cfq-iosched.c 93.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
16
#include "blk-cgroup.h"
L
Linus Torvalds 已提交
17 18 19 20

/*
 * tunables
 */
21 22
/* max queue in one round of service */
static const int cfq_quantum = 4;
23
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 25 26 27
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
28
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
29
static int cfq_slice_async = HZ / 25;
30
static const int cfq_slice_async_rq = 2;
31
static int cfq_slice_idle = HZ / 125;
32 33
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
34

35
/*
36
 * offset from end of service tree
37
 */
38
#define CFQ_IDLE_DELAY		(HZ / 5)
39 40 41 42 43 44

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

45 46 47 48 49 50
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

51
#define CFQ_SLICE_SCALE		(5)
52
#define CFQ_HW_QUEUE_MIN	(5)
53
#define CFQ_SERVICE_SHIFT       12
54

55 56
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
57
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
58

59 60
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
61

62
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63
static struct completion *ioc_gone;
64
static DEFINE_SPINLOCK(ioc_gone_lock);
65

66 67 68 69
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

70
#define sample_valid(samples)	((samples) > 80)
71
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
72

73 74 75 76 77 78 79 80 81
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
82
	unsigned count;
83
	u64 min_vdisktime;
84
	struct rb_node *active;
85
	unsigned total_weight;
86
};
87
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

118 119 120 121
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
122 123 124 125 126 127 128 129 130 131 132 133 134
	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

135 136 137 138
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
139
	unsigned long seeky_start;
140

141
	pid_t pid;
J
Jeff Moyer 已提交
142

143
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
144
	struct cfq_queue *new_cfqq;
145
	struct cfq_group *cfqg;
146 147
	/* Sectors dispatched in current dispatch round */
	unsigned long nr_sectors;
148 149
};

150
/*
151
 * First index in the service_trees.
152 153 154 155
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
156 157
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
158 159
};

160 161 162 163 164 165 166 167 168
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

169 170
/* This is per cgroup per device grouping structure */
struct cfq_group {
171 172 173 174 175
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
176
	unsigned int weight;
177 178 179 180 181
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

182 183
	/* Per group busy queus average. Useful for workload slice calc. */
	unsigned int busy_queues_avg[2];
184 185 186 187 188 189
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
190 191 192 193

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
194 195 196
	struct blkio_group blkg;
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	struct hlist_node cfqd_node;
197
	atomic_t ref;
198
#endif
199
};
200

201 202 203
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
204
struct cfq_data {
205
	struct request_queue *queue;
206 207
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
208
	struct cfq_group root_group;
209 210
	/* Number of active cfq groups on group service tree */
	int nr_groups;
211

212 213
	/*
	 * The priority currently being served
214
	 */
215
	enum wl_prio_t serving_prio;
216 217
	enum wl_type_t serving_type;
	unsigned long workload_expires;
218
	struct cfq_group *serving_group;
219
	bool noidle_tree_requires_idle;
220 221 222 223 224 225 226 227

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

228 229
	unsigned int busy_queues;

230
	int rq_in_driver[2];
231
	int sync_flight;
232 233 234 235 236

	/*
	 * queue-depth detection
	 */
	int rq_queued;
237
	int hw_tag;
238 239 240 241 242 243 244 245
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
246

247 248 249 250
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
251
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
252

253 254 255
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

256 257 258 259 260
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
261

J
Jens Axboe 已提交
262
	sector_t last_position;
L
Linus Torvalds 已提交
263 264 265 266 267

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
268
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
269 270
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
271 272 273
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
274
	unsigned int cfq_latency;
275 276

	struct list_head cic_list;
L
Linus Torvalds 已提交
277

278 279 280 281
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
282 283

	unsigned long last_end_sync_rq;
284 285 286

	/* List of cfq groups being managed on this device*/
	struct hlist_head cfqg_list;
L
Linus Torvalds 已提交
287 288
};

289 290
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

291 292
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
293
					    enum wl_type_t type,
294 295
					    struct cfq_data *cfqd)
{
296 297 298
	if (!cfqg)
		return NULL;

299
	if (prio == IDLE_WORKLOAD)
300
		return &cfqg->service_tree_idle;
301

302
	return &cfqg->service_trees[prio][type];
303 304
}

J
Jens Axboe 已提交
305
enum cfqq_state_flags {
306 307
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
308
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
309 310 311 312
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
313
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
314
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
315
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
316
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
J
Jens Axboe 已提交
317 318 319 320 321
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
322
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
323 324 325
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
326
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
327 328 329
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
330
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
331 332 333 334
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
335
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
336 337 338 339
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
340
CFQ_CFQQ_FNS(slice_new);
341
CFQ_CFQQ_FNS(sync);
342
CFQ_CFQQ_FNS(coop);
343
CFQ_CFQQ_FNS(deep);
J
Jens Axboe 已提交
344 345
#undef CFQ_CFQQ_FNS

V
Vivek Goyal 已提交
346 347 348 349 350 351 352 353 354 355 356
#ifdef CONFIG_DEBUG_CFQ_IOSCHED
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
			blkg_path(&(cfqq)->cfqg->blkg), ##args);

#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
				blkg_path(&(cfqg)->blkg), ##args);      \

#else
357 358
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
V
Vivek Goyal 已提交
359 360
#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
#endif
361 362 363
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

364 365 366 367 368 369 370 371 372 373 374
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


375 376 377 378 379 380 381 382 383
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

384 385 386 387 388 389 390 391 392 393

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

394 395 396
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
397 398
{
	if (wl == IDLE_WORKLOAD)
399
		return cfqg->service_tree_idle.count;
400

401 402 403
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
404 405
}

406
static void cfq_dispatch_insert(struct request_queue *, struct request *);
407
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
408
				       struct io_context *, gfp_t);
409
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
410 411
						struct io_context *);

412 413 414 415 416
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

417
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
418
					    bool is_sync)
419
{
420
	return cic->cfqq[is_sync];
421 422 423
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
424
				struct cfq_queue *cfqq, bool is_sync)
425
{
426
	cic->cfqq[is_sync] = cfqq;
427 428 429 430 431 432
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
433
static inline bool cfq_bio_sync(struct bio *bio)
434
{
435
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
436
}
L
Linus Torvalds 已提交
437

A
Andrew Morton 已提交
438 439 440 441
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
442
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
443
{
444 445
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
446
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
447
	}
A
Andrew Morton 已提交
448 449
}

450
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
451 452 453
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

454
	return !cfqd->rq_queued;
A
Andrew Morton 已提交
455 456
}

457 458 459 460 461
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
462
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
463
				 unsigned short prio)
464
{
465
	const int base_slice = cfqd->cfq_slice[sync];
466

467 468 469 470
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
471

472 473 474 475
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
476 477
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

523 524 525 526 527 528
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

529 530
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
531
{
532 533 534
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
535
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
536

537 538 539
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
540
		cfq_hist_divisor;
541 542 543 544 545 546 547 548 549
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
550 551
}

552 553 554
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
555 556
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
557 558 559 560 561 562
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
563 564
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
565 566 567
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
568 569 570 571 572 573 574
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
575
			slice = max(slice * group_slice / expect_latency,
576 577 578
				    low_slice);
		}
	}
579
	cfqq->slice_start = jiffies;
580
	cfqq->slice_end = jiffies + slice;
581
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
582 583 584 585 586 587 588
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
589
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
590 591 592 593 594 595 596 597 598
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
599
/*
J
Jens Axboe 已提交
600
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
601
 * We choose the request that is closest to the head right now. Distance
602
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
603
 */
J
Jens Axboe 已提交
604
static struct request *
605
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
606
{
607
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
608
	unsigned long back_max;
609 610 611
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
612

J
Jens Axboe 已提交
613 614 615 616
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
617

J
Jens Axboe 已提交
618 619 620 621
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
622 623 624 625
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
626

627 628
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
645
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
646 647 648 649 650 651

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
652
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
653 654

	/* Found required data */
655 656 657 658 659 660

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
661
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
662
		if (d1 < d2)
J
Jens Axboe 已提交
663
			return rq1;
664
		else if (d2 < d1)
J
Jens Axboe 已提交
665
			return rq2;
666 667
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
668
				return rq1;
669
			else
J
Jens Axboe 已提交
670
				return rq2;
671
		}
L
Linus Torvalds 已提交
672

673
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
674
		return rq1;
675
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
676 677
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
678 679 680 681 682 683 684 685
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
686
			return rq1;
L
Linus Torvalds 已提交
687
		else
J
Jens Axboe 已提交
688
			return rq2;
L
Linus Torvalds 已提交
689 690 691
	}
}

692 693 694
/*
 * The below is leftmost cache rbtree addon
 */
695
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
696
{
697 698 699 700
	/* Service tree is empty */
	if (!root->count)
		return NULL;

701 702 703
	if (!root->left)
		root->left = rb_first(&root->rb);

704 705 706 707
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
708 709
}

710 711 712 713 714 715 716 717 718 719 720
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

721 722 723 724 725 726
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

727 728 729 730
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
731
	rb_erase_init(n, &root->rb);
732
	--root->count;
733 734
}

L
Linus Torvalds 已提交
735 736 737
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
738 739 740
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
741
{
742 743
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
744
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
745

746
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
747 748

	if (rbprev)
J
Jens Axboe 已提交
749
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
750

751
	if (rbnext)
J
Jens Axboe 已提交
752
		next = rb_entry_rq(rbnext);
753 754 755
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
756
			next = rb_entry_rq(rbnext);
757
	}
L
Linus Torvalds 已提交
758

759
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
760 761
}

762 763
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
764
{
765 766 767
	/*
	 * just an approximation, should be ok.
	 */
768
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
769
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
770 771
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
831 832
	cfqd->nr_groups++;
	st->total_weight += cfqg->weight;
833 834 835 836 837 838 839
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

840 841 842
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

843 844
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
845

846 847 848 849
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

V
Vivek Goyal 已提交
850
	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
851
	cfqg->on_st = false;
852 853
	cfqd->nr_groups--;
	st->total_weight -= cfqg->weight;
854 855
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
856
	cfqg->saved_workload_slice = 0;
857
	blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
}

static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
{
	unsigned int slice_used, allocated_slice;

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
		allocated_slice = cfqq->slice_end - cfqq->slice_start;
		if (slice_used > allocated_slice)
			slice_used = allocated_slice;
	}

884 885
	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
				cfqq->nr_sectors);
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
				struct cfq_queue *cfqq)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	unsigned int used_sl;

	used_sl = cfq_cfqq_slice_usage(cfqq);

	/* Can't update vdisktime while group is on service tree */
	cfq_rb_erase(&cfqg->rb_node, st);
	cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
	__cfq_group_service_tree_add(st, cfqg);

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
V
Vivek Goyal 已提交
910 911 912

	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
					st->min_vdisktime);
913 914
	blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
						cfqq->nr_sectors);
915 916
}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct cfq_group, blkg);
	return NULL;
}

static struct cfq_group *
cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
	struct cfq_group *cfqg = NULL;
	void *key = cfqd;
	int i, j;
	struct cfq_rb_root *st;
933 934
	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
	unsigned int major, minor;
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952

	/* Do we need to take this reference */
	if (!css_tryget(&blkcg->css))
		return NULL;;

	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
	if (cfqg || !create)
		goto done;

	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
	if (!cfqg)
		goto done;

	cfqg->weight = blkcg->weight;
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
	RB_CLEAR_NODE(&cfqg->rb_node);

953 954 955 956 957 958 959 960
	/*
	 * Take the initial reference that will be released on destroy
	 * This can be thought of a joint reference by cgroup and
	 * elevator which will be dropped by either elevator exit
	 * or cgroup deletion path depending on who is exiting first.
	 */
	atomic_set(&cfqg->ref, 1);

961
	/* Add group onto cgroup list */
962 963 964
	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
					MKDEV(major, minor));
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998

	/* Add group on cfqd list */
	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);

done:
	css_put(&blkcg->css);
	return cfqg;
}

/*
 * Search for the cfq group current task belongs to. If create = 1, then also
 * create the cfq group if it does not exist. request_queue lock must be held.
 */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	struct cgroup *cgroup;
	struct cfq_group *cfqg = NULL;

	rcu_read_lock();
	cgroup = task_cgroup(current, blkio_subsys_id);
	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
	if (!cfqg && create)
		cfqg = &cfqd->root_group;
	rcu_read_unlock();
	return cfqg;
}

static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	/* Currently, all async queues are mapped to root group */
	if (!cfq_cfqq_sync(cfqq))
		cfqg = &cfqq->cfqd->root_group;

	cfqq->cfqg = cfqg;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	/* cfqq reference on cfqg */
	atomic_inc(&cfqq->cfqg->ref);
}

static void cfq_put_cfqg(struct cfq_group *cfqg)
{
	struct cfq_rb_root *st;
	int i, j;

	BUG_ON(atomic_read(&cfqg->ref) <= 0);
	if (!atomic_dec_and_test(&cfqg->ref))
		return;
	for_each_cfqg_st(cfqg, i, j, st)
		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
	kfree(cfqg);
}

static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	/* Something wrong if we are trying to remove same group twice */
	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));

	hlist_del_init(&cfqg->cfqd_node);

	/*
	 * Put the reference taken at the time of creation so that when all
	 * queues are gone, group can be destroyed.
	 */
	cfq_put_cfqg(cfqg);
}

static void cfq_release_cfq_groups(struct cfq_data *cfqd)
{
	struct hlist_node *pos, *n;
	struct cfq_group *cfqg;

	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
		/*
		 * If cgroup removal path got to blk_group first and removed
		 * it from cgroup list, then it will take care of destroying
		 * cfqg also.
		 */
		if (!blkiocg_del_blkio_group(&cfqg->blkg))
			cfq_destroy_cfqg(cfqd, cfqg);
	}
1044
}
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

/*
 * Blk cgroup controller notification saying that blkio_group object is being
 * delinked as associated cgroup object is going away. That also means that
 * no new IO will come in this group. So get rid of this group as soon as
 * any pending IO in the group is finished.
 *
 * This function is called under rcu_read_lock(). key is the rcu protected
 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
 * read lock.
 *
 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
 * it should not be NULL as even if elevator was exiting, cgroup deltion
 * path got to it first.
 */
void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
{
	unsigned long  flags;
	struct cfq_data *cfqd = key;

	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
#else /* GROUP_IOSCHED */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}
static inline void
cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
	cfqq->cfqg = cfqg;
}

1080 1081 1082
static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}

1083 1084
#endif /* GROUP_IOSCHED */

1085
/*
1086
 * The cfqd->service_trees holds all pending cfq_queue's that have
1087 1088 1089
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
1090
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1091
				 bool add_front)
1092
{
1093 1094
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
1095
	unsigned long rb_key;
1096
	struct cfq_rb_root *service_tree;
1097
	int left;
1098
	int new_cfqq = 1;
1099

1100 1101
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
						cfqq_type(cfqq), cfqd);
1102 1103
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
1104
		parent = rb_last(&service_tree->rb);
1105 1106 1107 1108 1109 1110
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
1111 1112 1113 1114 1115 1116
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
1117
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1118
		rb_key -= cfqq->slice_resid;
1119
		cfqq->slice_resid = 0;
1120 1121
	} else {
		rb_key = -HZ;
1122
		__cfqq = cfq_rb_first(service_tree);
1123 1124
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
1125

1126
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1127
		new_cfqq = 0;
1128
		/*
1129
		 * same position, nothing more to do
1130
		 */
1131 1132
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
1133
			return;
L
Linus Torvalds 已提交
1134

1135 1136
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
1137
	}
1138

1139
	left = 1;
1140
	parent = NULL;
1141 1142
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
1143
	while (*p) {
1144
		struct rb_node **n;
1145

1146 1147 1148
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

1149
		/*
1150
		 * sort by key, that represents service time.
1151
		 */
1152
		if (time_before(rb_key, __cfqq->rb_key))
1153
			n = &(*p)->rb_left;
1154
		else {
1155
			n = &(*p)->rb_right;
1156
			left = 0;
1157
		}
1158 1159

		p = n;
1160 1161
	}

1162
	if (left)
1163
		service_tree->left = &cfqq->rb_node;
1164

1165 1166
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
1167 1168
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
1169 1170
	if (add_front || !new_cfqq)
		return;
1171
	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1172 1173
}

1174
static struct cfq_queue *
1175 1176 1177
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
1194
		if (sector > blk_rq_pos(cfqq->next_rq))
1195
			n = &(*p)->rb_right;
1196
		else if (sector < blk_rq_pos(cfqq->next_rq))
1197 1198 1199 1200
			n = &(*p)->rb_left;
		else
			break;
		p = n;
1201
		cfqq = NULL;
1202 1203 1204 1205 1206
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
1207
	return cfqq;
1208 1209 1210 1211 1212 1213 1214
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

1215 1216 1217 1218
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1219 1220 1221 1222 1223 1224

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

1225
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1226 1227
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1228 1229
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
1230 1231 1232
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
1233 1234
}

1235 1236 1237
/*
 * Update cfqq's position in the service tree.
 */
1238
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1239 1240 1241 1242
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
1243
	if (cfq_cfqq_on_rr(cfqq)) {
1244
		cfq_service_tree_add(cfqd, cfqq, 0);
1245 1246
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
1247 1248
}

L
Linus Torvalds 已提交
1249 1250
/*
 * add to busy list of queues for service, trying to be fair in ordering
1251
 * the pending list according to last request service
L
Linus Torvalds 已提交
1252
 */
J
Jens Axboe 已提交
1253
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1254
{
1255
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
1256 1257
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1258 1259
	cfqd->busy_queues++;

1260
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
1261 1262
}

1263 1264 1265 1266
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
1267
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1268
{
1269
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
1270 1271
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1272

1273 1274 1275 1276
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
1277 1278 1279 1280
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1281

1282
	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1283 1284 1285 1286 1287 1288 1289
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
1290
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1291
{
J
Jens Axboe 已提交
1292 1293
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
1294

1295 1296
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
1297

J
Jens Axboe 已提交
1298
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
1299

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
		/*
		 * Queue will be deleted from service tree when we actually
		 * expire it later. Right now just remove it from prio tree
		 * as it is empty.
		 */
		if (cfqq->p_root) {
			rb_erase(&cfqq->p_node, cfqq->p_root);
			cfqq->p_root = NULL;
		}
	}
L
Linus Torvalds 已提交
1311 1312
}

J
Jens Axboe 已提交
1313
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1314
{
J
Jens Axboe 已提交
1315
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
1316
	struct cfq_data *cfqd = cfqq->cfqd;
1317
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
1318

1319
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
1320 1321 1322 1323 1324

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
1325
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
1326
		cfq_dispatch_insert(cfqd->queue, __alias);
1327 1328 1329

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
1330 1331 1332 1333

	/*
	 * check if this request is a better next-serve candidate
	 */
1334
	prev = cfqq->next_rq;
1335
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1336 1337 1338 1339 1340 1341 1342

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

1343
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
1344 1345
}

J
Jens Axboe 已提交
1346
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
1347
{
1348 1349
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
1350
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
1351 1352
}

1353 1354
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
1355
{
1356
	struct task_struct *tsk = current;
1357
	struct cfq_io_context *cic;
1358
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
1359

1360
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1361 1362 1363 1364
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1365 1366 1367
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

1368
		return elv_rb_find(&cfqq->sort_list, sector);
1369
	}
L
Linus Torvalds 已提交
1370 1371 1372 1373

	return NULL;
}

1374
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1375
{
1376
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1377

1378
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
1379
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1380
						rq_in_driver(cfqd));
1381

1382
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1383 1384
}

1385
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1386
{
1387
	struct cfq_data *cfqd = q->elevator->elevator_data;
1388
	const int sync = rq_is_sync(rq);
1389

1390 1391
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
1392
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1393
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
1394 1395
}

1396
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
1397
{
J
Jens Axboe 已提交
1398
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1399

J
Jens Axboe 已提交
1400 1401
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
1402

1403
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1404
	cfq_del_rq_rb(rq);
1405

1406
	cfqq->cfqd->rq_queued--;
1407 1408 1409 1410
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
1411 1412
}

1413 1414
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
1415 1416 1417 1418
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

1419
	__rq = cfq_find_rq_fmerge(cfqd, bio);
1420
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1421 1422
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
1423 1424 1425 1426 1427
	}

	return ELEVATOR_NO_MERGE;
}

1428
static void cfq_merged_request(struct request_queue *q, struct request *req,
1429
			       int type)
L
Linus Torvalds 已提交
1430
{
1431
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
1432
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
1433

J
Jens Axboe 已提交
1434
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
1435 1436 1437 1438
	}
}

static void
1439
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
1440 1441
		    struct request *next)
{
1442
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1443 1444 1445 1446
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1447
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1448
		list_move(&rq->queuelist, &next->queuelist);
1449 1450
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
1451

1452 1453
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
1454
	cfq_remove_request(next);
1455 1456
}

1457
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1458 1459 1460
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1461
	struct cfq_io_context *cic;
1462 1463
	struct cfq_queue *cfqq;

1464 1465 1466
	/* Deny merge if bio and rq don't belong to same cfq group */
	if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
		return false;
1467
	/*
1468
	 * Disallow merge of a sync bio into an async request.
1469
	 */
1470
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1471
		return false;
1472 1473

	/*
1474 1475
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
1476
	 */
1477
	cic = cfq_cic_lookup(cfqd, current->io_context);
1478
	if (!cic)
1479
		return false;
1480

1481
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1482
	return cfqq == RQ_CFQQ(rq);
1483 1484
}

J
Jens Axboe 已提交
1485 1486
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1487 1488
{
	if (cfqq) {
1489
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1490 1491
		cfqq->slice_start = 0;
		cfqq->dispatch_start = jiffies;
1492
		cfqq->slice_end = 0;
1493
		cfqq->slice_dispatch = 0;
1494
		cfqq->nr_sectors = 0;
1495 1496

		cfq_clear_cfqq_wait_request(cfqq);
1497
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1498 1499
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1500
		cfq_mark_cfqq_slice_new(cfqq);
1501 1502

		del_timer(&cfqd->idle_slice_timer);
1503 1504 1505 1506 1507
	}

	cfqd->active_queue = cfqq;
}

1508 1509 1510 1511 1512
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1513
		    bool timed_out)
1514
{
1515 1516
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1517 1518 1519 1520 1521 1522
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1523
	 * store what was left of this slice, if the queue idled/timed out
1524
	 */
1525
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1526
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1527 1528
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1529

1530 1531
	cfq_group_served(cfqd, cfqq->cfqg, cfqq);

1532 1533 1534
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
		cfq_del_cfqq_rr(cfqd, cfqq);

1535
	cfq_resort_rr_list(cfqd, cfqq);
1536 1537 1538 1539

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

1540 1541 1542
	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
		cfqd->grp_service_tree.active = NULL;

1543 1544 1545 1546 1547 1548
	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1549
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1550 1551 1552 1553
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1554
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1555 1556
}

1557 1558 1559 1560
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1561
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1562
{
1563
	struct cfq_rb_root *service_tree =
1564 1565
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
					cfqd->serving_type, cfqd);
1566

1567 1568 1569
	if (!cfqd->rq_queued)
		return NULL;

1570 1571 1572
	/* There is nothing to dispatch */
	if (!service_tree)
		return NULL;
1573 1574 1575
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1576 1577
}

1578 1579
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
1580
	struct cfq_group *cfqg;
1581 1582 1583 1584 1585 1586 1587
	struct cfq_queue *cfqq;
	int i, j;
	struct cfq_rb_root *st;

	if (!cfqd->rq_queued)
		return NULL;

1588 1589 1590 1591
	cfqg = cfq_get_next_cfqg(cfqd);
	if (!cfqg)
		return NULL;

1592 1593 1594 1595 1596 1597
	for_each_cfqg_st(cfqg, i, j, st)
		if ((cfqq = cfq_rb_first(st)) != NULL)
			return cfqq;
	return NULL;
}

1598 1599 1600
/*
 * Get and set a new active queue for service.
 */
1601 1602
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1603
{
1604
	if (!cfqq)
1605
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1606

1607
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1608
	return cfqq;
1609 1610
}

1611 1612 1613
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1614 1615
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1616
	else
1617
		return cfqd->last_position - blk_rq_pos(rq);
1618 1619
}

1620 1621
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1622

1623 1624
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1625
{
1626
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1627

1628 1629
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1630

1631
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1632 1633
}

1634 1635 1636
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1637
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1649
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1650 1651 1652 1653 1654 1655 1656 1657
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1658
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1659 1660
		return __cfqq;

1661
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1662 1663 1664 1665 1666 1667 1668
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1669
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1686
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1687
{
1688 1689
	struct cfq_queue *cfqq;

1690 1691 1692 1693 1694
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1695
	/*
1696 1697 1698
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1699
	 */
1700 1701 1702 1703
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

1704 1705 1706 1707
	/* If new queue belongs to different cfq_group, don't choose it */
	if (cur_cfqq->cfqg != cfqq->cfqg)
		return NULL;

J
Jeff Moyer 已提交
1708 1709 1710 1711 1712
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1713 1714
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1715

1716 1717 1718 1719 1720 1721
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1722
	return cfqq;
J
Jens Axboe 已提交
1723 1724
}

1725 1726 1727 1728 1729 1730 1731
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1732
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1733

1734 1735 1736
	BUG_ON(!service_tree);
	BUG_ON(!service_tree->count);

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1749
	return service_tree->count == 1;
1750 1751
}

J
Jens Axboe 已提交
1752
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1753
{
1754
	struct cfq_queue *cfqq = cfqd->active_queue;
1755
	struct cfq_io_context *cic;
1756 1757
	unsigned long sl;

1758
	/*
J
Jens Axboe 已提交
1759 1760 1761
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1762
	 */
J
Jens Axboe 已提交
1763
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1764 1765
		return;

1766
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1767
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1768 1769 1770 1771

	/*
	 * idle is disabled, either manually or by past process history
	 */
1772
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1773 1774
		return;

1775
	/*
1776
	 * still active requests from this queue, don't idle
1777
	 */
1778
	if (cfqq->dispatched)
1779 1780
		return;

1781 1782 1783
	/*
	 * task has exited, don't wait
	 */
1784
	cic = cfqd->active_cic;
1785
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1786 1787
		return;

1788 1789 1790 1791 1792 1793 1794 1795 1796
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1797
	cfq_mark_cfqq_wait_request(cfqq);
1798

J
Jens Axboe 已提交
1799
	sl = cfqd->cfq_slice_idle;
1800

1801
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1802
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1803 1804
}

1805 1806 1807
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1808
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1809
{
1810
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1811
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1812

1813 1814
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1815
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1816
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1817
	cfqq->dispatched++;
1818
	elv_dispatch_sort(q, rq);
1819 1820 1821

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
1822
	cfqq->nr_sectors += blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1823 1824 1825 1826 1827
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1828
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1829
{
1830
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1831

J
Jens Axboe 已提交
1832
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1833
		return NULL;
1834 1835 1836

	cfq_mark_cfqq_fifo_expire(cfqq);

1837 1838
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1839

1840
	rq = rq_entry_fifo(cfqq->fifo.next);
1841
	if (time_before(jiffies, rq_fifo_time(rq)))
1842
		rq = NULL;
L
Linus Torvalds 已提交
1843

1844
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1845
	return rq;
L
Linus Torvalds 已提交
1846 1847
}

1848 1849 1850 1851
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1852

1853
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1854

1855
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1856 1857
}

J
Jeff Moyer 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1873
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1902 1903
}

1904 1905 1906
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
				struct cfq_group *cfqg, enum wl_prio_t prio,
				bool prio_changed)
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
1920
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1921 1922
			return cur_best;
		cur_best = SYNC_WORKLOAD;
1923
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1924 1925 1926 1927 1928 1929 1930
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
1931
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

1943
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1944 1945 1946 1947 1948
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;
1949
	struct cfq_rb_root *st;
1950
	unsigned group_slice;
1951

1952 1953 1954 1955 1956 1957
	if (!cfqg) {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

1958
	/* Choose next priority. RT > BE > IDLE */
1959
	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1960
		cfqd->serving_prio = RT_WORKLOAD;
1961
	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
1975 1976 1977
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
1989 1990 1991 1992
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1993 1994 1995 1996 1997 1998

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
1999 2000 2001 2002 2003
	group_slice = cfq_group_slice(cfqd, cfqg);

	slice = group_slice * count /
		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
2015
	cfqd->noidle_tree_requires_idle = false;
2016 2017
}

2018 2019 2020
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2021
	struct cfq_group *cfqg;
2022 2023 2024

	if (RB_EMPTY_ROOT(&st->rb))
		return NULL;
2025 2026 2027 2028
	cfqg = cfq_rb_first_group(st);
	st->active = &cfqg->rb_node;
	update_min_vdisktime(st);
	return cfqg;
2029 2030
}

2031 2032
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
2033 2034 2035
	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);

	cfqd->serving_group = cfqg;
2036 2037 2038 2039 2040 2041 2042

	/* Restore the workload type data */
	if (cfqg->saved_workload_slice) {
		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
		cfqd->serving_type = cfqg->saved_workload;
		cfqd->serving_prio = cfqg->saved_serving_prio;
	}
2043
	choose_service_tree(cfqd, cfqg);
2044 2045
}

2046
/*
2047 2048
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
2049
 */
2050
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
2051
{
2052
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
2053

2054 2055 2056
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
2057

2058 2059
	if (!cfqd->rq_queued)
		return NULL;
2060
	/*
J
Jens Axboe 已提交
2061
	 * The active queue has run out of time, expire it and select new.
2062
	 */
2063
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
2064
		goto expire;
L
Linus Torvalds 已提交
2065

2066
	/*
J
Jens Axboe 已提交
2067 2068
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
2069
	 */
2070
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2071
		goto keep_queue;
J
Jens Axboe 已提交
2072

2073 2074 2075 2076
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
2077
	 * tree.  If possible, merge the expiring queue with the new cfqq.
2078
	 */
2079
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
2080 2081 2082
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
2083
		goto expire;
J
Jeff Moyer 已提交
2084
	}
2085

J
Jens Axboe 已提交
2086 2087 2088 2089 2090
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
2091
	if (timer_pending(&cfqd->idle_slice_timer) ||
2092
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2093 2094
		cfqq = NULL;
		goto keep_queue;
2095 2096
	}

J
Jens Axboe 已提交
2097
expire:
2098
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
2099
new_queue:
2100 2101 2102 2103 2104
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
2105
		cfq_choose_cfqg(cfqd);
2106

2107
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2108
keep_queue:
J
Jens Axboe 已提交
2109
	return cfqq;
2110 2111
}

J
Jens Axboe 已提交
2112
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2113 2114 2115 2116 2117 2118 2119 2120 2121
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
2122 2123 2124

	/* By default cfqq is not expired if it is empty. Do it explicitly */
	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2125 2126 2127
	return dispatched;
}

2128 2129 2130 2131
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
2132
static int cfq_forced_dispatch(struct cfq_data *cfqd)
2133
{
2134
	struct cfq_queue *cfqq;
2135
	int dispatched = 0;
2136

2137 2138
	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2139

2140
	cfq_slice_expired(cfqd, 0);
2141 2142
	BUG_ON(cfqd->busy_queues);

2143
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2144 2145 2146
	return dispatched;
}

2147
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2148 2149
{
	unsigned int max_dispatch;
2150

2151 2152 2153
	/*
	 * Drain async requests before we start sync IO
	 */
2154
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2155
		return false;
2156

2157 2158 2159 2160
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2161
		return false;
2162 2163 2164 2165

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
2166

2167 2168 2169 2170 2171 2172 2173
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
2174
		if (cfq_class_idle(cfqq))
2175
			return false;
2176

2177 2178 2179 2180
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
2181
			return false;
2182

2183
		/*
2184
		 * Sole queue user, no limit
2185
		 */
2186
		max_dispatch = -1;
2187 2188 2189 2190 2191 2192 2193
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
2194
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2195 2196
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
2197

2198
		depth = last_sync / cfqd->cfq_slice[1];
2199 2200
		if (!depth && !cfqq->dispatched)
			depth = 1;
2201 2202
		if (depth < max_dispatch)
			max_dispatch = depth;
2203
	}
2204

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
2263 2264
		return 0;

2265
	/*
2266
	 * Dispatch a request from this cfqq, if it is allowed
2267
	 */
2268 2269 2270
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

2271
	cfqq->slice_dispatch++;
2272
	cfq_clear_cfqq_must_dispatch(cfqq);
2273

2274 2275 2276 2277 2278 2279 2280 2281 2282
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
2283 2284
	}

2285
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2286
	return 1;
L
Linus Torvalds 已提交
2287 2288 2289
}

/*
J
Jens Axboe 已提交
2290 2291
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
2292
 *
2293
 * Each cfq queue took a reference on the parent group. Drop it now.
L
Linus Torvalds 已提交
2294 2295 2296 2297
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
2298
	struct cfq_data *cfqd = cfqq->cfqd;
2299
	struct cfq_group *cfqg;
2300 2301

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
2302 2303 2304 2305

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

2306
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
2307
	BUG_ON(rb_first(&cfqq->sort_list));
2308
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2309
	cfqg = cfqq->cfqg;
L
Linus Torvalds 已提交
2310

2311
	if (unlikely(cfqd->active_queue == cfqq)) {
2312
		__cfq_slice_expired(cfqd, cfqq, 0);
2313
		cfq_schedule_dispatch(cfqd);
2314
	}
2315

2316
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
2317
	kmem_cache_free(cfq_pool, cfqq);
2318
	cfq_put_cfqg(cfqg);
L
Linus Torvalds 已提交
2319 2320
}

2321 2322 2323
/*
 * Must always be called with the rcu_read_lock() held
 */
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

2335
/*
2336
 * Call func for each cic attached to this ioc.
2337
 */
2338
static void
2339 2340
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
2341
{
2342
	rcu_read_lock();
2343
	__call_for_each_cic(ioc, func);
2344
	rcu_read_unlock();
2345 2346 2347 2348 2349 2350 2351 2352 2353
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
2354
	elv_ioc_count_dec(cfq_ioc_count);
2355

2356 2357 2358 2359 2360 2361 2362
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
2363
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2364 2365 2366 2367 2368
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
2369
}
2370

2371 2372 2373
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2384
	hlist_del_rcu(&cic->cic_list);
2385 2386
	spin_unlock_irqrestore(&ioc->lock, flags);

2387
	cfq_cic_free(cic);
2388 2389
}

2390 2391 2392 2393 2394
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
2395 2396 2397
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
2398 2399 2400 2401
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
2402
	 */
2403
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
2404 2405
}

2406
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2407
{
J
Jeff Moyer 已提交
2408 2409
	struct cfq_queue *__cfqq, *next;

2410
	if (unlikely(cfqq == cfqd->active_queue)) {
2411
		__cfq_slice_expired(cfqd, cfqq, 0);
2412
		cfq_schedule_dispatch(cfqd);
2413
	}
2414

J
Jeff Moyer 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

2431 2432
	cfq_put_queue(cfqq);
}
2433

2434 2435 2436
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
2437 2438
	struct io_context *ioc = cic->ioc;

2439
	list_del_init(&cic->queue_list);
2440 2441 2442 2443

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
2444
	smp_wmb();
2445
	cic->dead_key = (unsigned long) cic->key;
2446 2447
	cic->key = NULL;

2448 2449 2450
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

2451 2452 2453
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
2454 2455
	}

2456 2457 2458
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
2459
	}
2460 2461
}

2462 2463
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
2464 2465 2466 2467
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
2468
		struct request_queue *q = cfqd->queue;
2469
		unsigned long flags;
2470

2471
		spin_lock_irqsave(q->queue_lock, flags);
2472 2473 2474 2475 2476 2477 2478 2479 2480

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

2481
		spin_unlock_irqrestore(q->queue_lock, flags);
2482
	}
L
Linus Torvalds 已提交
2483 2484
}

2485 2486 2487 2488
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
2489
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
2490
{
2491
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
2492 2493
}

2494
static struct cfq_io_context *
A
Al Viro 已提交
2495
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2496
{
2497
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
2498

2499 2500
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
2501
	if (cic) {
2502
		cic->last_end_request = jiffies;
2503
		INIT_LIST_HEAD(&cic->queue_list);
2504
		INIT_HLIST_NODE(&cic->cic_list);
2505 2506
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
2507
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
2508 2509 2510 2511 2512
	}

	return cic;
}

2513
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2514 2515 2516 2517
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
2518
	if (!cfq_cfqq_prio_changed(cfqq))
2519 2520
		return;

2521
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2522
	switch (ioprio_class) {
2523 2524 2525 2526
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
2527
		 * no prio set, inherit CPU scheduling settings
2528 2529
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
2530
		cfqq->ioprio_class = task_nice_ioclass(tsk);
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
2545 2546 2547 2548 2549 2550 2551 2552
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
2553
	cfq_clear_cfqq_prio_changed(cfqq);
2554 2555
}

J
Jens Axboe 已提交
2556
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2557
{
2558 2559
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
2560
	unsigned long flags;
2561

2562 2563 2564
	if (unlikely(!cfqd))
		return;

2565
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2566

2567
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2568 2569
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2570 2571
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2572
		if (new_cfqq) {
2573
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2574 2575
			cfq_put_queue(cfqq);
		}
2576
	}
2577

2578
	cfqq = cic->cfqq[BLK_RW_SYNC];
2579 2580 2581
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2582
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2583 2584
}

2585
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2586
{
2587
	call_for_each_cic(ioc, changed_ioprio);
2588
	ioc->ioprio_changed = 0;
2589 2590
}

2591
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2592
			  pid_t pid, bool is_sync)
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
{
	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
	struct cfq_data *cfqd = cic->key;
	unsigned long flags;
	struct request_queue *q;

	if (unlikely(!cfqd))
		return;

	q = cfqd->queue;

	spin_lock_irqsave(q->queue_lock, flags);

	if (sync_cfqq) {
		/*
		 * Drop reference to sync queue. A new sync queue will be
		 * assigned in new group upon arrival of a fresh request.
		 */
		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
		cic_set_cfqq(cic, NULL, 1);
		cfq_put_queue(sync_cfqq);
	}

	spin_unlock_irqrestore(q->queue_lock, flags);
}

static void cfq_ioc_set_cgroup(struct io_context *ioc)
{
	call_for_each_cic(ioc, changed_cgroup);
	ioc->cgroup_changed = 0;
}
#endif  /* CONFIG_CFQ_GROUP_IOSCHED */

2646
static struct cfq_queue *
2647
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2648
		     struct io_context *ioc, gfp_t gfp_mask)
2649 2650
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2651
	struct cfq_io_context *cic;
2652
	struct cfq_group *cfqg;
2653 2654

retry:
2655
	cfqg = cfq_get_cfqg(cfqd, 1);
2656
	cic = cfq_cic_lookup(cfqd, ioc);
2657 2658
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2659

2660 2661 2662 2663 2664 2665
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2666 2667 2668 2669 2670
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2671
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2672
					gfp_mask | __GFP_ZERO,
2673
					cfqd->queue->node);
2674
			spin_lock_irq(cfqd->queue->queue_lock);
2675 2676
			if (new_cfqq)
				goto retry;
2677
		} else {
2678 2679 2680
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2681 2682
		}

2683 2684 2685
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
2686
			cfq_link_cfqq_cfqg(cfqq, cfqg);
2687 2688 2689
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2690 2691 2692 2693 2694 2695 2696 2697
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2698 2699 2700
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2701
	switch (ioprio_class) {
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2713
static struct cfq_queue *
2714
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2715 2716
	      gfp_t gfp_mask)
{
2717 2718
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2719
	struct cfq_queue **async_cfqq = NULL;
2720 2721
	struct cfq_queue *cfqq = NULL;

2722 2723 2724 2725 2726
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2727
	if (!cfqq)
2728
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2729 2730 2731 2732

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2733
	if (!is_sync && !(*async_cfqq)) {
2734
		atomic_inc(&cfqq->ref);
2735
		*async_cfqq = cfqq;
2736 2737 2738 2739 2740 2741
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2742 2743 2744
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2745
static void
2746 2747
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2748
{
2749 2750
	unsigned long flags;

2751
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2752

2753 2754
	spin_lock_irqsave(&ioc->lock, flags);

2755
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2756

2757
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2758
	hlist_del_rcu(&cic->cic_list);
2759 2760 2761
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2762 2763
}

2764
static struct cfq_io_context *
2765
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2766 2767
{
	struct cfq_io_context *cic;
2768
	unsigned long flags;
2769
	void *k;
2770

2771 2772 2773
	if (unlikely(!ioc))
		return NULL;

2774 2775
	rcu_read_lock();

J
Jens Axboe 已提交
2776 2777 2778
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2779
	cic = rcu_dereference(ioc->ioc_data);
2780 2781
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2782
		return cic;
2783
	}
J
Jens Axboe 已提交
2784

2785 2786 2787 2788 2789
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2790 2791 2792
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2793
			cfq_drop_dead_cic(cfqd, ioc, cic);
2794
			rcu_read_lock();
2795
			continue;
2796
		}
2797

2798
		spin_lock_irqsave(&ioc->lock, flags);
2799
		rcu_assign_pointer(ioc->ioc_data, cic);
2800
		spin_unlock_irqrestore(&ioc->lock, flags);
2801 2802
		break;
	} while (1);
2803

2804
	return cic;
2805 2806
}

2807 2808 2809 2810 2811
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2812 2813
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2814
{
2815
	unsigned long flags;
2816
	int ret;
2817

2818 2819 2820 2821
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2822

2823 2824 2825
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2826 2827
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2828
		spin_unlock_irqrestore(&ioc->lock, flags);
2829

2830 2831 2832 2833 2834 2835 2836
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2837 2838
	}

2839 2840
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2841

2842
	return ret;
2843 2844
}

L
Linus Torvalds 已提交
2845 2846 2847
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2848
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2849 2850
 */
static struct cfq_io_context *
2851
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2852
{
2853
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2854 2855
	struct cfq_io_context *cic;

2856
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2857

2858
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2859 2860 2861
	if (!ioc)
		return NULL;

2862
	cic = cfq_cic_lookup(cfqd, ioc);
2863 2864
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2865

2866 2867 2868
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2869

2870 2871 2872
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2873
out:
2874 2875 2876 2877
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

2878 2879 2880 2881
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (unlikely(ioc->cgroup_changed))
		cfq_ioc_set_cgroup(ioc);
#endif
L
Linus Torvalds 已提交
2882
	return cic;
2883 2884
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2885 2886 2887 2888 2889
err:
	put_io_context(ioc);
	return NULL;
}

2890 2891
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2892
{
2893 2894
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2895

2896 2897 2898 2899
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2900

2901
static void
2902
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2903
		       struct request *rq)
2904 2905 2906 2907
{
	sector_t sdist;
	u64 total;

2908
	if (!cfqq->last_request_pos)
2909
		sdist = 0;
2910 2911
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2912
	else
2913
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2914 2915 2916 2917 2918

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2919 2920
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2921
	else
2922
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2923

2924 2925 2926 2927 2928
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2942
}
L
Linus Torvalds 已提交
2943

2944 2945 2946 2947 2948 2949 2950 2951
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2952
	int old_idle, enable_idle;
2953

2954 2955 2956 2957
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2958 2959
		return;

2960
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2961

2962 2963 2964
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

2965
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2966 2967
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
2968 2969
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2970
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2971 2972 2973
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2974 2975
	}

2976 2977 2978 2979 2980 2981 2982
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2983
}
L
Linus Torvalds 已提交
2984

2985 2986 2987 2988
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2989
static bool
2990
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2991
		   struct request *rq)
2992
{
J
Jens Axboe 已提交
2993
	struct cfq_queue *cfqq;
2994

J
Jens Axboe 已提交
2995 2996
	cfqq = cfqd->active_queue;
	if (!cfqq)
2997
		return false;
2998

J
Jens Axboe 已提交
2999
	if (cfq_class_idle(new_cfqq))
3000
		return false;
3001 3002

	if (cfq_class_idle(cfqq))
3003
		return true;
3004

3005 3006 3007 3008
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
3009
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3010
		return true;
3011

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
	if (new_cfqq->cfqg != cfqq->cfqg)
		return false;

	if (cfq_slice_used(cfqq))
		return true;

	/* Allow preemption only if we are idling on sync-noidle tree */
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
	    new_cfqq->service_tree->count == 2 &&
	    RB_EMPTY_ROOT(&cfqq->sort_list))
		return true;

3025 3026 3027 3028 3029
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
3030
		return true;
3031

3032 3033 3034 3035
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3036
		return true;
3037

3038
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3039
		return false;
3040 3041 3042 3043 3044

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
3045
	if (cfq_rq_close(cfqd, cfqq, rq))
3046
		return true;
3047

3048
	return false;
3049 3050 3051 3052 3053 3054 3055 3056
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
3057
	cfq_log_cfqq(cfqd, cfqq, "preempt");
3058
	cfq_slice_expired(cfqd, 1);
3059

3060 3061 3062 3063 3064
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3065 3066

	cfq_service_tree_add(cfqd, cfqq, 1);
3067

3068 3069
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
3070 3071 3072
}

/*
J
Jens Axboe 已提交
3073
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3074 3075 3076
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
3077 3078
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
3079
{
J
Jens Axboe 已提交
3080
	struct cfq_io_context *cic = RQ_CIC(rq);
3081

3082
	cfqd->rq_queued++;
3083 3084 3085
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
3086
	cfq_update_io_thinktime(cfqd, cic);
3087
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
3088 3089
	cfq_update_idle_window(cfqd, cfqq, cic);

3090
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3091 3092 3093

	if (cfqq == cfqd->active_queue) {
		/*
3094 3095 3096
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
3097 3098
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
3099 3100 3101
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
3102
		 */
3103
		if (cfq_cfqq_wait_request(cfqq)) {
3104 3105
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
3106
				del_timer(&cfqd->idle_slice_timer);
3107 3108 3109
				__blk_run_queue(cfqd->queue);
			} else
				cfq_mark_cfqq_must_dispatch(cfqq);
3110
		}
J
Jens Axboe 已提交
3111
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3112 3113 3114
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
3115 3116
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
3117 3118
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
3119
		__blk_run_queue(cfqd->queue);
3120
	}
L
Linus Torvalds 已提交
3121 3122
}

3123
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3124
{
3125
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
3126
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3127

3128
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3129
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3130

3131
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3132
	list_add_tail(&rq->queuelist, &cfqq->fifo);
3133
	cfq_add_rq_rb(rq);
3134

J
Jens Axboe 已提交
3135
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
3136 3137
}

3138 3139 3140 3141 3142 3143
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
3144 3145
	struct cfq_queue *cfqq = cfqd->active_queue;

3146 3147 3148 3149 3150
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
3151 3152

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3153
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3154 3155
		return;

S
Shaohua Li 已提交
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

3166 3167 3168
	if (cfqd->hw_tag_samples++ < 50)
		return;

3169
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3170 3171 3172 3173 3174
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

3175
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3176
{
J
Jens Axboe 已提交
3177
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3178
	struct cfq_data *cfqd = cfqq->cfqd;
3179
	const int sync = rq_is_sync(rq);
3180
	unsigned long now;
L
Linus Torvalds 已提交
3181

3182
	now = jiffies;
V
Vivek Goyal 已提交
3183
	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
L
Linus Torvalds 已提交
3184

3185 3186
	cfq_update_hw_tag(cfqd);

3187
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
3188
	WARN_ON(!cfqq->dispatched);
3189
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
3190
	cfqq->dispatched--;
L
Linus Torvalds 已提交
3191

3192 3193 3194
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

3195
	if (sync) {
J
Jens Axboe 已提交
3196
		RQ_CIC(rq)->last_end_request = now;
3197 3198
		cfqd->last_end_sync_rq = now;
	}
3199 3200 3201 3202 3203 3204

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
3205 3206
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

3207 3208 3209 3210
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
3211
		/*
3212 3213 3214 3215 3216 3217
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
3218
		 */
3219
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3220
			cfq_slice_expired(cfqd, 1);
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
			    || cfqd->noidle_tree_requires_idle)
				cfq_arm_slice_timer(cfqd);
		}
3233
	}
J
Jens Axboe 已提交
3234

3235
	if (!rq_in_driver(cfqd))
3236
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3237 3238
}

3239 3240 3241 3242 3243
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
3244
{
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
3256
		 * unboost the queue (if needed)
3257
		 */
3258 3259
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
3260 3261
	}
}
L
Linus Torvalds 已提交
3262

3263
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3264
{
3265
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
3266
		cfq_mark_cfqq_must_alloc_slice(cfqq);
3267
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
3268
	}
L
Linus Torvalds 已提交
3269

3270 3271 3272
	return ELV_MQUEUE_MAY;
}

3273
static int cfq_may_queue(struct request_queue *q, int rw)
3274 3275 3276
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
3277
	struct cfq_io_context *cic;
3278 3279 3280 3281 3282 3283 3284 3285
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
3286
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3287 3288 3289
	if (!cic)
		return ELV_MQUEUE_MAY;

3290
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3291
	if (cfqq) {
3292
		cfq_init_prio_data(cfqq, cic->ioc);
3293 3294
		cfq_prio_boost(cfqq);

3295
		return __cfq_may_queue(cfqq);
3296 3297 3298
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
3299 3300 3301 3302 3303
}

/*
 * queue lock held here
 */
3304
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
3305
{
J
Jens Axboe 已提交
3306
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
3307

J
Jens Axboe 已提交
3308
	if (cfqq) {
3309
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
3310

3311 3312
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
3313

J
Jens Axboe 已提交
3314
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3315 3316

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
3317
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
3318 3319 3320 3321 3322

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
3323 3324 3325 3326 3327 3328
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3329
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
3330 3331 3332 3333
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
3360
/*
3361
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
3362
 */
3363
static int
3364
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
3365 3366 3367 3368
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
3369
	const bool is_sync = rq_is_sync(rq);
3370
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
3371 3372 3373 3374
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

3375
	cic = cfq_get_io_context(cfqd, gfp_mask);
3376

L
Linus Torvalds 已提交
3377 3378
	spin_lock_irqsave(q->queue_lock, flags);

3379 3380 3381
	if (!cic)
		goto queue_fail;

3382
new_queue:
3383
	cfqq = cic_to_cfqq(cic, is_sync);
3384
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3385
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3386
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
3387
	} else {
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
3398 3399 3400 3401 3402 3403 3404 3405
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3406
	}
L
Linus Torvalds 已提交
3407 3408

	cfqq->allocated[rw]++;
3409
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
3410

J
Jens Axboe 已提交
3411
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
3412

J
Jens Axboe 已提交
3413 3414 3415
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
3416

3417 3418 3419
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
3420

3421
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3422
	spin_unlock_irqrestore(q->queue_lock, flags);
3423
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
3424 3425 3426
	return 1;
}

3427
static void cfq_kick_queue(struct work_struct *work)
3428
{
3429
	struct cfq_data *cfqd =
3430
		container_of(work, struct cfq_data, unplug_work);
3431
	struct request_queue *q = cfqd->queue;
3432

3433
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
3434
	__blk_run_queue(cfqd->queue);
3435
	spin_unlock_irq(q->queue_lock);
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
3446
	int timed_out = 1;
3447

3448 3449
	cfq_log(cfqd, "idle timer fired");

3450 3451
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

3452 3453
	cfqq = cfqd->active_queue;
	if (cfqq) {
3454 3455
		timed_out = 0;

3456 3457 3458 3459 3460 3461
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

3462 3463 3464
		/*
		 * expired
		 */
3465
		if (cfq_slice_used(cfqq))
3466 3467 3468 3469 3470 3471
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
3472
		if (!cfqd->busy_queues)
3473 3474 3475 3476 3477
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
3478
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3479
			goto out_kick;
3480 3481 3482 3483 3484

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
3485 3486
	}
expire:
3487
	cfq_slice_expired(cfqd, timed_out);
3488
out_kick:
3489
	cfq_schedule_dispatch(cfqd);
3490 3491 3492 3493
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
3494 3495 3496
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
3497
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
3498
}
3499

3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
3510 3511 3512

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
3513 3514
}

J
Jens Axboe 已提交
3515
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
3516
{
3517
	struct cfq_data *cfqd = e->elevator_data;
3518
	struct request_queue *q = cfqd->queue;
3519

J
Jens Axboe 已提交
3520
	cfq_shutdown_timer_wq(cfqd);
3521

3522
	spin_lock_irq(q->queue_lock);
3523

3524
	if (cfqd->active_queue)
3525
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3526 3527

	while (!list_empty(&cfqd->cic_list)) {
3528 3529 3530
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
3531 3532

		__cfq_exit_single_io_context(cfqd, cic);
3533
	}
3534

3535
	cfq_put_async_queues(cfqd);
3536 3537
	cfq_release_cfq_groups(cfqd);
	blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3538

3539
	spin_unlock_irq(q->queue_lock);
3540 3541 3542

	cfq_shutdown_timer_wq(cfqd);

3543 3544
	/* Wait for cfqg->blkg->key accessors to exit their grace periods. */
	synchronize_rcu();
3545
	kfree(cfqd);
L
Linus Torvalds 已提交
3546 3547
}

3548
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
3549 3550
{
	struct cfq_data *cfqd;
3551
	int i, j;
3552
	struct cfq_group *cfqg;
3553
	struct cfq_rb_root *st;
L
Linus Torvalds 已提交
3554

3555
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
3556
	if (!cfqd)
J
Jens Axboe 已提交
3557
		return NULL;
L
Linus Torvalds 已提交
3558

3559 3560 3561
	/* Init root service tree */
	cfqd->grp_service_tree = CFQ_RB_ROOT;

3562 3563
	/* Init root group */
	cfqg = &cfqd->root_group;
3564 3565
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
3566
	RB_CLEAR_NODE(&cfqg->rb_node);
3567

3568 3569 3570
	/* Give preference to root group over other groups */
	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;

3571
#ifdef CONFIG_CFQ_GROUP_IOSCHED
3572 3573 3574 3575 3576
	/*
	 * Take a reference to root group which we never drop. This is just
	 * to make sure that cfq_put_cfqg() does not try to kfree root group
	 */
	atomic_set(&cfqg->ref, 1);
3577 3578
	blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
					0);
3579
#endif
3580 3581 3582 3583 3584 3585 3586 3587
	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3588 3589 3590 3591 3592 3593 3594
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);
3595
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3596

3597
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
3598 3599 3600

	cfqd->queue = q;

3601 3602 3603 3604
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

3605
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3606

L
Linus Torvalds 已提交
3607
	cfqd->cfq_quantum = cfq_quantum;
3608 3609
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
3610 3611
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
3612 3613 3614 3615
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
3616
	cfqd->cfq_latency = 1;
3617
	cfqd->hw_tag = -1;
3618
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
3619
	return cfqd;
L
Linus Torvalds 已提交
3620 3621 3622 3623
}

static void cfq_slab_kill(void)
{
3624 3625 3626 3627
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
3628 3629 3630 3631 3632 3633 3634 3635
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3636
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3637 3638 3639
	if (!cfq_pool)
		goto fail;

3640
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3669
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3670
{									\
3671
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3672 3673 3674 3675 3676 3677
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3678 3679
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3680 3681
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3682 3683 3684 3685
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3686
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3687 3688 3689
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3690
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3691
{									\
3692
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3706 3707 3708 3709
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3710
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3711 3712
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3713 3714 3715
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3716 3717
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3718
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3719 3720
#undef STORE_FUNCTION

3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3734
	CFQ_ATTR(low_latency),
3735
	__ATTR_NULL
L
Linus Torvalds 已提交
3736 3737 3738 3739 3740 3741 3742
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3743
		.elevator_allow_merge_fn =	cfq_allow_merge,
3744
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3745
		.elevator_add_req_fn =		cfq_insert_request,
3746
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3747 3748 3749
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3750 3751
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3752 3753 3754 3755 3756
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3757
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3758
	},
3759
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3760 3761 3762 3763 3764 3765
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3766 3767 3768 3769 3770 3771 3772 3773
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3774 3775 3776
	if (cfq_slab_setup())
		return -ENOMEM;

3777
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3778

3779
	return 0;
L
Linus Torvalds 已提交
3780 3781 3782 3783
}

static void __exit cfq_exit(void)
{
3784
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3785
	elv_unregister(&iosched_cfq);
3786
	ioc_gone = &all_gone;
3787 3788
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3789 3790 3791 3792 3793

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3794
	if (elv_ioc_count_read(cfq_ioc_count))
3795
		wait_for_completion(&all_gone);
3796
	cfq_slab_kill();
L
Linus Torvalds 已提交
3797 3798 3799 3800 3801 3802 3803 3804
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");