cfq-iosched.c 98.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
16
#include "blk-cgroup.h"
L
Linus Torvalds 已提交
17 18 19 20

/*
 * tunables
 */
21 22
/* max queue in one round of service */
static const int cfq_quantum = 4;
23
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 25 26 27
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
28
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
29
static int cfq_slice_async = HZ / 25;
30
static const int cfq_slice_async_rq = 2;
31
static int cfq_slice_idle = HZ / 125;
32 33
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
34

35
/*
36
 * offset from end of service tree
37
 */
38
#define CFQ_IDLE_DELAY		(HZ / 5)
39 40 41 42 43 44

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

45 46 47 48 49 50
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

51
#define CFQ_SLICE_SCALE		(5)
52
#define CFQ_HW_QUEUE_MIN	(5)
53
#define CFQ_SERVICE_SHIFT       12
54

55 56
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
57
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
58

59 60
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
61

62
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63
static struct completion *ioc_gone;
64
static DEFINE_SPINLOCK(ioc_gone_lock);
65

66 67 68 69
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

70
#define sample_valid(samples)	((samples) > 80)
71
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
72

73 74 75 76 77 78 79 80 81
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
82
	unsigned count;
83
	u64 min_vdisktime;
84
	struct rb_node *active;
85
	unsigned total_weight;
86
};
87
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

118 119
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
120
	unsigned int allocated_slice;
121 122
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
123 124 125 126 127 128 129 130 131 132 133 134 135
	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

136 137 138 139
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
140
	unsigned long seeky_start;
141

142
	pid_t pid;
J
Jeff Moyer 已提交
143

144
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
145
	struct cfq_queue *new_cfqq;
146
	struct cfq_group *cfqg;
147
	struct cfq_group *orig_cfqg;
148 149
	/* Sectors dispatched in current dispatch round */
	unsigned long nr_sectors;
150 151
};

152
/*
153
 * First index in the service_trees.
154 155 156 157
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
158 159
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
160 161
};

162 163 164 165 166 167 168 169 170
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

171 172
/* This is per cgroup per device grouping structure */
struct cfq_group {
173 174 175 176 177
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
178
	unsigned int weight;
179 180 181 182 183
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

184 185
	/* Per group busy queus average. Useful for workload slice calc. */
	unsigned int busy_queues_avg[2];
186 187 188 189 190 191
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
192 193 194 195

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
196 197 198
	struct blkio_group blkg;
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	struct hlist_node cfqd_node;
199
	atomic_t ref;
200
#endif
201
};
202

203 204 205
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
206
struct cfq_data {
207
	struct request_queue *queue;
208 209
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
210
	struct cfq_group root_group;
211 212
	/* Number of active cfq groups on group service tree */
	int nr_groups;
213

214 215
	/*
	 * The priority currently being served
216
	 */
217
	enum wl_prio_t serving_prio;
218 219
	enum wl_type_t serving_type;
	unsigned long workload_expires;
220
	struct cfq_group *serving_group;
221
	bool noidle_tree_requires_idle;
222 223 224 225 226 227 228 229

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

230 231
	unsigned int busy_queues;

232
	int rq_in_driver[2];
233
	int sync_flight;
234 235 236 237 238

	/*
	 * queue-depth detection
	 */
	int rq_queued;
239
	int hw_tag;
240 241 242 243 244 245 246 247
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
248

249 250 251 252
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
253
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
254

255 256 257
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

258 259 260 261 262
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
263

J
Jens Axboe 已提交
264
	sector_t last_position;
L
Linus Torvalds 已提交
265 266 267 268 269

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
270
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
271 272
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
273 274 275
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
276
	unsigned int cfq_latency;
277
	unsigned int cfq_group_isolation;
278 279

	struct list_head cic_list;
L
Linus Torvalds 已提交
280

281 282 283 284
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
285

286
	unsigned long last_delayed_sync;
287 288 289

	/* List of cfq groups being managed on this device*/
	struct hlist_head cfqg_list;
290
	struct rcu_head rcu;
L
Linus Torvalds 已提交
291 292
};

293 294
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

295 296
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
297
					    enum wl_type_t type,
298 299
					    struct cfq_data *cfqd)
{
300 301 302
	if (!cfqg)
		return NULL;

303
	if (prio == IDLE_WORKLOAD)
304
		return &cfqg->service_tree_idle;
305

306
	return &cfqg->service_trees[prio][type];
307 308
}

J
Jens Axboe 已提交
309
enum cfqq_state_flags {
310 311
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
312
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
313 314 315 316
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
317
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
318
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
319
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
320
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
321
	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
J
Jens Axboe 已提交
322 323 324 325 326
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
327
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
328 329 330
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
331
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
332 333 334
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
335
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
336 337 338 339
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
340
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
341 342 343 344
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
345
CFQ_CFQQ_FNS(slice_new);
346
CFQ_CFQQ_FNS(sync);
347
CFQ_CFQQ_FNS(coop);
348
CFQ_CFQQ_FNS(deep);
349
CFQ_CFQQ_FNS(wait_busy);
J
Jens Axboe 已提交
350 351
#undef CFQ_CFQQ_FNS

V
Vivek Goyal 已提交
352 353 354 355 356 357 358 359 360 361 362
#ifdef CONFIG_DEBUG_CFQ_IOSCHED
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
			blkg_path(&(cfqq)->cfqg->blkg), ##args);

#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
				blkg_path(&(cfqg)->blkg), ##args);      \

#else
363 364
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
V
Vivek Goyal 已提交
365 366
#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
#endif
367 368 369
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

370 371 372 373 374 375 376 377 378 379 380
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


381 382 383 384 385 386 387 388 389
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

390 391 392 393 394 395 396 397 398 399

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

400 401 402
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
403 404
{
	if (wl == IDLE_WORKLOAD)
405
		return cfqg->service_tree_idle.count;
406

407 408 409
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
410 411
}

412 413 414 415 416 417 418
static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg)
{
	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
}

419
static void cfq_dispatch_insert(struct request_queue *, struct request *);
420
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
421
				       struct io_context *, gfp_t);
422
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
423 424
						struct io_context *);

425 426 427 428 429
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

430
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
431
					    bool is_sync)
432
{
433
	return cic->cfqq[is_sync];
434 435 436
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
437
				struct cfq_queue *cfqq, bool is_sync)
438
{
439
	cic->cfqq[is_sync] = cfqq;
440 441 442 443 444 445
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
446
static inline bool cfq_bio_sync(struct bio *bio)
447
{
448
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
449
}
L
Linus Torvalds 已提交
450

A
Andrew Morton 已提交
451 452 453 454
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
455
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
456
{
457 458
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
459
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
460
	}
A
Andrew Morton 已提交
461 462
}

463
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
464 465 466
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

467
	return !cfqd->rq_queued;
A
Andrew Morton 已提交
468 469
}

470 471 472 473 474
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
475
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
476
				 unsigned short prio)
477
{
478
	const int base_slice = cfqd->cfq_slice[sync];
479

480 481 482 483
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
484

485 486 487 488
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
489 490
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

536 537 538 539 540 541
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

542 543
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
544
{
545 546 547
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
548
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
549

550 551 552
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
553
		cfq_hist_divisor;
554 555 556 557 558 559 560 561 562
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
563 564
}

565 566 567
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
568 569
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
570 571 572 573 574 575
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
576 577
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
578 579 580
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
581 582 583 584 585 586 587
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
588
			slice = max(slice * group_slice / expect_latency,
589 590 591
				    low_slice);
		}
	}
592
	cfqq->slice_start = jiffies;
593
	cfqq->slice_end = jiffies + slice;
594
	cfqq->allocated_slice = slice;
595
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
596 597 598 599 600 601 602
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
603
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
604 605 606 607 608 609 610 611 612
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
613
/*
J
Jens Axboe 已提交
614
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
615
 * We choose the request that is closest to the head right now. Distance
616
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
617
 */
J
Jens Axboe 已提交
618
static struct request *
619
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
620
{
621
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
622
	unsigned long back_max;
623 624 625
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
626

J
Jens Axboe 已提交
627 628 629 630
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
631

J
Jens Axboe 已提交
632 633 634 635
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
636 637 638 639
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
640

641 642
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
659
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
660 661 662 663 664 665

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
666
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
667 668

	/* Found required data */
669 670 671 672 673 674

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
675
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
676
		if (d1 < d2)
J
Jens Axboe 已提交
677
			return rq1;
678
		else if (d2 < d1)
J
Jens Axboe 已提交
679
			return rq2;
680 681
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
682
				return rq1;
683
			else
J
Jens Axboe 已提交
684
				return rq2;
685
		}
L
Linus Torvalds 已提交
686

687
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
688
		return rq1;
689
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
690 691
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
692 693 694 695 696 697 698 699
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
700
			return rq1;
L
Linus Torvalds 已提交
701
		else
J
Jens Axboe 已提交
702
			return rq2;
L
Linus Torvalds 已提交
703 704 705
	}
}

706 707 708
/*
 * The below is leftmost cache rbtree addon
 */
709
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
710
{
711 712 713 714
	/* Service tree is empty */
	if (!root->count)
		return NULL;

715 716 717
	if (!root->left)
		root->left = rb_first(&root->rb);

718 719 720 721
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
722 723
}

724 725 726 727 728 729 730 731 732 733 734
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

735 736 737 738 739 740
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

741 742 743 744
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
745
	rb_erase_init(n, &root->rb);
746
	--root->count;
747 748
}

L
Linus Torvalds 已提交
749 750 751
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
752 753 754
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
755
{
756 757
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
758
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
759

760
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
761 762

	if (rbprev)
J
Jens Axboe 已提交
763
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
764

765
	if (rbnext)
J
Jens Axboe 已提交
766
		next = rb_entry_rq(rbnext);
767 768 769
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
770
			next = rb_entry_rq(rbnext);
771
	}
L
Linus Torvalds 已提交
772

773
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
774 775
}

776 777
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
778
{
779 780 781
	/*
	 * just an approximation, should be ok.
	 */
782
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
783
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
784 785
}

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
845 846
	cfqd->nr_groups++;
	st->total_weight += cfqg->weight;
847 848 849 850 851 852 853
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

854 855 856
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

857 858
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
859

860 861 862 863
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

V
Vivek Goyal 已提交
864
	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
865
	cfqg->on_st = false;
866 867
	cfqd->nr_groups--;
	st->total_weight -= cfqg->weight;
868 869
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
870
	cfqg->saved_workload_slice = 0;
871
	blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
872 873 874 875
}

static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
{
876
	unsigned int slice_used;
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
893 894
		if (slice_used > cfqq->allocated_slice)
			slice_used = cfqq->allocated_slice;
895 896
	}

897 898
	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
				cfqq->nr_sectors);
899 900 901 902 903 904 905
	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
				struct cfq_queue *cfqq)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
906 907 908 909 910 911
	unsigned int used_sl, charge_sl;
	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
			- cfqg->service_tree_idle.count;

	BUG_ON(nr_sync < 0);
	used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
912

913 914
	if (!cfq_cfqq_sync(cfqq) && !nr_sync)
		charge_sl = cfqq->allocated_slice;
915 916 917

	/* Can't update vdisktime while group is on service tree */
	cfq_rb_erase(&cfqg->rb_node, st);
918
	cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
919 920 921 922 923 924 925 926 927 928
	__cfq_group_service_tree_add(st, cfqg);

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
V
Vivek Goyal 已提交
929 930 931

	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
					st->min_vdisktime);
932 933
	blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
						cfqq->nr_sectors);
934 935
}

936 937 938 939 940 941 942 943
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct cfq_group, blkg);
	return NULL;
}

944 945 946 947 948 949
void
cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
{
	cfqg_of_blkg(blkg)->weight = weight;
}

950 951 952 953 954 955 956 957
static struct cfq_group *
cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
	struct cfq_group *cfqg = NULL;
	void *key = cfqd;
	int i, j;
	struct cfq_rb_root *st;
958 959
	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
	unsigned int major, minor;
960 961

	/* Do we need to take this reference */
962
	if (!blkiocg_css_tryget(blkcg))
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
		return NULL;;

	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
	if (cfqg || !create)
		goto done;

	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
	if (!cfqg)
		goto done;

	cfqg->weight = blkcg->weight;
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
	RB_CLEAR_NODE(&cfqg->rb_node);

978 979 980 981 982 983 984 985
	/*
	 * Take the initial reference that will be released on destroy
	 * This can be thought of a joint reference by cgroup and
	 * elevator which will be dropped by either elevator exit
	 * or cgroup deletion path depending on who is exiting first.
	 */
	atomic_set(&cfqg->ref, 1);

986
	/* Add group onto cgroup list */
987 988 989
	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
					MKDEV(major, minor));
990 991 992 993 994

	/* Add group on cfqd list */
	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);

done:
995
	blkiocg_css_put(blkcg);
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	return cfqg;
}

/*
 * Search for the cfq group current task belongs to. If create = 1, then also
 * create the cfq group if it does not exist. request_queue lock must be held.
 */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	struct cgroup *cgroup;
	struct cfq_group *cfqg = NULL;

	rcu_read_lock();
	cgroup = task_cgroup(current, blkio_subsys_id);
	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
	if (!cfqg && create)
		cfqg = &cfqd->root_group;
	rcu_read_unlock();
	return cfqg;
}

static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	/* Currently, all async queues are mapped to root group */
	if (!cfq_cfqq_sync(cfqq))
		cfqg = &cfqq->cfqd->root_group;

	cfqq->cfqg = cfqg;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	/* cfqq reference on cfqg */
	atomic_inc(&cfqq->cfqg->ref);
}

static void cfq_put_cfqg(struct cfq_group *cfqg)
{
	struct cfq_rb_root *st;
	int i, j;

	BUG_ON(atomic_read(&cfqg->ref) <= 0);
	if (!atomic_dec_and_test(&cfqg->ref))
		return;
	for_each_cfqg_st(cfqg, i, j, st)
		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
	kfree(cfqg);
}

static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	/* Something wrong if we are trying to remove same group twice */
	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));

	hlist_del_init(&cfqg->cfqd_node);

	/*
	 * Put the reference taken at the time of creation so that when all
	 * queues are gone, group can be destroyed.
	 */
	cfq_put_cfqg(cfqg);
}

static void cfq_release_cfq_groups(struct cfq_data *cfqd)
{
	struct hlist_node *pos, *n;
	struct cfq_group *cfqg;

	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
		/*
		 * If cgroup removal path got to blk_group first and removed
		 * it from cgroup list, then it will take care of destroying
		 * cfqg also.
		 */
		if (!blkiocg_del_blkio_group(&cfqg->blkg))
			cfq_destroy_cfqg(cfqd, cfqg);
	}
1069
}
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

/*
 * Blk cgroup controller notification saying that blkio_group object is being
 * delinked as associated cgroup object is going away. That also means that
 * no new IO will come in this group. So get rid of this group as soon as
 * any pending IO in the group is finished.
 *
 * This function is called under rcu_read_lock(). key is the rcu protected
 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
 * read lock.
 *
 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
 * it should not be NULL as even if elevator was exiting, cgroup deltion
 * path got to it first.
 */
void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
{
	unsigned long  flags;
	struct cfq_data *cfqd = key;

	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
#else /* GROUP_IOSCHED */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}
static inline void
cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
	cfqq->cfqg = cfqg;
}

1105 1106 1107
static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}

1108 1109
#endif /* GROUP_IOSCHED */

1110
/*
1111
 * The cfqd->service_trees holds all pending cfq_queue's that have
1112 1113 1114
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
1115
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1116
				 bool add_front)
1117
{
1118 1119
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
1120
	unsigned long rb_key;
1121
	struct cfq_rb_root *service_tree;
1122
	int left;
1123
	int new_cfqq = 1;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	int group_changed = 0;

#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (!cfqd->cfq_group_isolation
	    && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
	    && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
		/* Move this cfq to root group */
		cfq_log_cfqq(cfqd, cfqq, "moving to root group");
		if (!RB_EMPTY_NODE(&cfqq->rb_node))
			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
		cfqq->orig_cfqg = cfqq->cfqg;
		cfqq->cfqg = &cfqd->root_group;
		atomic_inc(&cfqd->root_group.ref);
		group_changed = 1;
	} else if (!cfqd->cfq_group_isolation
		   && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
		/* cfqq is sequential now needs to go to its original group */
		BUG_ON(cfqq->cfqg != &cfqd->root_group);
		if (!RB_EMPTY_NODE(&cfqq->rb_node))
			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
		cfq_put_cfqg(cfqq->cfqg);
		cfqq->cfqg = cfqq->orig_cfqg;
		cfqq->orig_cfqg = NULL;
		group_changed = 1;
		cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
	}
#endif
1151

1152 1153
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
						cfqq_type(cfqq), cfqd);
1154 1155
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
1156
		parent = rb_last(&service_tree->rb);
1157 1158 1159 1160 1161 1162
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
1163 1164 1165 1166 1167 1168
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
1169
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1170
		rb_key -= cfqq->slice_resid;
1171
		cfqq->slice_resid = 0;
1172 1173
	} else {
		rb_key = -HZ;
1174
		__cfqq = cfq_rb_first(service_tree);
1175 1176
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
1177

1178
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1179
		new_cfqq = 0;
1180
		/*
1181
		 * same position, nothing more to do
1182
		 */
1183 1184
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
1185
			return;
L
Linus Torvalds 已提交
1186

1187 1188
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
1189
	}
1190

1191
	left = 1;
1192
	parent = NULL;
1193 1194
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
1195
	while (*p) {
1196
		struct rb_node **n;
1197

1198 1199 1200
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

1201
		/*
1202
		 * sort by key, that represents service time.
1203
		 */
1204
		if (time_before(rb_key, __cfqq->rb_key))
1205
			n = &(*p)->rb_left;
1206
		else {
1207
			n = &(*p)->rb_right;
1208
			left = 0;
1209
		}
1210 1211

		p = n;
1212 1213
	}

1214
	if (left)
1215
		service_tree->left = &cfqq->rb_node;
1216

1217 1218
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
1219 1220
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
1221
	if ((add_front || !new_cfqq) && !group_changed)
1222
		return;
1223
	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1224 1225
}

1226
static struct cfq_queue *
1227 1228 1229
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
1246
		if (sector > blk_rq_pos(cfqq->next_rq))
1247
			n = &(*p)->rb_right;
1248
		else if (sector < blk_rq_pos(cfqq->next_rq))
1249 1250 1251 1252
			n = &(*p)->rb_left;
		else
			break;
		p = n;
1253
		cfqq = NULL;
1254 1255 1256 1257 1258
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
1259
	return cfqq;
1260 1261 1262 1263 1264 1265 1266
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

1267 1268 1269 1270
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1271 1272 1273 1274 1275 1276

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

1277
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1278 1279
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1280 1281
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
1282 1283 1284
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
1285 1286
}

1287 1288 1289
/*
 * Update cfqq's position in the service tree.
 */
1290
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1291 1292 1293 1294
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
1295
	if (cfq_cfqq_on_rr(cfqq)) {
1296
		cfq_service_tree_add(cfqd, cfqq, 0);
1297 1298
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
1299 1300
}

L
Linus Torvalds 已提交
1301 1302
/*
 * add to busy list of queues for service, trying to be fair in ordering
1303
 * the pending list according to last request service
L
Linus Torvalds 已提交
1304
 */
J
Jens Axboe 已提交
1305
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1306
{
1307
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
1308 1309
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1310 1311
	cfqd->busy_queues++;

1312
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
1313 1314
}

1315 1316 1317 1318
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
1319
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1320
{
1321
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
1322 1323
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1324

1325 1326 1327 1328
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
1329 1330 1331 1332
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1333

1334
	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1335 1336 1337 1338 1339 1340 1341
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
1342
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1343
{
J
Jens Axboe 已提交
1344 1345
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
1346

1347 1348
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
1349

J
Jens Axboe 已提交
1350
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
		/*
		 * Queue will be deleted from service tree when we actually
		 * expire it later. Right now just remove it from prio tree
		 * as it is empty.
		 */
		if (cfqq->p_root) {
			rb_erase(&cfqq->p_node, cfqq->p_root);
			cfqq->p_root = NULL;
		}
	}
L
Linus Torvalds 已提交
1363 1364
}

J
Jens Axboe 已提交
1365
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1366
{
J
Jens Axboe 已提交
1367
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
1368
	struct cfq_data *cfqd = cfqq->cfqd;
1369
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
1370

1371
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
1372 1373 1374 1375 1376

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
1377
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
1378
		cfq_dispatch_insert(cfqd->queue, __alias);
1379 1380 1381

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
1382 1383 1384 1385

	/*
	 * check if this request is a better next-serve candidate
	 */
1386
	prev = cfqq->next_rq;
1387
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1388 1389 1390 1391 1392 1393 1394

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

1395
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
1396 1397
}

J
Jens Axboe 已提交
1398
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
1399
{
1400 1401
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
1402
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
1403 1404
}

1405 1406
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
1407
{
1408
	struct task_struct *tsk = current;
1409
	struct cfq_io_context *cic;
1410
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
1411

1412
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1413 1414 1415 1416
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1417 1418 1419
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

1420
		return elv_rb_find(&cfqq->sort_list, sector);
1421
	}
L
Linus Torvalds 已提交
1422 1423 1424 1425

	return NULL;
}

1426
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1427
{
1428
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1429

1430
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
1431
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1432
						rq_in_driver(cfqd));
1433

1434
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1435 1436
}

1437
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1438
{
1439
	struct cfq_data *cfqd = q->elevator->elevator_data;
1440
	const int sync = rq_is_sync(rq);
1441

1442 1443
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
1444
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1445
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
1446 1447
}

1448
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
1449
{
J
Jens Axboe 已提交
1450
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1451

J
Jens Axboe 已提交
1452 1453
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
1454

1455
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1456
	cfq_del_rq_rb(rq);
1457

1458
	cfqq->cfqd->rq_queued--;
1459 1460 1461 1462
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
1463 1464
}

1465 1466
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
1467 1468 1469 1470
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

1471
	__rq = cfq_find_rq_fmerge(cfqd, bio);
1472
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1473 1474
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
1475 1476 1477 1478 1479
	}

	return ELEVATOR_NO_MERGE;
}

1480
static void cfq_merged_request(struct request_queue *q, struct request *req,
1481
			       int type)
L
Linus Torvalds 已提交
1482
{
1483
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
1484
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
1485

J
Jens Axboe 已提交
1486
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
1487 1488 1489 1490
	}
}

static void
1491
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
1492 1493
		    struct request *next)
{
1494
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1495 1496 1497 1498
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1499
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1500
		list_move(&rq->queuelist, &next->queuelist);
1501 1502
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
1503

1504 1505
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
1506
	cfq_remove_request(next);
1507 1508
}

1509
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1510 1511 1512
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1513
	struct cfq_io_context *cic;
1514 1515
	struct cfq_queue *cfqq;

1516 1517 1518
	/* Deny merge if bio and rq don't belong to same cfq group */
	if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
		return false;
1519
	/*
1520
	 * Disallow merge of a sync bio into an async request.
1521
	 */
1522
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1523
		return false;
1524 1525

	/*
1526 1527
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
1528
	 */
1529
	cic = cfq_cic_lookup(cfqd, current->io_context);
1530
	if (!cic)
1531
		return false;
1532

1533
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1534
	return cfqq == RQ_CFQQ(rq);
1535 1536
}

J
Jens Axboe 已提交
1537 1538
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1539 1540
{
	if (cfqq) {
1541
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1542 1543
		cfqq->slice_start = 0;
		cfqq->dispatch_start = jiffies;
1544
		cfqq->allocated_slice = 0;
1545
		cfqq->slice_end = 0;
1546
		cfqq->slice_dispatch = 0;
1547
		cfqq->nr_sectors = 0;
1548 1549

		cfq_clear_cfqq_wait_request(cfqq);
1550
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1551 1552
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1553
		cfq_mark_cfqq_slice_new(cfqq);
1554 1555

		del_timer(&cfqd->idle_slice_timer);
1556 1557 1558 1559 1560
	}

	cfqd->active_queue = cfqq;
}

1561 1562 1563 1564 1565
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1566
		    bool timed_out)
1567
{
1568 1569
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1570 1571 1572 1573
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);
1574
	cfq_clear_cfqq_wait_busy(cfqq);
1575 1576

	/*
1577
	 * store what was left of this slice, if the queue idled/timed out
1578
	 */
1579
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1580
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1581 1582
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1583

1584 1585
	cfq_group_served(cfqd, cfqq->cfqg, cfqq);

1586 1587 1588
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
		cfq_del_cfqq_rr(cfqd, cfqq);

1589
	cfq_resort_rr_list(cfqd, cfqq);
1590 1591 1592 1593

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

1594 1595 1596
	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
		cfqd->grp_service_tree.active = NULL;

1597 1598 1599 1600 1601 1602
	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1603
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1604 1605 1606 1607
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1608
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1609 1610
}

1611 1612 1613 1614
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1615
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1616
{
1617
	struct cfq_rb_root *service_tree =
1618 1619
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
					cfqd->serving_type, cfqd);
1620

1621 1622 1623
	if (!cfqd->rq_queued)
		return NULL;

1624 1625 1626
	/* There is nothing to dispatch */
	if (!service_tree)
		return NULL;
1627 1628 1629
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1630 1631
}

1632 1633
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
1634
	struct cfq_group *cfqg;
1635 1636 1637 1638 1639 1640 1641
	struct cfq_queue *cfqq;
	int i, j;
	struct cfq_rb_root *st;

	if (!cfqd->rq_queued)
		return NULL;

1642 1643 1644 1645
	cfqg = cfq_get_next_cfqg(cfqd);
	if (!cfqg)
		return NULL;

1646 1647 1648 1649 1650 1651
	for_each_cfqg_st(cfqg, i, j, st)
		if ((cfqq = cfq_rb_first(st)) != NULL)
			return cfqq;
	return NULL;
}

1652 1653 1654
/*
 * Get and set a new active queue for service.
 */
1655 1656
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1657
{
1658
	if (!cfqq)
1659
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1660

1661
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1662
	return cfqq;
1663 1664
}

1665 1666 1667
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1668 1669
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1670
	else
1671
		return cfqd->last_position - blk_rq_pos(rq);
1672 1673
}

1674 1675
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1676

1677 1678
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1679
{
1680
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1681

1682 1683
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1684

1685
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1686 1687
}

1688 1689 1690
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1691
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1703
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1704 1705 1706 1707 1708 1709 1710 1711
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1712
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1713 1714
		return __cfqq;

1715
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1716 1717 1718 1719 1720 1721 1722
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1723
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1740
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1741
{
1742 1743
	struct cfq_queue *cfqq;

1744 1745 1746 1747 1748
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

1749 1750 1751 1752 1753 1754
	/*
	 * Don't search priority tree if it's the only queue in the group.
	 */
	if (cur_cfqq->cfqg->nr_cfqq == 1)
		return NULL;

J
Jens Axboe 已提交
1755
	/*
1756 1757 1758
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1759
	 */
1760 1761 1762 1763
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

1764 1765 1766 1767
	/* If new queue belongs to different cfq_group, don't choose it */
	if (cur_cfqq->cfqg != cfqq->cfqg)
		return NULL;

J
Jeff Moyer 已提交
1768 1769 1770 1771 1772
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1773 1774
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1775

1776 1777 1778 1779 1780 1781
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1782
	return cfqq;
J
Jens Axboe 已提交
1783 1784
}

1785 1786 1787 1788 1789 1790 1791
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1792
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1793

1794 1795 1796
	BUG_ON(!service_tree);
	BUG_ON(!service_tree->count);

1797 1798 1799 1800 1801
	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
1802 1803
	if (cfq_cfqq_idle_window(cfqq) &&
	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1804 1805 1806 1807 1808 1809
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1810
	return service_tree->count == 1;
1811 1812
}

J
Jens Axboe 已提交
1813
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1814
{
1815
	struct cfq_queue *cfqq = cfqd->active_queue;
1816
	struct cfq_io_context *cic;
1817 1818
	unsigned long sl;

1819
	/*
J
Jens Axboe 已提交
1820 1821 1822
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1823
	 */
J
Jens Axboe 已提交
1824
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1825 1826
		return;

1827
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1828
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1829 1830 1831 1832

	/*
	 * idle is disabled, either manually or by past process history
	 */
1833
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1834 1835
		return;

1836
	/*
1837
	 * still active requests from this queue, don't idle
1838
	 */
1839
	if (cfqq->dispatched)
1840 1841
		return;

1842 1843 1844
	/*
	 * task has exited, don't wait
	 */
1845
	cic = cfqd->active_cic;
1846
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1847 1848
		return;

1849 1850 1851 1852 1853 1854 1855 1856 1857
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1858
	cfq_mark_cfqq_wait_request(cfqq);
1859

J
Jens Axboe 已提交
1860
	sl = cfqd->cfq_slice_idle;
1861

1862
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1863
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1864 1865
}

1866 1867 1868
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1869
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1870
{
1871
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1872
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1873

1874 1875
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1876
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1877
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1878
	cfqq->dispatched++;
1879
	elv_dispatch_sort(q, rq);
1880 1881 1882

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
1883
	cfqq->nr_sectors += blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1884 1885 1886 1887 1888
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1889
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1890
{
1891
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1892

J
Jens Axboe 已提交
1893
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1894
		return NULL;
1895 1896 1897

	cfq_mark_cfqq_fifo_expire(cfqq);

1898 1899
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1900

1901
	rq = rq_entry_fifo(cfqq->fifo.next);
1902
	if (time_before(jiffies, rq_fifo_time(rq)))
1903
		rq = NULL;
L
Linus Torvalds 已提交
1904

1905
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1906
	return rq;
L
Linus Torvalds 已提交
1907 1908
}

1909 1910 1911 1912
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1913

1914
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1915

1916
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1917 1918
}

J
Jeff Moyer 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1934
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1963 1964
}

1965 1966 1967
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
				struct cfq_group *cfqg, enum wl_prio_t prio,
				bool prio_changed)
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
1981
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1982 1983
			return cur_best;
		cur_best = SYNC_WORKLOAD;
1984
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1985 1986 1987 1988 1989 1990 1991
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
1992
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

2004
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2005 2006 2007 2008 2009
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;
2010
	struct cfq_rb_root *st;
2011
	unsigned group_slice;
2012

2013 2014 2015 2016 2017 2018
	if (!cfqg) {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

2019
	/* Choose next priority. RT > BE > IDLE */
2020
	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2021
		cfqd->serving_prio = RT_WORKLOAD;
2022
	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
2036 2037 2038
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
2050 2051 2052 2053
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
2054 2055 2056 2057 2058 2059

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
2060 2061 2062 2063 2064
	group_slice = cfq_group_slice(cfqd, cfqg);

	slice = group_slice * count /
		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2065

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	if (cfqd->serving_type == ASYNC_WORKLOAD) {
		unsigned int tmp;

		/*
		 * Async queues are currently system wide. Just taking
		 * proportion of queues with-in same group will lead to higher
		 * async ratio system wide as generally root group is going
		 * to have higher weight. A more accurate thing would be to
		 * calculate system wide asnc/sync ratio.
		 */
		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
		tmp = tmp/cfqd->busy_queues;
		slice = min_t(unsigned, slice, tmp);

2080 2081 2082
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2083
	} else
2084 2085 2086 2087 2088
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
2089
	cfqd->noidle_tree_requires_idle = false;
2090 2091
}

2092 2093 2094
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2095
	struct cfq_group *cfqg;
2096 2097 2098

	if (RB_EMPTY_ROOT(&st->rb))
		return NULL;
2099 2100 2101 2102
	cfqg = cfq_rb_first_group(st);
	st->active = &cfqg->rb_node;
	update_min_vdisktime(st);
	return cfqg;
2103 2104
}

2105 2106
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
2107 2108 2109
	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);

	cfqd->serving_group = cfqg;
2110 2111 2112 2113 2114 2115 2116

	/* Restore the workload type data */
	if (cfqg->saved_workload_slice) {
		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
		cfqd->serving_type = cfqg->saved_workload;
		cfqd->serving_prio = cfqg->saved_serving_prio;
	}
2117
	choose_service_tree(cfqd, cfqg);
2118 2119
}

2120
/*
2121 2122
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
2123
 */
2124
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
2125
{
2126
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
2127

2128 2129 2130
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
2131

2132 2133
	if (!cfqd->rq_queued)
		return NULL;
2134 2135 2136 2137 2138 2139 2140

	/*
	 * We were waiting for group to get backlogged. Expire the queue
	 */
	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
		goto expire;

2141
	/*
J
Jens Axboe 已提交
2142
	 * The active queue has run out of time, expire it and select new.
2143
	 */
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
		/*
		 * If slice had not expired at the completion of last request
		 * we might not have turned on wait_busy flag. Don't expire
		 * the queue yet. Allow the group to get backlogged.
		 *
		 * The very fact that we have used the slice, that means we
		 * have been idling all along on this queue and it should be
		 * ok to wait for this request to complete.
		 */
		if (cfqq->cfqg->nr_cfqq == 1 && cfqq->dispatched
		    && cfq_should_idle(cfqd, cfqq))
			goto keep_queue;
		else
			goto expire;
	}
L
Linus Torvalds 已提交
2160

2161
	/*
J
Jens Axboe 已提交
2162 2163
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
2164
	 */
2165
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2166
		goto keep_queue;
J
Jens Axboe 已提交
2167

2168 2169 2170 2171
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
2172
	 * tree.  If possible, merge the expiring queue with the new cfqq.
2173
	 */
2174
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
2175 2176 2177
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
2178
		goto expire;
J
Jeff Moyer 已提交
2179
	}
2180

J
Jens Axboe 已提交
2181 2182 2183 2184 2185
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
2186
	if (timer_pending(&cfqd->idle_slice_timer) ||
2187
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2188 2189
		cfqq = NULL;
		goto keep_queue;
2190 2191
	}

J
Jens Axboe 已提交
2192
expire:
2193
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
2194
new_queue:
2195 2196 2197 2198 2199
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
2200
		cfq_choose_cfqg(cfqd);
2201

2202
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2203
keep_queue:
J
Jens Axboe 已提交
2204
	return cfqq;
2205 2206
}

J
Jens Axboe 已提交
2207
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2208 2209 2210 2211 2212 2213 2214 2215 2216
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
2217 2218 2219

	/* By default cfqq is not expired if it is empty. Do it explicitly */
	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2220 2221 2222
	return dispatched;
}

2223 2224 2225 2226
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
2227
static int cfq_forced_dispatch(struct cfq_data *cfqd)
2228
{
2229
	struct cfq_queue *cfqq;
2230
	int dispatched = 0;
2231

2232 2233
	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2234

2235
	cfq_slice_expired(cfqd, 0);
2236 2237
	BUG_ON(cfqd->busy_queues);

2238
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2239 2240 2241
	return dispatched;
}

2242
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2243 2244
{
	unsigned int max_dispatch;
2245

2246 2247 2248
	/*
	 * Drain async requests before we start sync IO
	 */
2249
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2250
		return false;
2251

2252 2253 2254 2255
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2256
		return false;
2257 2258 2259 2260

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
2261

2262 2263 2264 2265 2266 2267 2268
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
2269
		if (cfq_class_idle(cfqq))
2270
			return false;
2271

2272 2273 2274 2275
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
2276
			return false;
2277

2278
		/*
2279
		 * Sole queue user, no limit
2280
		 */
2281
		max_dispatch = -1;
2282 2283 2284 2285 2286 2287 2288
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
2289
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2290
		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2291
		unsigned int depth;
2292

2293
		depth = last_sync / cfqd->cfq_slice[1];
2294 2295
		if (!depth && !cfqq->dispatched)
			depth = 1;
2296 2297
		if (depth < max_dispatch)
			max_dispatch = depth;
2298
	}
2299

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
2358 2359
		return 0;

2360
	/*
2361
	 * Dispatch a request from this cfqq, if it is allowed
2362
	 */
2363 2364 2365
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

2366
	cfqq->slice_dispatch++;
2367
	cfq_clear_cfqq_must_dispatch(cfqq);
2368

2369 2370 2371 2372 2373 2374 2375 2376 2377
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
2378 2379
	}

2380
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2381
	return 1;
L
Linus Torvalds 已提交
2382 2383 2384
}

/*
J
Jens Axboe 已提交
2385 2386
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
2387
 *
2388
 * Each cfq queue took a reference on the parent group. Drop it now.
L
Linus Torvalds 已提交
2389 2390 2391 2392
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
2393
	struct cfq_data *cfqd = cfqq->cfqd;
2394
	struct cfq_group *cfqg, *orig_cfqg;
2395 2396

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
2397 2398 2399 2400

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

2401
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
2402
	BUG_ON(rb_first(&cfqq->sort_list));
2403
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2404
	cfqg = cfqq->cfqg;
2405
	orig_cfqg = cfqq->orig_cfqg;
L
Linus Torvalds 已提交
2406

2407
	if (unlikely(cfqd->active_queue == cfqq)) {
2408
		__cfq_slice_expired(cfqd, cfqq, 0);
2409
		cfq_schedule_dispatch(cfqd);
2410
	}
2411

2412
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
2413
	kmem_cache_free(cfq_pool, cfqq);
2414
	cfq_put_cfqg(cfqg);
2415 2416
	if (orig_cfqg)
		cfq_put_cfqg(orig_cfqg);
L
Linus Torvalds 已提交
2417 2418
}

2419 2420 2421
/*
 * Must always be called with the rcu_read_lock() held
 */
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

2433
/*
2434
 * Call func for each cic attached to this ioc.
2435
 */
2436
static void
2437 2438
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
2439
{
2440
	rcu_read_lock();
2441
	__call_for_each_cic(ioc, func);
2442
	rcu_read_unlock();
2443 2444 2445 2446 2447 2448 2449 2450 2451
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
2452
	elv_ioc_count_dec(cfq_ioc_count);
2453

2454 2455 2456 2457 2458 2459 2460
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
2461
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2462 2463 2464 2465 2466
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
2467
}
2468

2469 2470 2471
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2482
	hlist_del_rcu(&cic->cic_list);
2483 2484
	spin_unlock_irqrestore(&ioc->lock, flags);

2485
	cfq_cic_free(cic);
2486 2487
}

2488 2489 2490 2491 2492
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
2493 2494 2495
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
2496 2497 2498 2499
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
2500
	 */
2501
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
2502 2503
}

2504
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2505
{
J
Jeff Moyer 已提交
2506 2507
	struct cfq_queue *__cfqq, *next;

2508
	if (unlikely(cfqq == cfqd->active_queue)) {
2509
		__cfq_slice_expired(cfqd, cfqq, 0);
2510
		cfq_schedule_dispatch(cfqd);
2511
	}
2512

J
Jeff Moyer 已提交
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

2529 2530
	cfq_put_queue(cfqq);
}
2531

2532 2533 2534
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
2535 2536
	struct io_context *ioc = cic->ioc;

2537
	list_del_init(&cic->queue_list);
2538 2539 2540 2541

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
2542
	smp_wmb();
2543
	cic->dead_key = (unsigned long) cic->key;
2544 2545
	cic->key = NULL;

2546 2547 2548
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

2549 2550 2551
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
2552 2553
	}

2554 2555 2556
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
2557
	}
2558 2559
}

2560 2561
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
2562 2563 2564 2565
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
2566
		struct request_queue *q = cfqd->queue;
2567
		unsigned long flags;
2568

2569
		spin_lock_irqsave(q->queue_lock, flags);
2570 2571 2572 2573 2574 2575 2576 2577 2578

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

2579
		spin_unlock_irqrestore(q->queue_lock, flags);
2580
	}
L
Linus Torvalds 已提交
2581 2582
}

2583 2584 2585 2586
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
2587
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
2588
{
2589
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
2590 2591
}

2592
static struct cfq_io_context *
A
Al Viro 已提交
2593
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2594
{
2595
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
2596

2597 2598
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
2599
	if (cic) {
2600
		cic->last_end_request = jiffies;
2601
		INIT_LIST_HEAD(&cic->queue_list);
2602
		INIT_HLIST_NODE(&cic->cic_list);
2603 2604
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
2605
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
2606 2607 2608 2609 2610
	}

	return cic;
}

2611
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2612 2613 2614 2615
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
2616
	if (!cfq_cfqq_prio_changed(cfqq))
2617 2618
		return;

2619
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2620
	switch (ioprio_class) {
2621 2622 2623 2624
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
2625
		 * no prio set, inherit CPU scheduling settings
2626 2627
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
2628
		cfqq->ioprio_class = task_nice_ioclass(tsk);
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
2643 2644 2645 2646 2647 2648 2649 2650
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
2651
	cfq_clear_cfqq_prio_changed(cfqq);
2652 2653
}

J
Jens Axboe 已提交
2654
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2655
{
2656 2657
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
2658
	unsigned long flags;
2659

2660 2661 2662
	if (unlikely(!cfqd))
		return;

2663
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2664

2665
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2666 2667
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2668 2669
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2670
		if (new_cfqq) {
2671
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2672 2673
			cfq_put_queue(cfqq);
		}
2674
	}
2675

2676
	cfqq = cic->cfqq[BLK_RW_SYNC];
2677 2678 2679
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2680
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2681 2682
}

2683
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2684
{
2685
	call_for_each_cic(ioc, changed_ioprio);
2686
	ioc->ioprio_changed = 0;
2687 2688
}

2689
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2690
			  pid_t pid, bool is_sync)
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
{
	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
	struct cfq_data *cfqd = cic->key;
	unsigned long flags;
	struct request_queue *q;

	if (unlikely(!cfqd))
		return;

	q = cfqd->queue;

	spin_lock_irqsave(q->queue_lock, flags);

	if (sync_cfqq) {
		/*
		 * Drop reference to sync queue. A new sync queue will be
		 * assigned in new group upon arrival of a fresh request.
		 */
		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
		cic_set_cfqq(cic, NULL, 1);
		cfq_put_queue(sync_cfqq);
	}

	spin_unlock_irqrestore(q->queue_lock, flags);
}

static void cfq_ioc_set_cgroup(struct io_context *ioc)
{
	call_for_each_cic(ioc, changed_cgroup);
	ioc->cgroup_changed = 0;
}
#endif  /* CONFIG_CFQ_GROUP_IOSCHED */

2744
static struct cfq_queue *
2745
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2746
		     struct io_context *ioc, gfp_t gfp_mask)
2747 2748
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2749
	struct cfq_io_context *cic;
2750
	struct cfq_group *cfqg;
2751 2752

retry:
2753
	cfqg = cfq_get_cfqg(cfqd, 1);
2754
	cic = cfq_cic_lookup(cfqd, ioc);
2755 2756
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2757

2758 2759 2760 2761 2762 2763
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2764 2765 2766 2767 2768
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2769
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2770
					gfp_mask | __GFP_ZERO,
2771
					cfqd->queue->node);
2772
			spin_lock_irq(cfqd->queue->queue_lock);
2773 2774
			if (new_cfqq)
				goto retry;
2775
		} else {
2776 2777 2778
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2779 2780
		}

2781 2782 2783
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
2784
			cfq_link_cfqq_cfqg(cfqq, cfqg);
2785 2786 2787
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2788 2789 2790 2791 2792 2793 2794 2795
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2796 2797 2798
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2799
	switch (ioprio_class) {
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2811
static struct cfq_queue *
2812
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2813 2814
	      gfp_t gfp_mask)
{
2815 2816
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2817
	struct cfq_queue **async_cfqq = NULL;
2818 2819
	struct cfq_queue *cfqq = NULL;

2820 2821 2822 2823 2824
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2825
	if (!cfqq)
2826
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2827 2828 2829 2830

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2831
	if (!is_sync && !(*async_cfqq)) {
2832
		atomic_inc(&cfqq->ref);
2833
		*async_cfqq = cfqq;
2834 2835 2836 2837 2838 2839
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2840 2841 2842
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2843
static void
2844 2845
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2846
{
2847 2848
	unsigned long flags;

2849
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2850

2851 2852
	spin_lock_irqsave(&ioc->lock, flags);

2853
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2854

2855
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2856
	hlist_del_rcu(&cic->cic_list);
2857 2858 2859
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2860 2861
}

2862
static struct cfq_io_context *
2863
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2864 2865
{
	struct cfq_io_context *cic;
2866
	unsigned long flags;
2867
	void *k;
2868

2869 2870 2871
	if (unlikely(!ioc))
		return NULL;

2872 2873
	rcu_read_lock();

J
Jens Axboe 已提交
2874 2875 2876
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2877
	cic = rcu_dereference(ioc->ioc_data);
2878 2879
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2880
		return cic;
2881
	}
J
Jens Axboe 已提交
2882

2883 2884 2885 2886 2887
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2888 2889 2890
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2891
			cfq_drop_dead_cic(cfqd, ioc, cic);
2892
			rcu_read_lock();
2893
			continue;
2894
		}
2895

2896
		spin_lock_irqsave(&ioc->lock, flags);
2897
		rcu_assign_pointer(ioc->ioc_data, cic);
2898
		spin_unlock_irqrestore(&ioc->lock, flags);
2899 2900
		break;
	} while (1);
2901

2902
	return cic;
2903 2904
}

2905 2906 2907 2908 2909
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2910 2911
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2912
{
2913
	unsigned long flags;
2914
	int ret;
2915

2916 2917 2918 2919
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2920

2921 2922 2923
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2924 2925
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2926
		spin_unlock_irqrestore(&ioc->lock, flags);
2927

2928 2929 2930 2931 2932 2933 2934
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2935 2936
	}

2937 2938
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2939

2940
	return ret;
2941 2942
}

L
Linus Torvalds 已提交
2943 2944 2945
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2946
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2947 2948
 */
static struct cfq_io_context *
2949
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2950
{
2951
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2952 2953
	struct cfq_io_context *cic;

2954
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2955

2956
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2957 2958 2959
	if (!ioc)
		return NULL;

2960
	cic = cfq_cic_lookup(cfqd, ioc);
2961 2962
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2963

2964 2965 2966
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2967

2968 2969 2970
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2971
out:
2972 2973 2974 2975
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

2976 2977 2978 2979
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (unlikely(ioc->cgroup_changed))
		cfq_ioc_set_cgroup(ioc);
#endif
L
Linus Torvalds 已提交
2980
	return cic;
2981 2982
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2983 2984 2985 2986 2987
err:
	put_io_context(ioc);
	return NULL;
}

2988 2989
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2990
{
2991 2992
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2993

2994 2995 2996 2997
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2998

2999
static void
3000
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
3001
		       struct request *rq)
3002 3003 3004 3005
{
	sector_t sdist;
	u64 total;

3006
	if (!cfqq->last_request_pos)
3007
		sdist = 0;
3008 3009
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3010
	else
3011
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3012 3013 3014 3015 3016

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
3017 3018
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
3019
	else
3020
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
3021

3022 3023 3024 3025 3026
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
3040
}
L
Linus Torvalds 已提交
3041

3042 3043 3044 3045 3046 3047 3048 3049
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
3050
	int old_idle, enable_idle;
3051

3052 3053 3054 3055
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3056 3057
		return;

3058
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
3059

3060 3061 3062
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

3063
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3064 3065
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
3066 3067
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
3068
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
3069 3070 3071
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
3072 3073
	}

3074 3075 3076 3077 3078 3079 3080
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
3081
}
L
Linus Torvalds 已提交
3082

3083 3084 3085 3086
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
3087
static bool
3088
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
3089
		   struct request *rq)
3090
{
J
Jens Axboe 已提交
3091
	struct cfq_queue *cfqq;
3092

J
Jens Axboe 已提交
3093 3094
	cfqq = cfqd->active_queue;
	if (!cfqq)
3095
		return false;
3096

J
Jens Axboe 已提交
3097
	if (cfq_class_idle(new_cfqq))
3098
		return false;
3099 3100

	if (cfq_class_idle(cfqq))
3101
		return true;
3102

3103 3104 3105 3106
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
3107
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3108
		return true;
3109

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
	if (new_cfqq->cfqg != cfqq->cfqg)
		return false;

	if (cfq_slice_used(cfqq))
		return true;

	/* Allow preemption only if we are idling on sync-noidle tree */
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
	    new_cfqq->service_tree->count == 2 &&
	    RB_EMPTY_ROOT(&cfqq->sort_list))
		return true;

3123 3124 3125 3126 3127
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
3128
		return true;
3129

3130 3131 3132 3133
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3134
		return true;
3135

3136
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3137
		return false;
3138 3139 3140 3141 3142

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
3143
	if (cfq_rq_close(cfqd, cfqq, rq))
3144
		return true;
3145

3146
	return false;
3147 3148 3149 3150 3151 3152 3153 3154
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
3155
	cfq_log_cfqq(cfqd, cfqq, "preempt");
3156
	cfq_slice_expired(cfqd, 1);
3157

3158 3159 3160 3161 3162
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3163 3164

	cfq_service_tree_add(cfqd, cfqq, 1);
3165

3166 3167
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
3168 3169 3170
}

/*
J
Jens Axboe 已提交
3171
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3172 3173 3174
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
3175 3176
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
3177
{
J
Jens Axboe 已提交
3178
	struct cfq_io_context *cic = RQ_CIC(rq);
3179

3180
	cfqd->rq_queued++;
3181 3182 3183
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
3184
	cfq_update_io_thinktime(cfqd, cic);
3185
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
3186 3187
	cfq_update_idle_window(cfqd, cfqq, cic);

3188
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3189 3190 3191

	if (cfqq == cfqd->active_queue) {
		/*
3192 3193 3194
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
3195 3196
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
3197 3198 3199
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
3200
		 */
3201
		if (cfq_cfqq_wait_request(cfqq)) {
3202 3203
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
3204
				del_timer(&cfqd->idle_slice_timer);
3205
				cfq_clear_cfqq_wait_request(cfqq);
3206 3207 3208
				__blk_run_queue(cfqd->queue);
			} else
				cfq_mark_cfqq_must_dispatch(cfqq);
3209
		}
J
Jens Axboe 已提交
3210
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3211 3212 3213
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
3214 3215
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
3216 3217
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
3218
		__blk_run_queue(cfqd->queue);
3219
	}
L
Linus Torvalds 已提交
3220 3221
}

3222
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3223
{
3224
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
3225
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3226

3227
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3228
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3229

3230
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3231
	list_add_tail(&rq->queuelist, &cfqq->fifo);
3232
	cfq_add_rq_rb(rq);
3233

J
Jens Axboe 已提交
3234
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
3235 3236
}

3237 3238 3239 3240 3241 3242
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
3243 3244
	struct cfq_queue *cfqq = cfqd->active_queue;

3245 3246 3247 3248 3249
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
3250 3251

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3252
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3253 3254
		return;

S
Shaohua Li 已提交
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

3265 3266 3267
	if (cfqd->hw_tag_samples++ < 50)
		return;

3268
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3269 3270 3271 3272 3273
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct cfq_io_context *cic = cfqd->active_cic;

	/* If there are other queues in the group, don't wait */
	if (cfqq->cfqg->nr_cfqq > 1)
		return false;

	if (cfq_slice_used(cfqq))
		return true;

	/* if slice left is less than think time, wait busy */
	if (cic && sample_valid(cic->ttime_samples)
	    && (cfqq->slice_end - jiffies < cic->ttime_mean))
		return true;

	/*
	 * If think times is less than a jiffy than ttime_mean=0 and above
	 * will not be true. It might happen that slice has not expired yet
	 * but will expire soon (4-5 ns) during select_queue(). To cover the
	 * case where think time is less than a jiffy, mark the queue wait
	 * busy if only 1 jiffy is left in the slice.
	 */
	if (cfqq->slice_end - jiffies == 1)
		return true;

	return false;
}

3303
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3304
{
J
Jens Axboe 已提交
3305
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3306
	struct cfq_data *cfqd = cfqq->cfqd;
3307
	const int sync = rq_is_sync(rq);
3308
	unsigned long now;
L
Linus Torvalds 已提交
3309

3310
	now = jiffies;
V
Vivek Goyal 已提交
3311
	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
L
Linus Torvalds 已提交
3312

3313 3314
	cfq_update_hw_tag(cfqd);

3315
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
3316
	WARN_ON(!cfqq->dispatched);
3317
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
3318
	cfqq->dispatched--;
L
Linus Torvalds 已提交
3319

3320 3321 3322
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

3323
	if (sync) {
J
Jens Axboe 已提交
3324
		RQ_CIC(rq)->last_end_request = now;
3325 3326
		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
			cfqd->last_delayed_sync = now;
3327
	}
3328 3329 3330 3331 3332 3333

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
3334 3335
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

3336 3337 3338 3339
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
3340 3341

		/*
3342 3343
		 * Should we wait for next request to come in before we expire
		 * the queue.
3344
		 */
3345
		if (cfq_should_wait_busy(cfqd, cfqq)) {
3346 3347 3348 3349
			cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
			cfq_mark_cfqq_wait_busy(cfqq);
		}

3350
		/*
3351 3352 3353 3354 3355 3356
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
3357
		 */
3358
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3359
			cfq_slice_expired(cfqd, 1);
3360 3361 3362 3363 3364 3365 3366 3367 3368
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
3369 3370
			    || cfqd->noidle_tree_requires_idle
			    || cfqq->cfqg->nr_cfqq == 1)
3371 3372
				cfq_arm_slice_timer(cfqd);
		}
3373
	}
J
Jens Axboe 已提交
3374

3375
	if (!rq_in_driver(cfqd))
3376
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3377 3378
}

3379 3380 3381 3382 3383
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
3384
{
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
3396
		 * unboost the queue (if needed)
3397
		 */
3398 3399
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
3400 3401
	}
}
L
Linus Torvalds 已提交
3402

3403
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3404
{
3405
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
3406
		cfq_mark_cfqq_must_alloc_slice(cfqq);
3407
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
3408
	}
L
Linus Torvalds 已提交
3409

3410 3411 3412
	return ELV_MQUEUE_MAY;
}

3413
static int cfq_may_queue(struct request_queue *q, int rw)
3414 3415 3416
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
3417
	struct cfq_io_context *cic;
3418 3419 3420 3421 3422 3423 3424 3425
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
3426
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3427 3428 3429
	if (!cic)
		return ELV_MQUEUE_MAY;

3430
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3431
	if (cfqq) {
3432
		cfq_init_prio_data(cfqq, cic->ioc);
3433 3434
		cfq_prio_boost(cfqq);

3435
		return __cfq_may_queue(cfqq);
3436 3437 3438
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
3439 3440 3441 3442 3443
}

/*
 * queue lock held here
 */
3444
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
3445
{
J
Jens Axboe 已提交
3446
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
3447

J
Jens Axboe 已提交
3448
	if (cfqq) {
3449
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
3450

3451 3452
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
3453

J
Jens Axboe 已提交
3454
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3455 3456

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
3457
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
3458 3459 3460 3461 3462

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
3463 3464 3465 3466 3467 3468
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3469
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
3470 3471 3472 3473
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
3500
/*
3501
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
3502
 */
3503
static int
3504
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
3505 3506 3507 3508
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
3509
	const bool is_sync = rq_is_sync(rq);
3510
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
3511 3512 3513 3514
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

3515
	cic = cfq_get_io_context(cfqd, gfp_mask);
3516

L
Linus Torvalds 已提交
3517 3518
	spin_lock_irqsave(q->queue_lock, flags);

3519 3520 3521
	if (!cic)
		goto queue_fail;

3522
new_queue:
3523
	cfqq = cic_to_cfqq(cic, is_sync);
3524
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3525
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3526
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
3527
	} else {
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
3538 3539 3540 3541 3542 3543 3544 3545
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3546
	}
L
Linus Torvalds 已提交
3547 3548

	cfqq->allocated[rw]++;
3549
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
3550

J
Jens Axboe 已提交
3551
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
3552

J
Jens Axboe 已提交
3553 3554 3555
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
3556

3557 3558 3559
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
3560

3561
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3562
	spin_unlock_irqrestore(q->queue_lock, flags);
3563
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
3564 3565 3566
	return 1;
}

3567
static void cfq_kick_queue(struct work_struct *work)
3568
{
3569
	struct cfq_data *cfqd =
3570
		container_of(work, struct cfq_data, unplug_work);
3571
	struct request_queue *q = cfqd->queue;
3572

3573
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
3574
	__blk_run_queue(cfqd->queue);
3575
	spin_unlock_irq(q->queue_lock);
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
3586
	int timed_out = 1;
3587

3588 3589
	cfq_log(cfqd, "idle timer fired");

3590 3591
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

3592 3593
	cfqq = cfqd->active_queue;
	if (cfqq) {
3594 3595
		timed_out = 0;

3596 3597 3598 3599 3600 3601
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

3602 3603 3604
		/*
		 * expired
		 */
3605
		if (cfq_slice_used(cfqq))
3606 3607 3608 3609 3610 3611
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
3612
		if (!cfqd->busy_queues)
3613 3614 3615 3616 3617
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
3618
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3619
			goto out_kick;
3620 3621 3622 3623 3624

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
3625 3626
	}
expire:
3627
	cfq_slice_expired(cfqd, timed_out);
3628
out_kick:
3629
	cfq_schedule_dispatch(cfqd);
3630 3631 3632 3633
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
3634 3635 3636
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
3637
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
3638
}
3639

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
3650 3651 3652

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
3653 3654
}

3655 3656 3657 3658 3659
static void cfq_cfqd_free(struct rcu_head *head)
{
	kfree(container_of(head, struct cfq_data, rcu));
}

J
Jens Axboe 已提交
3660
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
3661
{
3662
	struct cfq_data *cfqd = e->elevator_data;
3663
	struct request_queue *q = cfqd->queue;
3664

J
Jens Axboe 已提交
3665
	cfq_shutdown_timer_wq(cfqd);
3666

3667
	spin_lock_irq(q->queue_lock);
3668

3669
	if (cfqd->active_queue)
3670
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3671 3672

	while (!list_empty(&cfqd->cic_list)) {
3673 3674 3675
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
3676 3677

		__cfq_exit_single_io_context(cfqd, cic);
3678
	}
3679

3680
	cfq_put_async_queues(cfqd);
3681 3682
	cfq_release_cfq_groups(cfqd);
	blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3683

3684
	spin_unlock_irq(q->queue_lock);
3685 3686 3687

	cfq_shutdown_timer_wq(cfqd);

3688
	/* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3689
	call_rcu(&cfqd->rcu, cfq_cfqd_free);
L
Linus Torvalds 已提交
3690 3691
}

3692
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
3693 3694
{
	struct cfq_data *cfqd;
3695
	int i, j;
3696
	struct cfq_group *cfqg;
3697
	struct cfq_rb_root *st;
L
Linus Torvalds 已提交
3698

3699
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
3700
	if (!cfqd)
J
Jens Axboe 已提交
3701
		return NULL;
L
Linus Torvalds 已提交
3702

3703 3704 3705
	/* Init root service tree */
	cfqd->grp_service_tree = CFQ_RB_ROOT;

3706 3707
	/* Init root group */
	cfqg = &cfqd->root_group;
3708 3709
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
3710
	RB_CLEAR_NODE(&cfqg->rb_node);
3711

3712 3713 3714
	/* Give preference to root group over other groups */
	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;

3715
#ifdef CONFIG_CFQ_GROUP_IOSCHED
3716 3717 3718 3719 3720
	/*
	 * Take a reference to root group which we never drop. This is just
	 * to make sure that cfq_put_cfqg() does not try to kfree root group
	 */
	atomic_set(&cfqg->ref, 1);
3721 3722
	blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
					0);
3723
#endif
3724 3725 3726 3727 3728 3729 3730 3731
	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3732 3733 3734 3735 3736 3737 3738
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);
3739
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3740

3741
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
3742 3743 3744

	cfqd->queue = q;

3745 3746 3747 3748
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

3749
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3750

L
Linus Torvalds 已提交
3751
	cfqd->cfq_quantum = cfq_quantum;
3752 3753
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
3754 3755
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
3756 3757 3758 3759
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
3760
	cfqd->cfq_latency = 1;
3761
	cfqd->cfq_group_isolation = 0;
3762
	cfqd->hw_tag = -1;
3763 3764 3765 3766
	/*
	 * we optimistically start assuming sync ops weren't delayed in last
	 * second, in order to have larger depth for async operations.
	 */
3767
	cfqd->last_delayed_sync = jiffies - HZ;
3768
	INIT_RCU_HEAD(&cfqd->rcu);
J
Jens Axboe 已提交
3769
	return cfqd;
L
Linus Torvalds 已提交
3770 3771 3772 3773
}

static void cfq_slab_kill(void)
{
3774 3775 3776 3777
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
3778 3779 3780 3781 3782 3783 3784 3785
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3786
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3787 3788 3789
	if (!cfq_pool)
		goto fail;

3790
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3819
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3820
{									\
3821
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3822 3823 3824 3825 3826 3827
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3828 3829
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3830 3831
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3832 3833 3834 3835
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3836
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3837
SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
L
Linus Torvalds 已提交
3838 3839 3840
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3841
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3842
{									\
3843
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3857 3858 3859 3860
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3861
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3862 3863
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3864 3865 3866
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3867 3868
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3869
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3870
STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
L
Linus Torvalds 已提交
3871 3872
#undef STORE_FUNCTION

3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3886
	CFQ_ATTR(low_latency),
3887
	CFQ_ATTR(group_isolation),
3888
	__ATTR_NULL
L
Linus Torvalds 已提交
3889 3890 3891 3892 3893 3894 3895
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3896
		.elevator_allow_merge_fn =	cfq_allow_merge,
3897
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3898
		.elevator_add_req_fn =		cfq_insert_request,
3899
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3900 3901 3902
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3903 3904
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3905 3906 3907 3908 3909
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3910
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3911
	},
3912
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3913 3914 3915 3916
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static struct blkio_policy_type blkio_policy_cfq = {
	.ops = {
		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
	},
};
#else
static struct blkio_policy_type blkio_policy_cfq;
#endif

L
Linus Torvalds 已提交
3928 3929
static int __init cfq_init(void)
{
3930 3931 3932 3933 3934 3935 3936 3937
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3938 3939 3940
	if (cfq_slab_setup())
		return -ENOMEM;

3941
	elv_register(&iosched_cfq);
3942
	blkio_policy_register(&blkio_policy_cfq);
L
Linus Torvalds 已提交
3943

3944
	return 0;
L
Linus Torvalds 已提交
3945 3946 3947 3948
}

static void __exit cfq_exit(void)
{
3949
	DECLARE_COMPLETION_ONSTACK(all_gone);
3950
	blkio_policy_unregister(&blkio_policy_cfq);
L
Linus Torvalds 已提交
3951
	elv_unregister(&iosched_cfq);
3952
	ioc_gone = &all_gone;
3953 3954
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3955 3956 3957 3958 3959

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3960
	if (elv_ioc_count_read(cfq_ioc_count))
3961
		wait_for_completion(&all_gone);
3962
	cfq_slab_kill();
L
Linus Torvalds 已提交
3963 3964 3965 3966 3967 3968 3969 3970
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");