cfq-iosched.c 76.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
L
Linus Torvalds 已提交
16 17 18 19

/*
 * tunables
 */
20 21
/* max queue in one round of service */
static const int cfq_quantum = 4;
22
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 24 25 26
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
27
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
28
static int cfq_slice_async = HZ / 25;
29
static const int cfq_slice_async_rq = 2;
30
static int cfq_slice_idle = HZ / 125;
31 32
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
33

34
/*
35
 * offset from end of service tree
36
 */
37
#define CFQ_IDLE_DELAY		(HZ / 5)
38 39 40 41 42 43

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

44 45 46 47 48 49
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

50
#define CFQ_SLICE_SCALE		(5)
51
#define CFQ_HW_QUEUE_MIN	(5)
52

53 54
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
55
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
56

57 58
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
59

60
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61
static struct completion *ioc_gone;
62
static DEFINE_SPINLOCK(ioc_gone_lock);
63

64 65 66 67
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

68 69
#define sample_valid(samples)	((samples) > 80)

70 71 72 73 74 75 76 77 78
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
79
	unsigned count;
80
};
81
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

125 126 127 128
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
129
	unsigned long seeky_start;
130

131
	pid_t pid;
J
Jeff Moyer 已提交
132

133
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
134
	struct cfq_queue *new_cfqq;
135 136
};

137
/*
138
 * First index in the service_trees.
139 140 141 142 143 144 145 146
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	IDLE_WORKLOAD = -1,
	BE_WORKLOAD = 0,
	RT_WORKLOAD = 1
};

147 148 149 150 151 152 153 154 155 156
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};


157 158 159
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
160
struct cfq_data {
161
	struct request_queue *queue;
162 163

	/*
164 165 166
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
167
	struct cfq_rb_root service_trees[2][3];
168 169 170
	struct cfq_rb_root service_tree_idle;
	/*
	 * The priority currently being served
171
	 */
172
	enum wl_prio_t serving_prio;
173 174
	enum wl_type_t serving_type;
	unsigned long workload_expires;
175 176 177 178 179 180 181 182

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

183
	unsigned int busy_queues;
184
	unsigned int busy_queues_avg[2];
185

186
	int rq_in_driver[2];
187
	int sync_flight;
188 189 190 191 192

	/*
	 * queue-depth detection
	 */
	int rq_queued;
193
	int hw_tag;
194 195 196 197 198 199 200 201
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
202

203 204 205 206
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
207
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
208

209 210 211
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

212 213 214 215 216
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
217

J
Jens Axboe 已提交
218
	sector_t last_position;
L
Linus Torvalds 已提交
219 220 221 222 223

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
224
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
225 226
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
227 228 229
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
230
	unsigned int cfq_latency;
231 232

	struct list_head cic_list;
L
Linus Torvalds 已提交
233

234 235 236 237
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
238 239

	unsigned long last_end_sync_rq;
L
Linus Torvalds 已提交
240 241
};

242
static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
243
					    enum wl_type_t type,
244 245 246 247 248
					    struct cfq_data *cfqd)
{
	if (prio == IDLE_WORKLOAD)
		return &cfqd->service_tree_idle;

249
	return &cfqd->service_trees[prio][type];
250 251
}

J
Jens Axboe 已提交
252
enum cfqq_state_flags {
253 254
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
255
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
256 257 258 259
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
260
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
261
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
262
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
263
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
J
Jens Axboe 已提交
264 265 266 267 268
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
269
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
270 271 272
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
273
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
274 275 276
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
277
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
278 279 280 281
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
282
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
283 284 285 286
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
287
CFQ_CFQQ_FNS(slice_new);
288
CFQ_CFQQ_FNS(sync);
289
CFQ_CFQQ_FNS(coop);
290
CFQ_CFQQ_FNS(deep);
J
Jens Axboe 已提交
291 292
#undef CFQ_CFQQ_FNS

293 294 295 296 297
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

298 299 300 301 302 303 304 305 306
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

307 308 309 310 311 312 313 314 315 316

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

317 318 319 320 321
static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
{
	if (wl == IDLE_WORKLOAD)
		return cfqd->service_tree_idle.count;

322 323 324
	return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_WORKLOAD].count;
325 326
}

327
static void cfq_dispatch_insert(struct request_queue *, struct request *);
328
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
329
				       struct io_context *, gfp_t);
330
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
331 332
						struct io_context *);

333 334 335 336 337
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

338
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
339
					    bool is_sync)
340
{
341
	return cic->cfqq[is_sync];
342 343 344
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
345
				struct cfq_queue *cfqq, bool is_sync)
346
{
347
	cic->cfqq[is_sync] = cfqq;
348 349 350 351 352 353
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
354
static inline bool cfq_bio_sync(struct bio *bio)
355
{
356
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
357
}
L
Linus Torvalds 已提交
358

A
Andrew Morton 已提交
359 360 361 362
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
363
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
364
{
365 366
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
367
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
368
	}
A
Andrew Morton 已提交
369 370
}

371
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
372 373 374
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

375
	return !cfqd->busy_queues;
A
Andrew Morton 已提交
376 377
}

378 379 380 381 382
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
383
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
384
				 unsigned short prio)
385
{
386
	const int base_slice = cfqd->cfq_slice[sync];
387

388 389 390 391
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
392

393 394 395 396
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
397 398
}

399 400 401 402 403 404
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

405 406
static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
{
407 408 409
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
410
	unsigned busy = cfq_busy_queues_wl(rt, cfqd);
411 412 413 414 415 416 417 418

	min_q = min(cfqd->busy_queues_avg[rt], busy);
	max_q = max(cfqd->busy_queues_avg[rt], busy);
	cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
		cfq_hist_divisor;
	return cfqd->busy_queues_avg[rt];
}

419 420 421
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
		/* interested queues (we consider only the ones with the same
		 * priority class) */
		unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
		if (expect_latency > cfq_target_latency) {
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
			slice = max(slice * cfq_target_latency / expect_latency,
				    low_slice);
		}
	}
	cfqq->slice_end = jiffies + slice;
442
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
443 444 445 446 447 448 449
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
450
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
451 452 453 454 455 456 457 458 459
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
460
/*
J
Jens Axboe 已提交
461
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
462
 * We choose the request that is closest to the head right now. Distance
463
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
464
 */
J
Jens Axboe 已提交
465
static struct request *
466
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
467
{
468
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
469
	unsigned long back_max;
470 471 472
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
473

J
Jens Axboe 已提交
474 475 476 477
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
478

J
Jens Axboe 已提交
479 480 481 482
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
483 484 485 486
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
487

488 489
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
506
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
507 508 509 510 511 512

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
513
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
514 515

	/* Found required data */
516 517 518 519 520 521

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
522
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
523
		if (d1 < d2)
J
Jens Axboe 已提交
524
			return rq1;
525
		else if (d2 < d1)
J
Jens Axboe 已提交
526
			return rq2;
527 528
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
529
				return rq1;
530
			else
J
Jens Axboe 已提交
531
				return rq2;
532
		}
L
Linus Torvalds 已提交
533

534
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
535
		return rq1;
536
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
537 538
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
539 540 541 542 543 544 545 546
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
547
			return rq1;
L
Linus Torvalds 已提交
548
		else
J
Jens Axboe 已提交
549
			return rq2;
L
Linus Torvalds 已提交
550 551 552
	}
}

553 554 555
/*
 * The below is leftmost cache rbtree addon
 */
556
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
557 558 559 560
{
	if (!root->left)
		root->left = rb_first(&root->rb);

561 562 563 564
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
565 566
}

567 568 569 570 571 572
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

573 574 575 576
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
577
	rb_erase_init(n, &root->rb);
578
	--root->count;
579 580
}

L
Linus Torvalds 已提交
581 582 583
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
584 585 586
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
587
{
588 589
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
590
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
591

592
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
593 594

	if (rbprev)
J
Jens Axboe 已提交
595
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
596

597
	if (rbnext)
J
Jens Axboe 已提交
598
		next = rb_entry_rq(rbnext);
599 600 601
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
602
			next = rb_entry_rq(rbnext);
603
	}
L
Linus Torvalds 已提交
604

605
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
606 607
}

608 609
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
610
{
611 612 613 614
	struct cfq_rb_root *service_tree;

	service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);

615 616 617
	/*
	 * just an approximation, should be ok.
	 */
618 619
	return  service_tree->count * (cfq_prio_slice(cfqd, 1, 0) -
		   cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
620 621
}

622
/*
623
 * The cfqd->service_trees holds all pending cfq_queue's that have
624 625 626
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
627
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
628
				 bool add_front)
629
{
630 631
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
632
	unsigned long rb_key;
633
	struct cfq_rb_root *service_tree;
634
	int left;
635

636
	service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
637 638
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
639
		parent = rb_last(&service_tree->rb);
640 641 642 643 644 645
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
646 647 648 649 650 651
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
652
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
653
		rb_key -= cfqq->slice_resid;
654
		cfqq->slice_resid = 0;
655 656
	} else {
		rb_key = -HZ;
657
		__cfqq = cfq_rb_first(service_tree);
658 659
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
660

661
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
662
		/*
663
		 * same position, nothing more to do
664
		 */
665 666
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
667
			return;
L
Linus Torvalds 已提交
668

669 670
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
671
	}
672

673
	left = 1;
674
	parent = NULL;
675 676
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
677
	while (*p) {
678
		struct rb_node **n;
679

680 681 682
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

683
		/*
684
		 * sort by key, that represents service time.
685
		 */
686
		if (time_before(rb_key, __cfqq->rb_key))
687
			n = &(*p)->rb_left;
688
		else {
689
			n = &(*p)->rb_right;
690
			left = 0;
691
		}
692 693

		p = n;
694 695
	}

696
	if (left)
697
		service_tree->left = &cfqq->rb_node;
698

699 700
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
701 702
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
L
Linus Torvalds 已提交
703 704
}

705
static struct cfq_queue *
706 707 708
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
725
		if (sector > blk_rq_pos(cfqq->next_rq))
726
			n = &(*p)->rb_right;
727
		else if (sector < blk_rq_pos(cfqq->next_rq))
728 729 730 731
			n = &(*p)->rb_left;
		else
			break;
		p = n;
732
		cfqq = NULL;
733 734 735 736 737
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
738
	return cfqq;
739 740 741 742 743 744 745
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

746 747 748 749
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
750 751 752 753 754 755

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

756
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
757 758
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
759 760
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
761 762 763
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
764 765
}

766 767 768
/*
 * Update cfqq's position in the service tree.
 */
769
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
770 771 772 773
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
774
	if (cfq_cfqq_on_rr(cfqq)) {
775
		cfq_service_tree_add(cfqd, cfqq, 0);
776 777
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
778 779
}

L
Linus Torvalds 已提交
780 781
/*
 * add to busy list of queues for service, trying to be fair in ordering
782
 * the pending list according to last request service
L
Linus Torvalds 已提交
783
 */
J
Jens Axboe 已提交
784
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
785
{
786
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
787 788
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
789 790
	cfqd->busy_queues++;

791
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
792 793
}

794 795 796 797
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
798
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
799
{
800
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
801 802
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
803

804 805 806 807
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
808 809 810 811
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
812

L
Linus Torvalds 已提交
813 814 815 816 817 818 819
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
820
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
821
{
J
Jens Axboe 已提交
822
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
823
	struct cfq_data *cfqd = cfqq->cfqd;
J
Jens Axboe 已提交
824
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
825

826 827
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
828

J
Jens Axboe 已提交
829
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
830

831
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
832
		cfq_del_cfqq_rr(cfqd, cfqq);
L
Linus Torvalds 已提交
833 834
}

J
Jens Axboe 已提交
835
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
836
{
J
Jens Axboe 已提交
837
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
838
	struct cfq_data *cfqd = cfqq->cfqd;
839
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
840

841
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
842 843 844 845 846

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
847
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
848
		cfq_dispatch_insert(cfqd->queue, __alias);
849 850 851

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
852 853 854 855

	/*
	 * check if this request is a better next-serve candidate
	 */
856
	prev = cfqq->next_rq;
857
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
858 859 860 861 862 863 864

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

865
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
866 867
}

J
Jens Axboe 已提交
868
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
869
{
870 871
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
872
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
873 874
}

875 876
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
877
{
878
	struct task_struct *tsk = current;
879
	struct cfq_io_context *cic;
880
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
881

882
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
883 884 885 886
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
887 888 889
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

890
		return elv_rb_find(&cfqq->sort_list, sector);
891
	}
L
Linus Torvalds 已提交
892 893 894 895

	return NULL;
}

896
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
897
{
898
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
899

900
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
901
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
902
						rq_in_driver(cfqd));
903

904
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
905 906
}

907
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
908
{
909
	struct cfq_data *cfqd = q->elevator->elevator_data;
910
	const int sync = rq_is_sync(rq);
911

912 913
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
914
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
915
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
916 917
}

918
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
919
{
J
Jens Axboe 已提交
920
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
921

J
Jens Axboe 已提交
922 923
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
924

925
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
926
	cfq_del_rq_rb(rq);
927

928
	cfqq->cfqd->rq_queued--;
929 930 931 932
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
933 934
}

935 936
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
937 938 939 940
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

941
	__rq = cfq_find_rq_fmerge(cfqd, bio);
942
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
943 944
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
945 946 947 948 949
	}

	return ELEVATOR_NO_MERGE;
}

950
static void cfq_merged_request(struct request_queue *q, struct request *req,
951
			       int type)
L
Linus Torvalds 已提交
952
{
953
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
954
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
955

J
Jens Axboe 已提交
956
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
957 958 959 960
	}
}

static void
961
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
962 963
		    struct request *next)
{
964
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
965 966 967 968
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
969
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
970
		list_move(&rq->queuelist, &next->queuelist);
971 972
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
973

974 975
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
976
	cfq_remove_request(next);
977 978
}

979
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
980 981 982
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
983
	struct cfq_io_context *cic;
984 985 986
	struct cfq_queue *cfqq;

	/*
987
	 * Disallow merge of a sync bio into an async request.
988
	 */
989
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
990
		return false;
991 992

	/*
993 994
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
995
	 */
996
	cic = cfq_cic_lookup(cfqd, current->io_context);
997
	if (!cic)
998
		return false;
999

1000
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1001
	return cfqq == RQ_CFQQ(rq);
1002 1003
}

J
Jens Axboe 已提交
1004 1005
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1006 1007
{
	if (cfqq) {
1008
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1009
		cfqq->slice_end = 0;
1010 1011 1012
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1013
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1014 1015
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1016
		cfq_mark_cfqq_slice_new(cfqq);
1017 1018

		del_timer(&cfqd->idle_slice_timer);
1019 1020 1021 1022 1023
	}

	cfqd->active_queue = cfqq;
}

1024 1025 1026 1027 1028
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1029
		    bool timed_out)
1030
{
1031 1032
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1033 1034 1035 1036 1037 1038
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1039
	 * store what was left of this slice, if the queue idled/timed out
1040
	 */
1041
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1042
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1043 1044
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1045

1046
	cfq_resort_rr_list(cfqd, cfqq);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1057
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1058 1059 1060 1061
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1062
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1063 1064
}

1065 1066 1067 1068
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1069
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1070
{
1071
	struct cfq_rb_root *service_tree =
1072
		service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
1073

1074 1075 1076
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1077 1078
}

1079 1080 1081
/*
 * Get and set a new active queue for service.
 */
1082 1083
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1084
{
1085
	if (!cfqq)
1086
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1087

1088
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1089
	return cfqq;
1090 1091
}

1092 1093 1094
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1095 1096
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1097
	else
1098
		return cfqd->last_position - blk_rq_pos(rq);
1099 1100
}

1101 1102
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1103

1104 1105
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1106
{
1107
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1108

1109 1110
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1111

1112
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1113 1114
}

1115 1116 1117
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1118
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1130
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1131 1132 1133 1134 1135 1136 1137 1138
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1139
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1140 1141
		return __cfqq;

1142
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1143 1144 1145 1146 1147 1148 1149
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1150
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1167
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1168
{
1169 1170
	struct cfq_queue *cfqq;

1171 1172 1173 1174 1175
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1176
	/*
1177 1178 1179
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1180
	 */
1181 1182 1183 1184
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1185 1186 1187 1188 1189
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1190 1191
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1192

1193 1194 1195 1196 1197 1198
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1199
	return cfqq;
J
Jens Axboe 已提交
1200 1201
}

1202 1203 1204 1205 1206 1207 1208
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1209
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1223 1224 1225
	if (!service_tree)
		service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);

1226 1227 1228 1229 1230 1231
	if (service_tree->count == 0)
		return true;

	return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
}

J
Jens Axboe 已提交
1232
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1233
{
1234
	struct cfq_queue *cfqq = cfqd->active_queue;
1235
	struct cfq_io_context *cic;
1236 1237
	unsigned long sl;

1238
	/*
J
Jens Axboe 已提交
1239 1240 1241
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1242
	 */
J
Jens Axboe 已提交
1243
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1244 1245
		return;

1246
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1247
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1248 1249 1250 1251

	/*
	 * idle is disabled, either manually or by past process history
	 */
1252
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1253 1254
		return;

1255 1256 1257
	/*
	 * still requests with the driver, don't idle
	 */
1258
	if (rq_in_driver(cfqd))
1259 1260
		return;

1261 1262 1263
	/*
	 * task has exited, don't wait
	 */
1264
	cic = cfqd->active_cic;
1265
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1266 1267
		return;

1268 1269 1270 1271 1272 1273 1274 1275 1276
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1277
	cfq_mark_cfqq_wait_request(cfqq);
1278

J
Jens Axboe 已提交
1279
	sl = cfqd->cfq_slice_idle;
1280

1281
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1282
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1283 1284
}

1285 1286 1287
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1288
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1289
{
1290
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1291
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1292

1293 1294
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1295
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1296
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1297
	cfqq->dispatched++;
1298
	elv_dispatch_sort(q, rq);
1299 1300 1301

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1302 1303 1304 1305 1306
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1307
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1308
{
1309
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1310

J
Jens Axboe 已提交
1311
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1312
		return NULL;
1313 1314 1315

	cfq_mark_cfqq_fifo_expire(cfqq);

1316 1317
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1318

1319
	rq = rq_entry_fifo(cfqq->fifo.next);
1320
	if (time_before(jiffies, rq_fifo_time(rq)))
1321
		rq = NULL;
L
Linus Torvalds 已提交
1322

1323
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1324
	return rq;
L
Linus Torvalds 已提交
1325 1326
}

1327 1328 1329 1330
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1331

1332
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1333

1334
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1335 1336
}

J
Jeff Moyer 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1352
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1381 1382
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
				    bool prio_changed)
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;
		cur_best = SYNC_WORKLOAD;
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
		queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

static void choose_service_tree(struct cfq_data *cfqd)
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;

	/* Choose next priority. RT > BE > IDLE */
	if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
		cfqd->serving_prio = RT_WORKLOAD;
	else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
		cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
	slice = cfq_target_latency * count /
		max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
		      cfq_busy_queues_wl(cfqd->serving_prio, cfqd));

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
}

1483
/*
1484 1485
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
1486
 */
1487
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
1488
{
1489
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
1490

1491 1492 1493
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
1494

1495
	/*
J
Jens Axboe 已提交
1496
	 * The active queue has run out of time, expire it and select new.
1497
	 */
1498
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
1499
		goto expire;
L
Linus Torvalds 已提交
1500

1501
	/*
J
Jens Axboe 已提交
1502 1503
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
1504
	 */
1505
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1506
		goto keep_queue;
J
Jens Axboe 已提交
1507

1508 1509 1510 1511
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
1512
	 * tree.  If possible, merge the expiring queue with the new cfqq.
1513
	 */
1514
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
1515 1516 1517
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
1518
		goto expire;
J
Jeff Moyer 已提交
1519
	}
1520

J
Jens Axboe 已提交
1521 1522 1523 1524 1525
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
1526
	if (timer_pending(&cfqd->idle_slice_timer) ||
1527
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1528 1529
		cfqq = NULL;
		goto keep_queue;
1530 1531
	}

J
Jens Axboe 已提交
1532
expire:
1533
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
1534
new_queue:
1535 1536 1537 1538 1539 1540 1541
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
		choose_service_tree(cfqd);

1542
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1543
keep_queue:
J
Jens Axboe 已提交
1544
	return cfqq;
1545 1546
}

J
Jens Axboe 已提交
1547
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
	return dispatched;
}

1560 1561 1562 1563
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
1564
static int cfq_forced_dispatch(struct cfq_data *cfqd)
1565
{
1566
	struct cfq_queue *cfqq;
1567
	int dispatched = 0;
1568
	int i, j;
1569
	for (i = 0; i < 2; ++i)
1570 1571 1572 1573
		for (j = 0; j < 3; ++j)
			while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
				!= NULL)
				dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1574

1575
	while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1576
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1577

1578
	cfq_slice_expired(cfqd, 0);
1579 1580 1581

	BUG_ON(cfqd->busy_queues);

1582
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1583 1584 1585
	return dispatched;
}

1586
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1587 1588
{
	unsigned int max_dispatch;
1589

1590 1591 1592
	/*
	 * Drain async requests before we start sync IO
	 */
1593
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1594
		return false;
1595

1596 1597 1598 1599
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1600
		return false;
1601 1602 1603 1604

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
1605

1606 1607 1608 1609 1610 1611 1612
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
1613
		if (cfq_class_idle(cfqq))
1614
			return false;
1615

1616 1617 1618 1619
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
1620
			return false;
1621

1622
		/*
1623
		 * Sole queue user, allow bigger slice
1624
		 */
1625 1626 1627 1628 1629 1630 1631 1632
		max_dispatch *= 4;
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
1633
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1634 1635
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
1636

1637
		depth = last_sync / cfqd->cfq_slice[1];
1638 1639
		if (!depth && !cfqq->dispatched)
			depth = 1;
1640 1641
		if (depth < max_dispatch)
			max_dispatch = depth;
1642
	}
1643

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
1702 1703
		return 0;

1704
	/*
1705
	 * Dispatch a request from this cfqq, if it is allowed
1706
	 */
1707 1708 1709
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

1710
	cfqq->slice_dispatch++;
1711
	cfq_clear_cfqq_must_dispatch(cfqq);
1712

1713 1714 1715 1716 1717 1718 1719 1720 1721
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
1722 1723
	}

1724
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1725
	return 1;
L
Linus Torvalds 已提交
1726 1727 1728
}

/*
J
Jens Axboe 已提交
1729 1730
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
1731 1732 1733 1734 1735
 *
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
1736 1737 1738
	struct cfq_data *cfqd = cfqq->cfqd;

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
1739 1740 1741 1742

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

1743
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
1744
	BUG_ON(rb_first(&cfqq->sort_list));
1745
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
J
Jens Axboe 已提交
1746
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
1747

1748
	if (unlikely(cfqd->active_queue == cfqq)) {
1749
		__cfq_slice_expired(cfqd, cfqq, 0);
1750
		cfq_schedule_dispatch(cfqd);
1751
	}
1752

L
Linus Torvalds 已提交
1753 1754 1755
	kmem_cache_free(cfq_pool, cfqq);
}

1756 1757 1758
/*
 * Must always be called with the rcu_read_lock() held
 */
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

1770
/*
1771
 * Call func for each cic attached to this ioc.
1772
 */
1773
static void
1774 1775
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
1776
{
1777
	rcu_read_lock();
1778
	__call_for_each_cic(ioc, func);
1779
	rcu_read_unlock();
1780 1781 1782 1783 1784 1785 1786 1787 1788
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
1789
	elv_ioc_count_dec(cfq_ioc_count);
1790

1791 1792 1793 1794 1795 1796 1797
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
1798
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1799 1800 1801 1802 1803
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
1804
}
1805

1806 1807 1808
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1819
	hlist_del_rcu(&cic->cic_list);
1820 1821
	spin_unlock_irqrestore(&ioc->lock, flags);

1822
	cfq_cic_free(cic);
1823 1824
}

1825 1826 1827 1828 1829
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
1830 1831 1832
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
1833 1834 1835 1836
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
1837
	 */
1838
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
1839 1840
}

1841
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1842
{
J
Jeff Moyer 已提交
1843 1844
	struct cfq_queue *__cfqq, *next;

1845
	if (unlikely(cfqq == cfqd->active_queue)) {
1846
		__cfq_slice_expired(cfqd, cfqq, 0);
1847
		cfq_schedule_dispatch(cfqd);
1848
	}
1849

J
Jeff Moyer 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

1866 1867
	cfq_put_queue(cfqq);
}
1868

1869 1870 1871
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
1872 1873
	struct io_context *ioc = cic->ioc;

1874
	list_del_init(&cic->queue_list);
1875 1876 1877 1878

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
1879
	smp_wmb();
1880
	cic->dead_key = (unsigned long) cic->key;
1881 1882
	cic->key = NULL;

1883 1884 1885
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

1886 1887 1888
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
1889 1890
	}

1891 1892 1893
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
1894
	}
1895 1896
}

1897 1898
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
1899 1900 1901 1902
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
1903
		struct request_queue *q = cfqd->queue;
1904
		unsigned long flags;
1905

1906
		spin_lock_irqsave(q->queue_lock, flags);
1907 1908 1909 1910 1911 1912 1913 1914 1915

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

1916
		spin_unlock_irqrestore(q->queue_lock, flags);
1917
	}
L
Linus Torvalds 已提交
1918 1919
}

1920 1921 1922 1923
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
1924
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
1925
{
1926
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
1927 1928
}

1929
static struct cfq_io_context *
A
Al Viro 已提交
1930
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1931
{
1932
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
1933

1934 1935
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
1936
	if (cic) {
1937
		cic->last_end_request = jiffies;
1938
		INIT_LIST_HEAD(&cic->queue_list);
1939
		INIT_HLIST_NODE(&cic->cic_list);
1940 1941
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
1942
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
1943 1944 1945 1946 1947
	}

	return cic;
}

1948
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1949 1950 1951 1952
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
1953
	if (!cfq_cfqq_prio_changed(cfqq))
1954 1955
		return;

1956
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1957
	switch (ioprio_class) {
1958 1959 1960 1961
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
1962
		 * no prio set, inherit CPU scheduling settings
1963 1964
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
1965
		cfqq->ioprio_class = task_nice_ioclass(tsk);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
1980 1981 1982 1983 1984 1985 1986 1987
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
1988
	cfq_clear_cfqq_prio_changed(cfqq);
1989 1990
}

J
Jens Axboe 已提交
1991
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1992
{
1993 1994
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
1995
	unsigned long flags;
1996

1997 1998 1999
	if (unlikely(!cfqd))
		return;

2000
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2001

2002
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2003 2004
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2005 2006
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2007
		if (new_cfqq) {
2008
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2009 2010
			cfq_put_queue(cfqq);
		}
2011
	}
2012

2013
	cfqq = cic->cfqq[BLK_RW_SYNC];
2014 2015 2016
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2017
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2018 2019
}

2020
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2021
{
2022
	call_for_each_cic(ioc, changed_ioprio);
2023
	ioc->ioprio_changed = 0;
2024 2025
}

2026
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2027
			  pid_t pid, bool is_sync)
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2046
static struct cfq_queue *
2047
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2048
		     struct io_context *ioc, gfp_t gfp_mask)
2049 2050
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2051
	struct cfq_io_context *cic;
2052 2053

retry:
2054
	cic = cfq_cic_lookup(cfqd, ioc);
2055 2056
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2057

2058 2059 2060 2061 2062 2063
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2064 2065 2066 2067 2068
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2069
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2070
					gfp_mask | __GFP_ZERO,
2071
					cfqd->queue->node);
2072
			spin_lock_irq(cfqd->queue->queue_lock);
2073 2074
			if (new_cfqq)
				goto retry;
2075
		} else {
2076 2077 2078
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2079 2080
		}

2081 2082 2083 2084 2085 2086
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2087 2088 2089 2090 2091 2092 2093 2094
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2095 2096 2097
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2098
	switch (ioprio_class) {
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2110
static struct cfq_queue *
2111
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2112 2113
	      gfp_t gfp_mask)
{
2114 2115
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2116
	struct cfq_queue **async_cfqq = NULL;
2117 2118
	struct cfq_queue *cfqq = NULL;

2119 2120 2121 2122 2123
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2124
	if (!cfqq)
2125
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2126 2127 2128 2129

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2130
	if (!is_sync && !(*async_cfqq)) {
2131
		atomic_inc(&cfqq->ref);
2132
		*async_cfqq = cfqq;
2133 2134 2135 2136 2137 2138
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2139 2140 2141
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2142
static void
2143 2144
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2145
{
2146 2147
	unsigned long flags;

2148
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2149

2150 2151
	spin_lock_irqsave(&ioc->lock, flags);

2152
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2153

2154
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2155
	hlist_del_rcu(&cic->cic_list);
2156 2157 2158
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2159 2160
}

2161
static struct cfq_io_context *
2162
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2163 2164
{
	struct cfq_io_context *cic;
2165
	unsigned long flags;
2166
	void *k;
2167

2168 2169 2170
	if (unlikely(!ioc))
		return NULL;

2171 2172
	rcu_read_lock();

J
Jens Axboe 已提交
2173 2174 2175
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2176
	cic = rcu_dereference(ioc->ioc_data);
2177 2178
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2179
		return cic;
2180
	}
J
Jens Axboe 已提交
2181

2182 2183 2184 2185 2186
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2187 2188 2189
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2190
			cfq_drop_dead_cic(cfqd, ioc, cic);
2191
			rcu_read_lock();
2192
			continue;
2193
		}
2194

2195
		spin_lock_irqsave(&ioc->lock, flags);
2196
		rcu_assign_pointer(ioc->ioc_data, cic);
2197
		spin_unlock_irqrestore(&ioc->lock, flags);
2198 2199
		break;
	} while (1);
2200

2201
	return cic;
2202 2203
}

2204 2205 2206 2207 2208
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2209 2210
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2211
{
2212
	unsigned long flags;
2213
	int ret;
2214

2215 2216 2217 2218
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2219

2220 2221 2222
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2223 2224
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2225
		spin_unlock_irqrestore(&ioc->lock, flags);
2226

2227 2228 2229 2230 2231 2232 2233
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2234 2235
	}

2236 2237
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2238

2239
	return ret;
2240 2241
}

L
Linus Torvalds 已提交
2242 2243 2244
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2245
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2246 2247
 */
static struct cfq_io_context *
2248
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2249
{
2250
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2251 2252
	struct cfq_io_context *cic;

2253
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2254

2255
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2256 2257 2258
	if (!ioc)
		return NULL;

2259
	cic = cfq_cic_lookup(cfqd, ioc);
2260 2261
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2262

2263 2264 2265
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2266

2267 2268 2269
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2270
out:
2271 2272 2273 2274
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2275
	return cic;
2276 2277
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2278 2279 2280 2281 2282
err:
	put_io_context(ioc);
	return NULL;
}

2283 2284
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2285
{
2286 2287
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2288

2289 2290 2291 2292
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2293

2294
static void
2295
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2296
		       struct request *rq)
2297 2298 2299 2300
{
	sector_t sdist;
	u64 total;

2301
	if (!cfqq->last_request_pos)
2302
		sdist = 0;
2303 2304
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2305
	else
2306
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2307 2308 2309 2310 2311

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2312 2313
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2314
	else
2315
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2316

2317 2318 2319 2320 2321
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2335
}
L
Linus Torvalds 已提交
2336

2337 2338 2339 2340 2341 2342 2343 2344
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2345
	int old_idle, enable_idle;
2346

2347 2348 2349 2350
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2351 2352
		return;

2353
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2354

2355 2356 2357
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

2358
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2359 2360
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
2361 2362
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2363
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2364 2365 2366
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2367 2368
	}

2369 2370 2371 2372 2373 2374 2375
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2376
}
L
Linus Torvalds 已提交
2377

2378 2379 2380 2381
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2382
static bool
2383
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2384
		   struct request *rq)
2385
{
J
Jens Axboe 已提交
2386
	struct cfq_queue *cfqq;
2387

J
Jens Axboe 已提交
2388 2389
	cfqq = cfqd->active_queue;
	if (!cfqq)
2390
		return false;
2391

J
Jens Axboe 已提交
2392
	if (cfq_slice_used(cfqq))
2393
		return true;
J
Jens Axboe 已提交
2394 2395

	if (cfq_class_idle(new_cfqq))
2396
		return false;
2397 2398

	if (cfq_class_idle(cfqq))
2399
		return true;
2400

2401 2402 2403
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
	    new_cfqq->service_tree->count == 1)
2404 2405
		return true;

2406 2407 2408 2409
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2410
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2411
		return true;
2412

2413 2414 2415 2416 2417
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2418
		return true;
2419

2420 2421 2422 2423
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2424
		return true;
2425

2426
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2427
		return false;
2428 2429 2430 2431 2432

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2433
	if (cfq_rq_close(cfqd, cfqq, rq))
2434
		return true;
2435

2436
	return false;
2437 2438 2439 2440 2441 2442 2443 2444
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2445
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2446
	cfq_slice_expired(cfqd, 1);
2447

2448 2449 2450 2451 2452
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2453 2454

	cfq_service_tree_add(cfqd, cfqq, 1);
2455

2456 2457
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2458 2459 2460
}

/*
J
Jens Axboe 已提交
2461
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2462 2463 2464
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2465 2466
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
2467
{
J
Jens Axboe 已提交
2468
	struct cfq_io_context *cic = RQ_CIC(rq);
2469

2470
	cfqd->rq_queued++;
2471 2472 2473
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
2474
	cfq_update_io_thinktime(cfqd, cic);
2475
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
2476 2477
	cfq_update_idle_window(cfqd, cfqq, cic);

2478
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2479 2480 2481

	if (cfqq == cfqd->active_queue) {
		/*
2482 2483 2484
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
2485 2486
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
2487 2488 2489
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
2490
		 */
2491
		if (cfq_cfqq_wait_request(cfqq)) {
2492 2493
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
2494
				del_timer(&cfqd->idle_slice_timer);
T
Tejun Heo 已提交
2495
			__blk_run_queue(cfqd->queue);
2496
			}
2497
			cfq_mark_cfqq_must_dispatch(cfqq);
2498
		}
J
Jens Axboe 已提交
2499
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2500 2501 2502
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
2503 2504
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
2505 2506
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
2507
		__blk_run_queue(cfqd->queue);
2508
	}
L
Linus Torvalds 已提交
2509 2510
}

2511
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2512
{
2513
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2514
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2515

2516
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2517
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2518

2519
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2520
	list_add_tail(&rq->queuelist, &cfqq->fifo);
2521
	cfq_add_rq_rb(rq);
2522

J
Jens Axboe 已提交
2523
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
2524 2525
}

2526 2527 2528 2529 2530 2531
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
2532 2533
	struct cfq_queue *cfqq = cfqd->active_queue;

2534 2535 2536 2537 2538
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
2539 2540

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2541
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2542 2543
		return;

S
Shaohua Li 已提交
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

2554 2555 2556
	if (cfqd->hw_tag_samples++ < 50)
		return;

2557
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2558 2559 2560 2561 2562
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

2563
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2564
{
J
Jens Axboe 已提交
2565
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2566
	struct cfq_data *cfqd = cfqq->cfqd;
2567
	const int sync = rq_is_sync(rq);
2568
	unsigned long now;
L
Linus Torvalds 已提交
2569

2570
	now = jiffies;
2571
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
2572

2573 2574
	cfq_update_hw_tag(cfqd);

2575
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
2576
	WARN_ON(!cfqq->dispatched);
2577
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
2578
	cfqq->dispatched--;
L
Linus Torvalds 已提交
2579

2580 2581 2582
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

2583
	if (sync) {
J
Jens Axboe 已提交
2584
		RQ_CIC(rq)->last_end_request = now;
2585 2586
		cfqd->last_end_sync_rq = now;
	}
2587 2588 2589 2590 2591 2592

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
2593 2594
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

2595 2596 2597 2598
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
2599 2600 2601 2602 2603 2604 2605
		/*
		 * If there are no requests waiting in this queue, and
		 * there are other queues ready to issue requests, AND
		 * those other queues are issuing requests within our
		 * mean seek distance, give them a chance to run instead
		 * of idling.
		 */
2606
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2607
			cfq_slice_expired(cfqd, 1);
2608
		else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2609
			 sync && !rq_noidle(rq))
J
Jens Axboe 已提交
2610
			cfq_arm_slice_timer(cfqd);
2611
	}
J
Jens Axboe 已提交
2612

2613
	if (!rq_in_driver(cfqd))
2614
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2615 2616
}

2617 2618 2619 2620 2621
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2622
{
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
2634
		 * unboost the queue (if needed)
2635
		 */
2636 2637
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
2638 2639
	}
}
L
Linus Torvalds 已提交
2640

2641
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2642
{
2643
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
2644
		cfq_mark_cfqq_must_alloc_slice(cfqq);
2645
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
2646
	}
L
Linus Torvalds 已提交
2647

2648 2649 2650
	return ELV_MQUEUE_MAY;
}

2651
static int cfq_may_queue(struct request_queue *q, int rw)
2652 2653 2654
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
2655
	struct cfq_io_context *cic;
2656 2657 2658 2659 2660 2661 2662 2663
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
2664
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2665 2666 2667
	if (!cic)
		return ELV_MQUEUE_MAY;

2668
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2669
	if (cfqq) {
2670
		cfq_init_prio_data(cfqq, cic->ioc);
2671 2672
		cfq_prio_boost(cfqq);

2673
		return __cfq_may_queue(cfqq);
2674 2675 2676
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
2677 2678 2679 2680 2681
}

/*
 * queue lock held here
 */
2682
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
2683
{
J
Jens Axboe 已提交
2684
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
2685

J
Jens Axboe 已提交
2686
	if (cfqq) {
2687
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
2688

2689 2690
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
2691

J
Jens Axboe 已提交
2692
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2693 2694

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
2695
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
2696 2697 2698 2699 2700

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
2701 2702 2703 2704 2705 2706
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2707
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
2708 2709 2710 2711
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
2738
/*
2739
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
2740
 */
2741
static int
2742
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2743 2744 2745 2746
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
2747
	const bool is_sync = rq_is_sync(rq);
2748
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
2749 2750 2751 2752
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

2753
	cic = cfq_get_io_context(cfqd, gfp_mask);
2754

L
Linus Torvalds 已提交
2755 2756
	spin_lock_irqsave(q->queue_lock, flags);

2757 2758 2759
	if (!cic)
		goto queue_fail;

2760
new_queue:
2761
	cfqq = cic_to_cfqq(cic, is_sync);
2762
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2763
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2764
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
2765
	} else {
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
2776 2777 2778 2779 2780 2781 2782 2783
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2784
	}
L
Linus Torvalds 已提交
2785 2786

	cfqq->allocated[rw]++;
2787
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
2788

J
Jens Axboe 已提交
2789
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
2790

J
Jens Axboe 已提交
2791 2792 2793
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
2794

2795 2796 2797
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
2798

2799
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2800
	spin_unlock_irqrestore(q->queue_lock, flags);
2801
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
2802 2803 2804
	return 1;
}

2805
static void cfq_kick_queue(struct work_struct *work)
2806
{
2807
	struct cfq_data *cfqd =
2808
		container_of(work, struct cfq_data, unplug_work);
2809
	struct request_queue *q = cfqd->queue;
2810

2811
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
2812
	__blk_run_queue(cfqd->queue);
2813
	spin_unlock_irq(q->queue_lock);
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
2824
	int timed_out = 1;
2825

2826 2827
	cfq_log(cfqd, "idle timer fired");

2828 2829
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

2830 2831
	cfqq = cfqd->active_queue;
	if (cfqq) {
2832 2833
		timed_out = 0;

2834 2835 2836 2837 2838 2839
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

2840 2841 2842
		/*
		 * expired
		 */
2843
		if (cfq_slice_used(cfqq))
2844 2845 2846 2847 2848 2849
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
2850
		if (!cfqd->busy_queues)
2851 2852 2853 2854 2855
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
2856
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2857
			goto out_kick;
2858 2859 2860 2861 2862

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
2863 2864
	}
expire:
2865
	cfq_slice_expired(cfqd, timed_out);
2866
out_kick:
2867
	cfq_schedule_dispatch(cfqd);
2868 2869 2870 2871
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
2872 2873 2874
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
2875
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
2876
}
2877

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
2888 2889 2890

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
2891 2892
}

J
Jens Axboe 已提交
2893
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
2894
{
2895
	struct cfq_data *cfqd = e->elevator_data;
2896
	struct request_queue *q = cfqd->queue;
2897

J
Jens Axboe 已提交
2898
	cfq_shutdown_timer_wq(cfqd);
2899

2900
	spin_lock_irq(q->queue_lock);
2901

2902
	if (cfqd->active_queue)
2903
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2904 2905

	while (!list_empty(&cfqd->cic_list)) {
2906 2907 2908
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
2909 2910

		__cfq_exit_single_io_context(cfqd, cic);
2911
	}
2912

2913
	cfq_put_async_queues(cfqd);
2914

2915
	spin_unlock_irq(q->queue_lock);
2916 2917 2918 2919

	cfq_shutdown_timer_wq(cfqd);

	kfree(cfqd);
L
Linus Torvalds 已提交
2920 2921
}

2922
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
2923 2924
{
	struct cfq_data *cfqd;
2925
	int i, j;
L
Linus Torvalds 已提交
2926

2927
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
2928
	if (!cfqd)
J
Jens Axboe 已提交
2929
		return NULL;
L
Linus Torvalds 已提交
2930

2931
	for (i = 0; i < 2; ++i)
2932 2933
		for (j = 0; j < 3; ++j)
			cfqd->service_trees[i][j] = CFQ_RB_ROOT;
2934
	cfqd->service_tree_idle = CFQ_RB_ROOT;
2935 2936 2937 2938 2939 2940 2941 2942 2943

	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

2944 2945 2946 2947 2948 2949 2950 2951
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);

2952
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
2953 2954 2955

	cfqd->queue = q;

2956 2957 2958 2959
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

2960
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2961

L
Linus Torvalds 已提交
2962
	cfqd->cfq_quantum = cfq_quantum;
2963 2964
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
2965 2966
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
2967 2968 2969 2970
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
2971
	cfqd->cfq_latency = 1;
2972
	cfqd->hw_tag = -1;
2973
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
2974
	return cfqd;
L
Linus Torvalds 已提交
2975 2976 2977 2978
}

static void cfq_slab_kill(void)
{
2979 2980 2981 2982
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
2983 2984 2985 2986 2987 2988 2989 2990
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
2991
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
2992 2993 2994
	if (!cfq_pool)
		goto fail;

2995
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3024
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3025
{									\
3026
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3027 3028 3029 3030 3031 3032
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3033 3034
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3035 3036
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3037 3038 3039 3040
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3041
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3042 3043 3044
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3045
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3046
{									\
3047
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3061 3062 3063 3064
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3065
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3066 3067
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3068 3069 3070
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3071 3072
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3073
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3074 3075
#undef STORE_FUNCTION

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3089
	CFQ_ATTR(low_latency),
3090
	__ATTR_NULL
L
Linus Torvalds 已提交
3091 3092 3093 3094 3095 3096 3097
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3098
		.elevator_allow_merge_fn =	cfq_allow_merge,
3099
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3100
		.elevator_add_req_fn =		cfq_insert_request,
3101
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3102 3103 3104
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3105 3106
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3107 3108 3109 3110 3111
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3112
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3113
	},
3114
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3115 3116 3117 3118 3119 3120
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3121 3122 3123 3124 3125 3126 3127 3128
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3129 3130 3131
	if (cfq_slab_setup())
		return -ENOMEM;

3132
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3133

3134
	return 0;
L
Linus Torvalds 已提交
3135 3136 3137 3138
}

static void __exit cfq_exit(void)
{
3139
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3140
	elv_unregister(&iosched_cfq);
3141
	ioc_gone = &all_gone;
3142 3143
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3144 3145 3146 3147 3148

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3149
	if (elv_ioc_count_read(cfq_ioc_count))
3150
		wait_for_completion(&all_gone);
3151
	cfq_slab_kill();
L
Linus Torvalds 已提交
3152 3153 3154 3155 3156 3157 3158 3159
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");