cfq-iosched.c 88.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
16
#include "blk-cgroup.h"
L
Linus Torvalds 已提交
17 18 19 20

/*
 * tunables
 */
21 22
/* max queue in one round of service */
static const int cfq_quantum = 4;
23
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 25 26 27
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
28
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
29
static int cfq_slice_async = HZ / 25;
30
static const int cfq_slice_async_rq = 2;
31
static int cfq_slice_idle = HZ / 125;
32 33
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
34

35
/*
36
 * offset from end of service tree
37
 */
38
#define CFQ_IDLE_DELAY		(HZ / 5)
39 40 41 42 43 44

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

45 46 47 48 49 50
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

51
#define CFQ_SLICE_SCALE		(5)
52
#define CFQ_HW_QUEUE_MIN	(5)
53
#define CFQ_SERVICE_SHIFT       12
54

55 56
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
57
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
58

59 60
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
61

62
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63
static struct completion *ioc_gone;
64
static DEFINE_SPINLOCK(ioc_gone_lock);
65

66 67 68 69
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

70
#define sample_valid(samples)	((samples) > 80)
71
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
72

73 74 75 76 77 78 79 80 81
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
82
	unsigned count;
83
	u64 min_vdisktime;
84
	struct rb_node *active;
85
	unsigned total_weight;
86
};
87
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

118 119 120 121
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
122 123 124 125 126 127 128 129 130 131 132 133 134
	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

135 136 137 138
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
139
	unsigned long seeky_start;
140

141
	pid_t pid;
J
Jeff Moyer 已提交
142

143
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
144
	struct cfq_queue *new_cfqq;
145
	struct cfq_group *cfqg;
146 147
};

148
/*
149
 * First index in the service_trees.
150 151 152 153
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
154 155
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
156 157
};

158 159 160 161 162 163 164 165 166
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

167 168
/* This is per cgroup per device grouping structure */
struct cfq_group {
169 170 171 172 173
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
174
	unsigned int weight;
175 176 177 178 179
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

180 181
	/* Per group busy queus average. Useful for workload slice calc. */
	unsigned int busy_queues_avg[2];
182 183 184 185 186 187
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
188 189 190 191

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
192 193 194 195
	struct blkio_group blkg;
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	struct hlist_node cfqd_node;
#endif
196
};
197

198 199 200
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
201
struct cfq_data {
202
	struct request_queue *queue;
203 204
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
205
	struct cfq_group root_group;
206 207
	/* Number of active cfq groups on group service tree */
	int nr_groups;
208

209 210
	/*
	 * The priority currently being served
211
	 */
212
	enum wl_prio_t serving_prio;
213 214
	enum wl_type_t serving_type;
	unsigned long workload_expires;
215
	struct cfq_group *serving_group;
216
	bool noidle_tree_requires_idle;
217 218 219 220 221 222 223 224

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

225 226
	unsigned int busy_queues;

227
	int rq_in_driver[2];
228
	int sync_flight;
229 230 231 232 233

	/*
	 * queue-depth detection
	 */
	int rq_queued;
234
	int hw_tag;
235 236 237 238 239 240 241 242
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
243

244 245 246 247
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
248
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
249

250 251 252
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

253 254 255 256 257
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
258

J
Jens Axboe 已提交
259
	sector_t last_position;
L
Linus Torvalds 已提交
260 261 262 263 264

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
265
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
266 267
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
268 269 270
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
271
	unsigned int cfq_latency;
272 273

	struct list_head cic_list;
L
Linus Torvalds 已提交
274

275 276 277 278
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
279 280

	unsigned long last_end_sync_rq;
281 282 283

	/* List of cfq groups being managed on this device*/
	struct hlist_head cfqg_list;
L
Linus Torvalds 已提交
284 285
};

286 287
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

288 289
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
290
					    enum wl_type_t type,
291 292
					    struct cfq_data *cfqd)
{
293 294 295
	if (!cfqg)
		return NULL;

296
	if (prio == IDLE_WORKLOAD)
297
		return &cfqg->service_tree_idle;
298

299
	return &cfqg->service_trees[prio][type];
300 301
}

J
Jens Axboe 已提交
302
enum cfqq_state_flags {
303 304
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
305
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
306 307 308 309
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
310
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
311
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
312
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
313
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
J
Jens Axboe 已提交
314 315 316 317 318
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
319
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
320 321 322
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
323
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
324 325 326
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
327
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
328 329 330 331
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
332
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
333 334 335 336
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
337
CFQ_CFQQ_FNS(slice_new);
338
CFQ_CFQQ_FNS(sync);
339
CFQ_CFQQ_FNS(coop);
340
CFQ_CFQQ_FNS(deep);
J
Jens Axboe 已提交
341 342
#undef CFQ_CFQQ_FNS

343 344 345 346 347
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

348 349 350 351 352 353 354 355 356 357 358
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


359 360 361 362 363 364 365 366 367
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

368 369 370 371 372 373 374 375 376 377

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

378 379 380
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
381 382
{
	if (wl == IDLE_WORKLOAD)
383
		return cfqg->service_tree_idle.count;
384

385 386 387
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
388 389
}

390
static void cfq_dispatch_insert(struct request_queue *, struct request *);
391
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
392
				       struct io_context *, gfp_t);
393
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
394 395
						struct io_context *);

396 397 398 399 400
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

401
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
402
					    bool is_sync)
403
{
404
	return cic->cfqq[is_sync];
405 406 407
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
408
				struct cfq_queue *cfqq, bool is_sync)
409
{
410
	cic->cfqq[is_sync] = cfqq;
411 412 413 414 415 416
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
417
static inline bool cfq_bio_sync(struct bio *bio)
418
{
419
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
420
}
L
Linus Torvalds 已提交
421

A
Andrew Morton 已提交
422 423 424 425
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
426
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
427
{
428 429
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
430
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
431
	}
A
Andrew Morton 已提交
432 433
}

434
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
435 436 437
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

438
	return !cfqd->rq_queued;
A
Andrew Morton 已提交
439 440
}

441 442 443 444 445
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
446
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
447
				 unsigned short prio)
448
{
449
	const int base_slice = cfqd->cfq_slice[sync];
450

451 452 453 454
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
455

456 457 458 459
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
460 461
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

507 508 509 510 511 512
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

513 514
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
515
{
516 517 518
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
519
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
520

521 522 523
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
524
		cfq_hist_divisor;
525 526 527 528 529 530 531 532 533
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
534 535
}

536 537 538
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
539 540
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
541 542 543 544 545 546
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
547 548
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
549 550 551
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
552 553 554 555 556 557 558
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
559
			slice = max(slice * group_slice / expect_latency,
560 561 562
				    low_slice);
		}
	}
563
	cfqq->slice_start = jiffies;
564
	cfqq->slice_end = jiffies + slice;
565
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
566 567 568 569 570 571 572
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
573
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
574 575 576 577 578 579 580 581 582
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
583
/*
J
Jens Axboe 已提交
584
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
585
 * We choose the request that is closest to the head right now. Distance
586
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
587
 */
J
Jens Axboe 已提交
588
static struct request *
589
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
590
{
591
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
592
	unsigned long back_max;
593 594 595
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
596

J
Jens Axboe 已提交
597 598 599 600
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
601

J
Jens Axboe 已提交
602 603 604 605
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
606 607 608 609
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
610

611 612
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
629
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
630 631 632 633 634 635

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
636
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
637 638

	/* Found required data */
639 640 641 642 643 644

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
645
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
646
		if (d1 < d2)
J
Jens Axboe 已提交
647
			return rq1;
648
		else if (d2 < d1)
J
Jens Axboe 已提交
649
			return rq2;
650 651
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
652
				return rq1;
653
			else
J
Jens Axboe 已提交
654
				return rq2;
655
		}
L
Linus Torvalds 已提交
656

657
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
658
		return rq1;
659
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
660 661
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
662 663 664 665 666 667 668 669
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
670
			return rq1;
L
Linus Torvalds 已提交
671
		else
J
Jens Axboe 已提交
672
			return rq2;
L
Linus Torvalds 已提交
673 674 675
	}
}

676 677 678
/*
 * The below is leftmost cache rbtree addon
 */
679
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
680
{
681 682 683 684
	/* Service tree is empty */
	if (!root->count)
		return NULL;

685 686 687
	if (!root->left)
		root->left = rb_first(&root->rb);

688 689 690 691
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
692 693
}

694 695 696 697 698 699 700 701 702 703 704
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

705 706 707 708 709 710
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

711 712 713 714
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
715
	rb_erase_init(n, &root->rb);
716
	--root->count;
717 718
}

L
Linus Torvalds 已提交
719 720 721
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
722 723 724
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
725
{
726 727
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
728
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
729

730
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
731 732

	if (rbprev)
J
Jens Axboe 已提交
733
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
734

735
	if (rbnext)
J
Jens Axboe 已提交
736
		next = rb_entry_rq(rbnext);
737 738 739
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
740
			next = rb_entry_rq(rbnext);
741
	}
L
Linus Torvalds 已提交
742

743
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
744 745
}

746 747
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
748
{
749 750 751
	/*
	 * just an approximation, should be ok.
	 */
752
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
753
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
754 755
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
815 816
	cfqd->nr_groups++;
	st->total_weight += cfqg->weight;
817 818 819 820 821 822 823
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

824 825 826
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

827 828
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
829

830 831 832 833 834
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

	cfqg->on_st = false;
835 836
	cfqd->nr_groups--;
	st->total_weight -= cfqg->weight;
837 838
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	cfqg->saved_workload_slice = 0;
}

static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
{
	unsigned int slice_used, allocated_slice;

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
		allocated_slice = cfqq->slice_end - cfqq->slice_start;
		if (slice_used > allocated_slice)
			slice_used = allocated_slice;
	}

	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
				struct cfq_queue *cfqq)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	unsigned int used_sl;

	used_sl = cfq_cfqq_slice_usage(cfqq);

	/* Can't update vdisktime while group is on service tree */
	cfq_rb_erase(&cfqg->rb_node, st);
	cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
	__cfq_group_service_tree_add(st, cfqg);

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
891 892
}

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct cfq_group, blkg);
	return NULL;
}

static struct cfq_group *
cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
	struct cfq_group *cfqg = NULL;
	void *key = cfqd;
	int i, j;
	struct cfq_rb_root *st;

	/* Do we need to take this reference */
	if (!css_tryget(&blkcg->css))
		return NULL;;

	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
	if (cfqg || !create)
		goto done;

	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
	if (!cfqg)
		goto done;

	cfqg->weight = blkcg->weight;
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
	RB_CLEAR_NODE(&cfqg->rb_node);

	/* Add group onto cgroup list */
	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd);

	/* Add group on cfqd list */
	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);

done:
	css_put(&blkcg->css);
	return cfqg;
}

/*
 * Search for the cfq group current task belongs to. If create = 1, then also
 * create the cfq group if it does not exist. request_queue lock must be held.
 */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	struct cgroup *cgroup;
	struct cfq_group *cfqg = NULL;

	rcu_read_lock();
	cgroup = task_cgroup(current, blkio_subsys_id);
	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
	if (!cfqg && create)
		cfqg = &cfqd->root_group;
	rcu_read_unlock();
	return cfqg;
}

static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	/* Currently, all async queues are mapped to root group */
	if (!cfq_cfqq_sync(cfqq))
		cfqg = &cfqq->cfqd->root_group;

	cfqq->cfqg = cfqg;
}
#else /* GROUP_IOSCHED */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}
static inline void
cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
	cfqq->cfqg = cfqg;
}

#endif /* GROUP_IOSCHED */

976
/*
977
 * The cfqd->service_trees holds all pending cfq_queue's that have
978 979 980
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
981
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
982
				 bool add_front)
983
{
984 985
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
986
	unsigned long rb_key;
987
	struct cfq_rb_root *service_tree;
988
	int left;
989
	int new_cfqq = 1;
990

991 992
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
						cfqq_type(cfqq), cfqd);
993 994
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
995
		parent = rb_last(&service_tree->rb);
996 997 998 999 1000 1001
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
1002 1003 1004 1005 1006 1007
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
1008
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1009
		rb_key -= cfqq->slice_resid;
1010
		cfqq->slice_resid = 0;
1011 1012
	} else {
		rb_key = -HZ;
1013
		__cfqq = cfq_rb_first(service_tree);
1014 1015
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
1016

1017
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1018
		new_cfqq = 0;
1019
		/*
1020
		 * same position, nothing more to do
1021
		 */
1022 1023
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
1024
			return;
L
Linus Torvalds 已提交
1025

1026 1027
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
1028
	}
1029

1030
	left = 1;
1031
	parent = NULL;
1032 1033
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
1034
	while (*p) {
1035
		struct rb_node **n;
1036

1037 1038 1039
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

1040
		/*
1041
		 * sort by key, that represents service time.
1042
		 */
1043
		if (time_before(rb_key, __cfqq->rb_key))
1044
			n = &(*p)->rb_left;
1045
		else {
1046
			n = &(*p)->rb_right;
1047
			left = 0;
1048
		}
1049 1050

		p = n;
1051 1052
	}

1053
	if (left)
1054
		service_tree->left = &cfqq->rb_node;
1055

1056 1057
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
1058 1059
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
1060 1061
	if (add_front || !new_cfqq)
		return;
1062
	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1063 1064
}

1065
static struct cfq_queue *
1066 1067 1068
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
1085
		if (sector > blk_rq_pos(cfqq->next_rq))
1086
			n = &(*p)->rb_right;
1087
		else if (sector < blk_rq_pos(cfqq->next_rq))
1088 1089 1090 1091
			n = &(*p)->rb_left;
		else
			break;
		p = n;
1092
		cfqq = NULL;
1093 1094 1095 1096 1097
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
1098
	return cfqq;
1099 1100 1101 1102 1103 1104 1105
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

1106 1107 1108 1109
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1110 1111 1112 1113 1114 1115

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

1116
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1117 1118
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1119 1120
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
1121 1122 1123
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
1124 1125
}

1126 1127 1128
/*
 * Update cfqq's position in the service tree.
 */
1129
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1130 1131 1132 1133
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
1134
	if (cfq_cfqq_on_rr(cfqq)) {
1135
		cfq_service_tree_add(cfqd, cfqq, 0);
1136 1137
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
1138 1139
}

L
Linus Torvalds 已提交
1140 1141
/*
 * add to busy list of queues for service, trying to be fair in ordering
1142
 * the pending list according to last request service
L
Linus Torvalds 已提交
1143
 */
J
Jens Axboe 已提交
1144
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1145
{
1146
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
1147 1148
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1149 1150
	cfqd->busy_queues++;

1151
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
1152 1153
}

1154 1155 1156 1157
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
1158
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1159
{
1160
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
1161 1162
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1163

1164 1165 1166 1167
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
1168 1169 1170 1171
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1172

1173
	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1174 1175 1176 1177 1178 1179 1180
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
1181
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1182
{
J
Jens Axboe 已提交
1183 1184
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
1185

1186 1187
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
1188

J
Jens Axboe 已提交
1189
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
		/*
		 * Queue will be deleted from service tree when we actually
		 * expire it later. Right now just remove it from prio tree
		 * as it is empty.
		 */
		if (cfqq->p_root) {
			rb_erase(&cfqq->p_node, cfqq->p_root);
			cfqq->p_root = NULL;
		}
	}
L
Linus Torvalds 已提交
1202 1203
}

J
Jens Axboe 已提交
1204
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1205
{
J
Jens Axboe 已提交
1206
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
1207
	struct cfq_data *cfqd = cfqq->cfqd;
1208
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
1209

1210
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
1211 1212 1213 1214 1215

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
1216
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
1217
		cfq_dispatch_insert(cfqd->queue, __alias);
1218 1219 1220

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
1221 1222 1223 1224

	/*
	 * check if this request is a better next-serve candidate
	 */
1225
	prev = cfqq->next_rq;
1226
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1227 1228 1229 1230 1231 1232 1233

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

1234
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
1235 1236
}

J
Jens Axboe 已提交
1237
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
1238
{
1239 1240
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
1241
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
1242 1243
}

1244 1245
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
1246
{
1247
	struct task_struct *tsk = current;
1248
	struct cfq_io_context *cic;
1249
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
1250

1251
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1252 1253 1254 1255
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1256 1257 1258
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

1259
		return elv_rb_find(&cfqq->sort_list, sector);
1260
	}
L
Linus Torvalds 已提交
1261 1262 1263 1264

	return NULL;
}

1265
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1266
{
1267
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1268

1269
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
1270
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1271
						rq_in_driver(cfqd));
1272

1273
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1274 1275
}

1276
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1277
{
1278
	struct cfq_data *cfqd = q->elevator->elevator_data;
1279
	const int sync = rq_is_sync(rq);
1280

1281 1282
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
1283
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1284
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
1285 1286
}

1287
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
1288
{
J
Jens Axboe 已提交
1289
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1290

J
Jens Axboe 已提交
1291 1292
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
1293

1294
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1295
	cfq_del_rq_rb(rq);
1296

1297
	cfqq->cfqd->rq_queued--;
1298 1299 1300 1301
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
1302 1303
}

1304 1305
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
1306 1307 1308 1309
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

1310
	__rq = cfq_find_rq_fmerge(cfqd, bio);
1311
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1312 1313
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
1314 1315 1316 1317 1318
	}

	return ELEVATOR_NO_MERGE;
}

1319
static void cfq_merged_request(struct request_queue *q, struct request *req,
1320
			       int type)
L
Linus Torvalds 已提交
1321
{
1322
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
1323
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
1324

J
Jens Axboe 已提交
1325
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
1326 1327 1328 1329
	}
}

static void
1330
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
1331 1332
		    struct request *next)
{
1333
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1334 1335 1336 1337
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1338
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1339
		list_move(&rq->queuelist, &next->queuelist);
1340 1341
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
1342

1343 1344
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
1345
	cfq_remove_request(next);
1346 1347
}

1348
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1349 1350 1351
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1352
	struct cfq_io_context *cic;
1353 1354 1355
	struct cfq_queue *cfqq;

	/*
1356
	 * Disallow merge of a sync bio into an async request.
1357
	 */
1358
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1359
		return false;
1360 1361

	/*
1362 1363
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
1364
	 */
1365
	cic = cfq_cic_lookup(cfqd, current->io_context);
1366
	if (!cic)
1367
		return false;
1368

1369
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1370
	return cfqq == RQ_CFQQ(rq);
1371 1372
}

J
Jens Axboe 已提交
1373 1374
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1375 1376
{
	if (cfqq) {
1377
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1378 1379
		cfqq->slice_start = 0;
		cfqq->dispatch_start = jiffies;
1380
		cfqq->slice_end = 0;
1381 1382 1383
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1384
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1385 1386
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1387
		cfq_mark_cfqq_slice_new(cfqq);
1388 1389

		del_timer(&cfqd->idle_slice_timer);
1390 1391 1392 1393 1394
	}

	cfqd->active_queue = cfqq;
}

1395 1396 1397 1398 1399
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1400
		    bool timed_out)
1401
{
1402 1403
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1404 1405 1406 1407 1408 1409
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1410
	 * store what was left of this slice, if the queue idled/timed out
1411
	 */
1412
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1413
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1414 1415
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1416

1417 1418
	cfq_group_served(cfqd, cfqq->cfqg, cfqq);

1419 1420 1421
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
		cfq_del_cfqq_rr(cfqd, cfqq);

1422
	cfq_resort_rr_list(cfqd, cfqq);
1423 1424 1425 1426

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

1427 1428 1429
	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
		cfqd->grp_service_tree.active = NULL;

1430 1431 1432 1433 1434 1435
	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1436
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1437 1438 1439 1440
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1441
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1442 1443
}

1444 1445 1446 1447
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1448
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1449
{
1450
	struct cfq_rb_root *service_tree =
1451 1452
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
					cfqd->serving_type, cfqd);
1453

1454 1455 1456
	if (!cfqd->rq_queued)
		return NULL;

1457 1458 1459
	/* There is nothing to dispatch */
	if (!service_tree)
		return NULL;
1460 1461 1462
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1463 1464
}

1465 1466
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
1467
	struct cfq_group *cfqg;
1468 1469 1470 1471 1472 1473 1474
	struct cfq_queue *cfqq;
	int i, j;
	struct cfq_rb_root *st;

	if (!cfqd->rq_queued)
		return NULL;

1475 1476 1477 1478
	cfqg = cfq_get_next_cfqg(cfqd);
	if (!cfqg)
		return NULL;

1479 1480 1481 1482 1483 1484
	for_each_cfqg_st(cfqg, i, j, st)
		if ((cfqq = cfq_rb_first(st)) != NULL)
			return cfqq;
	return NULL;
}

1485 1486 1487
/*
 * Get and set a new active queue for service.
 */
1488 1489
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1490
{
1491
	if (!cfqq)
1492
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1493

1494
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1495
	return cfqq;
1496 1497
}

1498 1499 1500
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1501 1502
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1503
	else
1504
		return cfqd->last_position - blk_rq_pos(rq);
1505 1506
}

1507 1508
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1509

1510 1511
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1512
{
1513
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1514

1515 1516
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1517

1518
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1519 1520
}

1521 1522 1523
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1524
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1536
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1537 1538 1539 1540 1541 1542 1543 1544
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1545
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1546 1547
		return __cfqq;

1548
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1549 1550 1551 1552 1553 1554 1555
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1556
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1573
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1574
{
1575 1576
	struct cfq_queue *cfqq;

1577 1578 1579 1580 1581
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1582
	/*
1583 1584 1585
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1586
	 */
1587 1588 1589 1590
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1591 1592 1593 1594 1595
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1596 1597
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1598

1599 1600 1601 1602 1603 1604
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1605
	return cfqq;
J
Jens Axboe 已提交
1606 1607
}

1608 1609 1610 1611 1612 1613 1614
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1615
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1616

1617 1618 1619
	BUG_ON(!service_tree);
	BUG_ON(!service_tree->count);

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1632
	return service_tree->count == 1;
1633 1634
}

J
Jens Axboe 已提交
1635
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1636
{
1637
	struct cfq_queue *cfqq = cfqd->active_queue;
1638
	struct cfq_io_context *cic;
1639 1640
	unsigned long sl;

1641
	/*
J
Jens Axboe 已提交
1642 1643 1644
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1645
	 */
J
Jens Axboe 已提交
1646
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1647 1648
		return;

1649
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1650
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1651 1652 1653 1654

	/*
	 * idle is disabled, either manually or by past process history
	 */
1655
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1656 1657
		return;

1658
	/*
1659
	 * still active requests from this queue, don't idle
1660
	 */
1661
	if (cfqq->dispatched)
1662 1663
		return;

1664 1665 1666
	/*
	 * task has exited, don't wait
	 */
1667
	cic = cfqd->active_cic;
1668
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1669 1670
		return;

1671 1672 1673 1674 1675 1676 1677 1678 1679
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1680
	cfq_mark_cfqq_wait_request(cfqq);
1681

J
Jens Axboe 已提交
1682
	sl = cfqd->cfq_slice_idle;
1683

1684
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1685
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1686 1687
}

1688 1689 1690
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1691
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1692
{
1693
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1694
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1695

1696 1697
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1698
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1699
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1700
	cfqq->dispatched++;
1701
	elv_dispatch_sort(q, rq);
1702 1703 1704

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1705 1706 1707 1708 1709
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1710
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1711
{
1712
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1713

J
Jens Axboe 已提交
1714
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1715
		return NULL;
1716 1717 1718

	cfq_mark_cfqq_fifo_expire(cfqq);

1719 1720
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1721

1722
	rq = rq_entry_fifo(cfqq->fifo.next);
1723
	if (time_before(jiffies, rq_fifo_time(rq)))
1724
		rq = NULL;
L
Linus Torvalds 已提交
1725

1726
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1727
	return rq;
L
Linus Torvalds 已提交
1728 1729
}

1730 1731 1732 1733
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1734

1735
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1736

1737
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1738 1739
}

J
Jeff Moyer 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1755
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1784 1785
}

1786 1787 1788
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
				struct cfq_group *cfqg, enum wl_prio_t prio,
				bool prio_changed)
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
1802
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1803 1804
			return cur_best;
		cur_best = SYNC_WORKLOAD;
1805
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1806 1807 1808 1809 1810 1811 1812
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
1813
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

1825
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1826 1827 1828 1829 1830
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;
1831
	struct cfq_rb_root *st;
1832
	unsigned group_slice;
1833

1834 1835 1836 1837 1838 1839
	if (!cfqg) {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

1840
	/* Choose next priority. RT > BE > IDLE */
1841
	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1842
		cfqd->serving_prio = RT_WORKLOAD;
1843
	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
1857 1858 1859
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
1871 1872 1873 1874
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1875 1876 1877 1878 1879 1880

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
1881 1882 1883 1884 1885
	group_slice = cfq_group_slice(cfqd, cfqg);

	slice = group_slice * count /
		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
1897
	cfqd->noidle_tree_requires_idle = false;
1898 1899
}

1900 1901 1902
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1903
	struct cfq_group *cfqg;
1904 1905 1906

	if (RB_EMPTY_ROOT(&st->rb))
		return NULL;
1907 1908 1909 1910
	cfqg = cfq_rb_first_group(st);
	st->active = &cfqg->rb_node;
	update_min_vdisktime(st);
	return cfqg;
1911 1912
}

1913 1914
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
1915 1916 1917
	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);

	cfqd->serving_group = cfqg;
1918 1919 1920 1921 1922 1923 1924

	/* Restore the workload type data */
	if (cfqg->saved_workload_slice) {
		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
		cfqd->serving_type = cfqg->saved_workload;
		cfqd->serving_prio = cfqg->saved_serving_prio;
	}
1925
	choose_service_tree(cfqd, cfqg);
1926 1927
}

1928
/*
1929 1930
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
1931
 */
1932
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
1933
{
1934
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
1935

1936 1937 1938
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
1939

1940 1941
	if (!cfqd->rq_queued)
		return NULL;
1942
	/*
J
Jens Axboe 已提交
1943
	 * The active queue has run out of time, expire it and select new.
1944
	 */
1945
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
1946
		goto expire;
L
Linus Torvalds 已提交
1947

1948
	/*
J
Jens Axboe 已提交
1949 1950
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
1951
	 */
1952
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1953
		goto keep_queue;
J
Jens Axboe 已提交
1954

1955 1956 1957 1958
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
1959
	 * tree.  If possible, merge the expiring queue with the new cfqq.
1960
	 */
1961
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
1962 1963 1964
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
1965
		goto expire;
J
Jeff Moyer 已提交
1966
	}
1967

J
Jens Axboe 已提交
1968 1969 1970 1971 1972
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
1973
	if (timer_pending(&cfqd->idle_slice_timer) ||
1974
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1975 1976
		cfqq = NULL;
		goto keep_queue;
1977 1978
	}

J
Jens Axboe 已提交
1979
expire:
1980
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
1981
new_queue:
1982 1983 1984 1985 1986
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
1987
		cfq_choose_cfqg(cfqd);
1988

1989
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1990
keep_queue:
J
Jens Axboe 已提交
1991
	return cfqq;
1992 1993
}

J
Jens Axboe 已提交
1994
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1995 1996 1997 1998 1999 2000 2001 2002 2003
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
2004 2005 2006

	/* By default cfqq is not expired if it is empty. Do it explicitly */
	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2007 2008 2009
	return dispatched;
}

2010 2011 2012 2013
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
2014
static int cfq_forced_dispatch(struct cfq_data *cfqd)
2015
{
2016
	struct cfq_queue *cfqq;
2017
	int dispatched = 0;
2018

2019 2020
	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2021

2022
	cfq_slice_expired(cfqd, 0);
2023 2024
	BUG_ON(cfqd->busy_queues);

2025
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2026 2027 2028
	return dispatched;
}

2029
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2030 2031
{
	unsigned int max_dispatch;
2032

2033 2034 2035
	/*
	 * Drain async requests before we start sync IO
	 */
2036
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2037
		return false;
2038

2039 2040 2041 2042
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2043
		return false;
2044 2045 2046 2047

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
2048

2049 2050 2051 2052 2053 2054 2055
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
2056
		if (cfq_class_idle(cfqq))
2057
			return false;
2058

2059 2060 2061 2062
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
2063
			return false;
2064

2065
		/*
2066
		 * Sole queue user, no limit
2067
		 */
2068
		max_dispatch = -1;
2069 2070 2071 2072 2073 2074 2075
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
2076
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2077 2078
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
2079

2080
		depth = last_sync / cfqd->cfq_slice[1];
2081 2082
		if (!depth && !cfqq->dispatched)
			depth = 1;
2083 2084
		if (depth < max_dispatch)
			max_dispatch = depth;
2085
	}
2086

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
2145 2146
		return 0;

2147
	/*
2148
	 * Dispatch a request from this cfqq, if it is allowed
2149
	 */
2150 2151 2152
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

2153
	cfqq->slice_dispatch++;
2154
	cfq_clear_cfqq_must_dispatch(cfqq);
2155

2156 2157 2158 2159 2160 2161 2162 2163 2164
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
2165 2166
	}

2167
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2168
	return 1;
L
Linus Torvalds 已提交
2169 2170 2171
}

/*
J
Jens Axboe 已提交
2172 2173
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
2174 2175 2176 2177 2178
 *
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
2179 2180 2181
	struct cfq_data *cfqd = cfqq->cfqd;

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
2182 2183 2184 2185

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

2186
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
2187
	BUG_ON(rb_first(&cfqq->sort_list));
2188
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
L
Linus Torvalds 已提交
2189

2190
	if (unlikely(cfqd->active_queue == cfqq)) {
2191
		__cfq_slice_expired(cfqd, cfqq, 0);
2192
		cfq_schedule_dispatch(cfqd);
2193
	}
2194

2195
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
2196 2197 2198
	kmem_cache_free(cfq_pool, cfqq);
}

2199 2200 2201
/*
 * Must always be called with the rcu_read_lock() held
 */
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

2213
/*
2214
 * Call func for each cic attached to this ioc.
2215
 */
2216
static void
2217 2218
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
2219
{
2220
	rcu_read_lock();
2221
	__call_for_each_cic(ioc, func);
2222
	rcu_read_unlock();
2223 2224 2225 2226 2227 2228 2229 2230 2231
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
2232
	elv_ioc_count_dec(cfq_ioc_count);
2233

2234 2235 2236 2237 2238 2239 2240
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
2241
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2242 2243 2244 2245 2246
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
2247
}
2248

2249 2250 2251
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2262
	hlist_del_rcu(&cic->cic_list);
2263 2264
	spin_unlock_irqrestore(&ioc->lock, flags);

2265
	cfq_cic_free(cic);
2266 2267
}

2268 2269 2270 2271 2272
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
2273 2274 2275
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
2276 2277 2278 2279
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
2280
	 */
2281
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
2282 2283
}

2284
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2285
{
J
Jeff Moyer 已提交
2286 2287
	struct cfq_queue *__cfqq, *next;

2288
	if (unlikely(cfqq == cfqd->active_queue)) {
2289
		__cfq_slice_expired(cfqd, cfqq, 0);
2290
		cfq_schedule_dispatch(cfqd);
2291
	}
2292

J
Jeff Moyer 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

2309 2310
	cfq_put_queue(cfqq);
}
2311

2312 2313 2314
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
2315 2316
	struct io_context *ioc = cic->ioc;

2317
	list_del_init(&cic->queue_list);
2318 2319 2320 2321

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
2322
	smp_wmb();
2323
	cic->dead_key = (unsigned long) cic->key;
2324 2325
	cic->key = NULL;

2326 2327 2328
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

2329 2330 2331
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
2332 2333
	}

2334 2335 2336
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
2337
	}
2338 2339
}

2340 2341
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
2342 2343 2344 2345
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
2346
		struct request_queue *q = cfqd->queue;
2347
		unsigned long flags;
2348

2349
		spin_lock_irqsave(q->queue_lock, flags);
2350 2351 2352 2353 2354 2355 2356 2357 2358

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

2359
		spin_unlock_irqrestore(q->queue_lock, flags);
2360
	}
L
Linus Torvalds 已提交
2361 2362
}

2363 2364 2365 2366
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
2367
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
2368
{
2369
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
2370 2371
}

2372
static struct cfq_io_context *
A
Al Viro 已提交
2373
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2374
{
2375
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
2376

2377 2378
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
2379
	if (cic) {
2380
		cic->last_end_request = jiffies;
2381
		INIT_LIST_HEAD(&cic->queue_list);
2382
		INIT_HLIST_NODE(&cic->cic_list);
2383 2384
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
2385
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
2386 2387 2388 2389 2390
	}

	return cic;
}

2391
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2392 2393 2394 2395
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
2396
	if (!cfq_cfqq_prio_changed(cfqq))
2397 2398
		return;

2399
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2400
	switch (ioprio_class) {
2401 2402 2403 2404
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
2405
		 * no prio set, inherit CPU scheduling settings
2406 2407
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
2408
		cfqq->ioprio_class = task_nice_ioclass(tsk);
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
2423 2424 2425 2426 2427 2428 2429 2430
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
2431
	cfq_clear_cfqq_prio_changed(cfqq);
2432 2433
}

J
Jens Axboe 已提交
2434
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2435
{
2436 2437
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
2438
	unsigned long flags;
2439

2440 2441 2442
	if (unlikely(!cfqd))
		return;

2443
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2444

2445
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2446 2447
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2448 2449
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2450
		if (new_cfqq) {
2451
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2452 2453
			cfq_put_queue(cfqq);
		}
2454
	}
2455

2456
	cfqq = cic->cfqq[BLK_RW_SYNC];
2457 2458 2459
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2460
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2461 2462
}

2463
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2464
{
2465
	call_for_each_cic(ioc, changed_ioprio);
2466
	ioc->ioprio_changed = 0;
2467 2468
}

2469
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2470
			  pid_t pid, bool is_sync)
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2489
static struct cfq_queue *
2490
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2491
		     struct io_context *ioc, gfp_t gfp_mask)
2492 2493
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2494
	struct cfq_io_context *cic;
2495
	struct cfq_group *cfqg;
2496 2497

retry:
2498
	cfqg = cfq_get_cfqg(cfqd, 1);
2499
	cic = cfq_cic_lookup(cfqd, ioc);
2500 2501
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2502

2503 2504 2505 2506 2507 2508
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2509 2510 2511 2512 2513
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2514
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2515
					gfp_mask | __GFP_ZERO,
2516
					cfqd->queue->node);
2517
			spin_lock_irq(cfqd->queue->queue_lock);
2518 2519
			if (new_cfqq)
				goto retry;
2520
		} else {
2521 2522 2523
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2524 2525
		}

2526 2527 2528
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
2529
			cfq_link_cfqq_cfqg(cfqq, cfqg);
2530 2531 2532
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2533 2534 2535 2536 2537 2538 2539 2540
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2541 2542 2543
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2544
	switch (ioprio_class) {
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2556
static struct cfq_queue *
2557
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2558 2559
	      gfp_t gfp_mask)
{
2560 2561
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2562
	struct cfq_queue **async_cfqq = NULL;
2563 2564
	struct cfq_queue *cfqq = NULL;

2565 2566 2567 2568 2569
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2570
	if (!cfqq)
2571
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2572 2573 2574 2575

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2576
	if (!is_sync && !(*async_cfqq)) {
2577
		atomic_inc(&cfqq->ref);
2578
		*async_cfqq = cfqq;
2579 2580 2581 2582 2583 2584
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2585 2586 2587
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2588
static void
2589 2590
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2591
{
2592 2593
	unsigned long flags;

2594
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2595

2596 2597
	spin_lock_irqsave(&ioc->lock, flags);

2598
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2599

2600
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2601
	hlist_del_rcu(&cic->cic_list);
2602 2603 2604
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2605 2606
}

2607
static struct cfq_io_context *
2608
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2609 2610
{
	struct cfq_io_context *cic;
2611
	unsigned long flags;
2612
	void *k;
2613

2614 2615 2616
	if (unlikely(!ioc))
		return NULL;

2617 2618
	rcu_read_lock();

J
Jens Axboe 已提交
2619 2620 2621
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2622
	cic = rcu_dereference(ioc->ioc_data);
2623 2624
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2625
		return cic;
2626
	}
J
Jens Axboe 已提交
2627

2628 2629 2630 2631 2632
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2633 2634 2635
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2636
			cfq_drop_dead_cic(cfqd, ioc, cic);
2637
			rcu_read_lock();
2638
			continue;
2639
		}
2640

2641
		spin_lock_irqsave(&ioc->lock, flags);
2642
		rcu_assign_pointer(ioc->ioc_data, cic);
2643
		spin_unlock_irqrestore(&ioc->lock, flags);
2644 2645
		break;
	} while (1);
2646

2647
	return cic;
2648 2649
}

2650 2651 2652 2653 2654
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2655 2656
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2657
{
2658
	unsigned long flags;
2659
	int ret;
2660

2661 2662 2663 2664
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2665

2666 2667 2668
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2669 2670
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2671
		spin_unlock_irqrestore(&ioc->lock, flags);
2672

2673 2674 2675 2676 2677 2678 2679
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2680 2681
	}

2682 2683
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2684

2685
	return ret;
2686 2687
}

L
Linus Torvalds 已提交
2688 2689 2690
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2691
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2692 2693
 */
static struct cfq_io_context *
2694
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2695
{
2696
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2697 2698
	struct cfq_io_context *cic;

2699
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2700

2701
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2702 2703 2704
	if (!ioc)
		return NULL;

2705
	cic = cfq_cic_lookup(cfqd, ioc);
2706 2707
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2708

2709 2710 2711
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2712

2713 2714 2715
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2716
out:
2717 2718 2719 2720
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2721
	return cic;
2722 2723
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2724 2725 2726 2727 2728
err:
	put_io_context(ioc);
	return NULL;
}

2729 2730
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2731
{
2732 2733
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2734

2735 2736 2737 2738
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2739

2740
static void
2741
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2742
		       struct request *rq)
2743 2744 2745 2746
{
	sector_t sdist;
	u64 total;

2747
	if (!cfqq->last_request_pos)
2748
		sdist = 0;
2749 2750
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2751
	else
2752
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2753 2754 2755 2756 2757

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2758 2759
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2760
	else
2761
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2762

2763 2764 2765 2766 2767
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2781
}
L
Linus Torvalds 已提交
2782

2783 2784 2785 2786 2787 2788 2789 2790
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2791
	int old_idle, enable_idle;
2792

2793 2794 2795 2796
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2797 2798
		return;

2799
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2800

2801 2802 2803
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

2804
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2805 2806
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
2807 2808
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2809
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2810 2811 2812
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2813 2814
	}

2815 2816 2817 2818 2819 2820 2821
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2822
}
L
Linus Torvalds 已提交
2823

2824 2825 2826 2827
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2828
static bool
2829
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2830
		   struct request *rq)
2831
{
J
Jens Axboe 已提交
2832
	struct cfq_queue *cfqq;
2833

J
Jens Axboe 已提交
2834 2835
	cfqq = cfqd->active_queue;
	if (!cfqq)
2836
		return false;
2837

J
Jens Axboe 已提交
2838
	if (cfq_slice_used(cfqq))
2839
		return true;
J
Jens Axboe 已提交
2840 2841

	if (cfq_class_idle(new_cfqq))
2842
		return false;
2843 2844

	if (cfq_class_idle(cfqq))
2845
		return true;
2846

2847
	/* Allow preemption only if we are idling on sync-noidle tree */
2848 2849
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2850 2851
	    new_cfqq->service_tree->count == 2 &&
	    RB_EMPTY_ROOT(&cfqq->sort_list))
2852 2853
		return true;

2854 2855 2856 2857
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2858
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2859
		return true;
2860

2861 2862 2863 2864 2865
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2866
		return true;
2867

2868 2869 2870 2871
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2872
		return true;
2873

2874
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2875
		return false;
2876 2877 2878 2879 2880

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2881
	if (cfq_rq_close(cfqd, cfqq, rq))
2882
		return true;
2883

2884
	return false;
2885 2886 2887 2888 2889 2890 2891 2892
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2893
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2894
	cfq_slice_expired(cfqd, 1);
2895

2896 2897 2898 2899 2900
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2901 2902

	cfq_service_tree_add(cfqd, cfqq, 1);
2903

2904 2905
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2906 2907 2908
}

/*
J
Jens Axboe 已提交
2909
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2910 2911 2912
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2913 2914
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
2915
{
J
Jens Axboe 已提交
2916
	struct cfq_io_context *cic = RQ_CIC(rq);
2917

2918
	cfqd->rq_queued++;
2919 2920 2921
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
2922
	cfq_update_io_thinktime(cfqd, cic);
2923
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
2924 2925
	cfq_update_idle_window(cfqd, cfqq, cic);

2926
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2927 2928 2929

	if (cfqq == cfqd->active_queue) {
		/*
2930 2931 2932
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
2933 2934
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
2935 2936 2937
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
2938
		 */
2939
		if (cfq_cfqq_wait_request(cfqq)) {
2940 2941
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
2942
				del_timer(&cfqd->idle_slice_timer);
2943 2944 2945
				__blk_run_queue(cfqd->queue);
			} else
				cfq_mark_cfqq_must_dispatch(cfqq);
2946
		}
J
Jens Axboe 已提交
2947
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2948 2949 2950
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
2951 2952
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
2953 2954
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
2955
		__blk_run_queue(cfqd->queue);
2956
	}
L
Linus Torvalds 已提交
2957 2958
}

2959
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2960
{
2961
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2962
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2963

2964
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2965
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2966

2967
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2968
	list_add_tail(&rq->queuelist, &cfqq->fifo);
2969
	cfq_add_rq_rb(rq);
2970

J
Jens Axboe 已提交
2971
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
2972 2973
}

2974 2975 2976 2977 2978 2979
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
2980 2981
	struct cfq_queue *cfqq = cfqd->active_queue;

2982 2983 2984 2985 2986
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
2987 2988

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2989
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2990 2991
		return;

S
Shaohua Li 已提交
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

3002 3003 3004
	if (cfqd->hw_tag_samples++ < 50)
		return;

3005
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3006 3007 3008 3009 3010
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

3011
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3012
{
J
Jens Axboe 已提交
3013
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3014
	struct cfq_data *cfqd = cfqq->cfqd;
3015
	const int sync = rq_is_sync(rq);
3016
	unsigned long now;
L
Linus Torvalds 已提交
3017

3018
	now = jiffies;
3019
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
3020

3021 3022
	cfq_update_hw_tag(cfqd);

3023
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
3024
	WARN_ON(!cfqq->dispatched);
3025
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
3026
	cfqq->dispatched--;
L
Linus Torvalds 已提交
3027

3028 3029 3030
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

3031
	if (sync) {
J
Jens Axboe 已提交
3032
		RQ_CIC(rq)->last_end_request = now;
3033 3034
		cfqd->last_end_sync_rq = now;
	}
3035 3036 3037 3038 3039 3040

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
3041 3042
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

3043 3044 3045 3046
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
3047
		/*
3048 3049 3050 3051 3052 3053
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
3054
		 */
3055
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3056
			cfq_slice_expired(cfqd, 1);
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
			    || cfqd->noidle_tree_requires_idle)
				cfq_arm_slice_timer(cfqd);
		}
3069
	}
J
Jens Axboe 已提交
3070

3071
	if (!rq_in_driver(cfqd))
3072
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3073 3074
}

3075 3076 3077 3078 3079
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
3080
{
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
3092
		 * unboost the queue (if needed)
3093
		 */
3094 3095
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
3096 3097
	}
}
L
Linus Torvalds 已提交
3098

3099
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3100
{
3101
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
3102
		cfq_mark_cfqq_must_alloc_slice(cfqq);
3103
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
3104
	}
L
Linus Torvalds 已提交
3105

3106 3107 3108
	return ELV_MQUEUE_MAY;
}

3109
static int cfq_may_queue(struct request_queue *q, int rw)
3110 3111 3112
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
3113
	struct cfq_io_context *cic;
3114 3115 3116 3117 3118 3119 3120 3121
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
3122
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3123 3124 3125
	if (!cic)
		return ELV_MQUEUE_MAY;

3126
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3127
	if (cfqq) {
3128
		cfq_init_prio_data(cfqq, cic->ioc);
3129 3130
		cfq_prio_boost(cfqq);

3131
		return __cfq_may_queue(cfqq);
3132 3133 3134
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
3135 3136 3137 3138 3139
}

/*
 * queue lock held here
 */
3140
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
3141
{
J
Jens Axboe 已提交
3142
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
3143

J
Jens Axboe 已提交
3144
	if (cfqq) {
3145
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
3146

3147 3148
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
3149

J
Jens Axboe 已提交
3150
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3151 3152

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
3153
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
3154 3155 3156 3157 3158

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
3159 3160 3161 3162 3163 3164
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3165
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
3166 3167 3168 3169
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
3196
/*
3197
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
3198
 */
3199
static int
3200
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
3201 3202 3203 3204
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
3205
	const bool is_sync = rq_is_sync(rq);
3206
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
3207 3208 3209 3210
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

3211
	cic = cfq_get_io_context(cfqd, gfp_mask);
3212

L
Linus Torvalds 已提交
3213 3214
	spin_lock_irqsave(q->queue_lock, flags);

3215 3216 3217
	if (!cic)
		goto queue_fail;

3218
new_queue:
3219
	cfqq = cic_to_cfqq(cic, is_sync);
3220
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3221
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3222
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
3223
	} else {
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
3234 3235 3236 3237 3238 3239 3240 3241
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3242
	}
L
Linus Torvalds 已提交
3243 3244

	cfqq->allocated[rw]++;
3245
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
3246

J
Jens Axboe 已提交
3247
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
3248

J
Jens Axboe 已提交
3249 3250 3251
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
3252

3253 3254 3255
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
3256

3257
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3258
	spin_unlock_irqrestore(q->queue_lock, flags);
3259
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
3260 3261 3262
	return 1;
}

3263
static void cfq_kick_queue(struct work_struct *work)
3264
{
3265
	struct cfq_data *cfqd =
3266
		container_of(work, struct cfq_data, unplug_work);
3267
	struct request_queue *q = cfqd->queue;
3268

3269
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
3270
	__blk_run_queue(cfqd->queue);
3271
	spin_unlock_irq(q->queue_lock);
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
3282
	int timed_out = 1;
3283

3284 3285
	cfq_log(cfqd, "idle timer fired");

3286 3287
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

3288 3289
	cfqq = cfqd->active_queue;
	if (cfqq) {
3290 3291
		timed_out = 0;

3292 3293 3294 3295 3296 3297
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

3298 3299 3300
		/*
		 * expired
		 */
3301
		if (cfq_slice_used(cfqq))
3302 3303 3304 3305 3306 3307
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
3308
		if (!cfqd->busy_queues)
3309 3310 3311 3312 3313
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
3314
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3315
			goto out_kick;
3316 3317 3318 3319 3320

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
3321 3322
	}
expire:
3323
	cfq_slice_expired(cfqd, timed_out);
3324
out_kick:
3325
	cfq_schedule_dispatch(cfqd);
3326 3327 3328 3329
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
3330 3331 3332
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
3333
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
3334
}
3335

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
3346 3347 3348

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
3349 3350
}

J
Jens Axboe 已提交
3351
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
3352
{
3353
	struct cfq_data *cfqd = e->elevator_data;
3354
	struct request_queue *q = cfqd->queue;
3355

J
Jens Axboe 已提交
3356
	cfq_shutdown_timer_wq(cfqd);
3357

3358
	spin_lock_irq(q->queue_lock);
3359

3360
	if (cfqd->active_queue)
3361
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3362 3363

	while (!list_empty(&cfqd->cic_list)) {
3364 3365 3366
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
3367 3368

		__cfq_exit_single_io_context(cfqd, cic);
3369
	}
3370

3371
	cfq_put_async_queues(cfqd);
3372

3373
	spin_unlock_irq(q->queue_lock);
3374 3375 3376 3377

	cfq_shutdown_timer_wq(cfqd);

	kfree(cfqd);
L
Linus Torvalds 已提交
3378 3379
}

3380
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
3381 3382
{
	struct cfq_data *cfqd;
3383
	int i, j;
3384
	struct cfq_group *cfqg;
3385
	struct cfq_rb_root *st;
L
Linus Torvalds 已提交
3386

3387
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
3388
	if (!cfqd)
J
Jens Axboe 已提交
3389
		return NULL;
L
Linus Torvalds 已提交
3390

3391 3392 3393
	/* Init root service tree */
	cfqd->grp_service_tree = CFQ_RB_ROOT;

3394 3395
	/* Init root group */
	cfqg = &cfqd->root_group;
3396 3397
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
3398
	RB_CLEAR_NODE(&cfqg->rb_node);
3399

3400 3401 3402
	/* Give preference to root group over other groups */
	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;

3403 3404 3405
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd);
#endif
3406 3407 3408 3409 3410 3411 3412 3413
	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3414 3415 3416 3417 3418 3419 3420
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);
3421
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3422

3423
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
3424 3425 3426

	cfqd->queue = q;

3427 3428 3429 3430
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

3431
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3432

L
Linus Torvalds 已提交
3433
	cfqd->cfq_quantum = cfq_quantum;
3434 3435
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
3436 3437
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
3438 3439 3440 3441
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
3442
	cfqd->cfq_latency = 1;
3443
	cfqd->hw_tag = -1;
3444
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
3445
	return cfqd;
L
Linus Torvalds 已提交
3446 3447 3448 3449
}

static void cfq_slab_kill(void)
{
3450 3451 3452 3453
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
3454 3455 3456 3457 3458 3459 3460 3461
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3462
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3463 3464 3465
	if (!cfq_pool)
		goto fail;

3466
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3495
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3496
{									\
3497
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3498 3499 3500 3501 3502 3503
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3504 3505
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3506 3507
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3508 3509 3510 3511
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3512
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3513 3514 3515
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3516
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3517
{									\
3518
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3532 3533 3534 3535
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3536
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3537 3538
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3539 3540 3541
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3542 3543
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3544
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3545 3546
#undef STORE_FUNCTION

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3560
	CFQ_ATTR(low_latency),
3561
	__ATTR_NULL
L
Linus Torvalds 已提交
3562 3563 3564 3565 3566 3567 3568
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3569
		.elevator_allow_merge_fn =	cfq_allow_merge,
3570
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3571
		.elevator_add_req_fn =		cfq_insert_request,
3572
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3573 3574 3575
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3576 3577
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3578 3579 3580 3581 3582
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3583
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3584
	},
3585
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3586 3587 3588 3589 3590 3591
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3592 3593 3594 3595 3596 3597 3598 3599
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3600 3601 3602
	if (cfq_slab_setup())
		return -ENOMEM;

3603
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3604

3605
	return 0;
L
Linus Torvalds 已提交
3606 3607 3608 3609
}

static void __exit cfq_exit(void)
{
3610
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3611
	elv_unregister(&iosched_cfq);
3612
	ioc_gone = &all_gone;
3613 3614
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3615 3616 3617 3618 3619

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3620
	if (elv_ioc_count_read(cfq_ioc_count))
3621
		wait_for_completion(&all_gone);
3622
	cfq_slab_kill();
L
Linus Torvalds 已提交
3623 3624 3625 3626 3627 3628 3629 3630
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");