cfq-iosched.c 98.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
16
#include "blk-cgroup.h"
L
Linus Torvalds 已提交
17 18 19 20

/*
 * tunables
 */
21
/* max queue in one round of service */
S
Shaohua Li 已提交
22
static const int cfq_quantum = 8;
23
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 25 26 27
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
28
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
29
static int cfq_slice_async = HZ / 25;
30
static const int cfq_slice_async_rq = 2;
31
static int cfq_slice_idle = HZ / 125;
32 33
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
34

35
/*
36
 * offset from end of service tree
37
 */
38
#define CFQ_IDLE_DELAY		(HZ / 5)
39 40 41 42 43 44

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

45
#define CFQ_SLICE_SCALE		(5)
46
#define CFQ_HW_QUEUE_MIN	(5)
47
#define CFQ_SERVICE_SHIFT       12
48

49
#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
50
#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
51
#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
52
#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
53

54 55
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
56
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
57

58 59
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
60

61
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
62
static struct completion *ioc_gone;
63
static DEFINE_SPINLOCK(ioc_gone_lock);
64

65 66 67 68
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

69
#define sample_valid(samples)	((samples) > 80)
70
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
71

72 73 74 75 76 77 78 79 80
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
81
	unsigned count;
82
	unsigned total_weight;
83
	u64 min_vdisktime;
84
	struct rb_node *active;
85
};
86 87
#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
			.count = 0, .min_vdisktime = 0, }
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

118 119
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
120
	unsigned int allocated_slice;
121
	unsigned int slice_dispatch;
122 123
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
124 125 126 127 128 129 130 131 132 133 134 135
	unsigned long slice_end;
	long slice_resid;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

136 137
	pid_t pid;

138
	u32 seek_history;
139 140
	sector_t last_request_pos;

141
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
142
	struct cfq_queue *new_cfqq;
143
	struct cfq_group *cfqg;
144
	struct cfq_group *orig_cfqg;
145 146
};

147
/*
148
 * First index in the service_trees.
149 150 151 152
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
153 154
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
155 156
};

157 158 159 160 161 162 163 164 165
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

166 167
/* This is per cgroup per device grouping structure */
struct cfq_group {
168 169 170 171 172
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
173
	unsigned int weight;
174 175 176 177 178
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

179 180
	/* Per group busy queus average. Useful for workload slice calc. */
	unsigned int busy_queues_avg[2];
181 182 183 184 185 186
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
187 188 189 190

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
191 192 193
	struct blkio_group blkg;
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	struct hlist_node cfqd_node;
194
	atomic_t ref;
195
#endif
196
};
197

198 199 200
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
201
struct cfq_data {
202
	struct request_queue *queue;
203 204
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
205
	struct cfq_group root_group;
206

207 208
	/*
	 * The priority currently being served
209
	 */
210
	enum wl_prio_t serving_prio;
211 212
	enum wl_type_t serving_type;
	unsigned long workload_expires;
213
	struct cfq_group *serving_group;
214
	bool noidle_tree_requires_idle;
215 216 217 218 219 220 221 222

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

223 224
	unsigned int busy_queues;

225 226
	int rq_in_driver;
	int rq_in_flight[2];
227 228 229 230 231

	/*
	 * queue-depth detection
	 */
	int rq_queued;
232
	int hw_tag;
233 234 235 236 237 238 239 240
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
241

242 243 244 245
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
246
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
247

248 249 250
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

251 252 253 254 255
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
256

J
Jens Axboe 已提交
257
	sector_t last_position;
L
Linus Torvalds 已提交
258 259 260 261 262

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
263
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
264 265
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
266 267 268
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
269
	unsigned int cfq_latency;
270
	unsigned int cfq_group_isolation;
271 272

	struct list_head cic_list;
L
Linus Torvalds 已提交
273

274 275 276 277
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
278

279
	unsigned long last_delayed_sync;
280 281 282

	/* List of cfq groups being managed on this device*/
	struct hlist_head cfqg_list;
283
	struct rcu_head rcu;
L
Linus Torvalds 已提交
284 285
};

286 287
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

288 289
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
290
					    enum wl_type_t type)
291
{
292 293 294
	if (!cfqg)
		return NULL;

295
	if (prio == IDLE_WORKLOAD)
296
		return &cfqg->service_tree_idle;
297

298
	return &cfqg->service_trees[prio][type];
299 300
}

J
Jens Axboe 已提交
301
enum cfqq_state_flags {
302 303
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
304
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
305 306 307 308
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
309
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
310
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
311
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
312
	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
313
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
314
	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
J
Jens Axboe 已提交
315 316 317 318 319
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
320
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
321 322 323
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
324
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
325 326 327
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
328
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
329 330 331 332
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
333
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
334 335 336 337
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
338
CFQ_CFQQ_FNS(slice_new);
339
CFQ_CFQQ_FNS(sync);
340
CFQ_CFQQ_FNS(coop);
341
CFQ_CFQQ_FNS(split_coop);
342
CFQ_CFQQ_FNS(deep);
343
CFQ_CFQQ_FNS(wait_busy);
J
Jens Axboe 已提交
344 345
#undef CFQ_CFQQ_FNS

V
Vivek Goyal 已提交
346 347 348 349 350 351 352 353 354 355 356
#ifdef CONFIG_DEBUG_CFQ_IOSCHED
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
			blkg_path(&(cfqq)->cfqg->blkg), ##args);

#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
				blkg_path(&(cfqg)->blkg), ##args);      \

#else
357 358
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
V
Vivek Goyal 已提交
359 360
#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
#endif
361 362 363
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

364 365 366 367 368 369 370 371 372 373 374
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


375 376 377 378 379 380 381 382 383
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

384 385 386 387 388 389 390 391 392 393

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

394 395 396
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
397 398
{
	if (wl == IDLE_WORKLOAD)
399
		return cfqg->service_tree_idle.count;
400

401 402 403
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
404 405
}

406 407 408 409 410 411 412
static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg)
{
	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
}

413
static void cfq_dispatch_insert(struct request_queue *, struct request *);
414
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
415
				       struct io_context *, gfp_t);
416
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
417 418 419
						struct io_context *);

static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
420
					    bool is_sync)
421
{
422
	return cic->cfqq[is_sync];
423 424 425
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
426
				struct cfq_queue *cfqq, bool is_sync)
427
{
428
	cic->cfqq[is_sync] = cfqq;
429 430 431 432 433 434
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
435
static inline bool cfq_bio_sync(struct bio *bio)
436
{
437
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
438
}
L
Linus Torvalds 已提交
439

A
Andrew Morton 已提交
440 441 442 443
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
444
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
445
{
446 447
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
448
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
449
	}
A
Andrew Morton 已提交
450 451
}

452
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
453 454 455
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

456
	return !cfqd->rq_queued;
A
Andrew Morton 已提交
457 458
}

459 460 461 462 463
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
464
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
465
				 unsigned short prio)
466
{
467
	const int base_slice = cfqd->cfq_slice[sync];
468

469 470 471 472
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
473

474 475 476 477
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
478 479
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

525 526 527 528 529 530
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

531 532
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
533
{
534 535 536
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
537
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
538

539 540 541
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
542
		cfq_hist_divisor;
543 544 545 546 547 548 549 550 551
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
552 553
}

554 555 556
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
557 558
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
559 560 561 562 563 564
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
565 566
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
567 568 569
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
570 571 572 573 574 575 576
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
577
			slice = max(slice * group_slice / expect_latency,
578 579 580
				    low_slice);
		}
	}
581
	cfqq->slice_start = jiffies;
582
	cfqq->slice_end = jiffies + slice;
583
	cfqq->allocated_slice = slice;
584
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
585 586 587 588 589 590 591
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
592
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
593 594 595 596 597 598 599 600 601
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
602
/*
J
Jens Axboe 已提交
603
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
604
 * We choose the request that is closest to the head right now. Distance
605
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
606
 */
J
Jens Axboe 已提交
607
static struct request *
608
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
609
{
610
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
611
	unsigned long back_max;
612 613 614
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
615

J
Jens Axboe 已提交
616 617 618 619
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
620

J
Jens Axboe 已提交
621 622 623 624
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
625 626 627 628
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
629

630 631
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
648
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
649 650 651 652 653 654

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
655
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
656 657

	/* Found required data */
658 659 660 661 662 663

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
664
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
665
		if (d1 < d2)
J
Jens Axboe 已提交
666
			return rq1;
667
		else if (d2 < d1)
J
Jens Axboe 已提交
668
			return rq2;
669 670
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
671
				return rq1;
672
			else
J
Jens Axboe 已提交
673
				return rq2;
674
		}
L
Linus Torvalds 已提交
675

676
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
677
		return rq1;
678
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
679 680
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
681 682 683 684 685 686 687 688
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
689
			return rq1;
L
Linus Torvalds 已提交
690
		else
J
Jens Axboe 已提交
691
			return rq2;
L
Linus Torvalds 已提交
692 693 694
	}
}

695 696 697
/*
 * The below is leftmost cache rbtree addon
 */
698
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
699
{
700 701 702 703
	/* Service tree is empty */
	if (!root->count)
		return NULL;

704 705 706
	if (!root->left)
		root->left = rb_first(&root->rb);

707 708 709 710
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
711 712
}

713 714 715 716 717 718 719 720 721 722 723
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

724 725 726 727 728 729
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

730 731 732 733
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
734
	rb_erase_init(n, &root->rb);
735
	--root->count;
736 737
}

L
Linus Torvalds 已提交
738 739 740
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
741 742 743
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
744
{
745 746
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
747
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
748

749
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
750 751

	if (rbprev)
J
Jens Axboe 已提交
752
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
753

754
	if (rbnext)
J
Jens Axboe 已提交
755
		next = rb_entry_rq(rbnext);
756 757 758
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
759
			next = rb_entry_rq(rbnext);
760
	}
L
Linus Torvalds 已提交
761

762
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
763 764
}

765 766
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
767
{
768 769 770
	/*
	 * just an approximation, should be ok.
	 */
771
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
772
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
773 774
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
834
	st->total_weight += cfqg->weight;
835 836 837 838 839 840 841
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

842 843 844
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

845 846
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
847

848 849 850 851
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

V
Vivek Goyal 已提交
852
	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
853
	cfqg->on_st = false;
854
	st->total_weight -= cfqg->weight;
855 856
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
857
	cfqg->saved_workload_slice = 0;
858
	blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
859 860 861 862
}

static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
{
863
	unsigned int slice_used;
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
880 881
		if (slice_used > cfqq->allocated_slice)
			slice_used = cfqq->allocated_slice;
882 883
	}

884
	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
885 886 887 888 889 890 891
	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
				struct cfq_queue *cfqq)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
892 893 894 895 896 897
	unsigned int used_sl, charge_sl;
	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
			- cfqg->service_tree_idle.count;

	BUG_ON(nr_sync < 0);
	used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
898

899 900
	if (!cfq_cfqq_sync(cfqq) && !nr_sync)
		charge_sl = cfqq->allocated_slice;
901 902 903

	/* Can't update vdisktime while group is on service tree */
	cfq_rb_erase(&cfqg->rb_node, st);
904
	cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
905 906 907 908 909 910 911 912 913 914
	__cfq_group_service_tree_add(st, cfqg);

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
V
Vivek Goyal 已提交
915 916 917

	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
					st->min_vdisktime);
918
	blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
919 920
}

921 922 923 924 925 926 927 928
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct cfq_group, blkg);
	return NULL;
}

929 930 931 932 933 934
void
cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
{
	cfqg_of_blkg(blkg)->weight = weight;
}

935 936 937 938 939 940 941 942
static struct cfq_group *
cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
	struct cfq_group *cfqg = NULL;
	void *key = cfqd;
	int i, j;
	struct cfq_rb_root *st;
943 944
	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
	unsigned int major, minor;
945 946 947 948 949 950 951 952 953 954 955 956 957

	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
	if (cfqg || !create)
		goto done;

	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
	if (!cfqg)
		goto done;

	cfqg->weight = blkcg->weight;
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
	RB_CLEAR_NODE(&cfqg->rb_node);
958
	blkio_group_init(&cfqg->blkg);
959

960 961 962 963 964 965 966 967
	/*
	 * Take the initial reference that will be released on destroy
	 * This can be thought of a joint reference by cgroup and
	 * elevator which will be dropped by either elevator exit
	 * or cgroup deletion path depending on who is exiting first.
	 */
	atomic_set(&cfqg->ref, 1);

968
	/* Add group onto cgroup list */
969 970 971
	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
					MKDEV(major, minor));
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

	/* Add group on cfqd list */
	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);

done:
	return cfqg;
}

/*
 * Search for the cfq group current task belongs to. If create = 1, then also
 * create the cfq group if it does not exist. request_queue lock must be held.
 */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	struct cgroup *cgroup;
	struct cfq_group *cfqg = NULL;

	rcu_read_lock();
	cgroup = task_cgroup(current, blkio_subsys_id);
	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
	if (!cfqg && create)
		cfqg = &cfqd->root_group;
	rcu_read_unlock();
	return cfqg;
}

static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	/* Currently, all async queues are mapped to root group */
	if (!cfq_cfqq_sync(cfqq))
		cfqg = &cfqq->cfqd->root_group;

	cfqq->cfqg = cfqg;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	/* cfqq reference on cfqg */
	atomic_inc(&cfqq->cfqg->ref);
}

static void cfq_put_cfqg(struct cfq_group *cfqg)
{
	struct cfq_rb_root *st;
	int i, j;

	BUG_ON(atomic_read(&cfqg->ref) <= 0);
	if (!atomic_dec_and_test(&cfqg->ref))
		return;
	for_each_cfqg_st(cfqg, i, j, st)
		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
	kfree(cfqg);
}

static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	/* Something wrong if we are trying to remove same group twice */
	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));

	hlist_del_init(&cfqg->cfqd_node);

	/*
	 * Put the reference taken at the time of creation so that when all
	 * queues are gone, group can be destroyed.
	 */
	cfq_put_cfqg(cfqg);
}

static void cfq_release_cfq_groups(struct cfq_data *cfqd)
{
	struct hlist_node *pos, *n;
	struct cfq_group *cfqg;

	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
		/*
		 * If cgroup removal path got to blk_group first and removed
		 * it from cgroup list, then it will take care of destroying
		 * cfqg also.
		 */
		if (!blkiocg_del_blkio_group(&cfqg->blkg))
			cfq_destroy_cfqg(cfqd, cfqg);
	}
1050
}
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

/*
 * Blk cgroup controller notification saying that blkio_group object is being
 * delinked as associated cgroup object is going away. That also means that
 * no new IO will come in this group. So get rid of this group as soon as
 * any pending IO in the group is finished.
 *
 * This function is called under rcu_read_lock(). key is the rcu protected
 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
 * read lock.
 *
 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
 * it should not be NULL as even if elevator was exiting, cgroup deltion
 * path got to it first.
 */
void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
{
	unsigned long  flags;
	struct cfq_data *cfqd = key;

	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
#else /* GROUP_IOSCHED */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}
static inline void
cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
	cfqq->cfqg = cfqg;
}

1086 1087 1088
static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}

1089 1090
#endif /* GROUP_IOSCHED */

1091
/*
1092
 * The cfqd->service_trees holds all pending cfq_queue's that have
1093 1094 1095
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
1096
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1097
				 bool add_front)
1098
{
1099 1100
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
1101
	unsigned long rb_key;
1102
	struct cfq_rb_root *service_tree;
1103
	int left;
1104
	int new_cfqq = 1;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	int group_changed = 0;

#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (!cfqd->cfq_group_isolation
	    && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
	    && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
		/* Move this cfq to root group */
		cfq_log_cfqq(cfqd, cfqq, "moving to root group");
		if (!RB_EMPTY_NODE(&cfqq->rb_node))
			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
		cfqq->orig_cfqg = cfqq->cfqg;
		cfqq->cfqg = &cfqd->root_group;
		atomic_inc(&cfqd->root_group.ref);
		group_changed = 1;
	} else if (!cfqd->cfq_group_isolation
		   && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
		/* cfqq is sequential now needs to go to its original group */
		BUG_ON(cfqq->cfqg != &cfqd->root_group);
		if (!RB_EMPTY_NODE(&cfqq->rb_node))
			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
		cfq_put_cfqg(cfqq->cfqg);
		cfqq->cfqg = cfqq->orig_cfqg;
		cfqq->orig_cfqg = NULL;
		group_changed = 1;
		cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
	}
#endif
1132

1133
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1134
						cfqq_type(cfqq));
1135 1136
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
1137
		parent = rb_last(&service_tree->rb);
1138 1139 1140 1141 1142 1143
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
1144 1145 1146 1147 1148 1149
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
1150
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1151
		rb_key -= cfqq->slice_resid;
1152
		cfqq->slice_resid = 0;
1153 1154
	} else {
		rb_key = -HZ;
1155
		__cfqq = cfq_rb_first(service_tree);
1156 1157
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
1158

1159
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1160
		new_cfqq = 0;
1161
		/*
1162
		 * same position, nothing more to do
1163
		 */
1164 1165
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
1166
			return;
L
Linus Torvalds 已提交
1167

1168 1169
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
1170
	}
1171

1172
	left = 1;
1173
	parent = NULL;
1174 1175
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
1176
	while (*p) {
1177
		struct rb_node **n;
1178

1179 1180 1181
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

1182
		/*
1183
		 * sort by key, that represents service time.
1184
		 */
1185
		if (time_before(rb_key, __cfqq->rb_key))
1186
			n = &(*p)->rb_left;
1187
		else {
1188
			n = &(*p)->rb_right;
1189
			left = 0;
1190
		}
1191 1192

		p = n;
1193 1194
	}

1195
	if (left)
1196
		service_tree->left = &cfqq->rb_node;
1197

1198 1199
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
1200 1201
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
1202
	if ((add_front || !new_cfqq) && !group_changed)
1203
		return;
1204
	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1205 1206
}

1207
static struct cfq_queue *
1208 1209 1210
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
1227
		if (sector > blk_rq_pos(cfqq->next_rq))
1228
			n = &(*p)->rb_right;
1229
		else if (sector < blk_rq_pos(cfqq->next_rq))
1230 1231 1232 1233
			n = &(*p)->rb_left;
		else
			break;
		p = n;
1234
		cfqq = NULL;
1235 1236 1237 1238 1239
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
1240
	return cfqq;
1241 1242 1243 1244 1245 1246 1247
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

1248 1249 1250 1251
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1252 1253 1254 1255 1256 1257

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

1258
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1259 1260
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1261 1262
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
1263 1264 1265
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
1266 1267
}

1268 1269 1270
/*
 * Update cfqq's position in the service tree.
 */
1271
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1272 1273 1274 1275
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
1276
	if (cfq_cfqq_on_rr(cfqq)) {
1277
		cfq_service_tree_add(cfqd, cfqq, 0);
1278 1279
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
1280 1281
}

L
Linus Torvalds 已提交
1282 1283
/*
 * add to busy list of queues for service, trying to be fair in ordering
1284
 * the pending list according to last request service
L
Linus Torvalds 已提交
1285
 */
J
Jens Axboe 已提交
1286
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1287
{
1288
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
1289 1290
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1291 1292
	cfqd->busy_queues++;

1293
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
1294 1295
}

1296 1297 1298 1299
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
1300
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1301
{
1302
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
1303 1304
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1305

1306 1307 1308 1309
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
1310 1311 1312 1313
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1314

1315
	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1316 1317 1318 1319 1320 1321 1322
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
1323
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1324
{
J
Jens Axboe 已提交
1325 1326
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
1327

1328 1329
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
1330

J
Jens Axboe 已提交
1331
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
		/*
		 * Queue will be deleted from service tree when we actually
		 * expire it later. Right now just remove it from prio tree
		 * as it is empty.
		 */
		if (cfqq->p_root) {
			rb_erase(&cfqq->p_node, cfqq->p_root);
			cfqq->p_root = NULL;
		}
	}
L
Linus Torvalds 已提交
1344 1345
}

J
Jens Axboe 已提交
1346
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1347
{
J
Jens Axboe 已提交
1348
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
1349
	struct cfq_data *cfqd = cfqq->cfqd;
1350
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
1351

1352
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
1353 1354 1355 1356 1357

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
1358
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
1359
		cfq_dispatch_insert(cfqd->queue, __alias);
1360 1361 1362

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
1363 1364 1365 1366

	/*
	 * check if this request is a better next-serve candidate
	 */
1367
	prev = cfqq->next_rq;
1368
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1369 1370 1371 1372 1373 1374 1375

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

1376
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
1377 1378
}

J
Jens Axboe 已提交
1379
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
1380
{
1381 1382
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
1383
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
1384 1385
}

1386 1387
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
1388
{
1389
	struct task_struct *tsk = current;
1390
	struct cfq_io_context *cic;
1391
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
1392

1393
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1394 1395 1396 1397
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1398 1399 1400
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

1401
		return elv_rb_find(&cfqq->sort_list, sector);
1402
	}
L
Linus Torvalds 已提交
1403 1404 1405 1406

	return NULL;
}

1407
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1408
{
1409
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1410

1411
	cfqd->rq_in_driver++;
1412
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1413
						cfqd->rq_in_driver);
1414

1415
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1416 1417
}

1418
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1419
{
1420 1421
	struct cfq_data *cfqd = q->elevator->elevator_data;

1422 1423
	WARN_ON(!cfqd->rq_in_driver);
	cfqd->rq_in_driver--;
1424
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1425
						cfqd->rq_in_driver);
L
Linus Torvalds 已提交
1426 1427
}

1428
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
1429
{
J
Jens Axboe 已提交
1430
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1431

J
Jens Axboe 已提交
1432 1433
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
1434

1435
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1436
	cfq_del_rq_rb(rq);
1437

1438
	cfqq->cfqd->rq_queued--;
1439 1440 1441 1442
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
1443 1444
}

1445 1446
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
1447 1448 1449 1450
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

1451
	__rq = cfq_find_rq_fmerge(cfqd, bio);
1452
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1453 1454
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
1455 1456 1457 1458 1459
	}

	return ELEVATOR_NO_MERGE;
}

1460
static void cfq_merged_request(struct request_queue *q, struct request *req,
1461
			       int type)
L
Linus Torvalds 已提交
1462
{
1463
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
1464
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
1465

J
Jens Axboe 已提交
1466
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
1467 1468 1469 1470
	}
}

static void
1471
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
1472 1473
		    struct request *next)
{
1474
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1475 1476 1477 1478
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1479
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1480
		list_move(&rq->queuelist, &next->queuelist);
1481 1482
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
1483

1484 1485
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
1486
	cfq_remove_request(next);
1487 1488
}

1489
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1490 1491 1492
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1493
	struct cfq_io_context *cic;
1494 1495 1496
	struct cfq_queue *cfqq;

	/*
1497
	 * Disallow merge of a sync bio into an async request.
1498
	 */
1499
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1500
		return false;
1501 1502

	/*
1503 1504
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
1505
	 */
1506
	cic = cfq_cic_lookup(cfqd, current->io_context);
1507
	if (!cic)
1508
		return false;
1509

1510
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1511
	return cfqq == RQ_CFQQ(rq);
1512 1513
}

J
Jens Axboe 已提交
1514 1515
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1516 1517
{
	if (cfqq) {
1518 1519
		cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
				cfqd->serving_prio, cfqd->serving_type);
1520 1521
		cfqq->slice_start = 0;
		cfqq->dispatch_start = jiffies;
1522
		cfqq->allocated_slice = 0;
1523
		cfqq->slice_end = 0;
1524 1525 1526
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1527
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1528 1529
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1530
		cfq_mark_cfqq_slice_new(cfqq);
1531 1532

		del_timer(&cfqd->idle_slice_timer);
1533 1534 1535 1536 1537
	}

	cfqd->active_queue = cfqq;
}

1538 1539 1540 1541 1542
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1543
		    bool timed_out)
1544
{
1545 1546
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1547 1548 1549 1550
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);
1551
	cfq_clear_cfqq_wait_busy(cfqq);
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561
	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
		cfq_mark_cfqq_split_coop(cfqq);

1562
	/*
1563
	 * store what was left of this slice, if the queue idled/timed out
1564
	 */
1565
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1566
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1567 1568
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1569

1570 1571
	cfq_group_served(cfqd, cfqq->cfqg, cfqq);

1572 1573 1574
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
		cfq_del_cfqq_rr(cfqd, cfqq);

1575
	cfq_resort_rr_list(cfqd, cfqq);
1576 1577 1578 1579

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

1580 1581 1582
	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
		cfqd->grp_service_tree.active = NULL;

1583 1584 1585 1586 1587 1588
	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1589
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1590 1591 1592 1593
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1594
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1595 1596
}

1597 1598 1599 1600
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1601
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1602
{
1603
	struct cfq_rb_root *service_tree =
1604
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1605
					cfqd->serving_type);
1606

1607 1608 1609
	if (!cfqd->rq_queued)
		return NULL;

1610 1611 1612
	/* There is nothing to dispatch */
	if (!service_tree)
		return NULL;
1613 1614 1615
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1616 1617
}

1618 1619
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
1620
	struct cfq_group *cfqg;
1621 1622 1623 1624 1625 1626 1627
	struct cfq_queue *cfqq;
	int i, j;
	struct cfq_rb_root *st;

	if (!cfqd->rq_queued)
		return NULL;

1628 1629 1630 1631
	cfqg = cfq_get_next_cfqg(cfqd);
	if (!cfqg)
		return NULL;

1632 1633 1634 1635 1636 1637
	for_each_cfqg_st(cfqg, i, j, st)
		if ((cfqq = cfq_rb_first(st)) != NULL)
			return cfqq;
	return NULL;
}

1638 1639 1640
/*
 * Get and set a new active queue for service.
 */
1641 1642
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1643
{
1644
	if (!cfqq)
1645
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1646

1647
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1648
	return cfqq;
1649 1650
}

1651 1652 1653
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1654 1655
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1656
	else
1657
		return cfqd->last_position - blk_rq_pos(rq);
1658 1659
}

1660
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1661
			       struct request *rq)
J
Jens Axboe 已提交
1662
{
1663
	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
J
Jens Axboe 已提交
1664 1665
}

1666 1667 1668
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1669
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1681
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1682 1683 1684 1685 1686 1687 1688 1689
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1690
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1691 1692
		return __cfqq;

1693
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1694 1695 1696 1697 1698 1699 1700
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1701
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1718
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1719
{
1720 1721
	struct cfq_queue *cfqq;

1722 1723
	if (cfq_class_idle(cur_cfqq))
		return NULL;
1724 1725 1726 1727 1728
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

1729 1730 1731 1732 1733 1734
	/*
	 * Don't search priority tree if it's the only queue in the group.
	 */
	if (cur_cfqq->cfqg->nr_cfqq == 1)
		return NULL;

J
Jens Axboe 已提交
1735
	/*
1736 1737 1738
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1739
	 */
1740 1741 1742 1743
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

1744 1745 1746 1747
	/* If new queue belongs to different cfq_group, don't choose it */
	if (cur_cfqq->cfqg != cfqq->cfqg)
		return NULL;

J
Jeff Moyer 已提交
1748 1749 1750 1751 1752
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1753 1754
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1755

1756 1757 1758 1759 1760 1761
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1762
	return cfqq;
J
Jens Axboe 已提交
1763 1764
}

1765 1766 1767 1768 1769 1770 1771
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1772
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1773

1774 1775 1776
	BUG_ON(!service_tree);
	BUG_ON(!service_tree->count);

1777 1778 1779 1780 1781
	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
1782 1783
	if (cfq_cfqq_idle_window(cfqq) &&
	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1784 1785 1786 1787 1788 1789
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1790 1791 1792 1793 1794
	if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
		return 1;
	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
			service_tree->count);
	return 0;
1795 1796
}

J
Jens Axboe 已提交
1797
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1798
{
1799
	struct cfq_queue *cfqq = cfqd->active_queue;
1800
	struct cfq_io_context *cic;
1801 1802
	unsigned long sl;

1803
	/*
J
Jens Axboe 已提交
1804 1805 1806
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1807
	 */
J
Jens Axboe 已提交
1808
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1809 1810
		return;

1811
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1812
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1813 1814 1815 1816

	/*
	 * idle is disabled, either manually or by past process history
	 */
1817
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1818 1819
		return;

1820
	/*
1821
	 * still active requests from this queue, don't idle
1822
	 */
1823
	if (cfqq->dispatched)
1824 1825
		return;

1826 1827 1828
	/*
	 * task has exited, don't wait
	 */
1829
	cic = cfqd->active_cic;
1830
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1831 1832
		return;

1833 1834 1835 1836 1837 1838
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
1839 1840 1841
	    (cfqq->slice_end - jiffies < cic->ttime_mean)) {
		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
				cic->ttime_mean);
1842
		return;
1843
	}
1844

J
Jens Axboe 已提交
1845
	cfq_mark_cfqq_wait_request(cfqq);
1846

J
Jens Axboe 已提交
1847
	sl = cfqd->cfq_slice_idle;
1848

1849
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1850
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1851 1852
}

1853 1854 1855
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1856
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1857
{
1858
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1859
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1860

1861 1862
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1863
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1864
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1865
	cfqq->dispatched++;
1866
	elv_dispatch_sort(q, rq);
1867

1868
	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1869 1870
	blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
					rq_data_dir(rq), rq_is_sync(rq));
L
Linus Torvalds 已提交
1871 1872 1873 1874 1875
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1876
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1877
{
1878
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1879

J
Jens Axboe 已提交
1880
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1881
		return NULL;
1882 1883 1884

	cfq_mark_cfqq_fifo_expire(cfqq);

1885 1886
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1887

1888
	rq = rq_entry_fifo(cfqq->fifo.next);
1889
	if (time_before(jiffies, rq_fifo_time(rq)))
1890
		rq = NULL;
L
Linus Torvalds 已提交
1891

1892
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1893
	return rq;
L
Linus Torvalds 已提交
1894 1895
}

1896 1897 1898 1899
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1900

1901
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1902

1903
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1904 1905
}

J
Jeff Moyer 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1921
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1950 1951
}

1952
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1953
				struct cfq_group *cfqg, enum wl_prio_t prio)
1954 1955 1956 1957 1958 1959 1960
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

1961 1962 1963
	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
		/* select the one with lowest rb_key */
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

1975
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1976 1977 1978
{
	unsigned slice;
	unsigned count;
1979
	struct cfq_rb_root *st;
1980
	unsigned group_slice;
1981

1982 1983 1984 1985 1986 1987
	if (!cfqg) {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

1988
	/* Choose next priority. RT > BE > IDLE */
1989
	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1990
		cfqd->serving_prio = RT_WORKLOAD;
1991
	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
2004
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2005
	count = st->count;
2006 2007

	/*
2008
	 * check workload expiration, and that we still have other queues ready
2009
	 */
2010
	if (count && !time_after(jiffies, cfqd->workload_expires))
2011 2012 2013 2014
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
2015 2016
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2017
	count = st->count;
2018 2019 2020 2021 2022 2023

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
2024 2025 2026 2027 2028
	group_slice = cfq_group_slice(cfqd, cfqg);

	slice = group_slice * count /
		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2029

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	if (cfqd->serving_type == ASYNC_WORKLOAD) {
		unsigned int tmp;

		/*
		 * Async queues are currently system wide. Just taking
		 * proportion of queues with-in same group will lead to higher
		 * async ratio system wide as generally root group is going
		 * to have higher weight. A more accurate thing would be to
		 * calculate system wide asnc/sync ratio.
		 */
		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
		tmp = tmp/cfqd->busy_queues;
		slice = min_t(unsigned, slice, tmp);

2044 2045 2046
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2047
	} else
2048 2049 2050 2051
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2052
	cfq_log(cfqd, "workload slice:%d", slice);
2053
	cfqd->workload_expires = jiffies + slice;
2054
	cfqd->noidle_tree_requires_idle = false;
2055 2056
}

2057 2058 2059
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2060
	struct cfq_group *cfqg;
2061 2062 2063

	if (RB_EMPTY_ROOT(&st->rb))
		return NULL;
2064 2065 2066 2067
	cfqg = cfq_rb_first_group(st);
	st->active = &cfqg->rb_node;
	update_min_vdisktime(st);
	return cfqg;
2068 2069
}

2070 2071
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
2072 2073 2074
	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);

	cfqd->serving_group = cfqg;
2075 2076 2077 2078 2079 2080

	/* Restore the workload type data */
	if (cfqg->saved_workload_slice) {
		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
		cfqd->serving_type = cfqg->saved_workload;
		cfqd->serving_prio = cfqg->saved_serving_prio;
2081 2082 2083
	} else
		cfqd->workload_expires = jiffies - 1;

2084
	choose_service_tree(cfqd, cfqg);
2085 2086
}

2087
/*
2088 2089
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
2090
 */
2091
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
2092
{
2093
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
2094

2095 2096 2097
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
2098

2099 2100
	if (!cfqd->rq_queued)
		return NULL;
2101 2102 2103 2104 2105 2106 2107

	/*
	 * We were waiting for group to get backlogged. Expire the queue
	 */
	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
		goto expire;

2108
	/*
J
Jens Axboe 已提交
2109
	 * The active queue has run out of time, expire it and select new.
2110
	 */
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
		/*
		 * If slice had not expired at the completion of last request
		 * we might not have turned on wait_busy flag. Don't expire
		 * the queue yet. Allow the group to get backlogged.
		 *
		 * The very fact that we have used the slice, that means we
		 * have been idling all along on this queue and it should be
		 * ok to wait for this request to complete.
		 */
2121 2122 2123
		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
			cfqq = NULL;
2124
			goto keep_queue;
2125
		} else
2126 2127
			goto expire;
	}
L
Linus Torvalds 已提交
2128

2129
	/*
J
Jens Axboe 已提交
2130 2131
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
2132
	 */
2133
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2134
		goto keep_queue;
J
Jens Axboe 已提交
2135

2136 2137 2138 2139
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
2140
	 * tree.  If possible, merge the expiring queue with the new cfqq.
2141
	 */
2142
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
2143 2144 2145
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
2146
		goto expire;
J
Jeff Moyer 已提交
2147
	}
2148

J
Jens Axboe 已提交
2149 2150 2151 2152 2153
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
2154
	if (timer_pending(&cfqd->idle_slice_timer) ||
2155
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2156 2157
		cfqq = NULL;
		goto keep_queue;
2158 2159
	}

J
Jens Axboe 已提交
2160
expire:
2161
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
2162
new_queue:
2163 2164 2165 2166 2167
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
2168
		cfq_choose_cfqg(cfqd);
2169

2170
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2171
keep_queue:
J
Jens Axboe 已提交
2172
	return cfqq;
2173 2174
}

J
Jens Axboe 已提交
2175
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2176 2177 2178 2179 2180 2181 2182 2183 2184
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
2185 2186 2187

	/* By default cfqq is not expired if it is empty. Do it explicitly */
	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2188 2189 2190
	return dispatched;
}

2191 2192 2193 2194
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
2195
static int cfq_forced_dispatch(struct cfq_data *cfqd)
2196
{
2197
	struct cfq_queue *cfqq;
2198
	int dispatched = 0;
2199

2200 2201
	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2202

2203
	cfq_slice_expired(cfqd, 0);
2204 2205
	BUG_ON(cfqd->busy_queues);

2206
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2207 2208 2209
	return dispatched;
}

S
Shaohua Li 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
	struct cfq_queue *cfqq)
{
	/* the queue hasn't finished any request, can't estimate */
	if (cfq_cfqq_slice_new(cfqq))
		return 1;
	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
		cfqq->slice_end))
		return 1;

	return 0;
}

2223
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2224 2225
{
	unsigned int max_dispatch;
2226

2227 2228 2229
	/*
	 * Drain async requests before we start sync IO
	 */
2230
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2231
		return false;
2232

2233 2234 2235
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
2236
	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2237
		return false;
2238

S
Shaohua Li 已提交
2239
	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2240 2241
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
2242

2243 2244 2245 2246 2247 2248 2249
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
2250
		if (cfq_class_idle(cfqq))
2251
			return false;
2252

2253 2254 2255
		/*
		 * We have other queues, don't allow more IO from this one
		 */
S
Shaohua Li 已提交
2256
		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2257
			return false;
2258

2259
		/*
2260
		 * Sole queue user, no limit
2261
		 */
S
Shaohua Li 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
		if (cfqd->busy_queues == 1)
			max_dispatch = -1;
		else
			/*
			 * Normally we start throttling cfqq when cfq_quantum/2
			 * requests have been dispatched. But we can drive
			 * deeper queue depths at the beginning of slice
			 * subjected to upper limit of cfq_quantum.
			 * */
			max_dispatch = cfqd->cfq_quantum;
2272 2273 2274 2275 2276 2277 2278
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
2279
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2280
		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2281
		unsigned int depth;
2282

2283
		depth = last_sync / cfqd->cfq_slice[1];
2284 2285
		if (!depth && !cfqq->dispatched)
			depth = 1;
2286 2287
		if (depth < max_dispatch)
			max_dispatch = depth;
2288
	}
2289

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
2348 2349
		return 0;

2350
	/*
2351
	 * Dispatch a request from this cfqq, if it is allowed
2352
	 */
2353 2354 2355
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

2356
	cfqq->slice_dispatch++;
2357
	cfq_clear_cfqq_must_dispatch(cfqq);
2358

2359 2360 2361 2362 2363 2364 2365 2366 2367
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
2368 2369
	}

2370
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2371
	return 1;
L
Linus Torvalds 已提交
2372 2373 2374
}

/*
J
Jens Axboe 已提交
2375 2376
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
2377
 *
2378
 * Each cfq queue took a reference on the parent group. Drop it now.
L
Linus Torvalds 已提交
2379 2380 2381 2382
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
2383
	struct cfq_data *cfqd = cfqq->cfqd;
2384
	struct cfq_group *cfqg, *orig_cfqg;
2385 2386

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
2387 2388 2389 2390

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

2391
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
2392
	BUG_ON(rb_first(&cfqq->sort_list));
2393
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2394
	cfqg = cfqq->cfqg;
2395
	orig_cfqg = cfqq->orig_cfqg;
L
Linus Torvalds 已提交
2396

2397
	if (unlikely(cfqd->active_queue == cfqq)) {
2398
		__cfq_slice_expired(cfqd, cfqq, 0);
2399
		cfq_schedule_dispatch(cfqd);
2400
	}
2401

2402
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
2403
	kmem_cache_free(cfq_pool, cfqq);
2404
	cfq_put_cfqg(cfqg);
2405 2406
	if (orig_cfqg)
		cfq_put_cfqg(orig_cfqg);
L
Linus Torvalds 已提交
2407 2408
}

2409 2410 2411
/*
 * Must always be called with the rcu_read_lock() held
 */
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

2423
/*
2424
 * Call func for each cic attached to this ioc.
2425
 */
2426
static void
2427 2428
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
2429
{
2430
	rcu_read_lock();
2431
	__call_for_each_cic(ioc, func);
2432
	rcu_read_unlock();
2433 2434 2435 2436 2437 2438 2439 2440 2441
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
2442
	elv_ioc_count_dec(cfq_ioc_count);
2443

2444 2445 2446 2447 2448 2449 2450
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
2451
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2452 2453 2454 2455 2456
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
2457
}
2458

2459 2460 2461
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2472
	hlist_del_rcu(&cic->cic_list);
2473 2474
	spin_unlock_irqrestore(&ioc->lock, flags);

2475
	cfq_cic_free(cic);
2476 2477
}

2478 2479 2480 2481 2482
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
2483 2484 2485
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
2486 2487 2488 2489
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
2490
	 */
2491
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
2492 2493
}

2494
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2495
{
J
Jeff Moyer 已提交
2496 2497
	struct cfq_queue *__cfqq, *next;

2498
	if (unlikely(cfqq == cfqd->active_queue)) {
2499
		__cfq_slice_expired(cfqd, cfqq, 0);
2500
		cfq_schedule_dispatch(cfqd);
2501
	}
2502

J
Jeff Moyer 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

2519 2520
	cfq_put_queue(cfqq);
}
2521

2522 2523 2524
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
2525 2526
	struct io_context *ioc = cic->ioc;

2527
	list_del_init(&cic->queue_list);
2528 2529 2530 2531

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
2532
	smp_wmb();
2533
	cic->dead_key = (unsigned long) cic->key;
2534 2535
	cic->key = NULL;

2536 2537 2538
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

2539 2540 2541
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
2542 2543
	}

2544 2545 2546
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
2547
	}
2548 2549
}

2550 2551
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
2552 2553 2554 2555
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
2556
		struct request_queue *q = cfqd->queue;
2557
		unsigned long flags;
2558

2559
		spin_lock_irqsave(q->queue_lock, flags);
2560 2561 2562 2563 2564 2565 2566 2567 2568

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

2569
		spin_unlock_irqrestore(q->queue_lock, flags);
2570
	}
L
Linus Torvalds 已提交
2571 2572
}

2573 2574 2575 2576
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
2577
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
2578
{
2579
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
2580 2581
}

2582
static struct cfq_io_context *
A
Al Viro 已提交
2583
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2584
{
2585
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
2586

2587 2588
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
2589
	if (cic) {
2590
		cic->last_end_request = jiffies;
2591
		INIT_LIST_HEAD(&cic->queue_list);
2592
		INIT_HLIST_NODE(&cic->cic_list);
2593 2594
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
2595
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
2596 2597 2598 2599 2600
	}

	return cic;
}

2601
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2602 2603 2604 2605
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
2606
	if (!cfq_cfqq_prio_changed(cfqq))
2607 2608
		return;

2609
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2610
	switch (ioprio_class) {
2611 2612 2613 2614
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
2615
		 * no prio set, inherit CPU scheduling settings
2616 2617
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
2618
		cfqq->ioprio_class = task_nice_ioclass(tsk);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
2633 2634 2635 2636 2637 2638 2639 2640
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
2641
	cfq_clear_cfqq_prio_changed(cfqq);
2642 2643
}

J
Jens Axboe 已提交
2644
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2645
{
2646 2647
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
2648
	unsigned long flags;
2649

2650 2651 2652
	if (unlikely(!cfqd))
		return;

2653
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2654

2655
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2656 2657
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2658 2659
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2660
		if (new_cfqq) {
2661
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2662 2663
			cfq_put_queue(cfqq);
		}
2664
	}
2665

2666
	cfqq = cic->cfqq[BLK_RW_SYNC];
2667 2668 2669
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2670
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2671 2672
}

2673
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2674
{
2675
	call_for_each_cic(ioc, changed_ioprio);
2676
	ioc->ioprio_changed = 0;
2677 2678
}

2679
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2680
			  pid_t pid, bool is_sync)
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
{
	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
	struct cfq_data *cfqd = cic->key;
	unsigned long flags;
	struct request_queue *q;

	if (unlikely(!cfqd))
		return;

	q = cfqd->queue;

	spin_lock_irqsave(q->queue_lock, flags);

	if (sync_cfqq) {
		/*
		 * Drop reference to sync queue. A new sync queue will be
		 * assigned in new group upon arrival of a fresh request.
		 */
		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
		cic_set_cfqq(cic, NULL, 1);
		cfq_put_queue(sync_cfqq);
	}

	spin_unlock_irqrestore(q->queue_lock, flags);
}

static void cfq_ioc_set_cgroup(struct io_context *ioc)
{
	call_for_each_cic(ioc, changed_cgroup);
	ioc->cgroup_changed = 0;
}
#endif  /* CONFIG_CFQ_GROUP_IOSCHED */

2734
static struct cfq_queue *
2735
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2736
		     struct io_context *ioc, gfp_t gfp_mask)
2737 2738
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2739
	struct cfq_io_context *cic;
2740
	struct cfq_group *cfqg;
2741 2742

retry:
2743
	cfqg = cfq_get_cfqg(cfqd, 1);
2744
	cic = cfq_cic_lookup(cfqd, ioc);
2745 2746
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2747

2748 2749 2750 2751 2752 2753
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2754 2755 2756 2757 2758
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2759
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2760
					gfp_mask | __GFP_ZERO,
2761
					cfqd->queue->node);
2762
			spin_lock_irq(cfqd->queue->queue_lock);
2763 2764
			if (new_cfqq)
				goto retry;
2765
		} else {
2766 2767 2768
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2769 2770
		}

2771 2772 2773
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
2774
			cfq_link_cfqq_cfqg(cfqq, cfqg);
2775 2776 2777
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2778 2779 2780 2781 2782 2783 2784 2785
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2786 2787 2788
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2789
	switch (ioprio_class) {
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2801
static struct cfq_queue *
2802
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2803 2804
	      gfp_t gfp_mask)
{
2805 2806
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2807
	struct cfq_queue **async_cfqq = NULL;
2808 2809
	struct cfq_queue *cfqq = NULL;

2810 2811 2812 2813 2814
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2815
	if (!cfqq)
2816
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2817 2818 2819 2820

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2821
	if (!is_sync && !(*async_cfqq)) {
2822
		atomic_inc(&cfqq->ref);
2823
		*async_cfqq = cfqq;
2824 2825 2826 2827 2828 2829
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2830 2831 2832
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2833
static void
2834 2835
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2836
{
2837 2838
	unsigned long flags;

2839
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2840

2841 2842
	spin_lock_irqsave(&ioc->lock, flags);

2843
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2844

2845
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2846
	hlist_del_rcu(&cic->cic_list);
2847 2848 2849
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2850 2851
}

2852
static struct cfq_io_context *
2853
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2854 2855
{
	struct cfq_io_context *cic;
2856
	unsigned long flags;
2857
	void *k;
2858

2859 2860 2861
	if (unlikely(!ioc))
		return NULL;

2862 2863
	rcu_read_lock();

J
Jens Axboe 已提交
2864 2865 2866
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2867
	cic = rcu_dereference(ioc->ioc_data);
2868 2869
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2870
		return cic;
2871
	}
J
Jens Axboe 已提交
2872

2873 2874 2875 2876 2877
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2878 2879 2880
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2881
			cfq_drop_dead_cic(cfqd, ioc, cic);
2882
			rcu_read_lock();
2883
			continue;
2884
		}
2885

2886
		spin_lock_irqsave(&ioc->lock, flags);
2887
		rcu_assign_pointer(ioc->ioc_data, cic);
2888
		spin_unlock_irqrestore(&ioc->lock, flags);
2889 2890
		break;
	} while (1);
2891

2892
	return cic;
2893 2894
}

2895 2896 2897 2898 2899
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2900 2901
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2902
{
2903
	unsigned long flags;
2904
	int ret;
2905

2906 2907 2908 2909
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2910

2911 2912 2913
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2914 2915
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2916
		spin_unlock_irqrestore(&ioc->lock, flags);
2917

2918 2919 2920 2921 2922 2923 2924
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2925 2926
	}

2927 2928
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2929

2930
	return ret;
2931 2932
}

L
Linus Torvalds 已提交
2933 2934 2935
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2936
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2937 2938
 */
static struct cfq_io_context *
2939
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2940
{
2941
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2942 2943
	struct cfq_io_context *cic;

2944
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2945

2946
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2947 2948 2949
	if (!ioc)
		return NULL;

2950
	cic = cfq_cic_lookup(cfqd, ioc);
2951 2952
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2953

2954 2955 2956
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2957

2958 2959 2960
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2961
out:
2962 2963 2964 2965
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

2966 2967 2968 2969
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (unlikely(ioc->cgroup_changed))
		cfq_ioc_set_cgroup(ioc);
#endif
L
Linus Torvalds 已提交
2970
	return cic;
2971 2972
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2973 2974 2975 2976 2977
err:
	put_io_context(ioc);
	return NULL;
}

2978 2979
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2980
{
2981 2982
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2983

2984 2985 2986 2987
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2988

2989
static void
2990
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2991
		       struct request *rq)
2992
{
2993
	sector_t sdist = 0;
2994
	sector_t n_sec = blk_rq_sectors(rq);
2995 2996 2997 2998 2999 3000
	if (cfqq->last_request_pos) {
		if (cfqq->last_request_pos < blk_rq_pos(rq))
			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
		else
			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
	}
3001

3002
	cfqq->seek_history <<= 1;
3003 3004 3005 3006
	if (blk_queue_nonrot(cfqd->queue))
		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
	else
		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3007
}
L
Linus Torvalds 已提交
3008

3009 3010 3011 3012 3013 3014 3015 3016
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
3017
	int old_idle, enable_idle;
3018

3019 3020 3021 3022
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3023 3024
		return;

3025
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
3026

3027 3028 3029
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

3030
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3031
	    (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3032 3033
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
3034
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
3035 3036 3037
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
3038 3039
	}

3040 3041 3042 3043 3044 3045 3046
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
3047
}
L
Linus Torvalds 已提交
3048

3049 3050 3051 3052
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
3053
static bool
3054
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
3055
		   struct request *rq)
3056
{
J
Jens Axboe 已提交
3057
	struct cfq_queue *cfqq;
3058

J
Jens Axboe 已提交
3059 3060
	cfqq = cfqd->active_queue;
	if (!cfqq)
3061
		return false;
3062

J
Jens Axboe 已提交
3063
	if (cfq_class_idle(new_cfqq))
3064
		return false;
3065 3066

	if (cfq_class_idle(cfqq))
3067
		return true;
3068

3069 3070 3071 3072 3073 3074
	/*
	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
	 */
	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
		return false;

3075 3076 3077 3078
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
3079
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3080
		return true;
3081

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	if (new_cfqq->cfqg != cfqq->cfqg)
		return false;

	if (cfq_slice_used(cfqq))
		return true;

	/* Allow preemption only if we are idling on sync-noidle tree */
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
	    new_cfqq->service_tree->count == 2 &&
	    RB_EMPTY_ROOT(&cfqq->sort_list))
		return true;

3095 3096 3097 3098 3099
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
3100
		return true;
3101

3102 3103 3104 3105
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3106
		return true;
3107

3108
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3109
		return false;
3110 3111 3112 3113 3114

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
3115
	if (cfq_rq_close(cfqd, cfqq, rq))
3116
		return true;
3117

3118
	return false;
3119 3120 3121 3122 3123 3124 3125 3126
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
3127
	cfq_log_cfqq(cfqd, cfqq, "preempt");
3128
	cfq_slice_expired(cfqd, 1);
3129

3130 3131 3132 3133 3134
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3135 3136

	cfq_service_tree_add(cfqd, cfqq, 1);
3137

3138 3139
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
3140 3141 3142
}

/*
J
Jens Axboe 已提交
3143
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3144 3145 3146
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
3147 3148
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
3149
{
J
Jens Axboe 已提交
3150
	struct cfq_io_context *cic = RQ_CIC(rq);
3151

3152
	cfqd->rq_queued++;
3153 3154 3155
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
3156
	cfq_update_io_thinktime(cfqd, cic);
3157
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
3158 3159
	cfq_update_idle_window(cfqd, cfqq, cic);

3160
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3161 3162 3163

	if (cfqq == cfqd->active_queue) {
		/*
3164 3165 3166
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
3167 3168
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
3169 3170 3171
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
3172
		 */
3173
		if (cfq_cfqq_wait_request(cfqq)) {
3174 3175
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
3176
				del_timer(&cfqd->idle_slice_timer);
3177
				cfq_clear_cfqq_wait_request(cfqq);
3178 3179 3180
				__blk_run_queue(cfqd->queue);
			} else
				cfq_mark_cfqq_must_dispatch(cfqq);
3181
		}
J
Jens Axboe 已提交
3182
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3183 3184 3185
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
3186 3187
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
3188 3189
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
3190
		__blk_run_queue(cfqd->queue);
3191
	}
L
Linus Torvalds 已提交
3192 3193
}

3194
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3195
{
3196
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
3197
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3198

3199
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3200
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3201

3202
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3203
	list_add_tail(&rq->queuelist, &cfqq->fifo);
3204
	cfq_add_rq_rb(rq);
3205

J
Jens Axboe 已提交
3206
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
3207 3208
}

3209 3210 3211 3212 3213 3214
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
3215 3216
	struct cfq_queue *cfqq = cfqd->active_queue;

3217 3218
	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3219 3220 3221

	if (cfqd->hw_tag == 1)
		return;
3222 3223

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3224
	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3225 3226
		return;

S
Shaohua Li 已提交
3227 3228 3229 3230 3231 3232 3233
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3234
	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
S
Shaohua Li 已提交
3235 3236
		return;

3237 3238 3239
	if (cfqd->hw_tag_samples++ < 50)
		return;

3240
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3241 3242 3243 3244 3245
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct cfq_io_context *cic = cfqd->active_cic;

	/* If there are other queues in the group, don't wait */
	if (cfqq->cfqg->nr_cfqq > 1)
		return false;

	if (cfq_slice_used(cfqq))
		return true;

	/* if slice left is less than think time, wait busy */
	if (cic && sample_valid(cic->ttime_samples)
	    && (cfqq->slice_end - jiffies < cic->ttime_mean))
		return true;

	/*
	 * If think times is less than a jiffy than ttime_mean=0 and above
	 * will not be true. It might happen that slice has not expired yet
	 * but will expire soon (4-5 ns) during select_queue(). To cover the
	 * case where think time is less than a jiffy, mark the queue wait
	 * busy if only 1 jiffy is left in the slice.
	 */
	if (cfqq->slice_end - jiffies == 1)
		return true;

	return false;
}

3275
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3276
{
J
Jens Axboe 已提交
3277
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3278
	struct cfq_data *cfqd = cfqq->cfqd;
3279
	const int sync = rq_is_sync(rq);
3280
	unsigned long now;
L
Linus Torvalds 已提交
3281

3282
	now = jiffies;
V
Vivek Goyal 已提交
3283
	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
L
Linus Torvalds 已提交
3284

3285 3286
	cfq_update_hw_tag(cfqd);

3287
	WARN_ON(!cfqd->rq_in_driver);
J
Jens Axboe 已提交
3288
	WARN_ON(!cfqq->dispatched);
3289
	cfqd->rq_in_driver--;
J
Jens Axboe 已提交
3290
	cfqq->dispatched--;
3291 3292 3293
	blkiocg_update_completion_stats(&cfqq->cfqg->blkg, rq_start_time_ns(rq),
			rq_io_start_time_ns(rq), rq_data_dir(rq),
			rq_is_sync(rq));
L
Linus Torvalds 已提交
3294

3295
	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3296

3297
	if (sync) {
J
Jens Axboe 已提交
3298
		RQ_CIC(rq)->last_end_request = now;
3299 3300
		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
			cfqd->last_delayed_sync = now;
3301
	}
3302 3303 3304 3305 3306 3307

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
3308 3309
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

3310 3311 3312 3313
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
3314 3315

		/*
3316 3317
		 * Should we wait for next request to come in before we expire
		 * the queue.
3318
		 */
3319
		if (cfq_should_wait_busy(cfqd, cfqq)) {
3320 3321
			cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
			cfq_mark_cfqq_wait_busy(cfqq);
3322
			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3323 3324
		}

3325
		/*
3326 3327 3328 3329 3330 3331
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
3332
		 */
3333
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3334
			cfq_slice_expired(cfqd, 1);
3335 3336 3337 3338 3339 3340 3341 3342 3343
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
3344 3345
			    || cfqd->noidle_tree_requires_idle
			    || cfqq->cfqg->nr_cfqq == 1)
3346 3347
				cfq_arm_slice_timer(cfqd);
		}
3348
	}
J
Jens Axboe 已提交
3349

3350
	if (!cfqd->rq_in_driver)
3351
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3352 3353
}

3354 3355 3356 3357 3358
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
3359
{
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
3371
		 * unboost the queue (if needed)
3372
		 */
3373 3374
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
3375 3376
	}
}
L
Linus Torvalds 已提交
3377

3378
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3379
{
3380
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
3381
		cfq_mark_cfqq_must_alloc_slice(cfqq);
3382
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
3383
	}
L
Linus Torvalds 已提交
3384

3385 3386 3387
	return ELV_MQUEUE_MAY;
}

3388
static int cfq_may_queue(struct request_queue *q, int rw)
3389 3390 3391
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
3392
	struct cfq_io_context *cic;
3393 3394 3395 3396 3397 3398 3399 3400
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
3401
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3402 3403 3404
	if (!cic)
		return ELV_MQUEUE_MAY;

3405
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3406
	if (cfqq) {
3407
		cfq_init_prio_data(cfqq, cic->ioc);
3408 3409
		cfq_prio_boost(cfqq);

3410
		return __cfq_may_queue(cfqq);
3411 3412 3413
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
3414 3415 3416 3417 3418
}

/*
 * queue lock held here
 */
3419
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
3420
{
J
Jens Axboe 已提交
3421
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
3422

J
Jens Axboe 已提交
3423
	if (cfqq) {
3424
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
3425

3426 3427
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
3428

J
Jens Axboe 已提交
3429
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3430 3431

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
3432
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
3433 3434 3435 3436 3437

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
3438 3439 3440 3441 3442 3443
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3444
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
3445 3446 3447 3448
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
3459
		cfq_clear_cfqq_split_coop(cfqq);
3460 3461 3462 3463 3464 3465 3466
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
3467
/*
3468
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
3469
 */
3470
static int
3471
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
3472 3473 3474 3475
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
3476
	const bool is_sync = rq_is_sync(rq);
3477
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
3478 3479 3480 3481
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

3482
	cic = cfq_get_io_context(cfqd, gfp_mask);
3483

L
Linus Torvalds 已提交
3484 3485
	spin_lock_irqsave(q->queue_lock, flags);

3486 3487 3488
	if (!cic)
		goto queue_fail;

3489
new_queue:
3490
	cfqq = cic_to_cfqq(cic, is_sync);
3491
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3492
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3493
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
3494
	} else {
3495 3496 3497
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
3498
		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3499 3500 3501 3502 3503 3504
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
3505 3506 3507 3508 3509 3510 3511 3512
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3513
	}
L
Linus Torvalds 已提交
3514 3515

	cfqq->allocated[rw]++;
3516
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
3517

J
Jens Axboe 已提交
3518
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
3519

J
Jens Axboe 已提交
3520 3521 3522
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
3523

3524 3525 3526
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
3527

3528
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3529
	spin_unlock_irqrestore(q->queue_lock, flags);
3530
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
3531 3532 3533
	return 1;
}

3534
static void cfq_kick_queue(struct work_struct *work)
3535
{
3536
	struct cfq_data *cfqd =
3537
		container_of(work, struct cfq_data, unplug_work);
3538
	struct request_queue *q = cfqd->queue;
3539

3540
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
3541
	__blk_run_queue(cfqd->queue);
3542
	spin_unlock_irq(q->queue_lock);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
3553
	int timed_out = 1;
3554

3555 3556
	cfq_log(cfqd, "idle timer fired");

3557 3558
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

3559 3560
	cfqq = cfqd->active_queue;
	if (cfqq) {
3561 3562
		timed_out = 0;

3563 3564 3565 3566 3567 3568
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

3569 3570 3571
		/*
		 * expired
		 */
3572
		if (cfq_slice_used(cfqq))
3573 3574 3575 3576 3577 3578
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
3579
		if (!cfqd->busy_queues)
3580 3581 3582 3583 3584
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
3585
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3586
			goto out_kick;
3587 3588 3589 3590 3591

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
3592 3593
	}
expire:
3594
	cfq_slice_expired(cfqd, timed_out);
3595
out_kick:
3596
	cfq_schedule_dispatch(cfqd);
3597 3598 3599 3600
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
3601 3602 3603
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
3604
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
3605
}
3606

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
3617 3618 3619

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
3620 3621
}

3622 3623 3624 3625 3626
static void cfq_cfqd_free(struct rcu_head *head)
{
	kfree(container_of(head, struct cfq_data, rcu));
}

J
Jens Axboe 已提交
3627
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
3628
{
3629
	struct cfq_data *cfqd = e->elevator_data;
3630
	struct request_queue *q = cfqd->queue;
3631

J
Jens Axboe 已提交
3632
	cfq_shutdown_timer_wq(cfqd);
3633

3634
	spin_lock_irq(q->queue_lock);
3635

3636
	if (cfqd->active_queue)
3637
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3638 3639

	while (!list_empty(&cfqd->cic_list)) {
3640 3641 3642
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
3643 3644

		__cfq_exit_single_io_context(cfqd, cic);
3645
	}
3646

3647
	cfq_put_async_queues(cfqd);
3648 3649
	cfq_release_cfq_groups(cfqd);
	blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3650

3651
	spin_unlock_irq(q->queue_lock);
3652 3653 3654

	cfq_shutdown_timer_wq(cfqd);

3655
	/* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3656
	call_rcu(&cfqd->rcu, cfq_cfqd_free);
L
Linus Torvalds 已提交
3657 3658
}

3659
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
3660 3661
{
	struct cfq_data *cfqd;
3662
	int i, j;
3663
	struct cfq_group *cfqg;
3664
	struct cfq_rb_root *st;
L
Linus Torvalds 已提交
3665

3666
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
3667
	if (!cfqd)
J
Jens Axboe 已提交
3668
		return NULL;
L
Linus Torvalds 已提交
3669

3670 3671 3672
	/* Init root service tree */
	cfqd->grp_service_tree = CFQ_RB_ROOT;

3673 3674
	/* Init root group */
	cfqg = &cfqd->root_group;
3675 3676
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
3677
	RB_CLEAR_NODE(&cfqg->rb_node);
3678

3679 3680 3681
	/* Give preference to root group over other groups */
	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;

3682
#ifdef CONFIG_CFQ_GROUP_IOSCHED
3683 3684 3685 3686 3687
	/*
	 * Take a reference to root group which we never drop. This is just
	 * to make sure that cfq_put_cfqg() does not try to kfree root group
	 */
	atomic_set(&cfqg->ref, 1);
3688 3689
	blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
					0);
3690
#endif
3691 3692 3693 3694 3695 3696 3697 3698
	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3699 3700 3701 3702 3703 3704 3705
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);
3706
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3707

3708
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
3709 3710 3711

	cfqd->queue = q;

3712 3713 3714 3715
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

3716
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3717

L
Linus Torvalds 已提交
3718
	cfqd->cfq_quantum = cfq_quantum;
3719 3720
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
3721 3722
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
3723 3724 3725 3726
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
3727
	cfqd->cfq_latency = 1;
3728
	cfqd->cfq_group_isolation = 0;
3729
	cfqd->hw_tag = -1;
3730 3731 3732 3733
	/*
	 * we optimistically start assuming sync ops weren't delayed in last
	 * second, in order to have larger depth for async operations.
	 */
3734
	cfqd->last_delayed_sync = jiffies - HZ;
3735
	INIT_RCU_HEAD(&cfqd->rcu);
J
Jens Axboe 已提交
3736
	return cfqd;
L
Linus Torvalds 已提交
3737 3738 3739 3740
}

static void cfq_slab_kill(void)
{
3741 3742 3743 3744
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
3745 3746 3747 3748 3749 3750 3751 3752
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3753
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3754 3755 3756
	if (!cfq_pool)
		goto fail;

3757
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3786
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3787
{									\
3788
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3789 3790 3791 3792 3793 3794
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3795 3796
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3797 3798
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3799 3800 3801 3802
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3803
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3804
SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
L
Linus Torvalds 已提交
3805 3806 3807
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3808
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3809
{									\
3810
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3824 3825 3826 3827
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3828
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3829 3830
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3831 3832 3833
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3834 3835
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3836
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3837
STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
L
Linus Torvalds 已提交
3838 3839
#undef STORE_FUNCTION

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3853
	CFQ_ATTR(low_latency),
3854
	CFQ_ATTR(group_isolation),
3855
	__ATTR_NULL
L
Linus Torvalds 已提交
3856 3857 3858 3859 3860 3861 3862
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3863
		.elevator_allow_merge_fn =	cfq_allow_merge,
3864
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3865
		.elevator_add_req_fn =		cfq_insert_request,
3866
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3867 3868 3869
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3870 3871
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3872 3873 3874 3875 3876
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3877
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3878
	},
3879
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3880 3881 3882 3883
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static struct blkio_policy_type blkio_policy_cfq = {
	.ops = {
		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
	},
};
#else
static struct blkio_policy_type blkio_policy_cfq;
#endif

L
Linus Torvalds 已提交
3895 3896
static int __init cfq_init(void)
{
3897 3898 3899 3900 3901 3902 3903 3904
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3905 3906 3907
	if (cfq_slab_setup())
		return -ENOMEM;

3908
	elv_register(&iosched_cfq);
3909
	blkio_policy_register(&blkio_policy_cfq);
L
Linus Torvalds 已提交
3910

3911
	return 0;
L
Linus Torvalds 已提交
3912 3913 3914 3915
}

static void __exit cfq_exit(void)
{
3916
	DECLARE_COMPLETION_ONSTACK(all_gone);
3917
	blkio_policy_unregister(&blkio_policy_cfq);
L
Linus Torvalds 已提交
3918
	elv_unregister(&iosched_cfq);
3919
	ioc_gone = &all_gone;
3920 3921
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3922 3923 3924 3925 3926

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3927
	if (elv_ioc_count_read(cfq_ioc_count))
3928
		wait_for_completion(&all_gone);
3929
	cfq_slab_kill();
L
Linus Torvalds 已提交
3930 3931 3932 3933 3934 3935 3936 3937
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");