009
			ret = -EINVAL;
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5023 5024 5025
		goto unlock;
	}

5026
	user_extra = nr_pages + 1;
5027 5028

accounting:
5029
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5030 5031 5032 5033 5034 5035

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5036
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5037

5038 5039
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5040

5041
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5042
	lock_limit >>= PAGE_SHIFT;
5043
	locked = vma->vm_mm->pinned_vm + extra;
5044

5045 5046
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5047 5048 5049
		ret = -EPERM;
		goto unlock;
	}
5050

5051
	WARN_ON(!rb && event->rb);
5052

5053
	if (vma->vm_flags & VM_WRITE)
5054
		flags |= RING_BUFFER_WRITABLE;
5055

5056
	if (!rb) {
5057 5058 5059
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5060

5061 5062 5063 5064
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5065

5066 5067 5068
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5069

5070
		ring_buffer_attach(event, rb);
5071

5072 5073 5074
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5075 5076
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5077 5078 5079
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5080

5081
unlock:
5082 5083 5084 5085
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5086
		atomic_inc(&event->mmap_count);
5087 5088 5089 5090
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5091
	mutex_unlock(&event->mmap_mutex);
5092

5093 5094 5095 5096
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5097
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5098
	vma->vm_ops = &perf_mmap_vmops;
5099

5100 5101 5102
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

5103
	return ret;
5104 5105
}

P
Peter Zijlstra 已提交
5106 5107
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5108
	struct inode *inode = file_inode(filp);
5109
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5110 5111
	int retval;

A
Al Viro 已提交
5112
	inode_lock(inode);
5113
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5114
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5115 5116 5117 5118 5119 5120 5121

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5122
static const struct file_operations perf_fops = {
5123
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5124 5125 5126
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5127
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5128
	.compat_ioctl		= perf_compat_ioctl,
5129
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5130
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5131 5132
};

5133
/*
5134
 * Perf event wakeup
5135 5136 5137 5138 5139
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5140 5141 5142 5143 5144 5145 5146 5147
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5148
void perf_event_wakeup(struct perf_event *event)
5149
{
5150
	ring_buffer_wakeup(event);
5151

5152
	if (event->pending_kill) {
5153
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5154
		event->pending_kill = 0;
5155
	}
5156 5157
}

5158
static void perf_pending_event(struct irq_work *entry)
5159
{
5160 5161
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5162 5163 5164 5165 5166 5167 5168
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5169

5170 5171
	if (event->pending_disable) {
		event->pending_disable = 0;
5172
		perf_event_disable_local(event);
5173 5174
	}

5175 5176 5177
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5178
	}
5179 5180 5181

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5182 5183
}

5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5220
static void perf_sample_regs_user(struct perf_regs *regs_user,
5221 5222
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5223
{
5224 5225
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5226
		regs_user->regs = regs;
5227 5228
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5229 5230 5231
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5232 5233 5234
	}
}

5235 5236 5237 5238 5239 5240 5241 5242
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5338 5339 5340
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5354
		data->time = perf_event_clock(event);
5355

5356
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5368 5369 5370
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5395 5396 5397

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5398 5399
}

5400 5401 5402
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5403 5404 5405 5406 5407
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5408
static void perf_output_read_one(struct perf_output_handle *handle,
5409 5410
				 struct perf_event *event,
				 u64 enabled, u64 running)
5411
{
5412
	u64 read_format = event->attr.read_format;
5413 5414 5415
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5416
	values[n++] = perf_event_count(event);
5417
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5418
		values[n++] = enabled +
5419
			atomic64_read(&event->child_total_time_enabled);
5420 5421
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5422
		values[n++] = running +
5423
			atomic64_read(&event->child_total_time_running);
5424 5425
	}
	if (read_format & PERF_FORMAT_ID)
5426
		values[n++] = primary_event_id(event);
5427

5428
	__output_copy(handle, values, n * sizeof(u64));
5429 5430 5431
}

/*
5432
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5433 5434
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5435 5436
			    struct perf_event *event,
			    u64 enabled, u64 running)
5437
{
5438 5439
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5440 5441 5442 5443 5444 5445
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5446
		values[n++] = enabled;
5447 5448

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5449
		values[n++] = running;
5450

5451
	if (leader != event)
5452 5453
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5454
	values[n++] = perf_event_count(leader);
5455
	if (read_format & PERF_FORMAT_ID)
5456
		values[n++] = primary_event_id(leader);
5457

5458
	__output_copy(handle, values, n * sizeof(u64));
5459

5460
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5461 5462
		n = 0;

5463 5464
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5465 5466
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5467
		values[n++] = perf_event_count(sub);
5468
		if (read_format & PERF_FORMAT_ID)
5469
			values[n++] = primary_event_id(sub);
5470

5471
		__output_copy(handle, values, n * sizeof(u64));
5472 5473 5474
	}
}

5475 5476 5477
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5478
static void perf_output_read(struct perf_output_handle *handle,
5479
			     struct perf_event *event)
5480
{
5481
	u64 enabled = 0, running = 0, now;
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5493
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5494
		calc_timer_values(event, &now, &enabled, &running);
5495

5496
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5497
		perf_output_read_group(handle, event, enabled, running);
5498
	else
5499
		perf_output_read_one(handle, event, enabled, running);
5500 5501
}

5502 5503 5504
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5505
			struct perf_event *event)
5506 5507 5508 5509 5510
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5511 5512 5513
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5539
		perf_output_read(handle, event);
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5550
			__output_copy(handle, data->callchain, size);
5551 5552 5553 5554 5555 5556 5557 5558
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5559 5560 5561 5562 5563 5564 5565 5566 5567
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5579

5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5614

5615
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5616 5617 5618
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5619
	}
A
Andi Kleen 已提交
5620 5621 5622

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5623 5624 5625

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5626

A
Andi Kleen 已提交
5627 5628 5629
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5660 5661 5662 5663
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5664
			 struct perf_event *event,
5665
			 struct pt_regs *regs)
5666
{
5667
	u64 sample_type = event->attr.sample_type;
5668

5669
	header->type = PERF_RECORD_SAMPLE;
5670
	header->size = sizeof(*header) + event->header_size;
5671 5672 5673

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5674

5675
	__perf_event_header__init_id(header, data, event);
5676

5677
	if (sample_type & PERF_SAMPLE_IP)
5678 5679
		data->ip = perf_instruction_pointer(regs);

5680
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5681
		int size = 1;
5682

5683
		data->callchain = perf_callchain(event, regs);
5684 5685 5686 5687 5688

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5689 5690
	}

5691
	if (sample_type & PERF_SAMPLE_RAW) {
5692 5693 5694 5695 5696 5697 5698
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5699
		header->size += round_up(size, sizeof(u64));
5700
	}
5701 5702 5703 5704 5705 5706 5707 5708 5709

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5710

5711
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5712 5713
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5714

5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5738
						     data->regs_user.regs);
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5766
}
5767

5768 5769 5770 5771 5772 5773 5774
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
5775 5776 5777
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5778

5779 5780 5781
	/* protect the callchain buffers */
	rcu_read_lock();

5782
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5783

5784
	if (output_begin(&handle, event, header.size))
5785
		goto exit;
5786

5787
	perf_output_sample(&handle, &header, data, event);
5788

5789
	perf_output_end(&handle);
5790 5791 5792

exit:
	rcu_read_unlock();
5793 5794
}

5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

5819
/*
5820
 * read event_id
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5831
perf_event_read_event(struct perf_event *event,
5832 5833 5834
			struct task_struct *task)
{
	struct perf_output_handle handle;
5835
	struct perf_sample_data sample;
5836
	struct perf_read_event read_event = {
5837
		.header = {
5838
			.type = PERF_RECORD_READ,
5839
			.misc = 0,
5840
			.size = sizeof(read_event) + event->read_size,
5841
		},
5842 5843
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5844
	};
5845
	int ret;
5846

5847
	perf_event_header__init_id(&read_event.header, &sample, event);
5848
	ret = perf_output_begin(&handle, event, read_event.header.size);
5849 5850 5851
	if (ret)
		return;

5852
	perf_output_put(&handle, read_event);
5853
	perf_output_read(&handle, event);
5854
	perf_event__output_id_sample(event, &handle, &sample);
5855

5856 5857 5858
	perf_output_end(&handle);
}

5859 5860 5861 5862 5863
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
5864
		   void *data, bool all)
5865 5866 5867 5868
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5869 5870 5871 5872 5873 5874 5875
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

5876
		output(event, data);
5877 5878 5879
	}
}

J
Jiri Olsa 已提交
5880 5881 5882 5883 5884 5885
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
5886
	perf_event_aux_ctx(task_ctx, output, data, false);
J
Jiri Olsa 已提交
5887 5888 5889 5890
	preempt_enable();
	rcu_read_unlock();
}

5891
static void
5892
perf_event_aux(perf_event_aux_output_cb output, void *data,
5893 5894 5895 5896 5897 5898 5899
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5911 5912 5913 5914 5915
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5916
		perf_event_aux_ctx(&cpuctx->ctx, output, data, false);
5917 5918 5919 5920 5921
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5922
			perf_event_aux_ctx(ctx, output, data, false);
5923 5924 5925 5926
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
5927 5928
}

5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
		perf_event_restart(event);
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

		perf_event_aux_ctx(ctx, perf_event_addr_filters_exec, NULL,
				   true);
	}
	rcu_read_unlock();
}

5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
5990 5991 5992
	struct stop_event_data sd = {
		.event	= event,
	};
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
	 * ring-buffer, but it will be the child that's actually using it:
	 */
	if (rcu_dereference(parent->rb) == rb)
6005
		ro->err = __perf_event_stop(&sd);
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
	struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6018
	perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6019 6020
	if (cpuctx->task_ctx)
		perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6021
				   &ro, false);
6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6055 6056
}

P
Peter Zijlstra 已提交
6057
/*
P
Peter Zijlstra 已提交
6058 6059
 * task tracking -- fork/exit
 *
6060
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6061 6062
 */

P
Peter Zijlstra 已提交
6063
struct perf_task_event {
6064
	struct task_struct		*task;
6065
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6066 6067 6068 6069 6070 6071

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6072 6073
		u32				tid;
		u32				ptid;
6074
		u64				time;
6075
	} event_id;
P
Peter Zijlstra 已提交
6076 6077
};

6078 6079
static int perf_event_task_match(struct perf_event *event)
{
6080 6081 6082
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6083 6084
}

6085
static void perf_event_task_output(struct perf_event *event,
6086
				   void *data)
P
Peter Zijlstra 已提交
6087
{
6088
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6089
	struct perf_output_handle handle;
6090
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6091
	struct task_struct *task = task_event->task;
6092
	int ret, size = task_event->event_id.header.size;
6093

6094 6095 6096
	if (!perf_event_task_match(event))
		return;

6097
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6098

6099
	ret = perf_output_begin(&handle, event,
6100
				task_event->event_id.header.size);
6101
	if (ret)
6102
		goto out;
P
Peter Zijlstra 已提交
6103

6104 6105
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6106

6107 6108
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6109

6110 6111
	task_event->event_id.time = perf_event_clock(event);

6112
	perf_output_put(&handle, task_event->event_id);
6113

6114 6115
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6116
	perf_output_end(&handle);
6117 6118
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6119 6120
}

6121 6122
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6123
			      int new)
P
Peter Zijlstra 已提交
6124
{
P
Peter Zijlstra 已提交
6125
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6126

6127 6128 6129
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6130 6131
		return;

P
Peter Zijlstra 已提交
6132
	task_event = (struct perf_task_event){
6133 6134
		.task	  = task,
		.task_ctx = task_ctx,
6135
		.event_id    = {
P
Peter Zijlstra 已提交
6136
			.header = {
6137
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6138
				.misc = 0,
6139
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6140
			},
6141 6142
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6143 6144
			/* .tid  */
			/* .ptid */
6145
			/* .time */
P
Peter Zijlstra 已提交
6146 6147 6148
		},
	};

6149
	perf_event_aux(perf_event_task_output,
6150 6151
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6152 6153
}

6154
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6155
{
6156
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
6157 6158
}

6159 6160 6161 6162 6163
/*
 * comm tracking
 */

struct perf_comm_event {
6164 6165
	struct task_struct	*task;
	char			*comm;
6166 6167 6168 6169 6170 6171 6172
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6173
	} event_id;
6174 6175
};

6176 6177 6178 6179 6180
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6181
static void perf_event_comm_output(struct perf_event *event,
6182
				   void *data)
6183
{
6184
	struct perf_comm_event *comm_event = data;
6185
	struct perf_output_handle handle;
6186
	struct perf_sample_data sample;
6187
	int size = comm_event->event_id.header.size;
6188 6189
	int ret;

6190 6191 6192
	if (!perf_event_comm_match(event))
		return;

6193 6194
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6195
				comm_event->event_id.header.size);
6196 6197

	if (ret)
6198
		goto out;
6199

6200 6201
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6202

6203
	perf_output_put(&handle, comm_event->event_id);
6204
	__output_copy(&handle, comm_event->comm,
6205
				   comm_event->comm_size);
6206 6207 6208

	perf_event__output_id_sample(event, &handle, &sample);

6209
	perf_output_end(&handle);
6210 6211
out:
	comm_event->event_id.header.size = size;
6212 6213
}

6214
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6215
{
6216
	char comm[TASK_COMM_LEN];
6217 6218
	unsigned int size;

6219
	memset(comm, 0, sizeof(comm));
6220
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6221
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6222 6223 6224 6225

	comm_event->comm = comm;
	comm_event->comm_size = size;

6226
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6227

6228
	perf_event_aux(perf_event_comm_output,
6229 6230
		       comm_event,
		       NULL);
6231 6232
}

6233
void perf_event_comm(struct task_struct *task, bool exec)
6234
{
6235 6236
	struct perf_comm_event comm_event;

6237
	if (!atomic_read(&nr_comm_events))
6238
		return;
6239

6240
	comm_event = (struct perf_comm_event){
6241
		.task	= task,
6242 6243
		/* .comm      */
		/* .comm_size */
6244
		.event_id  = {
6245
			.header = {
6246
				.type = PERF_RECORD_COMM,
6247
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6248 6249 6250 6251
				/* .size */
			},
			/* .pid */
			/* .tid */
6252 6253 6254
		},
	};

6255
	perf_event_comm_event(&comm_event);
6256 6257
}

6258 6259 6260 6261 6262
/*
 * mmap tracking
 */

struct perf_mmap_event {
6263 6264 6265 6266
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6267 6268 6269
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6270
	u32			prot, flags;
6271 6272 6273 6274 6275 6276 6277 6278 6279

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6280
	} event_id;
6281 6282
};

6283 6284 6285 6286 6287 6288 6289 6290
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6291
	       (executable && (event->attr.mmap || event->attr.mmap2));
6292 6293
}

6294
static void perf_event_mmap_output(struct perf_event *event,
6295
				   void *data)
6296
{
6297
	struct perf_mmap_event *mmap_event = data;
6298
	struct perf_output_handle handle;
6299
	struct perf_sample_data sample;
6300
	int size = mmap_event->event_id.header.size;
6301
	int ret;
6302

6303 6304 6305
	if (!perf_event_mmap_match(event, data))
		return;

6306 6307 6308 6309 6310
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6311
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6312 6313
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6314 6315
	}

6316 6317
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6318
				mmap_event->event_id.header.size);
6319
	if (ret)
6320
		goto out;
6321

6322 6323
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6324

6325
	perf_output_put(&handle, mmap_event->event_id);
6326 6327 6328 6329 6330 6331

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6332 6333
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6334 6335
	}

6336
	__output_copy(&handle, mmap_event->file_name,
6337
				   mmap_event->file_size);
6338 6339 6340

	perf_event__output_id_sample(event, &handle, &sample);

6341
	perf_output_end(&handle);
6342 6343
out:
	mmap_event->event_id.header.size = size;
6344 6345
}

6346
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6347
{
6348 6349
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6350 6351
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6352
	u32 prot = 0, flags = 0;
6353 6354 6355
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6356
	char *name;
6357

6358
	if (file) {
6359 6360
		struct inode *inode;
		dev_t dev;
6361

6362
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6363
		if (!buf) {
6364 6365
			name = "//enomem";
			goto cpy_name;
6366
		}
6367
		/*
6368
		 * d_path() works from the end of the rb backwards, so we
6369 6370 6371
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6372
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6373
		if (IS_ERR(name)) {
6374 6375
			name = "//toolong";
			goto cpy_name;
6376
		}
6377 6378 6379 6380 6381 6382
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6405
		goto got_name;
6406
	} else {
6407 6408 6409 6410 6411 6412
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6413
		name = (char *)arch_vma_name(vma);
6414 6415
		if (name)
			goto cpy_name;
6416

6417
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6418
				vma->vm_end >= vma->vm_mm->brk) {
6419 6420
			name = "[heap]";
			goto cpy_name;
6421 6422
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6423
				vma->vm_end >= vma->vm_mm->start_stack) {
6424 6425
			name = "[stack]";
			goto cpy_name;
6426 6427
		}

6428 6429
		name = "//anon";
		goto cpy_name;
6430 6431
	}

6432 6433 6434
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6435
got_name:
6436 6437 6438 6439 6440 6441 6442 6443
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6444 6445 6446

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6447 6448 6449 6450
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6451 6452
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6453

6454 6455 6456
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6457
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6458

6459
	perf_event_aux(perf_event_mmap_output,
6460 6461
		       mmap_event,
		       NULL);
6462

6463 6464 6465
	kfree(buf);
}

6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
/*
 * Whether this @filter depends on a dynamic object which is not loaded
 * yet or its load addresses are not known.
 */
static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
{
	return filter->filter && filter->inode;
}

/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
	if (filter->inode != file->f_inode)
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
		perf_event_restart(event);
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

		perf_event_aux_ctx(ctx, __perf_addr_filters_adjust, vma, true);
	}
	rcu_read_unlock();
}

6547
void perf_event_mmap(struct vm_area_struct *vma)
6548
{
6549 6550
	struct perf_mmap_event mmap_event;

6551
	if (!atomic_read(&nr_mmap_events))
6552 6553 6554
		return;

	mmap_event = (struct perf_mmap_event){
6555
		.vma	= vma,
6556 6557
		/* .file_name */
		/* .file_size */
6558
		.event_id  = {
6559
			.header = {
6560
				.type = PERF_RECORD_MMAP,
6561
				.misc = PERF_RECORD_MISC_USER,
6562 6563 6564 6565
				/* .size */
			},
			/* .pid */
			/* .tid */
6566 6567
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6568
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6569
		},
6570 6571 6572 6573
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6574 6575
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6576 6577
	};

6578
	perf_addr_filters_adjust(vma);
6579
	perf_event_mmap_event(&mmap_event);
6580 6581
}

A
Alexander Shishkin 已提交
6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6734 6735 6736 6737
/*
 * IRQ throttle logging
 */

6738
static void perf_log_throttle(struct perf_event *event, int enable)
6739 6740
{
	struct perf_output_handle handle;
6741
	struct perf_sample_data sample;
6742 6743 6744 6745 6746
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6747
		u64				id;
6748
		u64				stream_id;
6749 6750
	} throttle_event = {
		.header = {
6751
			.type = PERF_RECORD_THROTTLE,
6752 6753 6754
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6755
		.time		= perf_event_clock(event),
6756 6757
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6758 6759
	};

6760
	if (enable)
6761
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6762

6763 6764 6765
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6766
				throttle_event.header.size);
6767 6768 6769 6770
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6771
	perf_event__output_id_sample(event, &handle, &sample);
6772 6773 6774
	perf_output_end(&handle);
}

6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6811
/*
6812
 * Generic event overflow handling, sampling.
6813 6814
 */

6815
static int __perf_event_overflow(struct perf_event *event,
6816 6817
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6818
{
6819 6820
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6821
	u64 seq;
6822 6823
	int ret = 0;

6824 6825 6826 6827 6828 6829 6830
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6831 6832 6833 6834 6835 6836 6837 6838 6839
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
6840
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
6841 6842
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6843 6844
			ret = 1;
		}
6845
	}
6846

6847
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6848
		u64 now = perf_clock();
6849
		s64 delta = now - hwc->freq_time_stamp;
6850

6851
		hwc->freq_time_stamp = now;
6852

6853
		if (delta > 0 && delta < 2*TICK_NSEC)
6854
			perf_adjust_period(event, delta, hwc->last_period, true);
6855 6856
	}

6857 6858
	/*
	 * XXX event_limit might not quite work as expected on inherited
6859
	 * events
6860 6861
	 */

6862 6863
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6864
		ret = 1;
6865
		event->pending_kill = POLL_HUP;
6866 6867
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6868 6869
	}

6870
	event->overflow_handler(event, data, regs);
6871

6872
	if (*perf_event_fasync(event) && event->pending_kill) {
6873 6874
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6875 6876
	}

6877
	return ret;
6878 6879
}

6880
int perf_event_overflow(struct perf_event *event,
6881 6882
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6883
{
6884
	return __perf_event_overflow(event, 1, data, regs);
6885 6886
}

6887
/*
6888
 * Generic software event infrastructure
6889 6890
 */

6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6902
/*
6903 6904
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6905 6906 6907 6908
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6909
u64 perf_swevent_set_period(struct perf_event *event)
6910
{
6911
	struct hw_perf_event *hwc = &event->hw;
6912 6913 6914 6915 6916
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6917 6918

again:
6919
	old = val = local64_read(&hwc->period_left);
6920 6921
	if (val < 0)
		return 0;
6922

6923 6924 6925
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6926
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6927
		goto again;
6928

6929
	return nr;
6930 6931
}

6932
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6933
				    struct perf_sample_data *data,
6934
				    struct pt_regs *regs)
6935
{
6936
	struct hw_perf_event *hwc = &event->hw;
6937
	int throttle = 0;
6938

6939 6940
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6941

6942 6943
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6944

6945
	for (; overflow; overflow--) {
6946
		if (__perf_event_overflow(event, throttle,
6947
					    data, regs)) {
6948 6949 6950 6951 6952 6953
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6954
		throttle = 1;
6955
	}
6956 6957
}

P
Peter Zijlstra 已提交
6958
static void perf_swevent_event(struct perf_event *event, u64 nr,
6959
			       struct perf_sample_data *data,
6960
			       struct pt_regs *regs)
6961
{
6962
	struct hw_perf_event *hwc = &event->hw;
6963

6964
	local64_add(nr, &event->count);
6965

6966 6967 6968
	if (!regs)
		return;

6969
	if (!is_sampling_event(event))
6970
		return;
6971

6972 6973 6974 6975 6976 6977
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6978
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6979
		return perf_swevent_overflow(event, 1, data, regs);
6980

6981
	if (local64_add_negative(nr, &hwc->period_left))
6982
		return;
6983

6984
	perf_swevent_overflow(event, 0, data, regs);
6985 6986
}

6987 6988 6989
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6990
	if (event->hw.state & PERF_HES_STOPPED)
6991
		return 1;
P
Peter Zijlstra 已提交
6992

6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7004
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7005
				enum perf_type_id type,
L
Li Zefan 已提交
7006 7007 7008
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7009
{
7010
	if (event->attr.type != type)
7011
		return 0;
7012

7013
	if (event->attr.config != event_id)
7014 7015
		return 0;

7016 7017
	if (perf_exclude_event(event, regs))
		return 0;
7018 7019 7020 7021

	return 1;
}

7022 7023 7024 7025 7026 7027 7028
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7029 7030
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7031
{
7032 7033 7034 7035
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7036

7037 7038
/* For the read side: events when they trigger */
static inline struct hlist_head *
7039
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7040 7041
{
	struct swevent_hlist *hlist;
7042

7043
	hlist = rcu_dereference(swhash->swevent_hlist);
7044 7045 7046
	if (!hlist)
		return NULL;

7047 7048 7049 7050 7051
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7052
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7063
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7064 7065 7066 7067 7068
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7069 7070 7071
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7072
				    u64 nr,
7073 7074
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7075
{
7076
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7077
	struct perf_event *event;
7078
	struct hlist_head *head;
7079

7080
	rcu_read_lock();
7081
	head = find_swevent_head_rcu(swhash, type, event_id);
7082 7083 7084
	if (!head)
		goto end;

7085
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7086
		if (perf_swevent_match(event, type, event_id, data, regs))
7087
			perf_swevent_event(event, nr, data, regs);
7088
	}
7089 7090
end:
	rcu_read_unlock();
7091 7092
}

7093 7094
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7095
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7096
{
7097
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7098

7099
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7100
}
I
Ingo Molnar 已提交
7101
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7102

7103
inline void perf_swevent_put_recursion_context(int rctx)
7104
{
7105
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7106

7107
	put_recursion_context(swhash->recursion, rctx);
7108
}
7109

7110
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7111
{
7112
	struct perf_sample_data data;
7113

7114
	if (WARN_ON_ONCE(!regs))
7115
		return;
7116

7117
	perf_sample_data_init(&data, addr, 0);
7118
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7131 7132

	perf_swevent_put_recursion_context(rctx);
7133
fail:
7134
	preempt_enable_notrace();
7135 7136
}

7137
static void perf_swevent_read(struct perf_event *event)
7138 7139 7140
{
}

P
Peter Zijlstra 已提交
7141
static int perf_swevent_add(struct perf_event *event, int flags)
7142
{
7143
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7144
	struct hw_perf_event *hwc = &event->hw;
7145 7146
	struct hlist_head *head;

7147
	if (is_sampling_event(event)) {
7148
		hwc->last_period = hwc->sample_period;
7149
		perf_swevent_set_period(event);
7150
	}
7151

P
Peter Zijlstra 已提交
7152 7153
	hwc->state = !(flags & PERF_EF_START);

7154
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7155
	if (WARN_ON_ONCE(!head))
7156 7157 7158
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7159
	perf_event_update_userpage(event);
7160

7161 7162 7163
	return 0;
}

P
Peter Zijlstra 已提交
7164
static void perf_swevent_del(struct perf_event *event, int flags)
7165
{
7166
	hlist_del_rcu(&event->hlist_entry);
7167 7168
}

P
Peter Zijlstra 已提交
7169
static void perf_swevent_start(struct perf_event *event, int flags)
7170
{
P
Peter Zijlstra 已提交
7171
	event->hw.state = 0;
7172
}
I
Ingo Molnar 已提交
7173

P
Peter Zijlstra 已提交
7174
static void perf_swevent_stop(struct perf_event *event, int flags)
7175
{
P
Peter Zijlstra 已提交
7176
	event->hw.state = PERF_HES_STOPPED;
7177 7178
}

7179 7180
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7181
swevent_hlist_deref(struct swevent_htable *swhash)
7182
{
7183 7184
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7185 7186
}

7187
static void swevent_hlist_release(struct swevent_htable *swhash)
7188
{
7189
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7190

7191
	if (!hlist)
7192 7193
		return;

7194
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7195
	kfree_rcu(hlist, rcu_head);
7196 7197
}

7198
static void swevent_hlist_put_cpu(int cpu)
7199
{
7200
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7201

7202
	mutex_lock(&swhash->hlist_mutex);
7203

7204 7205
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7206

7207
	mutex_unlock(&swhash->hlist_mutex);
7208 7209
}

7210
static void swevent_hlist_put(void)
7211 7212 7213 7214
{
	int cpu;

	for_each_possible_cpu(cpu)
7215
		swevent_hlist_put_cpu(cpu);
7216 7217
}

7218
static int swevent_hlist_get_cpu(int cpu)
7219
{
7220
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7221 7222
	int err = 0;

7223 7224
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7225 7226 7227 7228 7229 7230 7231
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7232
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7233
	}
7234
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7235
exit:
7236
	mutex_unlock(&swhash->hlist_mutex);
7237 7238 7239 7240

	return err;
}

7241
static int swevent_hlist_get(void)
7242
{
7243
	int err, cpu, failed_cpu;
7244 7245 7246

	get_online_cpus();
	for_each_possible_cpu(cpu) {
7247
		err = swevent_hlist_get_cpu(cpu);
7248 7249 7250 7251 7252 7253 7254 7255
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
7256
fail:
7257 7258 7259
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7260
		swevent_hlist_put_cpu(cpu);
7261 7262 7263 7264 7265 7266
	}

	put_online_cpus();
	return err;
}

7267
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7268

7269 7270 7271
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7272

7273 7274
	WARN_ON(event->parent);

7275
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7276
	swevent_hlist_put();
7277 7278 7279 7280
}

static int perf_swevent_init(struct perf_event *event)
{
7281
	u64 event_id = event->attr.config;
7282 7283 7284 7285

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7286 7287 7288 7289 7290 7291
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7292 7293 7294 7295 7296 7297 7298 7299 7300
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7301
	if (event_id >= PERF_COUNT_SW_MAX)
7302 7303 7304 7305 7306
		return -ENOENT;

	if (!event->parent) {
		int err;

7307
		err = swevent_hlist_get();
7308 7309 7310
		if (err)
			return err;

7311
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7312 7313 7314 7315 7316 7317 7318
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7319
	.task_ctx_nr	= perf_sw_context,
7320

7321 7322
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7323
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7324 7325 7326 7327
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7328 7329 7330
	.read		= perf_swevent_read,
};

7331 7332
#ifdef CONFIG_EVENT_TRACING

7333 7334 7335 7336 7337
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

7338 7339 7340 7341
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7342 7343 7344 7345 7346 7347 7348 7349 7350
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7351 7352
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7353 7354 7355 7356
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7357 7358 7359 7360 7361 7362 7363 7364 7365
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
7366 7367
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
7368 7369
{
	struct perf_sample_data data;
7370 7371
	struct perf_event *event;

7372 7373 7374 7375 7376
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

7377
	perf_sample_data_init(&data, addr, 0);
7378 7379
	data.raw = &raw;

7380
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7381
		if (perf_tp_event_match(event, &data, regs))
7382
			perf_swevent_event(event, count, &data, regs);
7383
	}
7384

7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7410
	perf_swevent_put_recursion_context(rctx);
7411 7412 7413
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7414
static void tp_perf_event_destroy(struct perf_event *event)
7415
{
7416
	perf_trace_destroy(event);
7417 7418
}

7419
static int perf_tp_event_init(struct perf_event *event)
7420
{
7421 7422
	int err;

7423 7424 7425
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7426 7427 7428 7429 7430 7431
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7432 7433
	err = perf_trace_init(event);
	if (err)
7434
		return err;
7435

7436
	event->destroy = tp_perf_event_destroy;
7437

7438 7439 7440 7441
	return 0;
}

static struct pmu perf_tracepoint = {
7442 7443
	.task_ctx_nr	= perf_sw_context,

7444
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7445 7446 7447 7448
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7449 7450 7451 7452 7453
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7454
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7455
}
L
Li Zefan 已提交
7456 7457 7458 7459 7460 7461

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7462 7463 7464 7465 7466 7467 7468 7469 7470 7471
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7472 7473
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7474 7475 7476 7477 7478 7479
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7480
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7505
#else
L
Li Zefan 已提交
7506

7507
static inline void perf_tp_register(void)
7508 7509
{
}
L
Li Zefan 已提交
7510 7511 7512 7513 7514

static void perf_event_free_filter(struct perf_event *event)
{
}

7515 7516 7517 7518 7519 7520 7521 7522
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7523
#endif /* CONFIG_EVENT_TRACING */
7524

7525
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7526
void perf_bp_event(struct perf_event *bp, void *data)
7527
{
7528 7529 7530
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7531
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7532

P
Peter Zijlstra 已提交
7533
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7534
		perf_swevent_event(bp, 1, &sample, regs);
7535 7536 7537
}
#endif

7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

		if (perf_addr_filter_needs_mmap(filter))
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
	perf_event_restart(event);
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

			if (token == IF_SRC_FILE) {
				filename = match_strdup(&args[2]);
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	/*
	 * For now, we only support filtering in per-task events; doing so
	 * for CPU-wide events requires additional context switching trickery,
	 * since same object code will be mapped at different virtual
	 * addresses in different processes.
	 */
	if (!event->ctx->task)
		return -EOPNOTSUPP;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
		return ret;

	ret = event->pmu->addr_filters_validate(&filters);
	if (ret) {
		free_filters_list(&filters);
		return ret;
	}

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

	return ret;
}

7894 7895 7896 7897 7898
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

7899 7900 7901
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
7902 7903 7904 7905 7906 7907 7908 7909 7910 7911
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
7912 7913
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
7914 7915 7916 7917 7918

	kfree(filter_str);
	return ret;
}

7919 7920 7921
/*
 * hrtimer based swevent callback
 */
7922

7923
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7924
{
7925 7926 7927 7928 7929
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7930

7931
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7932 7933 7934 7935

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7936
	event->pmu->read(event);
7937

7938
	perf_sample_data_init(&data, 0, event->hw.last_period);
7939 7940 7941
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7942
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7943
			if (__perf_event_overflow(event, 1, &data, regs))
7944 7945
				ret = HRTIMER_NORESTART;
	}
7946

7947 7948
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7949

7950
	return ret;
7951 7952
}

7953
static void perf_swevent_start_hrtimer(struct perf_event *event)
7954
{
7955
	struct hw_perf_event *hwc = &event->hw;
7956 7957 7958 7959
	s64 period;

	if (!is_sampling_event(event))
		return;
7960

7961 7962 7963 7964
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7965

7966 7967 7968 7969
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7970 7971
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7972
}
7973 7974

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7975
{
7976 7977
	struct hw_perf_event *hwc = &event->hw;

7978
	if (is_sampling_event(event)) {
7979
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7980
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7981 7982 7983

		hrtimer_cancel(&hwc->hrtimer);
	}
7984 7985
}

P
Peter Zijlstra 已提交
7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8006
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8007 8008 8009 8010
		event->attr.freq = 0;
	}
}

8011 8012 8013 8014 8015
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8016
{
8017 8018 8019
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8020
	now = local_clock();
8021 8022
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8023 8024
}

P
Peter Zijlstra 已提交
8025
static void cpu_clock_event_start(struct perf_event *event, int flags)
8026
{
P
Peter Zijlstra 已提交
8027
	local64_set(&event->hw.prev_count, local_clock());
8028 8029 8030
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8031
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8032
{
8033 8034 8035
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8036

P
Peter Zijlstra 已提交
8037 8038 8039 8040
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8041
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8042 8043 8044 8045 8046 8047 8048 8049 8050

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8051 8052 8053 8054
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8055

8056 8057 8058 8059 8060 8061 8062 8063
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8064 8065 8066 8067 8068 8069
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8070 8071
	perf_swevent_init_hrtimer(event);

8072
	return 0;
8073 8074
}

8075
static struct pmu perf_cpu_clock = {
8076 8077
	.task_ctx_nr	= perf_sw_context,

8078 8079
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8080
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8081 8082 8083 8084
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8085 8086 8087 8088 8089 8090 8091 8092
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8093
{
8094 8095
	u64 prev;
	s64 delta;
8096

8097 8098 8099 8100
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8101

P
Peter Zijlstra 已提交
8102
static void task_clock_event_start(struct perf_event *event, int flags)
8103
{
P
Peter Zijlstra 已提交
8104
	local64_set(&event->hw.prev_count, event->ctx->time);
8105 8106 8107
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8108
static void task_clock_event_stop(struct perf_event *event, int flags)
8109 8110 8111
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8112 8113 8114 8115 8116 8117
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8118
	perf_event_update_userpage(event);
8119

P
Peter Zijlstra 已提交
8120 8121 8122 8123 8124 8125
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8126 8127 8128 8129
}

static void task_clock_event_read(struct perf_event *event)
{
8130 8131 8132
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8133 8134 8135 8136 8137

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8138
{
8139 8140 8141 8142 8143 8144
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8145 8146 8147 8148 8149 8150
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8151 8152
	perf_swevent_init_hrtimer(event);

8153
	return 0;
L
Li Zefan 已提交
8154 8155
}

8156
static struct pmu perf_task_clock = {
8157 8158
	.task_ctx_nr	= perf_sw_context,

8159 8160
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8161
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8162 8163 8164 8165
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8166 8167
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8168

P
Peter Zijlstra 已提交
8169
static void perf_pmu_nop_void(struct pmu *pmu)
8170 8171
{
}
L
Li Zefan 已提交
8172

8173 8174 8175 8176
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8177
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8178
{
P
Peter Zijlstra 已提交
8179
	return 0;
L
Li Zefan 已提交
8180 8181
}

8182
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8183 8184

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8185
{
8186 8187 8188 8189 8190
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8191
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8192 8193
}

P
Peter Zijlstra 已提交
8194 8195
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8196 8197 8198 8199 8200 8201 8202
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8203 8204 8205
	perf_pmu_enable(pmu);
	return 0;
}
8206

P
Peter Zijlstra 已提交
8207
static void perf_pmu_cancel_txn(struct pmu *pmu)
8208
{
8209 8210 8211 8212 8213 8214 8215
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8216
	perf_pmu_enable(pmu);
8217 8218
}

8219 8220
static int perf_event_idx_default(struct perf_event *event)
{
8221
	return 0;
8222 8223
}

P
Peter Zijlstra 已提交
8224 8225 8226 8227
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8228
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8229
{
P
Peter Zijlstra 已提交
8230
	struct pmu *pmu;
8231

P
Peter Zijlstra 已提交
8232 8233
	if (ctxn < 0)
		return NULL;
8234

P
Peter Zijlstra 已提交
8235 8236 8237 8238
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8239

P
Peter Zijlstra 已提交
8240
	return NULL;
8241 8242
}

8243
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8244
{
8245 8246 8247 8248 8249 8250 8251
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

8252 8253
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
8254 8255 8256 8257 8258 8259
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
8260

P
Peter Zijlstra 已提交
8261
	mutex_lock(&pmus_lock);
8262
	/*
P
Peter Zijlstra 已提交
8263
	 * Like a real lame refcount.
8264
	 */
8265 8266 8267
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
8268
			goto out;
8269
		}
P
Peter Zijlstra 已提交
8270
	}
8271

8272
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8273 8274
out:
	mutex_unlock(&pmus_lock);
8275
}
8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8290
static struct idr pmu_idr;
8291

P
Peter Zijlstra 已提交
8292 8293 8294 8295 8296 8297 8298
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8299
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8300

8301 8302 8303 8304 8305 8306 8307 8308 8309 8310
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

8311 8312
static DEFINE_MUTEX(mux_interval_mutex);

8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

8332
	mutex_lock(&mux_interval_mutex);
8333 8334 8335
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
8336 8337
	get_online_cpus();
	for_each_online_cpu(cpu) {
8338 8339 8340 8341
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

8342 8343
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8344
	}
8345 8346
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
8347 8348 8349

	return count;
}
8350
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8351

8352 8353 8354 8355
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
8356
};
8357
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
8358 8359 8360 8361

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
8362
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

8378
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

8391 8392 8393 8394 8395 8396 8397
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
8398 8399 8400
out:
	return ret;

8401 8402 8403
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
8404 8405 8406 8407 8408
free_dev:
	put_device(pmu->dev);
	goto out;
}

8409
static struct lock_class_key cpuctx_mutex;
8410
static struct lock_class_key cpuctx_lock;
8411

8412
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8413
{
P
Peter Zijlstra 已提交
8414
	int cpu, ret;
8415

8416
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
8417 8418 8419 8420
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
8421

P
Peter Zijlstra 已提交
8422 8423 8424 8425 8426 8427
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
8428 8429 8430
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
8431 8432 8433 8434 8435
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
8436 8437 8438 8439 8440 8441
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
8442
skip_type:
8443 8444 8445
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

8446 8447 8448 8449 8450 8451 8452
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8453 8454 8455 8456 8457
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
8458 8459 8460
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
8461

W
Wei Yongjun 已提交
8462
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
8463 8464
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
8465
		goto free_dev;
8466

P
Peter Zijlstra 已提交
8467 8468 8469 8470
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8471
		__perf_event_init_context(&cpuctx->ctx);
8472
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8473
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
8474
		cpuctx->ctx.pmu = pmu;
8475

8476
		__perf_mux_hrtimer_init(cpuctx, cpu);
8477

8478
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
8479
	}
8480

P
Peter Zijlstra 已提交
8481
got_cpu_context:
P
Peter Zijlstra 已提交
8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
8493
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
8494 8495
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
8496
		}
8497
	}
8498

P
Peter Zijlstra 已提交
8499 8500 8501 8502 8503
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

8504 8505 8506
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

8507
	list_add_rcu(&pmu->entry, &pmus);
8508
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
8509 8510
	ret = 0;
unlock:
8511 8512
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
8513
	return ret;
P
Peter Zijlstra 已提交
8514

P
Peter Zijlstra 已提交
8515 8516 8517 8518
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
8519 8520 8521 8522
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
8523 8524 8525
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
8526
}
8527
EXPORT_SYMBOL_GPL(perf_pmu_register);
8528

8529
void perf_pmu_unregister(struct pmu *pmu)
8530
{
8531 8532 8533
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
8534

8535
	/*
P
Peter Zijlstra 已提交
8536 8537
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
8538
	 */
8539
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
8540
	synchronize_rcu();
8541

P
Peter Zijlstra 已提交
8542
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
8543 8544
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
8545 8546
	if (pmu->nr_addr_filters)
		device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
P
Peter Zijlstra 已提交
8547 8548
	device_del(pmu->dev);
	put_device(pmu->dev);
8549
	free_pmu_context(pmu);
8550
}
8551
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8552

8553 8554
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
8555
	struct perf_event_context *ctx = NULL;
8556 8557 8558 8559
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
8560 8561

	if (event->group_leader != event) {
8562 8563 8564 8565 8566 8567
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
8568 8569 8570
		BUG_ON(!ctx);
	}

8571 8572
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
8573 8574 8575 8576

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

8577 8578 8579 8580 8581 8582
	if (ret)
		module_put(pmu->module);

	return ret;
}

8583
static struct pmu *perf_init_event(struct perf_event *event)
8584 8585 8586
{
	struct pmu *pmu = NULL;
	int idx;
8587
	int ret;
8588 8589

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
8590 8591 8592 8593

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
8594
	if (pmu) {
8595
		ret = perf_try_init_event(pmu, event);
8596 8597
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
8598
		goto unlock;
8599
	}
P
Peter Zijlstra 已提交
8600

8601
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8602
		ret = perf_try_init_event(pmu, event);
8603
		if (!ret)
P
Peter Zijlstra 已提交
8604
			goto unlock;
8605

8606 8607
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
8608
			goto unlock;
8609
		}
8610
	}
P
Peter Zijlstra 已提交
8611 8612
	pmu = ERR_PTR(-ENOENT);
unlock:
8613
	srcu_read_unlock(&pmus_srcu, idx);
8614

8615
	return pmu;
8616 8617
}

8618 8619 8620 8621 8622 8623 8624 8625 8626
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


8648 8649
static void account_event(struct perf_event *event)
{
8650 8651
	bool inc = false;

8652 8653 8654
	if (event->parent)
		return;

8655
	if (event->attach_state & PERF_ATTACH_TASK)
8656
		inc = true;
8657 8658 8659 8660 8661 8662
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
8663 8664
	if (event->attr.freq)
		account_freq_event();
8665 8666
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
8667
		inc = true;
8668
	}
8669
	if (has_branch_stack(event))
8670
		inc = true;
8671
	if (is_cgroup_event(event))
8672 8673
		inc = true;

8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
8696 8697

	account_event_cpu(event, event->cpu);
8698 8699
}

T
Thomas Gleixner 已提交
8700
/*
8701
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
8702
 */
8703
static struct perf_event *
8704
perf_event_alloc(struct perf_event_attr *attr, int cpu,
8705 8706 8707
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
8708
		 perf_overflow_handler_t overflow_handler,
8709
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
8710
{
P
Peter Zijlstra 已提交
8711
	struct pmu *pmu;
8712 8713
	struct perf_event *event;
	struct hw_perf_event *hwc;
8714
	long err = -EINVAL;
T
Thomas Gleixner 已提交
8715

8716 8717 8718 8719 8720
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

8721
	event = kzalloc(sizeof(*event), GFP_KERNEL);
8722
	if (!event)
8723
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
8724

8725
	/*
8726
	 * Single events are their own group leaders, with an
8727 8728 8729
	 * empty sibling list:
	 */
	if (!group_leader)
8730
		group_leader = event;
8731

8732 8733
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
8734

8735 8736 8737
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
8738
	INIT_LIST_HEAD(&event->rb_entry);
8739
	INIT_LIST_HEAD(&event->active_entry);
8740
	INIT_LIST_HEAD(&event->addr_filters.list);
8741 8742
	INIT_HLIST_NODE(&event->hlist_entry);

8743

8744
	init_waitqueue_head(&event->waitq);
8745
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
8746

8747
	mutex_init(&event->mmap_mutex);
8748
	raw_spin_lock_init(&event->addr_filters.lock);
8749

8750
	atomic_long_set(&event->refcount, 1);
8751 8752 8753 8754 8755
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
8756

8757
	event->parent		= parent_event;
8758

8759
	event->ns		= get_pid_ns(task_active_pid_ns(current));
8760
	event->id		= atomic64_inc_return(&perf_event_id);
8761

8762
	event->state		= PERF_EVENT_STATE_INACTIVE;
8763

8764 8765 8766
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
8767 8768 8769
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
8770
		 */
8771
		event->hw.target = task;
8772 8773
	}

8774 8775 8776 8777
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

8778
	if (!overflow_handler && parent_event) {
8779
		overflow_handler = parent_event->overflow_handler;
8780 8781
		context = parent_event->overflow_handler_context;
	}
8782

8783 8784 8785
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
8786 8787 8788
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
8789
	} else {
8790
		event->overflow_handler = perf_event_output_forward;
8791 8792
		event->overflow_handler_context = NULL;
	}
8793

J
Jiri Olsa 已提交
8794
	perf_event__state_init(event);
8795

8796
	pmu = NULL;
8797

8798
	hwc = &event->hw;
8799
	hwc->sample_period = attr->sample_period;
8800
	if (attr->freq && attr->sample_freq)
8801
		hwc->sample_period = 1;
8802
	hwc->last_period = hwc->sample_period;
8803

8804
	local64_set(&hwc->period_left, hwc->sample_period);
8805

8806
	/*
8807
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8808
	 */
8809
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8810
		goto err_ns;
8811 8812 8813

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
8814

8815 8816 8817 8818 8819 8820
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

8821
	pmu = perf_init_event(event);
8822
	if (!pmu)
8823 8824
		goto err_ns;
	else if (IS_ERR(pmu)) {
8825
		err = PTR_ERR(pmu);
8826
		goto err_ns;
I
Ingo Molnar 已提交
8827
	}
8828

8829 8830 8831 8832
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
		if (!event->addr_filters_offs)
			goto err_per_task;

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

8844
	if (!event->parent) {
8845
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8846
			err = get_callchain_buffers(attr->sample_max_stack);
8847
			if (err)
8848
				goto err_addr_filters;
8849
		}
8850
	}
8851

8852 8853 8854
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

8855
	return event;
8856

8857 8858 8859
err_addr_filters:
	kfree(event->addr_filters_offs);

8860 8861 8862
err_per_task:
	exclusive_event_destroy(event);

8863 8864 8865
err_pmu:
	if (event->destroy)
		event->destroy(event);
8866
	module_put(pmu->module);
8867
err_ns:
8868 8869
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
8870 8871 8872 8873 8874
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
8875 8876
}

8877 8878
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
8879 8880
{
	u32 size;
8881
	int ret;
8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
8906 8907 8908
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
8909 8910
	 */
	if (size > sizeof(*attr)) {
8911 8912 8913
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
8914

8915 8916
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
8917

8918
		for (; addr < end; addr++) {
8919 8920 8921 8922 8923 8924
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
8925
		size = sizeof(*attr);
8926 8927 8928 8929 8930 8931
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8932
	if (attr->__reserved_1)
8933 8934 8935 8936 8937 8938 8939 8940
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8969 8970
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8971 8972
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8973
	}
8974

8975
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8976
		ret = perf_reg_validate(attr->sample_regs_user);
8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8995

8996 8997
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8998 8999 9000 9001 9002 9003 9004 9005 9006
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9007 9008
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9009
{
9010
	struct ring_buffer *rb = NULL;
9011 9012
	int ret = -EINVAL;

9013
	if (!output_event)
9014 9015
		goto set;

9016 9017
	/* don't allow circular references */
	if (event == output_event)
9018 9019
		goto out;

9020 9021 9022 9023 9024 9025 9026
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9027
	 * If its not a per-cpu rb, it must be the same task.
9028 9029 9030 9031
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9032 9033 9034 9035 9036 9037
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9038 9039 9040 9041 9042 9043 9044
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9045 9046 9047 9048 9049 9050 9051
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9052
set:
9053
	mutex_lock(&event->mmap_mutex);
9054 9055 9056
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9057

9058
	if (output_event) {
9059 9060 9061
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9062
			goto unlock;
9063 9064
	}

9065
	ring_buffer_attach(event, rb);
9066

9067
	ret = 0;
9068 9069 9070
unlock:
	mutex_unlock(&event->mmap_mutex);

9071 9072 9073 9074
out:
	return ret;
}

P
Peter Zijlstra 已提交
9075 9076 9077 9078 9079 9080 9081 9082 9083
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
9121
/**
9122
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9123
 *
9124
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9125
 * @pid:		target pid
I
Ingo Molnar 已提交
9126
 * @cpu:		target cpu
9127
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9128
 */
9129 9130
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9131
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9132
{
9133 9134
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9135
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9136
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9137
	struct file *event_file = NULL;
9138
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9139
	struct task_struct *task = NULL;
9140
	struct pmu *pmu;
9141
	int event_fd;
9142
	int move_group = 0;
9143
	int err;
9144
	int f_flags = O_RDWR;
9145
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9146

9147
	/* for future expandability... */
S
Stephane Eranian 已提交
9148
	if (flags & ~PERF_FLAG_ALL)
9149 9150
		return -EINVAL;

9151 9152 9153
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9154

9155 9156 9157 9158 9159
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9160
	if (attr.freq) {
9161
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9162
			return -EINVAL;
9163 9164 9165
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9166 9167
	}

9168 9169 9170
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9171 9172 9173 9174 9175 9176 9177 9178 9179
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9180 9181 9182 9183
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9184 9185 9186
	if (event_fd < 0)
		return event_fd;

9187
	if (group_fd != -1) {
9188 9189
		err = perf_fget_light(group_fd, &group);
		if (err)
9190
			goto err_fd;
9191
		group_leader = group.file->private_data;
9192 9193 9194 9195 9196 9197
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9198
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9199 9200 9201 9202 9203 9204 9205
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9206 9207 9208 9209 9210 9211
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

9212 9213
	get_online_cpus();

9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
			goto err_cpus;

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

9232 9233 9234
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

9235
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9236
				 NULL, NULL, cgroup_fd);
9237 9238
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
9239
		goto err_cred;
9240 9241
	}

9242 9243 9244 9245 9246 9247 9248
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

9249 9250 9251 9252 9253
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
9254

9255 9256 9257 9258 9259 9260
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
9283 9284 9285 9286

	/*
	 * Get the target context (task or percpu):
	 */
9287
	ctx = find_get_context(pmu, task, event);
9288 9289
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9290
		goto err_alloc;
9291 9292
	}

9293 9294 9295 9296 9297
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
9298
	/*
9299
	 * Look up the group leader (we will attach this event to it):
9300
	 */
9301
	if (group_leader) {
9302
		err = -EINVAL;
9303 9304

		/*
I
Ingo Molnar 已提交
9305 9306 9307 9308
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
9309
			goto err_context;
9310 9311 9312 9313 9314

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
9315 9316 9317
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
9318
		 */
9319
		if (move_group) {
9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
9333 9334 9335 9336 9337 9338
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

9339 9340 9341
		/*
		 * Only a group leader can be exclusive or pinned
		 */
9342
		if (attr.exclusive || attr.pinned)
9343
			goto err_context;
9344 9345 9346 9347 9348
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
9349
			goto err_context;
9350
	}
T
Thomas Gleixner 已提交
9351

9352 9353
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
9354 9355
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
9356
		event_file = NULL;
9357
		goto err_context;
9358
	}
9359

9360
	if (move_group) {
P
Peter Zijlstra 已提交
9361
		gctx = group_leader->ctx;
9362
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9363 9364 9365 9366
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
9367 9368 9369 9370
	} else {
		mutex_lock(&ctx->mutex);
	}

9371 9372 9373 9374 9375
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
9376 9377 9378 9379 9380
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

9381 9382 9383 9384 9385 9386 9387
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
9388

9389 9390 9391
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
9392

9393 9394
	WARN_ON_ONCE(ctx->parent_ctx);

9395 9396 9397 9398 9399
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

9400
	if (move_group) {
P
Peter Zijlstra 已提交
9401 9402 9403 9404
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
9405
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
9406

9407 9408
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9409
			perf_remove_from_context(sibling, 0);
9410 9411 9412
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
9413 9414 9415 9416
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
9417
		synchronize_rcu();
P
Peter Zijlstra 已提交
9418

9419 9420 9421 9422 9423 9424 9425 9426 9427 9428
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
9429 9430
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9431
			perf_event__state_init(sibling);
9432
			perf_install_in_context(ctx, sibling, sibling->cpu);
9433 9434
			get_ctx(ctx);
		}
9435 9436 9437 9438 9439 9440 9441 9442 9443

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
9444

9445 9446 9447 9448 9449 9450
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
9451 9452
	}

9453 9454 9455 9456 9457 9458 9459 9460 9461
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
9462 9463
	event->owner = current;

9464
	perf_install_in_context(ctx, event, event->cpu);
9465
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
9466

9467
	if (move_group)
P
Peter Zijlstra 已提交
9468
		mutex_unlock(&gctx->mutex);
9469
	mutex_unlock(&ctx->mutex);
9470

9471 9472 9473 9474 9475
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

9476 9477
	put_online_cpus();

9478 9479 9480
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
9481

9482 9483 9484 9485 9486 9487
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
9488
	fdput(group);
9489 9490
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
9491

9492 9493 9494 9495 9496 9497
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
9498
err_context:
9499
	perf_unpin_context(ctx);
9500
	put_ctx(ctx);
9501
err_alloc:
P
Peter Zijlstra 已提交
9502 9503 9504 9505 9506 9507
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
9508 9509 9510
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
9511
err_cpus:
9512
	put_online_cpus();
9513
err_task:
P
Peter Zijlstra 已提交
9514 9515
	if (task)
		put_task_struct(task);
9516
err_group_fd:
9517
	fdput(group);
9518 9519
err_fd:
	put_unused_fd(event_fd);
9520
	return err;
T
Thomas Gleixner 已提交
9521 9522
}

9523 9524 9525 9526 9527
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
9528
 * @task: task to profile (NULL for percpu)
9529 9530 9531
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
9532
				 struct task_struct *task,
9533 9534
				 perf_overflow_handler_t overflow_handler,
				 void *context)
9535 9536
{
	struct perf_event_context *ctx;
9537
	struct perf_event *event;
9538
	int err;
9539

9540 9541 9542
	/*
	 * Get the target context (task or percpu):
	 */
9543

9544
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9545
				 overflow_handler, context, -1);
9546 9547 9548 9549
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
9550

9551
	/* Mark owner so we could distinguish it from user events. */
9552
	event->owner = TASK_TOMBSTONE;
9553

9554
	ctx = find_get_context(event->pmu, task, event);
9555 9556
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9557
		goto err_free;
9558
	}
9559 9560 9561

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
9562 9563 9564 9565 9566
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

9567 9568
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
9569
		goto err_unlock;
9570 9571
	}

9572
	perf_install_in_context(ctx, event, cpu);
9573
	perf_unpin_context(ctx);
9574 9575 9576 9577
	mutex_unlock(&ctx->mutex);

	return event;

9578 9579 9580 9581
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
9582 9583 9584
err_free:
	free_event(event);
err:
9585
	return ERR_PTR(err);
9586
}
9587
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9588

9589 9590 9591 9592 9593 9594 9595 9596 9597 9598
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
9599 9600 9601 9602 9603
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9604 9605
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
9606
		perf_remove_from_context(event, 0);
9607
		unaccount_event_cpu(event, src_cpu);
9608
		put_ctx(src_ctx);
9609
		list_add(&event->migrate_entry, &events);
9610 9611
	}

9612 9613 9614
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
9615 9616
	synchronize_rcu();

9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
9641 9642
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
9643 9644
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
9645
		account_event_cpu(event, dst_cpu);
9646 9647 9648 9649
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
9650
	mutex_unlock(&src_ctx->mutex);
9651 9652 9653
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

9654
static void sync_child_event(struct perf_event *child_event,
9655
			       struct task_struct *child)
9656
{
9657
	struct perf_event *parent_event = child_event->parent;
9658
	u64 child_val;
9659

9660 9661
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
9662

P
Peter Zijlstra 已提交
9663
	child_val = perf_event_count(child_event);
9664 9665 9666 9667

	/*
	 * Add back the child's count to the parent's count:
	 */
9668
	atomic64_add(child_val, &parent_event->child_count);
9669 9670 9671 9672
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
9673 9674
}

9675
static void
9676 9677 9678
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
9679
{
9680 9681
	struct perf_event *parent_event = child_event->parent;

9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
9694 9695 9696
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

9697
	if (parent_event)
9698 9699
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
9700
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9701
	raw_spin_unlock_irq(&child_ctx->lock);
9702

9703
	/*
9704
	 * Parent events are governed by their filedesc, retain them.
9705
	 */
9706
	if (!parent_event) {
9707
		perf_event_wakeup(child_event);
9708
		return;
9709
	}
9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
9730 9731
}

P
Peter Zijlstra 已提交
9732
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9733
{
9734
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
9735 9736 9737
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
9738

9739
	child_ctx = perf_pin_task_context(child, ctxn);
9740
	if (!child_ctx)
9741 9742
		return;

9743
	/*
9744 9745 9746 9747 9748 9749 9750 9751
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
9752
	 */
9753
	mutex_lock(&child_ctx->mutex);
9754 9755

	/*
9756 9757 9758
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
9759
	 */
9760
	raw_spin_lock_irq(&child_ctx->lock);
9761
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9762

9763
	/*
9764 9765
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
9766
	 */
9767 9768 9769 9770
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
9771

9772
	clone_ctx = unclone_ctx(child_ctx);
9773
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
9774

9775 9776
	if (clone_ctx)
		put_ctx(clone_ctx);
9777

P
Peter Zijlstra 已提交
9778
	/*
9779 9780 9781
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
9782
	 */
9783
	perf_event_task(child, child_ctx, 0);
9784

9785
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9786
		perf_event_exit_event(child_event, child_ctx, child);
9787

9788 9789 9790
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
9791 9792
}

P
Peter Zijlstra 已提交
9793 9794
/*
 * When a child task exits, feed back event values to parent events.
9795 9796 9797
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
9798 9799 9800
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
9801
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
9802 9803
	int ctxn;

P
Peter Zijlstra 已提交
9804 9805 9806 9807 9808 9809 9810 9811 9812 9813
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
9814
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
9815 9816 9817
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
9818 9819
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
9820 9821 9822 9823 9824 9825 9826 9827

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
9828 9829
}

9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

9842
	put_event(parent);
9843

P
Peter Zijlstra 已提交
9844
	raw_spin_lock_irq(&ctx->lock);
9845
	perf_group_detach(event);
9846
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
9847
	raw_spin_unlock_irq(&ctx->lock);
9848 9849 9850
	free_event(event);
}

9851
/*
P
Peter Zijlstra 已提交
9852
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
9853
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
9854 9855 9856
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
9857
 */
9858
void perf_event_free_task(struct task_struct *task)
9859
{
P
Peter Zijlstra 已提交
9860
	struct perf_event_context *ctx;
9861
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
9862
	int ctxn;
9863

P
Peter Zijlstra 已提交
9864 9865 9866 9867
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
9868

P
Peter Zijlstra 已提交
9869
		mutex_lock(&ctx->mutex);
9870
again:
P
Peter Zijlstra 已提交
9871 9872 9873
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
9874

P
Peter Zijlstra 已提交
9875 9876 9877
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
9878

P
Peter Zijlstra 已提交
9879 9880 9881
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
9882

P
Peter Zijlstra 已提交
9883
		mutex_unlock(&ctx->mutex);
9884

P
Peter Zijlstra 已提交
9885 9886
		put_ctx(ctx);
	}
9887 9888
}

9889 9890 9891 9892 9893 9894 9895 9896
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

9897
struct file *perf_event_get(unsigned int fd)
9898
{
9899
	struct file *file;
9900

9901 9902 9903
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
9904

9905 9906 9907 9908
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
9909

9910
	return file;
9911 9912 9913 9914 9915 9916 9917 9918 9919 9920
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
9932
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
9933
	struct perf_event *child_event;
9934
	unsigned long flags;
P
Peter Zijlstra 已提交
9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
9947
					   child,
P
Peter Zijlstra 已提交
9948
					   group_leader, parent_event,
9949
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
9950 9951
	if (IS_ERR(child_event))
		return child_event;
9952

9953 9954 9955 9956 9957 9958 9959
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
9960 9961
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9962
		mutex_unlock(&parent_event->child_mutex);
9963 9964 9965 9966
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
9967 9968 9969 9970 9971 9972 9973
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
9974
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9991 9992
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9993

9994 9995 9996 9997
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9998
	perf_event__id_header_size(child_event);
9999

P
Peter Zijlstra 已提交
10000 10001 10002
	/*
	 * Link it up in the child's context:
	 */
10003
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10004
	add_event_to_ctx(child_event, child_ctx);
10005
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10037 10038 10039 10040 10041
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10042
		   struct task_struct *child, int ctxn,
10043 10044 10045
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10046
	struct perf_event_context *child_ctx;
10047 10048 10049 10050

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10051 10052
	}

10053
	child_ctx = child->perf_event_ctxp[ctxn];
10054 10055 10056 10057 10058 10059 10060
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10061

10062
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10063 10064
		if (!child_ctx)
			return -ENOMEM;
10065

P
Peter Zijlstra 已提交
10066
		child->perf_event_ctxp[ctxn] = child_ctx;
10067 10068 10069 10070 10071 10072 10073 10074 10075
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10076 10077
}

10078
/*
10079
 * Initialize the perf_event context in task_struct
10080
 */
10081
static int perf_event_init_context(struct task_struct *child, int ctxn)
10082
{
10083
	struct perf_event_context *child_ctx, *parent_ctx;
10084 10085
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10086
	struct task_struct *parent = current;
10087
	int inherited_all = 1;
10088
	unsigned long flags;
10089
	int ret = 0;
10090

P
Peter Zijlstra 已提交
10091
	if (likely(!parent->perf_event_ctxp[ctxn]))
10092 10093
		return 0;

10094
	/*
10095 10096
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10097
	 */
P
Peter Zijlstra 已提交
10098
	parent_ctx = perf_pin_task_context(parent, ctxn);
10099 10100
	if (!parent_ctx)
		return 0;
10101

10102 10103 10104 10105 10106 10107 10108
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10109 10110 10111 10112
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10113
	mutex_lock(&parent_ctx->mutex);
10114 10115 10116 10117 10118

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10119
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10120 10121
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10122 10123 10124
		if (ret)
			break;
	}
10125

10126 10127 10128 10129 10130 10131 10132 10133 10134
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10135
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
10136 10137
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10138
		if (ret)
10139
			break;
10140 10141
	}

10142 10143 10144
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
10145
	child_ctx = child->perf_event_ctxp[ctxn];
10146

10147
	if (child_ctx && inherited_all) {
10148 10149 10150
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
10151 10152 10153
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
10154
		 */
P
Peter Zijlstra 已提交
10155
		cloned_ctx = parent_ctx->parent_ctx;
10156 10157
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
10158
			child_ctx->parent_gen = parent_ctx->parent_gen;
10159 10160 10161 10162 10163
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
10164 10165
	}

P
Peter Zijlstra 已提交
10166
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10167
	mutex_unlock(&parent_ctx->mutex);
10168

10169
	perf_unpin_context(parent_ctx);
10170
	put_ctx(parent_ctx);
10171

10172
	return ret;
10173 10174
}

P
Peter Zijlstra 已提交
10175 10176 10177 10178 10179 10180 10181
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

10182 10183 10184 10185
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
10186 10187
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
10188 10189
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
10190
			return ret;
P
Peter Zijlstra 已提交
10191
		}
P
Peter Zijlstra 已提交
10192 10193 10194 10195 10196
	}

	return 0;
}

10197 10198
static void __init perf_event_init_all_cpus(void)
{
10199
	struct swevent_htable *swhash;
10200 10201 10202
	int cpu;

	for_each_possible_cpu(cpu) {
10203 10204
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
10205
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10206 10207 10208
	}
}

10209
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
10210
{
P
Peter Zijlstra 已提交
10211
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
10212

10213
	mutex_lock(&swhash->hlist_mutex);
10214
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10215 10216
		struct swevent_hlist *hlist;

10217 10218 10219
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10220
	}
10221
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
10222 10223
}

10224
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
10225
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
10226
{
P
Peter Zijlstra 已提交
10227
	struct perf_event_context *ctx = __info;
10228 10229
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
10230

10231 10232
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
10233
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10234
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
10235
}
P
Peter Zijlstra 已提交
10236 10237 10238 10239 10240 10241 10242 10243 10244

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
10245
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
10246 10247 10248 10249 10250 10251 10252 10253

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

10254
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
10255
{
P
Peter Zijlstra 已提交
10256
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
10257 10258
}
#else
10259
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
10260 10261
#endif

P
Peter Zijlstra 已提交
10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

10282
static int
T
Thomas Gleixner 已提交
10283 10284 10285 10286
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

10287
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
10288 10289

	case CPU_UP_PREPARE:
10290 10291 10292 10293 10294 10295 10296
		/*
		 * This must be done before the CPU comes alive, because the
		 * moment we can run tasks we can encounter (software) events.
		 *
		 * Specifically, someone can have inherited events on kthreadd
		 * or a pre-existing worker thread that gets re-bound.
		 */
10297
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
10298 10299 10300
		break;

	case CPU_DOWN_PREPARE:
10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312
		/*
		 * This must be done before the CPU dies because after that an
		 * active event might want to IPI the CPU and that'll not work
		 * so great for dead CPUs.
		 *
		 * XXX smp_call_function_single() return -ENXIO without a warn
		 * so we could possibly deal with this.
		 *
		 * This is safe against new events arriving because
		 * sys_perf_event_open() serializes against hotplug using
		 * get_online_cpus().
		 */
10313
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
10314 10315 10316 10317 10318 10319 10320 10321
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

10322
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
10323
{
10324 10325
	int ret;

P
Peter Zijlstra 已提交
10326 10327
	idr_init(&pmu_idr);

10328
	perf_event_init_all_cpus();
10329
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
10330 10331 10332
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
10333 10334
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
10335
	register_reboot_notifier(&perf_reboot_notifier);
10336 10337 10338

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10339

10340 10341 10342 10343 10344 10345
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
10346
}
P
Peter Zijlstra 已提交
10347

10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
10359
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10360

P
Peter Zijlstra 已提交
10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
10388 10389

#ifdef CONFIG_CGROUP_PERF
10390 10391
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
10392 10393 10394
{
	struct perf_cgroup *jc;

10395
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

10408
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
10409
{
10410 10411
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
10412 10413 10414 10415 10416 10417 10418
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
10419
	rcu_read_lock();
S
Stephane Eranian 已提交
10420
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10421
	rcu_read_unlock();
S
Stephane Eranian 已提交
10422 10423 10424
	return 0;
}

10425
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
10426
{
10427
	struct task_struct *task;
10428
	struct cgroup_subsys_state *css;
10429

10430
	cgroup_taskset_for_each(task, css, tset)
10431
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
10432 10433
}

10434
struct cgroup_subsys perf_event_cgrp_subsys = {
10435 10436
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
10437
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
10438 10439
};
#endif /* CONFIG_CGROUP_PERF */