core.c 164.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3
 *
I
Ingo Molnar 已提交
4
 *  Core kernel scheduler code and related syscalls
L
Linus Torvalds 已提交
5 6 7
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 */
8
#include <linux/sched.h>
9
#include <linux/sched/clock.h>
10
#include <uapi/linux/sched/types.h>
11
#include <linux/sched/loadavg.h>
12
#include <linux/sched/hotplug.h>
13
#include <linux/wait_bit.h>
L
Linus Torvalds 已提交
14
#include <linux/cpuset.h>
15
#include <linux/delayacct.h>
16
#include <linux/init_task.h>
17
#include <linux/context_tracking.h>
18
#include <linux/rcupdate_wait.h>
19 20 21 22 23 24

#include <linux/blkdev.h>
#include <linux/kprobes.h>
#include <linux/mmu_context.h>
#include <linux/module.h>
#include <linux/nmi.h>
25
#include <linux/prefetch.h>
26 27 28
#include <linux/profile.h>
#include <linux/security.h>
#include <linux/syscalls.h>
L
Linus Torvalds 已提交
29

30
#include <asm/switch_to.h>
31
#include <asm/tlb.h>
32 33 34
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
35

36
#include "sched.h"
37
#include "../workqueue_internal.h"
38
#include "../smpboot.h"
39

40
#define CREATE_TRACE_POINTS
41
#include <trace/events/sched.h>
42

43
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
44

I
Ingo Molnar 已提交
45 46 47
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
48 49 50 51

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
52
const_debug unsigned int sysctl_sched_features =
53
#include "features.h"
P
Peter Zijlstra 已提交
54 55 56 57
	0;

#undef SCHED_FEAT

58 59 60 61 62 63
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

64 65 66 67 68 69 70 71
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
72
/*
I
Ingo Molnar 已提交
73
 * period over which we measure -rt task CPU usage in us.
P
Peter Zijlstra 已提交
74 75
 * default: 1s
 */
P
Peter Zijlstra 已提交
76
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
77

78
__read_mostly int scheduler_running;
79

P
Peter Zijlstra 已提交
80 81 82 83 84
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
85

I
Ingo Molnar 已提交
86
/* CPUs with isolated domains */
87 88
cpumask_var_t cpu_isolated_map;

89 90 91
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
92
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
93 94 95 96 97 98 99 100 101 102
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
103
			rq_pin_lock(rq, rf);
104 105 106 107 108 109 110 111 112 113 114 115
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
116
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
117 118 119 120 121 122
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
123
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
I
Ingo Molnar 已提交
139
		 * If we observe the new CPU in task_rq_lock, the acquire will
140 141 142
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
143
			rq_pin_lock(rq, rf);
144 145 146
			return rq;
		}
		raw_spin_unlock(&rq->lock);
147
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
148 149 150 151 152 153

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * RQ-clock updating methods:
 */

static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_key_false((&paravirt_steal_rq_enabled))) {
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

	rq->clock_task += delta;

#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
}

void update_rq_clock(struct rq *rq)
{
	s64 delta;

	lockdep_assert_held(&rq->lock);

	if (rq->clock_update_flags & RQCF_ACT_SKIP)
		return;

#ifdef CONFIG_SCHED_DEBUG
222 223
	if (sched_feat(WARN_DOUBLE_CLOCK))
		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
224 225
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
226

227 228 229 230 231 232 233 234
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	if (delta < 0)
		return;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
}


P
Peter Zijlstra 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
253
	struct rq_flags rf;
P
Peter Zijlstra 已提交
254 255 256

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

257
	rq_lock(rq, &rf);
258
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
259
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
260
	rq_unlock(rq, &rf);
P
Peter Zijlstra 已提交
261 262 263 264

	return HRTIMER_NORESTART;
}

265
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
266

267
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
268 269 270
{
	struct hrtimer *timer = &rq->hrtick_timer;

271
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
272 273
}

274 275 276 277
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
278
{
279
	struct rq *rq = arg;
280
	struct rq_flags rf;
281

282
	rq_lock(rq, &rf);
P
Peter Zijlstra 已提交
283
	__hrtick_restart(rq);
284
	rq->hrtick_csd_pending = 0;
285
	rq_unlock(rq, &rf);
286 287
}

288 289 290 291 292
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
293
void hrtick_start(struct rq *rq, u64 delay)
294
{
295
	struct hrtimer *timer = &rq->hrtick_timer;
296 297 298 299 300 301 302 303 304
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
305

306
	hrtimer_set_expires(timer, time);
307 308

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
309
		__hrtick_restart(rq);
310
	} else if (!rq->hrtick_csd_pending) {
311
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
312 313
		rq->hrtick_csd_pending = 1;
	}
314 315
}

316 317 318 319 320 321
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
322
void hrtick_start(struct rq *rq, u64 delay)
323
{
W
Wanpeng Li 已提交
324 325 326 327 328
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
329 330
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
331 332
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
333

334
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
335
{
336 337
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
338

339 340 341 342
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
343

344 345
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
346
}
A
Andrew Morton 已提交
347
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
348 349 350 351 352 353 354
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
355
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

375
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
376 377 378 379 380 381 382 383 384 385
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
386 387 388 389 390 391 392 393 394 395

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
396
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
397 398 399 400 401 402 403 404 405 406 407 408 409 410

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

411 412 413 414 415 416
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
417 418 419 420 421 422 423

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
424 425
#endif

426 427 428 429 430 431 432 433 434 435
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
436
	 * barrier implied by the wakeup in wake_up_q().
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
I
Ingo Molnar 已提交
459
		/* Task can safely be re-inserted now: */
460 461 462 463 464 465 466 467 468 469 470 471
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
472
/*
473
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
474 475 476 477 478
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
479
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
480
{
481
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
482 483
	int cpu;

484
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
485

486
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
487 488
		return;

489
	cpu = cpu_of(rq);
490

491
	if (cpu == smp_processor_id()) {
492
		set_tsk_need_resched(curr);
493
		set_preempt_need_resched();
I
Ingo Molnar 已提交
494
		return;
495
	}
I
Ingo Molnar 已提交
496

497
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
498
		smp_send_reschedule(cpu);
499 500
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
501 502
}

503
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
504 505 506 507
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

508
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
509
		return;
510
	resched_curr(rq);
511
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
512
}
513

514
#ifdef CONFIG_SMP
515
#ifdef CONFIG_NO_HZ_COMMON
516
/*
I
Ingo Molnar 已提交
517 518
 * In the semi idle case, use the nearest busy CPU for migrating timers
 * from an idle CPU.  This is good for power-savings.
519 520
 *
 * We don't do similar optimization for completely idle system, as
I
Ingo Molnar 已提交
521 522
 * selecting an idle CPU will add more delays to the timers than intended
 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
523
 */
524
int get_nohz_timer_target(void)
525
{
526
	int i, cpu = smp_processor_id();
527 528
	struct sched_domain *sd;

529
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
530 531
		return cpu;

532
	rcu_read_lock();
533
	for_each_domain(cpu, sd) {
534
		for_each_cpu(i, sched_domain_span(sd)) {
535 536 537 538
			if (cpu == i)
				continue;

			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
539 540 541 542
				cpu = i;
				goto unlock;
			}
		}
543
	}
544 545 546

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
547 548
unlock:
	rcu_read_unlock();
549 550
	return cpu;
}
I
Ingo Molnar 已提交
551

552 553 554 555 556 557 558 559 560 561
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
562
static void wake_up_idle_cpu(int cpu)
563 564 565 566 567 568
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

569
	if (set_nr_and_not_polling(rq->idle))
570
		smp_send_reschedule(cpu);
571 572
	else
		trace_sched_wake_idle_without_ipi(cpu);
573 574
}

575
static bool wake_up_full_nohz_cpu(int cpu)
576
{
577 578 579 580 581 582
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
583 584
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
585
	if (tick_nohz_full_cpu(cpu)) {
586 587
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
588
			tick_nohz_full_kick_cpu(cpu);
589 590 591 592 593 594
		return true;
	}

	return false;
}

595 596 597 598 599
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
600 601
void wake_up_nohz_cpu(int cpu)
{
602
	if (!wake_up_full_nohz_cpu(cpu))
603 604 605
		wake_up_idle_cpu(cpu);
}

606
static inline bool got_nohz_idle_kick(void)
607
{
608
	int cpu = smp_processor_id();
609 610 611 612 613 614 615 616 617 618 619 620 621

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
622 623
}

624
#else /* CONFIG_NO_HZ_COMMON */
625

626
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
627
{
628
	return false;
P
Peter Zijlstra 已提交
629 630
}

631
#endif /* CONFIG_NO_HZ_COMMON */
632

633
#ifdef CONFIG_NO_HZ_FULL
634
bool sched_can_stop_tick(struct rq *rq)
635
{
636 637 638 639 640 641
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

642
	/*
643 644
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
645
	 */
646 647 648 649 650
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
651 652
	}

653 654 655 656 657 658 659 660 661 662 663 664 665 666
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
667
		return false;
668

669
	return true;
670 671
}
#endif /* CONFIG_NO_HZ_FULL */
672

673
void sched_avg_update(struct rq *rq)
674
{
675 676
	s64 period = sched_avg_period();

677
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
678 679 680 681 682 683
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
684 685 686
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
687 688
}

689
#endif /* CONFIG_SMP */
690

691 692
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
693
/*
694 695 696 697
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
698
 */
699
int walk_tg_tree_from(struct task_group *from,
700
			     tg_visitor down, tg_visitor up, void *data)
701 702
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
703
	int ret;
704

705 706
	parent = from;

707
down:
P
Peter Zijlstra 已提交
708 709
	ret = (*down)(parent, data);
	if (ret)
710
		goto out;
711 712 713 714 715 716 717
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
718
	ret = (*up)(parent, data);
719 720
	if (ret || parent == from)
		goto out;
721 722 723 724 725

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
726
out:
P
Peter Zijlstra 已提交
727
	return ret;
728 729
}

730
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
731
{
732
	return 0;
P
Peter Zijlstra 已提交
733
}
734 735
#endif

736 737
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
738 739 740
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
741 742 743
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
744
	if (idle_policy(p->policy)) {
745
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
746
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
747 748
		return;
	}
749

750 751
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
752 753
}

754
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
755
{
756 757 758
	if (!(flags & ENQUEUE_NOCLOCK))
		update_rq_clock(rq);

759 760
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
761

762
	p->sched_class->enqueue_task(rq, p, flags);
763 764
}

765
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
766
{
767 768 769
	if (!(flags & DEQUEUE_NOCLOCK))
		update_rq_clock(rq);

770 771
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
772

773
	p->sched_class->dequeue_task(rq, p, flags);
774 775
}

776
void activate_task(struct rq *rq, struct task_struct *p, int flags)
777 778 779 780
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

781
	enqueue_task(rq, p, flags);
782 783
}

784
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
785 786 787 788
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

789
	dequeue_task(rq, p, flags);
790 791
}

792
/*
I
Ingo Molnar 已提交
793
 * __normal_prio - return the priority that is based on the static prio
794 795 796
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
797
	return p->static_prio;
798 799
}

800 801 802 803 804 805 806
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
807
static inline int normal_prio(struct task_struct *p)
808 809 810
{
	int prio;

811 812 813
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
814 815 816 817 818 819 820 821 822 823 824 825 826
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
827
static int effective_prio(struct task_struct *p)
828 829 830 831 832 833 834 835 836 837 838 839
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
840 841 842
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
843 844
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
845
 */
846
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
847 848 849 850
{
	return cpu_curr(task_cpu(p)) == p;
}

851
/*
852 853 854 855 856
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
857
 */
858 859
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
860
				       int oldprio)
861 862 863
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
864
			prev_class->switched_from(rq, p);
865

P
Peter Zijlstra 已提交
866
		p->sched_class->switched_to(rq, p);
867
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
868
		p->sched_class->prio_changed(rq, p, oldprio);
869 870
}

871
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
872 873 874 875 876 877 878 879 880 881
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
882
				resched_curr(rq);
883 884 885 886 887 888 889 890 891
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
892
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
893
		rq_clock_skip_update(rq, true);
894 895
}

L
Linus Torvalds 已提交
896
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
916 917
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
				   struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
918 919 920 921
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
922
	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
923
	set_task_cpu(p, new_cpu);
924
	rq_unlock(rq, rf);
P
Peter Zijlstra 已提交
925 926 927

	rq = cpu_rq(new_cpu);

928
	rq_lock(rq, rf);
P
Peter Zijlstra 已提交
929 930
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
931
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
932 933 934 935 936 937 938 939 940 941 942
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
I
Ingo Molnar 已提交
943
 * Move (not current) task off this CPU, onto the destination CPU. We're doing
P
Peter Zijlstra 已提交
944 945 946 947 948 949 950
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
951 952
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
				 struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
953 954
{
	if (unlikely(!cpu_active(dest_cpu)))
955
		return rq;
P
Peter Zijlstra 已提交
956 957

	/* Affinity changed (again). */
958
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
959
		return rq;
P
Peter Zijlstra 已提交
960

961
	update_rq_clock(rq);
962
	rq = move_queued_task(rq, rf, p, dest_cpu);
963 964

	return rq;
P
Peter Zijlstra 已提交
965 966 967 968 969 970 971 972 973 974
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
975 976
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
977
	struct rq_flags rf;
P
Peter Zijlstra 已提交
978 979

	/*
I
Ingo Molnar 已提交
980 981
	 * The original target CPU might have gone down and we might
	 * be on another CPU but it doesn't matter.
P
Peter Zijlstra 已提交
982 983 984 985 986 987 988 989
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
990 991

	raw_spin_lock(&p->pi_lock);
992
	rq_lock(rq, &rf);
993 994 995 996 997
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
998 999
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
1000
			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1001 1002 1003
		else
			p->wake_cpu = arg->dest_cpu;
	}
1004
	rq_unlock(rq, &rf);
1005 1006
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1007 1008 1009 1010
	local_irq_enable();
	return 0;
}

1011 1012 1013 1014 1015
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1016 1017 1018 1019 1020
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1021 1022
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1023 1024 1025
	struct rq *rq = task_rq(p);
	bool queued, running;

1026
	lockdep_assert_held(&p->pi_lock);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1037
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1038 1039 1040 1041
	}
	if (running)
		put_prev_task(rq, p);

1042
	p->sched_class->set_cpus_allowed(p, new_mask);
1043 1044

	if (queued)
1045
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1046
	if (running)
1047
		set_curr_task(rq, p);
1048 1049
}

P
Peter Zijlstra 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1059 1060
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1061
{
1062
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1063
	unsigned int dest_cpu;
1064 1065
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1066 1067
	int ret = 0;

1068
	rq = task_rq_lock(p, &rf);
1069
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1070

1071 1072 1073 1074 1075 1076 1077
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1078 1079 1080 1081 1082 1083 1084 1085 1086
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1087 1088 1089
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1090
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1091 1092 1093 1094 1095 1096
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1097 1098 1099
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
I
Ingo Molnar 已提交
1100
		 * !active we want to ensure they are strict per-CPU threads.
1101 1102 1103 1104 1105 1106
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1107 1108 1109 1110
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1111
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1112 1113 1114
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1115
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1116 1117 1118
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1119 1120 1121 1122 1123
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1124
		rq = move_queued_task(rq, &rf, p, dest_cpu);
1125
	}
P
Peter Zijlstra 已提交
1126
out:
1127
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1128 1129 1130

	return ret;
}
1131 1132 1133 1134 1135

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1136 1137
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1138
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1139
{
1140 1141 1142 1143 1144
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1145
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1146
			!p->on_rq);
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1157
#ifdef CONFIG_LOCKDEP
1158 1159 1160 1161 1162
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1163
	 * see task_group().
1164 1165 1166 1167
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1168 1169 1170
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1171 1172
#endif

1173
	trace_sched_migrate_task(p, new_cpu);
1174

1175
	if (task_cpu(p) != new_cpu) {
1176
		if (p->sched_class->migrate_task_rq)
1177
			p->sched_class->migrate_task_rq(p);
1178
		p->se.nr_migrations++;
1179
		perf_event_task_migrate(p);
1180
	}
I
Ingo Molnar 已提交
1181 1182

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1183 1184
}

1185 1186
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1187
	if (task_on_rq_queued(p)) {
1188
		struct rq *src_rq, *dst_rq;
1189
		struct rq_flags srf, drf;
1190 1191 1192 1193

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1194 1195 1196
		rq_pin_lock(src_rq, &srf);
		rq_pin_lock(dst_rq, &drf);

1197
		p->on_rq = TASK_ON_RQ_MIGRATING;
1198 1199 1200
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1201
		p->on_rq = TASK_ON_RQ_QUEUED;
1202
		check_preempt_curr(dst_rq, p, 0);
1203 1204 1205 1206

		rq_unpin_lock(dst_rq, &drf);
		rq_unpin_lock(src_rq, &srf);

1207 1208 1209 1210
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
I
Ingo Molnar 已提交
1211
		 * previous CPU our target instead of where it really is.
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1228 1229 1230
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1231 1232 1233
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1234 1235
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1236
	double_rq_lock(src_rq, dst_rq);
1237

1238 1239 1240 1241 1242 1243
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

1244
	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1245 1246
		goto unlock;

1247
	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1248 1249 1250 1251 1252 1253 1254 1255 1256
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1257 1258
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1281 1282 1283 1284
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1285 1286 1287
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

1288
	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1289 1290
		goto out;

1291
	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1292 1293
		goto out;

1294
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1295 1296 1297 1298 1299 1300
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1301 1302 1303
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1304 1305 1306 1307 1308 1309 1310
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1311 1312 1313 1314 1315 1316
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1317
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1318
{
1319
	int running, queued;
1320
	struct rq_flags rf;
R
Roland McGrath 已提交
1321
	unsigned long ncsw;
1322
	struct rq *rq;
L
Linus Torvalds 已提交
1323

1324 1325 1326 1327 1328 1329 1330 1331
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1344 1345 1346
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1347
			cpu_relax();
R
Roland McGrath 已提交
1348
		}
1349

1350 1351 1352 1353 1354
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1355
		rq = task_rq_lock(p, &rf);
1356
		trace_sched_wait_task(p);
1357
		running = task_running(rq, p);
1358
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1359
		ncsw = 0;
1360
		if (!match_state || p->state == match_state)
1361
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1362
		task_rq_unlock(rq, p, &rf);
1363

R
Roland McGrath 已提交
1364 1365 1366 1367 1368 1369
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1380

1381 1382 1383 1384 1385
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1386
		 * So if it was still runnable (but just not actively
1387 1388 1389
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1390
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1391
			ktime_t to = NSEC_PER_SEC / HZ;
1392 1393 1394

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1395 1396
			continue;
		}
1397

1398 1399 1400 1401 1402 1403 1404
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1405 1406

	return ncsw;
L
Linus Torvalds 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1416
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1417 1418 1419 1420 1421
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1422
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1432
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1433

1434
/*
1435
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1436 1437 1438 1439 1440 1441 1442
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
I
Ingo Molnar 已提交
1443
 *    CPU isn't yet part of the sched domains, and balancing will not
1444 1445
 *    see it.
 *
I
Ingo Molnar 已提交
1446
 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1447
 *    avoid the load balancer to place new tasks on the to be removed
I
Ingo Molnar 已提交
1448
 *    CPU. Existing tasks will remain running there and will be taken
1449 1450 1451 1452 1453 1454
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1455
 */
1456 1457
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1458 1459
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1460 1461
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1462

1463
	/*
I
Ingo Molnar 已提交
1464 1465 1466
	 * If the node that the CPU is on has been offlined, cpu_to_node()
	 * will return -1. There is no CPU on the node, and we should
	 * select the CPU on the other node.
1467 1468 1469 1470 1471 1472 1473 1474
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
1475
			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1476 1477
				return dest_cpu;
		}
1478
	}
1479

1480 1481
	for (;;) {
		/* Any allowed, online CPU? */
1482
		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1483 1484 1485
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1486 1487 1488
				continue;
			goto out;
		}
1489

1490
		/* No more Mr. Nice Guy. */
1491 1492
		switch (state) {
		case cpuset:
1493 1494 1495 1496 1497
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
I
Ingo Molnar 已提交
1498
			/* Fall-through */
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1518
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1519 1520
					task_pid_nr(p), p->comm, cpu);
		}
1521 1522 1523 1524 1525
	}

	return dest_cpu;
}

1526
/*
1527
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1528
 */
1529
static inline
1530
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1531
{
1532 1533
	lockdep_assert_held(&p->pi_lock);

1534
	if (p->nr_cpus_allowed > 1)
1535
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1536
	else
1537
		cpu = cpumask_any(&p->cpus_allowed);
1538 1539 1540 1541

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
I
Ingo Molnar 已提交
1542
	 * CPU.
1543 1544 1545 1546 1547 1548
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1549
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
1550
		     !cpu_online(cpu)))
1551
		cpu = select_fallback_rq(task_cpu(p), p);
1552 1553

	return cpu;
1554
}
1555 1556 1557 1558 1559 1560

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1561

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1592 1593 1594 1595 1596 1597 1598 1599
#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1600
#endif /* CONFIG_SMP */
1601

P
Peter Zijlstra 已提交
1602
static void
1603
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1604
{
1605
	struct rq *rq;
1606

1607 1608 1609 1610
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1611

1612 1613
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1614 1615
		schedstat_inc(rq->ttwu_local);
		schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1616 1617 1618
	} else {
		struct sched_domain *sd;

1619
		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1620
		rcu_read_lock();
1621
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1622
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1623
				schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1624 1625 1626
				break;
			}
		}
1627
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1628
	}
1629 1630

	if (wake_flags & WF_MIGRATED)
1631
		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1632 1633
#endif /* CONFIG_SMP */

1634 1635
	schedstat_inc(rq->ttwu_count);
	schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1636 1637

	if (wake_flags & WF_SYNC)
1638
		schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1639 1640
}

1641
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1642
{
T
Tejun Heo 已提交
1643
	activate_task(rq, p, en_flags);
1644
	p->on_rq = TASK_ON_RQ_QUEUED;
1645

I
Ingo Molnar 已提交
1646
	/* If a worker is waking up, notify the workqueue: */
1647 1648
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1649 1650
}

1651 1652 1653
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1654
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1655
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1656 1657 1658
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1659 1660
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1661
#ifdef CONFIG_SMP
1662 1663
	if (p->sched_class->task_woken) {
		/*
1664 1665
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1666
		 */
1667
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1668
		p->sched_class->task_woken(rq, p);
1669
		rq_repin_lock(rq, rf);
1670
	}
T
Tejun Heo 已提交
1671

1672
	if (rq->idle_stamp) {
1673
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1674
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1675

1676 1677 1678
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1679
			rq->avg_idle = max;
1680

T
Tejun Heo 已提交
1681 1682 1683 1684 1685
		rq->idle_stamp = 0;
	}
#endif
}

1686
static void
1687
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1688
		 struct rq_flags *rf)
1689
{
1690
	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1691

1692 1693
	lockdep_assert_held(&rq->lock);

1694 1695 1696
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1697 1698

	if (wake_flags & WF_MIGRATED)
1699
		en_flags |= ENQUEUE_MIGRATED;
1700 1701
#endif

1702
	ttwu_activate(rq, p, en_flags);
1703
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1714
	struct rq_flags rf;
1715 1716 1717
	struct rq *rq;
	int ret = 0;

1718
	rq = __task_rq_lock(p, &rf);
1719
	if (task_on_rq_queued(p)) {
1720 1721
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1722
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1723 1724
		ret = 1;
	}
1725
	__task_rq_unlock(rq, &rf);
1726 1727 1728 1729

	return ret;
}

1730
#ifdef CONFIG_SMP
1731
void sched_ttwu_pending(void)
1732 1733
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1734
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1735
	struct task_struct *p, *t;
1736
	struct rq_flags rf;
1737

1738 1739 1740
	if (!llist)
		return;

1741
	rq_lock_irqsave(rq, &rf);
1742
	update_rq_clock(rq);
1743

1744 1745
	llist_for_each_entry_safe(p, t, llist, wake_entry)
		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1746

1747
	rq_unlock_irqrestore(rq, &rf);
1748 1749 1750 1751
}

void scheduler_ipi(void)
{
1752 1753 1754 1755 1756
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1757
	preempt_fold_need_resched();
1758

1759
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1776
	sched_ttwu_pending();
1777 1778 1779 1780

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1781
	if (unlikely(got_nohz_idle_kick())) {
1782
		this_rq()->idle_balance = 1;
1783
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1784
	}
1785
	irq_exit();
1786 1787
}

P
Peter Zijlstra 已提交
1788
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1789
{
1790 1791
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1792 1793
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1794 1795 1796 1797 1798 1799
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1800
}
1801

1802 1803 1804
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1805
	struct rq_flags rf;
1806

1807 1808 1809 1810
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1811 1812 1813 1814

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
1815
		rq_lock_irqsave(rq, &rf);
1816 1817
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
I
Ingo Molnar 已提交
1818
		/* Else CPU is not idle, do nothing here: */
1819
		rq_unlock_irqrestore(rq, &rf);
1820
	}
1821 1822 1823

out:
	rcu_read_unlock();
1824 1825
}

1826
bool cpus_share_cache(int this_cpu, int that_cpu)
1827 1828 1829
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1830
#endif /* CONFIG_SMP */
1831

1832
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1833 1834
{
	struct rq *rq = cpu_rq(cpu);
1835
	struct rq_flags rf;
1836

1837
#if defined(CONFIG_SMP)
1838
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
I
Ingo Molnar 已提交
1839
		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
P
Peter Zijlstra 已提交
1840
		ttwu_queue_remote(p, cpu, wake_flags);
1841 1842 1843 1844
		return;
	}
#endif

1845
	rq_lock(rq, &rf);
1846
	update_rq_clock(rq);
1847
	ttwu_do_activate(rq, p, wake_flags, &rf);
1848
	rq_unlock(rq, &rf);
T
Tejun Heo 已提交
1849 1850
}

1851 1852 1853 1854 1855 1856
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
I
Ingo Molnar 已提交
1857 1858
 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 * execution on its new CPU [c1].
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
I
Ingo Molnar 已提交
1869
 * Note: the CPU doing B need not be c0 or c1
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1901
 *   2) smp_cond_load_acquire(!X->on_cpu)
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1912
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1938
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1939 1940 1941
 *
 */

T
Tejun Heo 已提交
1942
/**
L
Linus Torvalds 已提交
1943
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1944
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1945
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1946
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1947
 *
1948
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
1949
 *
1950 1951 1952 1953 1954 1955 1956
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
1957
 */
1958 1959
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1960 1961
{
	unsigned long flags;
1962
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1963

1964 1965 1966 1967 1968 1969 1970
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1971
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1972
	if (!(p->state & state))
L
Linus Torvalds 已提交
1973 1974
		goto out;

1975 1976
	trace_sched_waking(p);

I
Ingo Molnar 已提交
1977 1978
	/* We're going to change ->state: */
	success = 1;
L
Linus Torvalds 已提交
1979 1980
	cpu = task_cpu(p);

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2003 2004
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2005 2006

#ifdef CONFIG_SMP
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2026
	/*
I
Ingo Molnar 已提交
2027
	 * If the owning (remote) CPU is still in the middle of schedule() with
2028
	 * this task as prev, wait until its done referencing the task.
2029 2030 2031 2032 2033
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2034
	 */
2035
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2036

2037
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2038
	p->state = TASK_WAKING;
2039

2040 2041 2042 2043 2044
	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

2045
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2046 2047
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2048
		set_task_cpu(p, cpu);
2049
	}
2050 2051 2052 2053 2054 2055 2056 2057

#else /* CONFIG_SMP */

	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

L
Linus Torvalds 已提交
2058 2059
#endif /* CONFIG_SMP */

2060
	ttwu_queue(p, cpu, wake_flags);
2061
stat:
2062
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2063
out:
2064
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2065 2066 2067 2068

	return success;
}

T
Tejun Heo 已提交
2069 2070 2071
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2072
 * @rf: request-queue flags for pinning
T
Tejun Heo 已提交
2073
 *
2074
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2075
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2076
 * the current task.
T
Tejun Heo 已提交
2077
 */
2078
static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
T
Tejun Heo 已提交
2079 2080 2081
{
	struct rq *rq = task_rq(p);

2082 2083 2084 2085
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2086 2087
	lockdep_assert_held(&rq->lock);

2088
	if (!raw_spin_trylock(&p->pi_lock)) {
2089 2090 2091 2092 2093 2094
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2095
		rq_unlock(rq, rf);
2096
		raw_spin_lock(&p->pi_lock);
2097
		rq_relock(rq, rf);
2098 2099
	}

T
Tejun Heo 已提交
2100
	if (!(p->state & TASK_NORMAL))
2101
		goto out;
T
Tejun Heo 已提交
2102

2103 2104
	trace_sched_waking(p);

2105 2106 2107 2108 2109
	if (!task_on_rq_queued(p)) {
		if (p->in_iowait) {
			delayacct_blkio_end();
			atomic_dec(&rq->nr_iowait);
		}
2110
		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2111
	}
P
Peter Zijlstra 已提交
2112

2113
	ttwu_do_wakeup(rq, p, 0, rf);
2114
	ttwu_stat(p, smp_processor_id(), 0);
2115 2116
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2117 2118
}

2119 2120 2121 2122 2123
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2124 2125 2126
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2127 2128 2129 2130
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2131
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2132
{
2133
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2134 2135 2136
}
EXPORT_SYMBOL(wake_up_process);

2137
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2138 2139 2140 2141 2142 2143 2144
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2145 2146 2147
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2148
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2149
{
P
Peter Zijlstra 已提交
2150 2151 2152
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2153 2154
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2155
	p->se.prev_sum_exec_runtime	= 0;
2156
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2157
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2158
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2159

2160 2161 2162 2163
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2164
#ifdef CONFIG_SCHEDSTATS
2165
	/* Even if schedstat is disabled, there should not be garbage */
2166
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2167
#endif
N
Nick Piggin 已提交
2168

2169
	RB_CLEAR_NODE(&p->dl.rb_node);
2170
	init_dl_task_timer(&p->dl);
2171
	init_dl_inactive_task_timer(&p->dl);
2172
	__dl_clear_params(p);
2173

P
Peter Zijlstra 已提交
2174
	INIT_LIST_HEAD(&p->rt.run_list);
2175 2176 2177 2178
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2179

2180 2181 2182
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2183 2184 2185

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2186
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2187 2188 2189
		p->mm->numa_scan_seq = 0;
	}

2190 2191 2192 2193 2194
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2195 2196
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2197
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2198
	p->numa_work.next = &p->numa_work;
2199
	p->numa_faults = NULL;
2200 2201
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2202 2203

	p->numa_group = NULL;
2204
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2205 2206
}

2207 2208
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2209
#ifdef CONFIG_NUMA_BALANCING
2210

2211 2212 2213
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2214
		static_branch_enable(&sched_numa_balancing);
2215
	else
2216
		static_branch_disable(&sched_numa_balancing);
2217
}
2218 2219 2220 2221 2222 2223 2224

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2225
	int state = static_branch_likely(&sched_numa_balancing);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2241

2242 2243
#ifdef CONFIG_SCHEDSTATS

2244
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2245
static bool __initdata __sched_schedstats = false;
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2269 2270 2271 2272 2273
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2274
	if (!strcmp(str, "enable")) {
2275
		__sched_schedstats = true;
2276 2277
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2278
		__sched_schedstats = false;
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2289 2290 2291 2292 2293
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2314 2315 2316 2317
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2318 2319 2320 2321

/*
 * fork()/clone()-time setup:
 */
2322
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2323
{
2324
	unsigned long flags;
I
Ingo Molnar 已提交
2325 2326
	int cpu = get_cpu();

2327
	__sched_fork(clone_flags, p);
2328
	/*
2329
	 * We mark the process as NEW here. This guarantees that
2330 2331 2332
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2333
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2334

2335 2336 2337 2338 2339
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2340 2341 2342 2343
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2344
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2345
			p->policy = SCHED_NORMAL;
2346
			p->static_prio = NICE_TO_PRIO(0);
2347 2348 2349 2350 2351 2352
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2353

2354 2355 2356 2357 2358 2359
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2360

2361 2362 2363 2364 2365 2366
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2367
		p->sched_class = &fair_sched_class;
2368
	}
2369

2370
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2371

2372 2373 2374 2375 2376 2377 2378
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2379
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2380
	/*
I
Ingo Molnar 已提交
2381
	 * We're setting the CPU for the first time, we don't migrate,
2382 2383 2384 2385 2386
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2387
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2388

2389
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2390
	if (likely(sched_info_on()))
2391
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2392
#endif
P
Peter Zijlstra 已提交
2393 2394
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2395
#endif
2396
	init_task_preempt_count(p);
2397
#ifdef CONFIG_SMP
2398
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2399
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2400
#endif
2401

N
Nick Piggin 已提交
2402
	put_cpu();
2403
	return 0;
L
Linus Torvalds 已提交
2404 2405
}

2406 2407 2408
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
2409
		return BW_UNIT;
2410 2411 2412 2413 2414 2415 2416 2417 2418

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

2419
	return div64_u64(runtime << BW_SHIFT, period);
2420 2421
}

L
Linus Torvalds 已提交
2422 2423 2424 2425 2426 2427 2428
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2429
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2430
{
2431
	struct rq_flags rf;
I
Ingo Molnar 已提交
2432
	struct rq *rq;
2433

2434
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2435
	p->state = TASK_RUNNING;
2436 2437 2438 2439
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
I
Ingo Molnar 已提交
2440
	 *  - any previously selected CPU might disappear through hotplug
2441 2442 2443
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2444
	 */
2445
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2446
#endif
2447
	rq = __task_rq_lock(p, &rf);
2448
	update_rq_clock(rq);
2449
	post_init_entity_util_avg(&p->se);
2450

2451
	activate_task(rq, p, ENQUEUE_NOCLOCK);
2452
	p->on_rq = TASK_ON_RQ_QUEUED;
2453
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2454
	check_preempt_curr(rq, p, WF_FORK);
2455
#ifdef CONFIG_SMP
2456 2457 2458 2459 2460
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2461
		rq_unpin_lock(rq, &rf);
2462
		p->sched_class->task_woken(rq, p);
2463
		rq_repin_lock(rq, &rf);
2464
	}
2465
#endif
2466
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2467 2468
}

2469 2470
#ifdef CONFIG_PREEMPT_NOTIFIERS

2471 2472
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2485
/**
2486
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2487
 * @notifier: notifier struct to register
2488 2489 2490
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2491 2492 2493
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2494 2495 2496 2497 2498 2499
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2500
 * @notifier: notifier struct to unregister
2501
 *
2502
 * This is *not* safe to call from within a preemption notifier.
2503 2504 2505 2506 2507 2508 2509
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2510
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2511 2512 2513
{
	struct preempt_notifier *notifier;

2514
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2515 2516 2517
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2518 2519 2520 2521 2522 2523
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2524
static void
2525 2526
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2527 2528 2529
{
	struct preempt_notifier *notifier;

2530
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2531 2532 2533
		notifier->ops->sched_out(notifier, next);
}

2534 2535 2536 2537 2538 2539 2540 2541
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2542
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2543

2544
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2545 2546 2547
{
}

2548
static inline void
2549 2550 2551 2552 2553
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2554
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2555

2556 2557 2558
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2559
 * @prev: the current task that is being switched out
2560 2561 2562 2563 2564 2565 2566 2567 2568
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2569 2570 2571
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2572
{
2573
	sched_info_switch(rq, prev, next);
2574
	perf_event_task_sched_out(prev, next);
2575
	fire_sched_out_preempt_notifiers(prev, next);
2576 2577 2578 2579
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2580 2581 2582 2583
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2584 2585 2586 2587
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2588 2589
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2590
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2591 2592
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2593 2594 2595 2596 2597
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2598
 */
2599
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2600 2601
	__releases(rq->lock)
{
2602
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2603
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2604
	long prev_state;
L
Linus Torvalds 已提交
2605

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2617 2618 2619 2620
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2621

L
Linus Torvalds 已提交
2622 2623 2624 2625
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2626
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2627 2628
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2629 2630 2631 2632 2633
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2634
	 */
O
Oleg Nesterov 已提交
2635
	prev_state = prev->state;
2636
	vtime_task_switch(prev);
2637
	perf_event_task_sched_in(prev, current);
2638
	finish_lock_switch(rq, prev);
2639
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2640

2641
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2642 2643
	if (mm)
		mmdrop(mm);
2644
	if (unlikely(prev_state == TASK_DEAD)) {
2645 2646 2647
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2648 2649 2650
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2651
		 */
2652
		kprobe_flush_task(prev);
2653 2654 2655 2656

		/* Task is done with its stack. */
		put_task_stack(prev);

L
Linus Torvalds 已提交
2657
		put_task_struct(prev);
2658
	}
2659

2660
	tick_nohz_task_switch();
2661
	return rq;
L
Linus Torvalds 已提交
2662 2663
}

2664 2665 2666
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2667
static void __balance_callback(struct rq *rq)
2668
{
2669 2670 2671
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2672

2673 2674 2675 2676 2677 2678 2679 2680
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2681

2682
		func(rq);
2683
	}
2684 2685 2686 2687 2688 2689 2690
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2691 2692 2693
}

#else
2694

2695
static inline void balance_callback(struct rq *rq)
2696
{
L
Linus Torvalds 已提交
2697 2698
}

2699 2700
#endif

L
Linus Torvalds 已提交
2701 2702 2703 2704
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2705
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2706 2707
	__releases(rq->lock)
{
2708
	struct rq *rq;
2709

2710 2711 2712 2713 2714 2715 2716 2717 2718
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2719
	rq = finish_task_switch(prev);
2720
	balance_callback(rq);
2721
	preempt_enable();
2722

L
Linus Torvalds 已提交
2723
	if (current->set_child_tid)
2724
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2725 2726 2727
}

/*
2728
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2729
 */
2730
static __always_inline struct rq *
2731
context_switch(struct rq *rq, struct task_struct *prev,
2732
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2733
{
I
Ingo Molnar 已提交
2734
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2735

2736
	prepare_task_switch(rq, prev, next);
2737

I
Ingo Molnar 已提交
2738 2739
	mm = next->mm;
	oldmm = prev->active_mm;
2740 2741 2742 2743 2744
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2745
	arch_start_context_switch(prev);
2746

2747
	if (!mm) {
L
Linus Torvalds 已提交
2748
		next->active_mm = oldmm;
V
Vegard Nossum 已提交
2749
		mmgrab(oldmm);
L
Linus Torvalds 已提交
2750 2751
		enter_lazy_tlb(oldmm, next);
	} else
2752
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2753

2754
	if (!prev->mm) {
L
Linus Torvalds 已提交
2755 2756 2757
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2758

2759
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2760

2761 2762 2763 2764 2765 2766
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2767
	rq_unpin_lock(rq, rf);
2768
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2769 2770 2771

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2772
	barrier();
2773 2774

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2775 2776 2777
}

/*
2778
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2779 2780
 *
 * externally visible scheduler statistics: current number of runnable
2781
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2791
}
L
Linus Torvalds 已提交
2792

2793
/*
I
Ingo Molnar 已提交
2794
 * Check if only the current task is running on the CPU.
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2805 2806 2807
 */
bool single_task_running(void)
{
2808
	return raw_rq()->nr_running == 1;
2809 2810 2811
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2812
unsigned long long nr_context_switches(void)
2813
{
2814 2815
	int i;
	unsigned long long sum = 0;
2816

2817
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2818
		sum += cpu_rq(i)->nr_switches;
2819

L
Linus Torvalds 已提交
2820 2821
	return sum;
}
2822

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
2853 2854 2855
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2856

2857
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2858
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2859

L
Linus Torvalds 已提交
2860 2861
	return sum;
}
2862

2863 2864 2865 2866 2867 2868 2869
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

2870
unsigned long nr_iowait_cpu(int cpu)
2871
{
2872
	struct rq *this = cpu_rq(cpu);
2873 2874
	return atomic_read(&this->nr_iowait);
}
2875

2876 2877
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2878 2879 2880
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2881 2882
}

I
Ingo Molnar 已提交
2883
#ifdef CONFIG_SMP
2884

2885
/*
P
Peter Zijlstra 已提交
2886 2887
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2888
 */
P
Peter Zijlstra 已提交
2889
void sched_exec(void)
2890
{
P
Peter Zijlstra 已提交
2891
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2892
	unsigned long flags;
2893
	int dest_cpu;
2894

2895
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2896
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2897 2898
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2899

2900
	if (likely(cpu_active(dest_cpu))) {
2901
		struct migration_arg arg = { p, dest_cpu };
2902

2903 2904
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2905 2906
		return;
	}
2907
unlock:
2908
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2909
}
I
Ingo Molnar 已提交
2910

L
Linus Torvalds 已提交
2911 2912 2913
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2914
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2915 2916

EXPORT_PER_CPU_SYMBOL(kstat);
2917
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2918

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

2936 2937 2938 2939 2940 2941 2942
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
2943
	struct rq_flags rf;
2944
	struct rq *rq;
2945
	u64 ns;
2946

2947 2948 2949 2950 2951 2952
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
I
Ingo Molnar 已提交
2953 2954
	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
	 * If we race with it entering CPU, unaccounted time is 0. This is
2955
	 * indistinguishable from the read occurring a few cycles earlier.
2956 2957
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2958
	 */
2959
	if (!p->on_cpu || !task_on_rq_queued(p))
2960 2961 2962
		return p->se.sum_exec_runtime;
#endif

2963
	rq = task_rq_lock(p, &rf);
2964 2965 2966 2967 2968 2969
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
2970
		prefetch_curr_exec_start(p);
2971 2972 2973 2974
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2975
	task_rq_unlock(rq, p, &rf);
2976 2977 2978

	return ns;
}
2979

2980 2981 2982 2983 2984 2985 2986 2987
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2988
	struct task_struct *curr = rq->curr;
2989
	struct rq_flags rf;
2990 2991

	sched_clock_tick();
I
Ingo Molnar 已提交
2992

2993 2994
	rq_lock(rq, &rf);

2995
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2996
	curr->sched_class->task_tick(rq, curr, 0);
2997
	cpu_load_update_active(rq);
2998
	calc_global_load_tick(rq);
2999 3000

	rq_unlock(rq, &rf);
3001

3002
	perf_event_task_tick();
3003

3004
#ifdef CONFIG_SMP
3005
	rq->idle_balance = idle_cpu(cpu);
3006
	trigger_load_balance(rq);
3007
#endif
3008
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3009 3010
}

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3022 3023
 *
 * Return: Maximum deferment in nanoseconds.
3024 3025 3026 3027
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3028
	unsigned long next, now = READ_ONCE(jiffies);
3029 3030 3031 3032 3033 3034

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3035
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3036
}
3037
#endif
L
Linus Torvalds 已提交
3038

3039 3040
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3055

3056
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3057
{
3058
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3059 3060 3061
	/*
	 * Underflow?
	 */
3062 3063
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3064
#endif
3065
	__preempt_count_add(val);
3066
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3067 3068 3069
	/*
	 * Spinlock count overflowing soon?
	 */
3070 3071
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3072
#endif
3073
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3074
}
3075
EXPORT_SYMBOL(preempt_count_add);
3076
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3077

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3088
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3089
{
3090
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3091 3092 3093
	/*
	 * Underflow?
	 */
3094
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3095
		return;
L
Linus Torvalds 已提交
3096 3097 3098
	/*
	 * Is the spinlock portion underflowing?
	 */
3099 3100 3101
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3102
#endif
3103

3104
	preempt_latency_stop(val);
3105
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3106
}
3107
EXPORT_SYMBOL(preempt_count_sub);
3108
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3109

3110 3111 3112
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3113 3114
#endif

3115 3116 3117 3118 3119 3120 3121 3122 3123
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
	return p->preempt_disable_ip;
#else
	return 0;
#endif
}

L
Linus Torvalds 已提交
3124
/*
I
Ingo Molnar 已提交
3125
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3126
 */
I
Ingo Molnar 已提交
3127
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3128
{
3129 3130 3131
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3132 3133 3134
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3135 3136
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3137

I
Ingo Molnar 已提交
3138
	debug_show_held_locks(prev);
3139
	print_modules();
I
Ingo Molnar 已提交
3140 3141
	if (irqs_disabled())
		print_irqtrace_events(prev);
3142 3143
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3144
		pr_err("Preemption disabled at:");
3145
		print_ip_sym(preempt_disable_ip);
3146 3147
		pr_cont("\n");
	}
3148 3149 3150
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3151
	dump_stack();
3152
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3153
}
L
Linus Torvalds 已提交
3154

I
Ingo Molnar 已提交
3155 3156 3157 3158 3159
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3160
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3161 3162
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3163
#endif
3164

3165
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3166
		__schedule_bug(prev);
3167 3168
		preempt_count_set(PREEMPT_DISABLED);
	}
3169
	rcu_sleep_check();
I
Ingo Molnar 已提交
3170

L
Linus Torvalds 已提交
3171 3172
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3173
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3174 3175 3176 3177 3178 3179
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3180
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3181
{
3182
	const struct sched_class *class;
I
Ingo Molnar 已提交
3183
	struct task_struct *p;
L
Linus Torvalds 已提交
3184 3185

	/*
3186 3187 3188 3189
	 * Optimization: we know that if all tasks are in the fair class we can
	 * call that function directly, but only if the @prev task wasn't of a
	 * higher scheduling class, because otherwise those loose the
	 * opportunity to pull in more work from other CPUs.
L
Linus Torvalds 已提交
3190
	 */
3191 3192 3193 3194
	if (likely((prev->sched_class == &idle_sched_class ||
		    prev->sched_class == &fair_sched_class) &&
		   rq->nr_running == rq->cfs.h_nr_running)) {

3195
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3196 3197 3198
		if (unlikely(p == RETRY_TASK))
			goto again;

I
Ingo Molnar 已提交
3199
		/* Assumes fair_sched_class->next == idle_sched_class */
3200
		if (unlikely(!p))
3201
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3202 3203

		return p;
L
Linus Torvalds 已提交
3204 3205
	}

3206
again:
3207
	for_each_class(class) {
3208
		p = class->pick_next_task(rq, prev, rf);
3209 3210 3211
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3212
			return p;
3213
		}
I
Ingo Molnar 已提交
3214
	}
3215

I
Ingo Molnar 已提交
3216 3217
	/* The idle class should always have a runnable task: */
	BUG();
I
Ingo Molnar 已提交
3218
}
L
Linus Torvalds 已提交
3219

I
Ingo Molnar 已提交
3220
/*
3221
 * __schedule() is the main scheduler function.
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3256
 *
3257
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3258
 */
3259
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3260 3261
{
	struct task_struct *prev, *next;
3262
	unsigned long *switch_count;
3263
	struct rq_flags rf;
I
Ingo Molnar 已提交
3264
	struct rq *rq;
3265
	int cpu;
I
Ingo Molnar 已提交
3266 3267 3268 3269 3270 3271

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3272

3273
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3274
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3275

3276
	local_irq_disable();
3277
	rcu_note_context_switch(preempt);
3278

3279 3280 3281 3282 3283 3284
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3285
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
3286

I
Ingo Molnar 已提交
3287 3288
	/* Promote REQ to ACT */
	rq->clock_update_flags <<= 1;
3289
	update_rq_clock(rq);
3290

3291
	switch_count = &prev->nivcsw;
3292
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3293
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3294
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3295
		} else {
3296
			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3297 3298
			prev->on_rq = 0;

3299 3300 3301 3302 3303
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
				delayacct_blkio_start();
			}

T
Tejun Heo 已提交
3304
			/*
3305 3306 3307
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3308 3309 3310 3311
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3312
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3313
				if (to_wakeup)
3314
					try_to_wake_up_local(to_wakeup, &rf);
T
Tejun Heo 已提交
3315 3316
			}
		}
I
Ingo Molnar 已提交
3317
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3318 3319
	}

3320
	next = pick_next_task(rq, prev, &rf);
3321
	clear_tsk_need_resched(prev);
3322
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3323 3324 3325 3326 3327 3328

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3329
		trace_sched_switch(preempt, prev, next);
I
Ingo Molnar 已提交
3330 3331 3332

		/* Also unlocks the rq: */
		rq = context_switch(rq, prev, next, &rf);
3333
	} else {
3334
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3335
		rq_unlock_irq(rq, &rf);
3336
	}
L
Linus Torvalds 已提交
3337

3338
	balance_callback(rq);
L
Linus Torvalds 已提交
3339
}
3340

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
void __noreturn do_task_dead(void)
{
	/*
	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
	 * when the following two conditions become true.
	 *   - There is race condition of mmap_sem (It is acquired by
	 *     exit_mm()), and
	 *   - SMI occurs before setting TASK_RUNINNG.
	 *     (or hypervisor of virtual machine switches to other guest)
	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
	 *
	 * To avoid it, we have to wait for releasing tsk->pi_lock which
	 * is held by try_to_wake_up()
	 */
	smp_mb();
	raw_spin_unlock_wait(&current->pi_lock);

I
Ingo Molnar 已提交
3358
	/* Causes final put_task_struct in finish_task_switch(): */
3359
	__set_current_state(TASK_DEAD);
I
Ingo Molnar 已提交
3360 3361 3362 3363

	/* Tell freezer to ignore us: */
	current->flags |= PF_NOFREEZE;

3364 3365
	__schedule(false);
	BUG();
I
Ingo Molnar 已提交
3366 3367

	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3368
	for (;;)
I
Ingo Molnar 已提交
3369
		cpu_relax();
3370 3371
}

3372 3373
static inline void sched_submit_work(struct task_struct *tsk)
{
3374
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3375 3376 3377 3378 3379 3380 3381 3382 3383
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3384
asmlinkage __visible void __sched schedule(void)
3385
{
3386 3387 3388
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3389
	do {
3390
		preempt_disable();
3391
		__schedule(false);
3392
		sched_preempt_enable_no_resched();
3393
	} while (need_resched());
3394
}
L
Linus Torvalds 已提交
3395 3396
EXPORT_SYMBOL(schedule);

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
/*
 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 * state (have scheduled out non-voluntarily) by making sure that all
 * tasks have either left the run queue or have gone into user space.
 * As idle tasks do not do either, they must not ever be preempted
 * (schedule out non-voluntarily).
 *
 * schedule_idle() is similar to schedule_preempt_disable() except that it
 * never enables preemption because it does not call sched_submit_work().
 */
void __sched schedule_idle(void)
{
	/*
	 * As this skips calling sched_submit_work(), which the idle task does
	 * regardless because that function is a nop when the task is in a
	 * TASK_RUNNING state, make sure this isn't used someplace that the
	 * current task can be in any other state. Note, idle is always in the
	 * TASK_RUNNING state.
	 */
	WARN_ON_ONCE(current->state);
	do {
		__schedule(false);
	} while (need_resched());
}

3422
#ifdef CONFIG_CONTEXT_TRACKING
3423
asmlinkage __visible void __sched schedule_user(void)
3424 3425 3426 3427 3428 3429
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3430 3431
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3432
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3433
	 * too frequently to make sense yet.
3434
	 */
3435
	enum ctx_state prev_state = exception_enter();
3436
	schedule();
3437
	exception_exit(prev_state);
3438 3439 3440
}
#endif

3441 3442 3443 3444 3445 3446 3447
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3448
	sched_preempt_enable_no_resched();
3449 3450 3451 3452
	schedule();
	preempt_disable();
}

3453
static void __sched notrace preempt_schedule_common(void)
3454 3455
{
	do {
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3469
		preempt_disable_notrace();
3470
		preempt_latency_start(1);
3471
		__schedule(true);
3472
		preempt_latency_stop(1);
3473
		preempt_enable_no_resched_notrace();
3474 3475 3476 3477 3478 3479 3480 3481

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3482 3483
#ifdef CONFIG_PREEMPT
/*
3484
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3485
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3486 3487
 * occur there and call schedule directly.
 */
3488
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3489 3490 3491
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3492
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3493
	 */
3494
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3495 3496
		return;

3497
	preempt_schedule_common();
L
Linus Torvalds 已提交
3498
}
3499
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3500
EXPORT_SYMBOL(preempt_schedule);
3501 3502

/**
3503
 * preempt_schedule_notrace - preempt_schedule called by tracing
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3516
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3517 3518 3519 3520 3521 3522 3523
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3537
		preempt_disable_notrace();
3538
		preempt_latency_start(1);
3539 3540 3541 3542 3543 3544
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3545
		__schedule(true);
3546 3547
		exception_exit(prev_ctx);

3548
		preempt_latency_stop(1);
3549
		preempt_enable_no_resched_notrace();
3550 3551
	} while (need_resched());
}
3552
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3553

3554
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3555 3556

/*
3557
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3558 3559 3560 3561
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3562
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3563
{
3564
	enum ctx_state prev_state;
3565

3566
	/* Catch callers which need to be fixed */
3567
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3568

3569 3570
	prev_state = exception_enter();

3571
	do {
3572
		preempt_disable();
3573
		local_irq_enable();
3574
		__schedule(true);
3575
		local_irq_disable();
3576
		sched_preempt_enable_no_resched();
3577
	} while (need_resched());
3578 3579

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3580 3581
}

3582
int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3583
			  void *key)
L
Linus Torvalds 已提交
3584
{
P
Peter Zijlstra 已提交
3585
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3586 3587 3588
}
EXPORT_SYMBOL(default_wake_function);

3589 3590
#ifdef CONFIG_RT_MUTEXES

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{
	if (pi_task)
		prio = min(prio, pi_task->prio);

	return prio;
}

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	struct task_struct *pi_task = rt_mutex_get_top_task(p);

	return __rt_effective_prio(pi_task, prio);
}

3606 3607
/*
 * rt_mutex_setprio - set the current priority of a task
3608 3609
 * @p: task to boost
 * @pi_task: donor task
3610 3611 3612 3613
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3614 3615
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3616
 */
3617
void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3618
{
3619
	int prio, oldprio, queued, running, queue_flag =
3620
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3621
	const struct sched_class *prev_class;
3622 3623
	struct rq_flags rf;
	struct rq *rq;
3624

3625 3626 3627 3628 3629 3630 3631 3632
	/* XXX used to be waiter->prio, not waiter->task->prio */
	prio = __rt_effective_prio(pi_task, p->normal_prio);

	/*
	 * If nothing changed; bail early.
	 */
	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
		return;
3633

3634
	rq = __task_rq_lock(p, &rf);
3635
	update_rq_clock(rq);
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
	/*
	 * Set under pi_lock && rq->lock, such that the value can be used under
	 * either lock.
	 *
	 * Note that there is loads of tricky to make this pointer cache work
	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
	 * ensure a task is de-boosted (pi_task is set to NULL) before the
	 * task is allowed to run again (and can exit). This ensures the pointer
	 * points to a blocked task -- which guaratees the task is present.
	 */
	p->pi_top_task = pi_task;

	/*
	 * For FIFO/RR we only need to set prio, if that matches we're done.
	 */
	if (prio == p->prio && !dl_prio(prio))
		goto out_unlock;
3653

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3672
	trace_sched_pi_setprio(p, pi_task);
3673
	oldprio = p->prio;
3674 3675 3676 3677

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3678
	prev_class = p->sched_class;
3679
	queued = task_on_rq_queued(p);
3680
	running = task_current(rq, p);
3681
	if (queued)
3682
		dequeue_task(rq, p, queue_flag);
3683
	if (running)
3684
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3685

3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3696 3697
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3698
			p->dl.dl_boosted = 1;
3699
			queue_flag |= ENQUEUE_REPLENISH;
3700 3701
		} else
			p->dl.dl_boosted = 0;
3702
		p->sched_class = &dl_sched_class;
3703 3704 3705 3706
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3707
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3708
		p->sched_class = &rt_sched_class;
3709 3710 3711
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3712 3713
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3714
		p->sched_class = &fair_sched_class;
3715
	}
I
Ingo Molnar 已提交
3716

3717 3718
	p->prio = prio;

3719
	if (queued)
3720
		enqueue_task(rq, p, queue_flag);
3721
	if (running)
3722
		set_curr_task(rq, p);
3723

P
Peter Zijlstra 已提交
3724
	check_class_changed(rq, p, prev_class, oldprio);
3725
out_unlock:
I
Ingo Molnar 已提交
3726 3727
	/* Avoid rq from going away on us: */
	preempt_disable();
3728
	__task_rq_unlock(rq, &rf);
3729 3730 3731

	balance_callback(rq);
	preempt_enable();
3732
}
3733 3734 3735 3736 3737
#else
static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	return prio;
}
3738
#endif
3739

3740
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3741
{
P
Peter Zijlstra 已提交
3742 3743
	bool queued, running;
	int old_prio, delta;
3744
	struct rq_flags rf;
3745
	struct rq *rq;
L
Linus Torvalds 已提交
3746

3747
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3748 3749 3750 3751 3752
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3753
	rq = task_rq_lock(p, &rf);
3754 3755
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3756 3757 3758 3759
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3760
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3761
	 */
3762
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3763 3764 3765
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3766
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3767
	running = task_current(rq, p);
3768
	if (queued)
3769
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
3770 3771
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3772 3773

	p->static_prio = NICE_TO_PRIO(nice);
3774
	set_load_weight(p);
3775 3776 3777
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3778

3779
	if (queued) {
3780
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
L
Linus Torvalds 已提交
3781
		/*
3782 3783
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3784
		 */
3785
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3786
			resched_curr(rq);
L
Linus Torvalds 已提交
3787
	}
P
Peter Zijlstra 已提交
3788 3789
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3790
out_unlock:
3791
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3792 3793 3794
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3795 3796 3797 3798 3799
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3800
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3801
{
I
Ingo Molnar 已提交
3802
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3803
	int nice_rlim = nice_to_rlimit(nice);
3804

3805
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3806 3807 3808
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3809 3810 3811 3812 3813 3814 3815 3816 3817
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3818
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3819
{
3820
	long nice, retval;
L
Linus Torvalds 已提交
3821 3822 3823 3824 3825 3826

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3827
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3828
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3829

3830
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3831 3832 3833
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3848
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3849 3850 3851
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3852
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3853 3854 3855 3856 3857
{
	return p->prio - MAX_RT_PRIO;
}

/**
I
Ingo Molnar 已提交
3858
 * idle_cpu - is a given CPU idle currently?
L
Linus Torvalds 已提交
3859
 * @cpu: the processor in question.
3860 3861
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3862 3863 3864
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3879 3880 3881
}

/**
I
Ingo Molnar 已提交
3882
 * idle_task - return the idle task for a given CPU.
L
Linus Torvalds 已提交
3883
 * @cpu: the processor in question.
3884
 *
I
Ingo Molnar 已提交
3885
 * Return: The idle task for the CPU @cpu.
L
Linus Torvalds 已提交
3886
 */
3887
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3888 3889 3890 3891 3892 3893 3894
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3895 3896
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3897
 */
A
Alexey Dobriyan 已提交
3898
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3899
{
3900
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3901 3902
}

3903 3904 3905 3906 3907 3908
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3909 3910
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3911
{
3912 3913
	int policy = attr->sched_policy;

3914
	if (policy == SETPARAM_POLICY)
3915 3916
		policy = p->policy;

L
Linus Torvalds 已提交
3917
	p->policy = policy;
3918

3919 3920
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3921
	else if (fair_policy(policy))
3922 3923
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3924 3925 3926 3927 3928 3929
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3930
	p->normal_prio = normal_prio(p);
3931 3932
	set_load_weight(p);
}
3933

3934 3935
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3936
			   const struct sched_attr *attr, bool keep_boost)
3937 3938
{
	__setscheduler_params(p, attr);
3939

3940
	/*
3941 3942
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3943
	 */
3944
	p->prio = normal_prio(p);
3945
	if (keep_boost)
3946
		p->prio = rt_effective_prio(p, p->prio);
3947

3948 3949 3950
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3951 3952 3953
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3954
}
3955

3956
/*
I
Ingo Molnar 已提交
3957
 * Check the target process has a UID that matches the current process's:
3958 3959 3960 3961 3962 3963 3964 3965
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3966 3967
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3968 3969 3970 3971
	rcu_read_unlock();
	return match;
}

3972 3973
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
3974
				bool user, bool pi)
L
Linus Torvalds 已提交
3975
{
3976 3977
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3978
	int retval, oldprio, oldpolicy = -1, queued, running;
3979
	int new_effective_prio, policy = attr->sched_policy;
3980
	const struct sched_class *prev_class;
3981
	struct rq_flags rf;
3982
	int reset_on_fork;
3983
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3984
	struct rq *rq;
L
Linus Torvalds 已提交
3985

3986 3987
	/* The pi code expects interrupts enabled */
	BUG_ON(pi && in_interrupt());
L
Linus Torvalds 已提交
3988
recheck:
I
Ingo Molnar 已提交
3989
	/* Double check policy once rq lock held: */
3990 3991
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3992
		policy = oldpolicy = p->policy;
3993
	} else {
3994
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3995

3996
		if (!valid_policy(policy))
3997 3998 3999
			return -EINVAL;
	}

4000 4001
	if (attr->sched_flags &
		~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
4002 4003
		return -EINVAL;

L
Linus Torvalds 已提交
4004 4005
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4006 4007
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4008
	 */
4009
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4010
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4011
		return -EINVAL;
4012 4013
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4014 4015
		return -EINVAL;

4016 4017 4018
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4019
	if (user && !capable(CAP_SYS_NICE)) {
4020
		if (fair_policy(policy)) {
4021
			if (attr->sched_nice < task_nice(p) &&
4022
			    !can_nice(p, attr->sched_nice))
4023 4024 4025
				return -EPERM;
		}

4026
		if (rt_policy(policy)) {
4027 4028
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4029

I
Ingo Molnar 已提交
4030
			/* Can't set/change the rt policy: */
4031 4032 4033
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

I
Ingo Molnar 已提交
4034
			/* Can't increase priority: */
4035 4036
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4037 4038
				return -EPERM;
		}
4039

4040 4041 4042 4043 4044 4045 4046 4047 4048
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4049
		/*
4050 4051
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4052
		 */
4053
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4054
			if (!can_nice(p, task_nice(p)))
4055 4056
				return -EPERM;
		}
4057

I
Ingo Molnar 已提交
4058
		/* Can't change other user's priorities: */
4059
		if (!check_same_owner(p))
4060
			return -EPERM;
4061

I
Ingo Molnar 已提交
4062
		/* Normal users shall not reset the sched_reset_on_fork flag: */
4063 4064
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4065
	}
L
Linus Torvalds 已提交
4066

4067
	if (user) {
4068
		retval = security_task_setscheduler(p);
4069 4070 4071 4072
		if (retval)
			return retval;
	}

4073
	/*
I
Ingo Molnar 已提交
4074
	 * Make sure no PI-waiters arrive (or leave) while we are
4075
	 * changing the priority of the task:
4076
	 *
L
Lucas De Marchi 已提交
4077
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4078 4079
	 * runqueue lock must be held.
	 */
4080
	rq = task_rq_lock(p, &rf);
4081
	update_rq_clock(rq);
4082

4083
	/*
I
Ingo Molnar 已提交
4084
	 * Changing the policy of the stop threads its a very bad idea:
4085 4086
	 */
	if (p == rq->stop) {
4087
		task_rq_unlock(rq, p, &rf);
4088 4089 4090
		return -EINVAL;
	}

4091
	/*
4092 4093
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4094
	 */
4095
	if (unlikely(policy == p->policy)) {
4096
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4097 4098 4099
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4100
		if (dl_policy(policy) && dl_param_changed(p, attr))
4101
			goto change;
4102

4103
		p->sched_reset_on_fork = reset_on_fork;
4104
		task_rq_unlock(rq, p, &rf);
4105 4106
		return 0;
	}
4107
change:
4108

4109
	if (user) {
4110
#ifdef CONFIG_RT_GROUP_SCHED
4111 4112 4113 4114 4115
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4116 4117
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4118
			task_rq_unlock(rq, p, &rf);
4119 4120 4121
			return -EPERM;
		}
#endif
4122 4123 4124 4125 4126 4127 4128 4129 4130
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4131 4132
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4133
				task_rq_unlock(rq, p, &rf);
4134 4135 4136 4137 4138
				return -EPERM;
			}
		}
#endif
	}
4139

I
Ingo Molnar 已提交
4140
	/* Re-check policy now with rq lock held: */
L
Linus Torvalds 已提交
4141 4142
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4143
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4144 4145
		goto recheck;
	}
4146 4147 4148 4149 4150 4151

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4152
	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4153
		task_rq_unlock(rq, p, &rf);
4154 4155 4156
		return -EBUSY;
	}

4157 4158 4159
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4160 4161 4162 4163 4164 4165 4166 4167
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
4168
		new_effective_prio = rt_effective_prio(p, newprio);
4169 4170
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4171 4172
	}

4173
	queued = task_on_rq_queued(p);
4174
	running = task_current(rq, p);
4175
	if (queued)
4176
		dequeue_task(rq, p, queue_flags);
4177
	if (running)
4178
		put_prev_task(rq, p);
4179

4180
	prev_class = p->sched_class;
4181
	__setscheduler(rq, p, attr, pi);
4182

4183
	if (queued) {
4184 4185 4186 4187
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4188 4189
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4190

4191
		enqueue_task(rq, p, queue_flags);
4192
	}
4193
	if (running)
4194
		set_curr_task(rq, p);
4195

P
Peter Zijlstra 已提交
4196
	check_class_changed(rq, p, prev_class, oldprio);
I
Ingo Molnar 已提交
4197 4198 4199

	/* Avoid rq from going away on us: */
	preempt_disable();
4200
	task_rq_unlock(rq, p, &rf);
4201

4202 4203
	if (pi)
		rt_mutex_adjust_pi(p);
4204

I
Ingo Molnar 已提交
4205
	/* Run balance callbacks after we've adjusted the PI chain: */
4206 4207
	balance_callback(rq);
	preempt_enable();
4208

L
Linus Torvalds 已提交
4209 4210
	return 0;
}
4211

4212 4213 4214 4215 4216 4217 4218 4219 4220
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4221 4222
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4223 4224 4225 4226 4227
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4228
	return __sched_setscheduler(p, &attr, check, true);
4229
}
4230 4231 4232 4233 4234 4235
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4236 4237
 * Return: 0 on success. An error code otherwise.
 *
4238 4239 4240
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4241
		       const struct sched_param *param)
4242
{
4243
	return _sched_setscheduler(p, policy, param, true);
4244
}
L
Linus Torvalds 已提交
4245 4246
EXPORT_SYMBOL_GPL(sched_setscheduler);

4247 4248
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4249
	return __sched_setscheduler(p, attr, true, true);
4250 4251 4252
}
EXPORT_SYMBOL_GPL(sched_setattr);

4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4263 4264
 *
 * Return: 0 on success. An error code otherwise.
4265 4266
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4267
			       const struct sched_param *param)
4268
{
4269
	return _sched_setscheduler(p, policy, param, false);
4270
}
4271
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4272

I
Ingo Molnar 已提交
4273 4274
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4275 4276 4277
{
	struct sched_param lparam;
	struct task_struct *p;
4278
	int retval;
L
Linus Torvalds 已提交
4279 4280 4281 4282 4283

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4284 4285 4286

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4287
	p = find_process_by_pid(pid);
4288 4289 4290
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4291

L
Linus Torvalds 已提交
4292 4293 4294
	return retval;
}

4295 4296 4297
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
I
Ingo Molnar 已提交
4298
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4299 4300 4301 4302 4303 4304 4305
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

I
Ingo Molnar 已提交
4306
	/* Zero the full structure, so that a short copy will be nice: */
4307 4308 4309 4310 4311 4312
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

I
Ingo Molnar 已提交
4313 4314
	/* Bail out on silly large: */
	if (size > PAGE_SIZE)
4315 4316
		goto err_size;

I
Ingo Molnar 已提交
4317 4318
	/* ABI compatibility quirk: */
	if (!size)
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
I
Ingo Molnar 已提交
4353
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4354 4355
	 * to be strict and return an error on out-of-bounds values?
	 */
4356
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4357

4358
	return 0;
4359 4360 4361

err_size:
	put_user(sizeof(*attr), &uattr->size);
4362
	return -E2BIG;
4363 4364
}

L
Linus Torvalds 已提交
4365 4366 4367 4368 4369
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4370 4371
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4372
 */
I
Ingo Molnar 已提交
4373
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4374
{
4375 4376 4377
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4378 4379 4380 4381 4382 4383 4384
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4385 4386
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4387
 */
4388
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4389
{
4390
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4391 4392
}

4393 4394 4395
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4396
 * @uattr: structure containing the extended parameters.
4397
 * @flags: for future extension.
4398
 */
4399 4400
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4401 4402 4403 4404 4405
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4406
	if (!uattr || pid < 0 || flags)
4407 4408
		return -EINVAL;

4409 4410 4411
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4412

4413
	if ((int)attr.sched_policy < 0)
4414
		return -EINVAL;
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4426 4427 4428
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4429 4430 4431
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4432
 */
4433
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4434
{
4435
	struct task_struct *p;
4436
	int retval;
L
Linus Torvalds 已提交
4437 4438

	if (pid < 0)
4439
		return -EINVAL;
L
Linus Torvalds 已提交
4440 4441

	retval = -ESRCH;
4442
	rcu_read_lock();
L
Linus Torvalds 已提交
4443 4444 4445 4446
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4447 4448
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4449
	}
4450
	rcu_read_unlock();
L
Linus Torvalds 已提交
4451 4452 4453 4454
	return retval;
}

/**
4455
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4456 4457
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4458 4459 4460
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4461
 */
4462
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4463
{
4464
	struct sched_param lp = { .sched_priority = 0 };
4465
	struct task_struct *p;
4466
	int retval;
L
Linus Torvalds 已提交
4467 4468

	if (!param || pid < 0)
4469
		return -EINVAL;
L
Linus Torvalds 已提交
4470

4471
	rcu_read_lock();
L
Linus Torvalds 已提交
4472 4473 4474 4475 4476 4477 4478 4479 4480
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4481 4482
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4483
	rcu_read_unlock();
L
Linus Torvalds 已提交
4484 4485 4486 4487 4488 4489 4490 4491 4492

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4493
	rcu_read_unlock();
L
Linus Torvalds 已提交
4494 4495 4496
	return retval;
}

4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4520
				return -EFBIG;
4521 4522 4523 4524 4525
		}

		attr->size = usize;
	}

4526
	ret = copy_to_user(uattr, attr, attr->size);
4527 4528 4529
	if (ret)
		return -EFAULT;

4530
	return 0;
4531 4532 4533
}

/**
4534
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4535
 * @pid: the pid in question.
J
Juri Lelli 已提交
4536
 * @uattr: structure containing the extended parameters.
4537
 * @size: sizeof(attr) for fwd/bwd comp.
4538
 * @flags: for future extension.
4539
 */
4540 4541
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4542 4543 4544 4545 4546 4547 4548 4549
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4550
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4564 4565
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4566 4567 4568
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4569 4570
		attr.sched_priority = p->rt_priority;
	else
4571
		attr.sched_nice = task_nice(p);
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4583
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4584
{
4585
	cpumask_var_t cpus_allowed, new_mask;
4586 4587
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4588

4589
	rcu_read_lock();
L
Linus Torvalds 已提交
4590 4591 4592

	p = find_process_by_pid(pid);
	if (!p) {
4593
		rcu_read_unlock();
L
Linus Torvalds 已提交
4594 4595 4596
		return -ESRCH;
	}

4597
	/* Prevent p going away */
L
Linus Torvalds 已提交
4598
	get_task_struct(p);
4599
	rcu_read_unlock();
L
Linus Torvalds 已提交
4600

4601 4602 4603 4604
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4605 4606 4607 4608 4609 4610 4611 4612
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4613
	retval = -EPERM;
E
Eric W. Biederman 已提交
4614 4615 4616 4617
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4618
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4619 4620 4621
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4622

4623
	retval = security_task_setscheduler(p);
4624
	if (retval)
4625
		goto out_free_new_mask;
4626

4627 4628 4629 4630

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4631 4632 4633 4634 4635 4636 4637
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4638 4639 4640
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4641
			retval = -EBUSY;
4642
			rcu_read_unlock();
4643
			goto out_free_new_mask;
4644
		}
4645
		rcu_read_unlock();
4646 4647
	}
#endif
P
Peter Zijlstra 已提交
4648
again:
4649
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4650

P
Paul Menage 已提交
4651
	if (!retval) {
4652 4653
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4654 4655 4656 4657 4658
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4659
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4660 4661 4662
			goto again;
		}
	}
4663
out_free_new_mask:
4664 4665 4666 4667
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4668 4669 4670 4671 4672
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4673
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4674
{
4675 4676 4677 4678 4679
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4680 4681 4682 4683
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
I
Ingo Molnar 已提交
4684
 * sys_sched_setaffinity - set the CPU affinity of a process
L
Linus Torvalds 已提交
4685 4686
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4687
 * @user_mask_ptr: user-space pointer to the new CPU mask
4688 4689
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4690
 */
4691 4692
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4693
{
4694
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4695 4696
	int retval;

4697 4698
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4699

4700 4701 4702 4703 4704
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4705 4706
}

4707
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4708
{
4709
	struct task_struct *p;
4710
	unsigned long flags;
L
Linus Torvalds 已提交
4711 4712
	int retval;

4713
	rcu_read_lock();
L
Linus Torvalds 已提交
4714 4715 4716 4717 4718 4719

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4720 4721 4722 4723
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4724
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4725
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4726
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4727 4728

out_unlock:
4729
	rcu_read_unlock();
L
Linus Torvalds 已提交
4730

4731
	return retval;
L
Linus Torvalds 已提交
4732 4733 4734
}

/**
I
Ingo Molnar 已提交
4735
 * sys_sched_getaffinity - get the CPU affinity of a process
L
Linus Torvalds 已提交
4736 4737
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4738
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4739
 *
4740 4741
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4742
 */
4743 4744
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4745 4746
{
	int ret;
4747
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4748

A
Anton Blanchard 已提交
4749
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4750 4751
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4752 4753
		return -EINVAL;

4754 4755
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4756

4757 4758
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4759
		size_t retlen = min_t(size_t, len, cpumask_size());
4760 4761

		if (copy_to_user(user_mask_ptr, mask, retlen))
4762 4763
			ret = -EFAULT;
		else
4764
			ret = retlen;
4765 4766
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4767

4768
	return ret;
L
Linus Torvalds 已提交
4769 4770 4771 4772 4773
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4774 4775
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4776 4777
 *
 * Return: 0.
L
Linus Torvalds 已提交
4778
 */
4779
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4780
{
4781 4782 4783 4784 4785 4786
	struct rq_flags rf;
	struct rq *rq;

	local_irq_disable();
	rq = this_rq();
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
4787

4788
	schedstat_inc(rq->yld_count);
4789
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4790 4791 4792 4793 4794

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
4795 4796
	preempt_disable();
	rq_unlock(rq, &rf);
4797
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4798 4799 4800 4801 4802 4803

	schedule();

	return 0;
}

4804
#ifndef CONFIG_PREEMPT
4805
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4806
{
4807
	if (should_resched(0)) {
4808
		preempt_schedule_common();
L
Linus Torvalds 已提交
4809 4810 4811 4812
		return 1;
	}
	return 0;
}
4813
EXPORT_SYMBOL(_cond_resched);
4814
#endif
L
Linus Torvalds 已提交
4815 4816

/*
4817
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4818 4819
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4820
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4821 4822 4823
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4824
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4825
{
4826
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4827 4828
	int ret = 0;

4829 4830
	lockdep_assert_held(lock);

4831
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4832
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4833
		if (resched)
4834
			preempt_schedule_common();
N
Nick Piggin 已提交
4835 4836
		else
			cpu_relax();
J
Jan Kara 已提交
4837
		ret = 1;
L
Linus Torvalds 已提交
4838 4839
		spin_lock(lock);
	}
J
Jan Kara 已提交
4840
	return ret;
L
Linus Torvalds 已提交
4841
}
4842
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4843

4844
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4845 4846 4847
{
	BUG_ON(!in_softirq());

4848
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4849
		local_bh_enable();
4850
		preempt_schedule_common();
L
Linus Torvalds 已提交
4851 4852 4853 4854 4855
		local_bh_disable();
		return 1;
	}
	return 0;
}
4856
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4857 4858 4859 4860

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4861 4862 4863 4864 4865 4866 4867 4868 4869
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
I
Ingo Molnar 已提交
4870
 *	yield();
P
Peter Zijlstra 已提交
4871 4872 4873 4874 4875 4876 4877 4878
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4879 4880 4881 4882 4883 4884 4885 4886
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4887 4888 4889 4890
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4891 4892
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4893 4894 4895 4896
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4897
 * Return:
4898 4899 4900
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4901
 */
4902
int __sched yield_to(struct task_struct *p, bool preempt)
4903 4904 4905 4906
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4907
	int yielded = 0;
4908 4909 4910 4911 4912 4913

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4914 4915 4916 4917 4918 4919 4920 4921 4922
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4923
	double_rq_lock(rq, p_rq);
4924
	if (task_rq(p) != p_rq) {
4925 4926 4927 4928 4929
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4930
		goto out_unlock;
4931 4932

	if (curr->sched_class != p->sched_class)
4933
		goto out_unlock;
4934 4935

	if (task_running(p_rq, p) || p->state)
4936
		goto out_unlock;
4937 4938

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4939
	if (yielded) {
4940
		schedstat_inc(rq->yld_count);
4941 4942 4943 4944 4945
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4946
			resched_curr(p_rq);
4947
	}
4948

4949
out_unlock:
4950
	double_rq_unlock(rq, p_rq);
4951
out_irq:
4952 4953
	local_irq_restore(flags);

4954
	if (yielded > 0)
4955 4956 4957 4958 4959 4960
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
4976
/*
I
Ingo Molnar 已提交
4977
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4978 4979 4980 4981
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4982
	int token;
L
Linus Torvalds 已提交
4983 4984
	long ret;

4985
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
4986
	ret = schedule_timeout(timeout);
4987
	io_schedule_finish(token);
4988

L
Linus Torvalds 已提交
4989 4990
	return ret;
}
4991
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
4992

4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
void io_schedule(void)
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5003 5004 5005 5006
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5007 5008 5009
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5010
 */
5011
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5012 5013 5014 5015 5016 5017 5018 5019
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5020
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5021
	case SCHED_NORMAL:
5022
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5023
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5034 5035 5036
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5037
 */
5038
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5039 5040 5041 5042 5043 5044 5045 5046
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5047
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5048
	case SCHED_NORMAL:
5049
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5050
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
5063 5064 5065
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
5066
 */
5067
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5068
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5069
{
5070
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5071
	unsigned int time_slice;
5072 5073
	struct rq_flags rf;
	struct timespec t;
5074
	struct rq *rq;
5075
	int retval;
L
Linus Torvalds 已提交
5076 5077

	if (pid < 0)
5078
		return -EINVAL;
L
Linus Torvalds 已提交
5079 5080

	retval = -ESRCH;
5081
	rcu_read_lock();
L
Linus Torvalds 已提交
5082 5083 5084 5085 5086 5087 5088 5089
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5090
	rq = task_rq_lock(p, &rf);
5091 5092 5093
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5094
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5095

5096
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5097
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5098 5099
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5100

L
Linus Torvalds 已提交
5101
out_unlock:
5102
	rcu_read_unlock();
L
Linus Torvalds 已提交
5103 5104 5105
	return retval;
}

5106
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5107

5108
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5109 5110
{
	unsigned long free = 0;
5111
	int ppid;
5112
	unsigned long state = p->state;
L
Linus Torvalds 已提交
5113

5114 5115 5116
	/* Make sure the string lines up properly with the number of task states: */
	BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);

5117 5118
	if (!try_get_task_stack(p))
		return;
5119 5120
	if (state)
		state = __ffs(state) + 1;
5121
	printk(KERN_INFO "%-15.15s %c", p->comm,
5122
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
5123
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5124
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5125
#ifdef CONFIG_DEBUG_STACK_USAGE
5126
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5127
#endif
5128
	ppid = 0;
5129
	rcu_read_lock();
5130 5131
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5132
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5133
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5134
		task_pid_nr(p), ppid,
5135
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5136

5137
	print_worker_info(KERN_INFO, p);
5138
	show_stack(p, NULL);
5139
	put_task_stack(p);
L
Linus Torvalds 已提交
5140 5141
}

I
Ingo Molnar 已提交
5142
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5143
{
5144
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5145

5146
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5147 5148
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5149
#else
P
Peter Zijlstra 已提交
5150 5151
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5152
#endif
5153
	rcu_read_lock();
5154
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5155 5156
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5157
		 * console might take a lot of time:
5158 5159 5160
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5161 5162
		 */
		touch_nmi_watchdog();
5163
		touch_all_softlockup_watchdogs();
I
Ingo Molnar 已提交
5164
		if (!state_filter || (p->state & state_filter))
5165
			sched_show_task(p);
5166
	}
L
Linus Torvalds 已提交
5167

I
Ingo Molnar 已提交
5168
#ifdef CONFIG_SCHED_DEBUG
5169 5170
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5171
#endif
5172
	rcu_read_unlock();
I
Ingo Molnar 已提交
5173 5174 5175
	/*
	 * Only show locks if all tasks are dumped:
	 */
5176
	if (!state_filter)
I
Ingo Molnar 已提交
5177
		debug_show_all_locks();
L
Linus Torvalds 已提交
5178 5179
}

5180 5181 5182
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
I
Ingo Molnar 已提交
5183
 * @cpu: CPU the idle task belongs to
5184 5185 5186 5187
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5188
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5189
{
5190
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5191 5192
	unsigned long flags;

5193 5194
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5195

5196
	__sched_fork(0, idle);
5197
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5198
	idle->se.exec_start = sched_clock();
5199
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5200

5201 5202
	kasan_unpoison_task_stack(idle);

5203 5204 5205 5206 5207 5208 5209 5210 5211
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5212 5213
	/*
	 * We're having a chicken and egg problem, even though we are
I
Ingo Molnar 已提交
5214
	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5215 5216 5217 5218 5219 5220 5221 5222
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5223
	__set_task_cpu(idle, cpu);
5224
	rcu_read_unlock();
L
Linus Torvalds 已提交
5225 5226

	rq->curr = rq->idle = idle;
5227
	idle->on_rq = TASK_ON_RQ_QUEUED;
5228
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5229
	idle->on_cpu = 1;
5230
#endif
5231 5232
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5233 5234

	/* Set the preempt count _outside_ the spinlocks! */
5235
	init_idle_preempt_count(idle, cpu);
5236

I
Ingo Molnar 已提交
5237 5238 5239 5240
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5241
	ftrace_graph_init_idle_task(idle, cpu);
5242
	vtime_init_idle(idle, cpu);
5243
#ifdef CONFIG_SMP
5244 5245
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5246 5247
}

5248 5249
#ifdef CONFIG_SMP

5250 5251 5252
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
5253
	int ret = 1;
5254

5255 5256 5257
	if (!cpumask_weight(cur))
		return ret;

5258
	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5259 5260 5261 5262

	return ret;
}

5263 5264 5265 5266 5267 5268 5269
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
I
Ingo Molnar 已提交
5270
	 * to a new cpuset; we don't want to change their CPU
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5283 5284
					      cs_cpus_allowed))
		ret = dl_task_can_attach(p, cs_cpus_allowed);
5285 5286 5287 5288 5289

out:
	return ret;
}

5290
bool sched_smp_initialized __read_mostly;
5291

5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

5302
	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5303 5304 5305 5306
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5307
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5308 5309
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5310 5311 5312 5313 5314 5315 5316

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5317
	bool queued, running;
5318 5319
	struct rq_flags rf;
	struct rq *rq;
5320

5321
	rq = task_rq_lock(p, &rf);
5322
	queued = task_on_rq_queued(p);
5323 5324
	running = task_current(rq, p);

5325
	if (queued)
5326
		dequeue_task(rq, p, DEQUEUE_SAVE);
5327
	if (running)
5328
		put_prev_task(rq, p);
5329 5330 5331

	p->numa_preferred_nid = nid;

5332
	if (queued)
5333
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5334
	if (running)
5335
		set_curr_task(rq, p);
5336
	task_rq_unlock(rq, p, &rf);
5337
}
P
Peter Zijlstra 已提交
5338
#endif /* CONFIG_NUMA_BALANCING */
5339

L
Linus Torvalds 已提交
5340
#ifdef CONFIG_HOTPLUG_CPU
5341
/*
I
Ingo Molnar 已提交
5342
 * Ensure that the idle task is using init_mm right before its CPU goes
5343
 * offline.
5344
 */
5345
void idle_task_exit(void)
L
Linus Torvalds 已提交
5346
{
5347
	struct mm_struct *mm = current->active_mm;
5348

5349
	BUG_ON(cpu_online(smp_processor_id()));
5350

5351
	if (mm != &init_mm) {
5352
		switch_mm(mm, &init_mm, current);
5353 5354
		finish_arch_post_lock_switch();
	}
5355
	mmdrop(mm);
L
Linus Torvalds 已提交
5356 5357 5358
}

/*
5359 5360
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5361 5362 5363
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5364 5365
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5366
 */
5367
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5368
{
5369
	long delta = calc_load_fold_active(rq, 1);
5370 5371
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5372 5373
}

5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5390
/*
5391 5392 5393 5394 5395 5396
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5397
 */
5398
static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
L
Linus Torvalds 已提交
5399
{
5400
	struct rq *rq = dead_rq;
5401
	struct task_struct *next, *stop = rq->stop;
5402
	struct rq_flags orf = *rf;
5403
	int dest_cpu;
L
Linus Torvalds 已提交
5404 5405

	/*
5406 5407 5408 5409 5410 5411 5412
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5413
	 */
5414
	rq->stop = NULL;
5415

5416 5417 5418 5419 5420 5421 5422
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5423
	for (;;) {
5424 5425
		/*
		 * There's this thread running, bail when that's the only
I
Ingo Molnar 已提交
5426
		 * remaining thread:
5427 5428
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5429
			break;
5430

5431
		/*
I
Ingo Molnar 已提交
5432
		 * pick_next_task() assumes pinned rq->lock:
5433
		 */
5434
		next = pick_next_task(rq, &fake_task, rf);
5435
		BUG_ON(!next);
V
Viresh Kumar 已提交
5436
		put_prev_task(rq, next);
5437

W
Wanpeng Li 已提交
5438 5439 5440 5441 5442 5443 5444 5445 5446
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5447
		rq_unlock(rq, rf);
W
Wanpeng Li 已提交
5448
		raw_spin_lock(&next->pi_lock);
5449
		rq_relock(rq, rf);
W
Wanpeng Li 已提交
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5461
		/* Find suitable destination for @next, with force if needed. */
5462
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5463
		rq = __migrate_task(rq, rf, next, dest_cpu);
5464
		if (rq != dead_rq) {
5465
			rq_unlock(rq, rf);
5466
			rq = dead_rq;
5467 5468
			*rf = orf;
			rq_relock(rq, rf);
5469
		}
W
Wanpeng Li 已提交
5470
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5471
	}
5472

5473
	rq->stop = stop;
5474
}
L
Linus Torvalds 已提交
5475 5476
#endif /* CONFIG_HOTPLUG_CPU */

5477
void set_rq_online(struct rq *rq)
5478 5479 5480 5481
{
	if (!rq->online) {
		const struct sched_class *class;

5482
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5483 5484 5485 5486 5487 5488 5489 5490 5491
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

5492
void set_rq_offline(struct rq *rq)
5493 5494 5495 5496 5497 5498 5499 5500 5501
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5502
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5503 5504 5505 5506
		rq->online = 0;
	}
}

5507
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5508
{
5509
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5510

5511 5512 5513
	rq->age_stamp = sched_clock_cpu(cpu);
}

I
Ingo Molnar 已提交
5514 5515 5516 5517
/*
 * used to mark begin/end of suspend/resume:
 */
static int num_cpus_frozen;
5518

L
Linus Torvalds 已提交
5519
/*
5520 5521 5522
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
5523 5524 5525
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
5526
 */
5527
static void cpuset_cpu_active(void)
5528
{
5529
	if (cpuhp_tasks_frozen) {
5530 5531 5532 5533 5534 5535 5536 5537 5538
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
5539
			return;
5540 5541 5542 5543 5544 5545
		}
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
5546
	}
5547
	cpuset_update_active_cpus();
5548
}
5549

5550
static int cpuset_cpu_inactive(unsigned int cpu)
5551
{
5552
	if (!cpuhp_tasks_frozen) {
5553
		if (dl_cpu_busy(cpu))
5554
			return -EBUSY;
5555
		cpuset_update_active_cpus();
5556
	} else {
5557 5558
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
5559
	}
5560
	return 0;
5561 5562
}

5563
int sched_cpu_activate(unsigned int cpu)
5564
{
5565
	struct rq *rq = cpu_rq(cpu);
5566
	struct rq_flags rf;
5567

5568
	set_cpu_active(cpu, true);
5569

5570
	if (sched_smp_initialized) {
5571
		sched_domains_numa_masks_set(cpu);
5572
		cpuset_cpu_active();
5573
	}
5574 5575 5576 5577 5578

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
I
Ingo Molnar 已提交
5579
	 *    after all CPUs have been brought up.
5580 5581 5582 5583
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
5584
	rq_lock_irqsave(rq, &rf);
5585 5586 5587 5588
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
5589
	rq_unlock_irqrestore(rq, &rf);
5590 5591 5592

	update_max_interval();

5593
	return 0;
5594 5595
}

5596
int sched_cpu_deactivate(unsigned int cpu)
5597 5598 5599
{
	int ret;

5600
	set_cpu_active(cpu, false);
5601 5602 5603 5604 5605 5606 5607
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
5608
	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5609 5610 5611 5612 5613 5614 5615 5616

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
5617
	}
5618 5619
	sched_domains_numa_masks_clear(cpu);
	return 0;
5620 5621
}

5622 5623 5624 5625 5626 5627 5628 5629
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

5630 5631 5632
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
5633
	sched_rq_cpu_starting(cpu);
5634
	return 0;
5635 5636
}

5637 5638 5639 5640
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5641
	struct rq_flags rf;
5642 5643 5644

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
5645 5646

	rq_lock_irqsave(rq, &rf);
5647 5648 5649 5650
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
5651
	migrate_tasks(rq, &rf);
5652
	BUG_ON(rq->nr_running != 1);
5653 5654
	rq_unlock_irqrestore(rq, &rf);

5655 5656
	calc_load_migrate(rq);
	update_max_interval();
5657
	nohz_balance_exit_idle(cpu);
5658
	hrtick_clear(rq);
5659 5660 5661 5662
	return 0;
}
#endif

P
Peter Zijlstra 已提交
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static void sched_init_smt(void)
{
	/*
	 * We've enumerated all CPUs and will assume that if any CPU
	 * has SMT siblings, CPU0 will too.
	 */
	if (cpumask_weight(cpu_smt_mask(0)) > 1)
		static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif

L
Linus Torvalds 已提交
5679 5680
void __init sched_init_smp(void)
{
5681 5682 5683
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5684

5685 5686
	sched_init_numa();

5687 5688
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
I
Ingo Molnar 已提交
5689
	 * CPU masks are stable and all blatant races in the below code cannot
5690 5691
	 * happen.
	 */
5692
	mutex_lock(&sched_domains_mutex);
P
Peter Zijlstra 已提交
5693
	sched_init_domains(cpu_active_mask);
5694 5695 5696
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5697
	mutex_unlock(&sched_domains_mutex);
5698

5699
	/* Move init over to a non-isolated CPU */
5700
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5701
		BUG();
I
Ingo Molnar 已提交
5702
	sched_init_granularity();
5703
	free_cpumask_var(non_isolated_cpus);
5704

5705
	init_sched_rt_class();
5706
	init_sched_dl_class();
P
Peter Zijlstra 已提交
5707 5708 5709

	sched_init_smt();

5710
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
5711
}
5712 5713 5714

static int __init migration_init(void)
{
5715
	sched_rq_cpu_starting(smp_processor_id());
5716
	return 0;
L
Linus Torvalds 已提交
5717
}
5718 5719
early_initcall(migration_init);

L
Linus Torvalds 已提交
5720 5721 5722
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
5723
	sched_init_granularity();
L
Linus Torvalds 已提交
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

5734
#ifdef CONFIG_CGROUP_SCHED
5735 5736 5737 5738
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
5739
struct task_group root_task_group;
5740
LIST_HEAD(task_groups);
5741 5742 5743

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
5744
#endif
P
Peter Zijlstra 已提交
5745

5746
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5747
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
5748

L
Linus Torvalds 已提交
5749 5750
void __init sched_init(void)
{
I
Ingo Molnar 已提交
5751
	int i, j;
5752 5753
	unsigned long alloc_size = 0, ptr;

5754
	sched_clock_init();
5755
	wait_bit_init();
5756

5757 5758 5759 5760 5761 5762 5763
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
5764
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5765 5766

#ifdef CONFIG_FAIR_GROUP_SCHED
5767
		root_task_group.se = (struct sched_entity **)ptr;
5768 5769
		ptr += nr_cpu_ids * sizeof(void **);

5770
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5771
		ptr += nr_cpu_ids * sizeof(void **);
5772

5773
#endif /* CONFIG_FAIR_GROUP_SCHED */
5774
#ifdef CONFIG_RT_GROUP_SCHED
5775
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5776 5777
		ptr += nr_cpu_ids * sizeof(void **);

5778
		root_task_group.rt_rq = (struct rt_rq **)ptr;
5779 5780
		ptr += nr_cpu_ids * sizeof(void **);

5781
#endif /* CONFIG_RT_GROUP_SCHED */
5782
	}
5783
#ifdef CONFIG_CPUMASK_OFFSTACK
5784 5785 5786
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5787 5788
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5789
	}
5790
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
5791

I
Ingo Molnar 已提交
5792 5793
	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5794

G
Gregory Haskins 已提交
5795 5796 5797 5798
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

5799
#ifdef CONFIG_RT_GROUP_SCHED
5800
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5801
			global_rt_period(), global_rt_runtime());
5802
#endif /* CONFIG_RT_GROUP_SCHED */
5803

D
Dhaval Giani 已提交
5804
#ifdef CONFIG_CGROUP_SCHED
5805 5806
	task_group_cache = KMEM_CACHE(task_group, 0);

5807 5808
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
5809
	INIT_LIST_HEAD(&root_task_group.siblings);
5810
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
5811
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
5812

5813
	for_each_possible_cpu(i) {
5814
		struct rq *rq;
L
Linus Torvalds 已提交
5815 5816

		rq = cpu_rq(i);
5817
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
5818
		rq->nr_running = 0;
5819 5820
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
5821
		init_cfs_rq(&rq->cfs);
5822 5823
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
5824
#ifdef CONFIG_FAIR_GROUP_SCHED
5825
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
5826
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5827
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
5828
		/*
I
Ingo Molnar 已提交
5829
		 * How much CPU bandwidth does root_task_group get?
D
Dhaval Giani 已提交
5830 5831
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
I
Ingo Molnar 已提交
5832 5833
		 * gets 100% of the CPU resources in the system. This overall
		 * system CPU resource is divided among the tasks of
5834
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
5835 5836 5837
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
5838
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
5839
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
I
Ingo Molnar 已提交
5840
		 * then A0's share of the CPU resource is:
D
Dhaval Giani 已提交
5841
		 *
5842
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
5843
		 *
5844 5845
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
5846
		 */
5847
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5848
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
5849 5850 5851
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5852
#ifdef CONFIG_RT_GROUP_SCHED
5853
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
5854
#endif
L
Linus Torvalds 已提交
5855

I
Ingo Molnar 已提交
5856 5857
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
5858

L
Linus Torvalds 已提交
5859
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
5860
		rq->sd = NULL;
G
Gregory Haskins 已提交
5861
		rq->rd = NULL;
5862
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
5863
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
5864
		rq->active_balance = 0;
I
Ingo Molnar 已提交
5865
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
5866
		rq->push_cpu = 0;
5867
		rq->cpu = i;
5868
		rq->online = 0;
5869 5870
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
5871
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
5872 5873 5874

		INIT_LIST_HEAD(&rq->cfs_tasks);

5875
		rq_attach_root(rq, &def_root_domain);
5876
#ifdef CONFIG_NO_HZ_COMMON
5877
		rq->last_load_update_tick = jiffies;
5878
		rq->nohz_flags = 0;
5879
#endif
5880 5881 5882
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
5883
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
5884
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
5885 5886 5887
		atomic_set(&rq->nr_iowait, 0);
	}

5888
	set_load_weight(&init_task);
5889

L
Linus Torvalds 已提交
5890 5891 5892
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
V
Vegard Nossum 已提交
5893
	mmgrab(&init_mm);
L
Linus Torvalds 已提交
5894 5895 5896 5897 5898 5899 5900 5901 5902
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
5903 5904 5905

	calc_load_update = jiffies + LOAD_FREQ;

5906
#ifdef CONFIG_SMP
R
Rusty Russell 已提交
5907 5908 5909
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
5910
	idle_thread_set_boot_cpu();
5911
	set_cpu_rq_start_time(smp_processor_id());
5912 5913
#endif
	init_sched_fair_class();
5914

5915 5916
	init_schedstats();

5917
	scheduler_running = 1;
L
Linus Torvalds 已提交
5918 5919
}

5920
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5921 5922
static inline int preempt_count_equals(int preempt_offset)
{
5923
	int nested = preempt_count() + rcu_preempt_depth();
5924

A
Arnd Bergmann 已提交
5925
	return (nested == preempt_offset);
5926 5927
}

5928
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
5929
{
P
Peter Zijlstra 已提交
5930 5931 5932 5933 5934
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
5935
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
5936 5937 5938 5939
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
5940
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
5941

5942 5943 5944 5945 5946
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
5947
{
I
Ingo Molnar 已提交
5948 5949 5950
	/* Ratelimiting timestamp: */
	static unsigned long prev_jiffy;

5951
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
5952

I
Ingo Molnar 已提交
5953 5954 5955
	/* WARN_ON_ONCE() by default, no rate limit required: */
	rcu_sleep_check();

5956 5957
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
5958 5959
	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
	    oops_in_progress)
I
Ingo Molnar 已提交
5960
		return;
5961

I
Ingo Molnar 已提交
5962 5963 5964 5965
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

I
Ingo Molnar 已提交
5966
	/* Save this before calling printk(), since that will clobber it: */
5967 5968
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
5969 5970 5971 5972 5973 5974 5975
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
5976

5977 5978 5979
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
5980 5981 5982
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
5983 5984
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
5985
		pr_err("Preemption disabled at:");
5986
		print_ip_sym(preempt_disable_ip);
5987 5988
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
5989
	dump_stack();
5990
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
5991
}
5992
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
5993 5994 5995
#endif

#ifdef CONFIG_MAGIC_SYSRQ
5996
void normalize_rt_tasks(void)
5997
{
5998
	struct task_struct *g, *p;
5999 6000 6001
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
6002

6003
	read_lock(&tasklist_lock);
6004
	for_each_process_thread(g, p) {
6005 6006 6007
		/*
		 * Only normalize user tasks:
		 */
6008
		if (p->flags & PF_KTHREAD)
6009 6010
			continue;

6011 6012 6013 6014
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
6015

6016
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6017 6018 6019 6020
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
6021
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
6022
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6023
			continue;
I
Ingo Molnar 已提交
6024
		}
L
Linus Torvalds 已提交
6025

6026
		__sched_setscheduler(p, &attr, false, false);
6027
	}
6028
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6029 6030 6031
}

#endif /* CONFIG_MAGIC_SYSRQ */
6032

6033
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6034
/*
6035
 * These functions are only useful for the IA64 MCA handling, or kdb.
6036 6037 6038 6039 6040 6041 6042 6043 6044
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
I
Ingo Molnar 已提交
6045
 * curr_task - return the current task for a given CPU.
6046 6047 6048
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6049 6050
 *
 * Return: The current task for @cpu.
6051
 */
6052
struct task_struct *curr_task(int cpu)
6053 6054 6055 6056
{
	return cpu_curr(cpu);
}

6057 6058 6059
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6060
/**
I
Ingo Molnar 已提交
6061
 * set_curr_task - set the current task for a given CPU.
6062 6063 6064 6065
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6066
 * are serviced on a separate stack. It allows the architecture to switch the
I
Ingo Molnar 已提交
6067
 * notion of the current task on a CPU in a non-blocking manner. This function
6068 6069 6070 6071 6072 6073 6074
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6075
void ia64_set_curr_task(int cpu, struct task_struct *p)
6076 6077 6078 6079 6080
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6081

D
Dhaval Giani 已提交
6082
#ifdef CONFIG_CGROUP_SCHED
6083 6084 6085
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6086
static void sched_free_group(struct task_group *tg)
6087 6088 6089
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6090
	autogroup_free(tg);
6091
	kmem_cache_free(task_group_cache, tg);
6092 6093 6094
}

/* allocate runqueue etc for a new task group */
6095
struct task_group *sched_create_group(struct task_group *parent)
6096 6097 6098
{
	struct task_group *tg;

6099
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6100 6101 6102
	if (!tg)
		return ERR_PTR(-ENOMEM);

6103
	if (!alloc_fair_sched_group(tg, parent))
6104 6105
		goto err;

6106
	if (!alloc_rt_sched_group(tg, parent))
6107 6108
		goto err;

6109 6110 6111
	return tg;

err:
6112
	sched_free_group(tg);
6113 6114 6115 6116 6117 6118 6119
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6120
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6121
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6122

I
Ingo Molnar 已提交
6123 6124
	/* Root should already exist: */
	WARN_ON(!parent);
P
Peter Zijlstra 已提交
6125 6126 6127

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6128
	list_add_rcu(&tg->siblings, &parent->children);
6129
	spin_unlock_irqrestore(&task_group_lock, flags);
6130 6131

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
6132 6133
}

6134
/* rcu callback to free various structures associated with a task group */
6135
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6136
{
I
Ingo Molnar 已提交
6137
	/* Now it should be safe to free those cfs_rqs: */
6138
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6139 6140
}

6141
void sched_destroy_group(struct task_group *tg)
6142
{
I
Ingo Molnar 已提交
6143
	/* Wait for possible concurrent references to cfs_rqs complete: */
6144
	call_rcu(&tg->rcu, sched_free_group_rcu);
6145 6146 6147
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6148
{
6149
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
6150

I
Ingo Molnar 已提交
6151
	/* End participation in shares distribution: */
6152
	unregister_fair_sched_group(tg);
6153 6154

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6155
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6156
	list_del_rcu(&tg->siblings);
6157
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6158 6159
}

6160
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
6161
{
P
Peter Zijlstra 已提交
6162
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6163

6164 6165 6166 6167 6168 6169
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
6170 6171 6172 6173
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6174
#ifdef CONFIG_FAIR_GROUP_SCHED
6175 6176
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
6177
	else
P
Peter Zijlstra 已提交
6178
#endif
6179
		set_task_rq(tsk, task_cpu(tsk));
6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
6191 6192
	int queued, running, queue_flags =
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6193 6194 6195 6196
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);
6197
	update_rq_clock(rq);
6198 6199 6200 6201 6202

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
6203
		dequeue_task(rq, tsk, queue_flags);
6204
	if (running)
6205 6206 6207
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
6208

6209
	if (queued)
6210
		enqueue_task(rq, tsk, queue_flags);
6211
	if (running)
6212
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6213

6214
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
6215
}
6216

6217
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6218
{
6219
	return css ? container_of(css, struct task_group, css) : NULL;
6220 6221
}

6222 6223
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6224
{
6225 6226
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
6227

6228
	if (!parent) {
6229
		/* This is early initialization for the top cgroup */
6230
		return &root_task_group.css;
6231 6232
	}

6233
	tg = sched_create_group(parent);
6234 6235 6236 6237 6238 6239
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css->parent);

	if (parent)
		sched_online_group(tg, parent);
	return 0;
}

6251
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6252
{
6253
	struct task_group *tg = css_tg(css);
6254

6255
	sched_offline_group(tg);
6256 6257
}

6258
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6259
{
6260
	struct task_group *tg = css_tg(css);
6261

6262 6263 6264 6265
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
6266 6267
}

6268 6269 6270 6271
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
6272
static void cpu_cgroup_fork(struct task_struct *task)
6273
{
6274 6275 6276 6277 6278
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

6279
	update_rq_clock(rq);
6280 6281 6282
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
6283 6284
}

6285
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6286
{
6287
	struct task_struct *task;
6288
	struct cgroup_subsys_state *css;
6289
	int ret = 0;
6290

6291
	cgroup_taskset_for_each(task, css, tset) {
6292
#ifdef CONFIG_RT_GROUP_SCHED
6293
		if (!sched_rt_can_attach(css_tg(css), task))
6294
			return -EINVAL;
6295
#else
6296 6297 6298
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
6299
#endif
6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
6316
	}
6317
	return ret;
6318
}
6319

6320
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6321
{
6322
	struct task_struct *task;
6323
	struct cgroup_subsys_state *css;
6324

6325
	cgroup_taskset_for_each(task, css, tset)
6326
		sched_move_task(task);
6327 6328
}

6329
#ifdef CONFIG_FAIR_GROUP_SCHED
6330 6331
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
6332
{
6333
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6334 6335
}

6336 6337
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
6338
{
6339
	struct task_group *tg = css_tg(css);
6340

6341
	return (u64) scale_load_down(tg->shares);
6342
}
6343 6344

#ifdef CONFIG_CFS_BANDWIDTH
6345 6346
static DEFINE_MUTEX(cfs_constraints_mutex);

6347 6348 6349
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

6350 6351
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

6352 6353
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
6354
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6355
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

6376 6377 6378 6379 6380
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
6381 6382 6383 6384 6385
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

6386
	runtime_enabled = quota != RUNTIME_INF;
6387
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6388 6389 6390 6391 6392 6393
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
6394 6395 6396
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
6397

P
Paul Turner 已提交
6398
	__refill_cfs_bandwidth_runtime(cfs_b);
I
Ingo Molnar 已提交
6399 6400

	/* Restart the period timer (if active) to handle new period expiry: */
P
Peter Zijlstra 已提交
6401 6402
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
I
Ingo Molnar 已提交
6403

6404 6405
	raw_spin_unlock_irq(&cfs_b->lock);

6406
	for_each_online_cpu(i) {
6407
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6408
		struct rq *rq = cfs_rq->rq;
6409
		struct rq_flags rf;
6410

6411
		rq_lock_irq(rq, &rf);
6412
		cfs_rq->runtime_enabled = runtime_enabled;
6413
		cfs_rq->runtime_remaining = 0;
6414

6415
		if (cfs_rq->throttled)
6416
			unthrottle_cfs_rq(cfs_rq);
6417
		rq_unlock_irq(rq, &rf);
6418
	}
6419 6420
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
6421 6422
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
6423
	put_online_cpus();
6424

6425
	return ret;
6426 6427 6428 6429 6430 6431
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

6432
	period = ktime_to_ns(tg->cfs_bandwidth.period);
6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

6445
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6446 6447
		return -1;

6448
	quota_us = tg->cfs_bandwidth.quota;
6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
6459
	quota = tg->cfs_bandwidth.quota;
6460 6461 6462 6463 6464 6465 6466 6467

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

6468
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6469 6470 6471 6472 6473
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

6474 6475
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
6476
{
6477
	return tg_get_cfs_quota(css_tg(css));
6478 6479
}

6480 6481
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
6482
{
6483
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6484 6485
}

6486 6487
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6488
{
6489
	return tg_get_cfs_period(css_tg(css));
6490 6491
}

6492 6493
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
6494
{
6495
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6496 6497
}

6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
6530
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6531 6532 6533 6534 6535
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
6536
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6537 6538

		quota = normalize_cfs_quota(tg, d);
6539
		parent_quota = parent_b->hierarchical_quota;
6540 6541

		/*
I
Ingo Molnar 已提交
6542 6543
		 * Ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set:
6544 6545 6546 6547 6548 6549
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
6550
	cfs_b->hierarchical_quota = quota;
6551 6552 6553 6554 6555 6556

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
6557
	int ret;
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

6569 6570 6571 6572 6573
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6574
}
6575

6576
static int cpu_stats_show(struct seq_file *sf, void *v)
6577
{
6578
	struct task_group *tg = css_tg(seq_css(sf));
6579
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6580

6581 6582 6583
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6584 6585 6586

	return 0;
}
6587
#endif /* CONFIG_CFS_BANDWIDTH */
6588
#endif /* CONFIG_FAIR_GROUP_SCHED */
6589

6590
#ifdef CONFIG_RT_GROUP_SCHED
6591 6592
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
6593
{
6594
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
6595 6596
}

6597 6598
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
6599
{
6600
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
6601
}
6602

6603 6604
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
6605
{
6606
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6607 6608
}

6609 6610
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6611
{
6612
	return sched_group_rt_period(css_tg(css));
6613
}
6614
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
6615

6616
static struct cftype cpu_files[] = {
6617
#ifdef CONFIG_FAIR_GROUP_SCHED
6618 6619
	{
		.name = "shares",
6620 6621
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
6622
	},
6623
#endif
6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
6635 6636
	{
		.name = "stat",
6637
		.seq_show = cpu_stats_show,
6638
	},
6639
#endif
6640
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6641
	{
P
Peter Zijlstra 已提交
6642
		.name = "rt_runtime_us",
6643 6644
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
6645
	},
6646 6647
	{
		.name = "rt_period_us",
6648 6649
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
6650
	},
6651
#endif
I
Ingo Molnar 已提交
6652
	{ }	/* Terminate */
6653 6654
};

6655
struct cgroup_subsys cpu_cgrp_subsys = {
6656
	.css_alloc	= cpu_cgroup_css_alloc,
6657
	.css_online	= cpu_cgroup_css_online,
6658
	.css_released	= cpu_cgroup_css_released,
6659
	.css_free	= cpu_cgroup_css_free,
6660
	.fork		= cpu_cgroup_fork,
6661 6662
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
6663
	.legacy_cftypes	= cpu_files,
6664
	.early_init	= true,
6665 6666
};

6667
#endif	/* CONFIG_CGROUP_SCHED */
6668

6669 6670 6671 6672 6673
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};