cfq-iosched.c 83.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
16
#include "blk-cgroup.h"
L
Linus Torvalds 已提交
17 18 19 20

/*
 * tunables
 */
21 22
/* max queue in one round of service */
static const int cfq_quantum = 4;
23
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 25 26 27
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
28
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
29
static int cfq_slice_async = HZ / 25;
30
static const int cfq_slice_async_rq = 2;
31
static int cfq_slice_idle = HZ / 125;
32 33
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
34

35
/*
36
 * offset from end of service tree
37
 */
38
#define CFQ_IDLE_DELAY		(HZ / 5)
39 40 41 42 43 44

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

45 46 47 48 49 50
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

51
#define CFQ_SLICE_SCALE		(5)
52
#define CFQ_HW_QUEUE_MIN	(5)
53
#define CFQ_SERVICE_SHIFT       12
54

55 56
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
57
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
58

59 60
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
61

62
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63
static struct completion *ioc_gone;
64
static DEFINE_SPINLOCK(ioc_gone_lock);
65

66 67 68 69
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

70
#define sample_valid(samples)	((samples) > 80)
71
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
72

73 74 75 76 77 78 79 80 81
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
82
	unsigned count;
83
	u64 min_vdisktime;
84
	struct rb_node *active;
85
	unsigned total_weight;
86
};
87
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

131 132 133 134
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
135
	unsigned long seeky_start;
136

137
	pid_t pid;
J
Jeff Moyer 已提交
138

139
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
140
	struct cfq_queue *new_cfqq;
141
	struct cfq_group *cfqg;
142 143
};

144
/*
145
 * First index in the service_trees.
146 147 148 149
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
150 151
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
152 153
};

154 155 156 157 158 159 160 161 162
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

163 164
/* This is per cgroup per device grouping structure */
struct cfq_group {
165 166 167 168 169
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
170
	unsigned int weight;
171 172 173 174 175
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

176 177
	/* Per group busy queus average. Useful for workload slice calc. */
	unsigned int busy_queues_avg[2];
178 179 180 181 182 183 184
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
};
185

186 187 188
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
189
struct cfq_data {
190
	struct request_queue *queue;
191 192
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
193
	struct cfq_group root_group;
194 195
	/* Number of active cfq groups on group service tree */
	int nr_groups;
196

197 198
	/*
	 * The priority currently being served
199
	 */
200
	enum wl_prio_t serving_prio;
201 202
	enum wl_type_t serving_type;
	unsigned long workload_expires;
203
	struct cfq_group *serving_group;
204
	bool noidle_tree_requires_idle;
205 206 207 208 209 210 211 212

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

213 214
	unsigned int busy_queues;

215
	int rq_in_driver[2];
216
	int sync_flight;
217 218 219 220 221

	/*
	 * queue-depth detection
	 */
	int rq_queued;
222
	int hw_tag;
223 224 225 226 227 228 229 230
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
231

232 233 234 235
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
236
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
237

238 239 240
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

241 242 243 244 245
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
246

J
Jens Axboe 已提交
247
	sector_t last_position;
L
Linus Torvalds 已提交
248 249 250 251 252

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
253
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
254 255
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
256 257 258
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
259
	unsigned int cfq_latency;
260 261

	struct list_head cic_list;
L
Linus Torvalds 已提交
262

263 264 265 266
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
267 268

	unsigned long last_end_sync_rq;
L
Linus Torvalds 已提交
269 270
};

271 272
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
273
					    enum wl_type_t type,
274 275
					    struct cfq_data *cfqd)
{
276 277 278
	if (!cfqg)
		return NULL;

279
	if (prio == IDLE_WORKLOAD)
280
		return &cfqg->service_tree_idle;
281

282
	return &cfqg->service_trees[prio][type];
283 284
}

J
Jens Axboe 已提交
285
enum cfqq_state_flags {
286 287
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
288
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
289 290 291 292
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
293
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
294
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
295
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
296
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
J
Jens Axboe 已提交
297 298 299 300 301
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
302
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
303 304 305
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
306
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
307 308 309
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
310
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
311 312 313 314
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
315
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
316 317 318 319
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
320
CFQ_CFQQ_FNS(slice_new);
321
CFQ_CFQQ_FNS(sync);
322
CFQ_CFQQ_FNS(coop);
323
CFQ_CFQQ_FNS(deep);
J
Jens Axboe 已提交
324 325
#undef CFQ_CFQQ_FNS

326 327 328 329 330
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

331 332 333 334 335 336 337 338 339 340 341
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


342 343 344 345 346 347 348 349 350
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

351 352 353 354 355 356 357 358 359 360

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

361 362 363
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
364 365
{
	if (wl == IDLE_WORKLOAD)
366
		return cfqg->service_tree_idle.count;
367

368 369 370
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
371 372
}

373
static void cfq_dispatch_insert(struct request_queue *, struct request *);
374
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
375
				       struct io_context *, gfp_t);
376
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
377 378
						struct io_context *);

379 380 381 382 383
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

384
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
385
					    bool is_sync)
386
{
387
	return cic->cfqq[is_sync];
388 389 390
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
391
				struct cfq_queue *cfqq, bool is_sync)
392
{
393
	cic->cfqq[is_sync] = cfqq;
394 395 396 397 398 399
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
400
static inline bool cfq_bio_sync(struct bio *bio)
401
{
402
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
403
}
L
Linus Torvalds 已提交
404

A
Andrew Morton 已提交
405 406 407 408
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
409
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
410
{
411 412
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
413
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
414
	}
A
Andrew Morton 已提交
415 416
}

417
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
418 419 420
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

421
	return !cfqd->rq_queued;
A
Andrew Morton 已提交
422 423
}

424 425 426 427 428
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
429
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
430
				 unsigned short prio)
431
{
432
	const int base_slice = cfqd->cfq_slice[sync];
433

434 435 436 437
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
438

439 440 441 442
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
443 444
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

490 491 492 493 494 495
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

496 497
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
498
{
499 500 501
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
502
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
503

504 505 506
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
507
		cfq_hist_divisor;
508 509 510 511 512 513 514 515 516
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
517 518
}

519 520 521
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
522 523
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
524 525 526 527 528 529
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
530 531
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
532 533 534
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
535 536 537 538 539 540 541
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
542
			slice = max(slice * group_slice / expect_latency,
543 544 545 546
				    low_slice);
		}
	}
	cfqq->slice_end = jiffies + slice;
547
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
548 549 550 551 552 553 554
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
555
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
556 557 558 559 560 561 562 563 564
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
565
/*
J
Jens Axboe 已提交
566
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
567
 * We choose the request that is closest to the head right now. Distance
568
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
569
 */
J
Jens Axboe 已提交
570
static struct request *
571
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
572
{
573
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
574
	unsigned long back_max;
575 576 577
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
578

J
Jens Axboe 已提交
579 580 581 582
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
583

J
Jens Axboe 已提交
584 585 586 587
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
588 589 590 591
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
592

593 594
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
611
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
612 613 614 615 616 617

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
618
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
619 620

	/* Found required data */
621 622 623 624 625 626

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
627
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
628
		if (d1 < d2)
J
Jens Axboe 已提交
629
			return rq1;
630
		else if (d2 < d1)
J
Jens Axboe 已提交
631
			return rq2;
632 633
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
634
				return rq1;
635
			else
J
Jens Axboe 已提交
636
				return rq2;
637
		}
L
Linus Torvalds 已提交
638

639
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
640
		return rq1;
641
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
642 643
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
644 645 646 647 648 649 650 651
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
652
			return rq1;
L
Linus Torvalds 已提交
653
		else
J
Jens Axboe 已提交
654
			return rq2;
L
Linus Torvalds 已提交
655 656 657
	}
}

658 659 660
/*
 * The below is leftmost cache rbtree addon
 */
661
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
662
{
663 664 665 666
	/* Service tree is empty */
	if (!root->count)
		return NULL;

667 668 669
	if (!root->left)
		root->left = rb_first(&root->rb);

670 671 672 673
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
674 675
}

676 677 678 679 680 681 682 683 684 685 686
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

687 688 689 690 691 692
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

693 694 695 696
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
697
	rb_erase_init(n, &root->rb);
698
	--root->count;
699 700
}

L
Linus Torvalds 已提交
701 702 703
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
704 705 706
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
707
{
708 709
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
710
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
711

712
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
713 714

	if (rbprev)
J
Jens Axboe 已提交
715
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
716

717
	if (rbnext)
J
Jens Axboe 已提交
718
		next = rb_entry_rq(rbnext);
719 720 721
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
722
			next = rb_entry_rq(rbnext);
723
	}
L
Linus Torvalds 已提交
724

725
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
726 727
}

728 729
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
730
{
731 732 733
	/*
	 * just an approximation, should be ok.
	 */
734
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
735
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
736 737
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
797 798
	cfqd->nr_groups++;
	st->total_weight += cfqg->weight;
799 800 801 802 803 804 805
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

806 807 808
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

809 810
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
811

812 813 814 815 816
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

	cfqg->on_st = false;
817 818
	cfqd->nr_groups--;
	st->total_weight -= cfqg->weight;
819 820 821 822
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
}

823
/*
824
 * The cfqd->service_trees holds all pending cfq_queue's that have
825 826 827
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
828
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
829
				 bool add_front)
830
{
831 832
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
833
	unsigned long rb_key;
834
	struct cfq_rb_root *service_tree;
835
	int left;
836

837 838
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
						cfqq_type(cfqq), cfqd);
839 840
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
841
		parent = rb_last(&service_tree->rb);
842 843 844 845 846 847
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
848 849 850 851 852 853
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
854
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
855
		rb_key -= cfqq->slice_resid;
856
		cfqq->slice_resid = 0;
857 858
	} else {
		rb_key = -HZ;
859
		__cfqq = cfq_rb_first(service_tree);
860 861
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
862

863
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
864
		/*
865
		 * same position, nothing more to do
866
		 */
867 868
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
869
			return;
L
Linus Torvalds 已提交
870

871 872
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
873
	}
874

875
	left = 1;
876
	parent = NULL;
877 878
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
879
	while (*p) {
880
		struct rb_node **n;
881

882 883 884
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

885
		/*
886
		 * sort by key, that represents service time.
887
		 */
888
		if (time_before(rb_key, __cfqq->rb_key))
889
			n = &(*p)->rb_left;
890
		else {
891
			n = &(*p)->rb_right;
892
			left = 0;
893
		}
894 895

		p = n;
896 897
	}

898
	if (left)
899
		service_tree->left = &cfqq->rb_node;
900

901 902
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
903 904
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
905
	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
906 907
}

908
static struct cfq_queue *
909 910 911
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
928
		if (sector > blk_rq_pos(cfqq->next_rq))
929
			n = &(*p)->rb_right;
930
		else if (sector < blk_rq_pos(cfqq->next_rq))
931 932 933 934
			n = &(*p)->rb_left;
		else
			break;
		p = n;
935
		cfqq = NULL;
936 937 938 939 940
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
941
	return cfqq;
942 943 944 945 946 947 948
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

949 950 951 952
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
953 954 955 956 957 958

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

959
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
960 961
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
962 963
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
964 965 966
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
967 968
}

969 970 971
/*
 * Update cfqq's position in the service tree.
 */
972
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
973 974 975 976
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
977
	if (cfq_cfqq_on_rr(cfqq)) {
978
		cfq_service_tree_add(cfqd, cfqq, 0);
979 980
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
981 982
}

L
Linus Torvalds 已提交
983 984
/*
 * add to busy list of queues for service, trying to be fair in ordering
985
 * the pending list according to last request service
L
Linus Torvalds 已提交
986
 */
J
Jens Axboe 已提交
987
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
988
{
989
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
990 991
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
992 993
	cfqd->busy_queues++;

994
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
995 996
}

997 998 999 1000
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
1001
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1002
{
1003
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
1004 1005
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1006

1007 1008 1009 1010
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
1011 1012 1013 1014
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1015

1016
	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1017 1018 1019 1020 1021 1022 1023
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
1024
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1025
{
J
Jens Axboe 已提交
1026 1027
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
1028

1029 1030
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
1031

J
Jens Axboe 已提交
1032
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
		/*
		 * Queue will be deleted from service tree when we actually
		 * expire it later. Right now just remove it from prio tree
		 * as it is empty.
		 */
		if (cfqq->p_root) {
			rb_erase(&cfqq->p_node, cfqq->p_root);
			cfqq->p_root = NULL;
		}
	}
L
Linus Torvalds 已提交
1045 1046
}

J
Jens Axboe 已提交
1047
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1048
{
J
Jens Axboe 已提交
1049
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
1050
	struct cfq_data *cfqd = cfqq->cfqd;
1051
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
1052

1053
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
1054 1055 1056 1057 1058

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
1059
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
1060
		cfq_dispatch_insert(cfqd->queue, __alias);
1061 1062 1063

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
1064 1065 1066 1067

	/*
	 * check if this request is a better next-serve candidate
	 */
1068
	prev = cfqq->next_rq;
1069
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1070 1071 1072 1073 1074 1075 1076

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

1077
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
1078 1079
}

J
Jens Axboe 已提交
1080
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
1081
{
1082 1083
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
1084
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
1085 1086
}

1087 1088
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
1089
{
1090
	struct task_struct *tsk = current;
1091
	struct cfq_io_context *cic;
1092
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
1093

1094
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1095 1096 1097 1098
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1099 1100 1101
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

1102
		return elv_rb_find(&cfqq->sort_list, sector);
1103
	}
L
Linus Torvalds 已提交
1104 1105 1106 1107

	return NULL;
}

1108
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1109
{
1110
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1111

1112
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
1113
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1114
						rq_in_driver(cfqd));
1115

1116
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1117 1118
}

1119
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1120
{
1121
	struct cfq_data *cfqd = q->elevator->elevator_data;
1122
	const int sync = rq_is_sync(rq);
1123

1124 1125
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
1126
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1127
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
1128 1129
}

1130
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
1131
{
J
Jens Axboe 已提交
1132
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1133

J
Jens Axboe 已提交
1134 1135
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
1136

1137
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1138
	cfq_del_rq_rb(rq);
1139

1140
	cfqq->cfqd->rq_queued--;
1141 1142 1143 1144
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
1145 1146
}

1147 1148
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
1149 1150 1151 1152
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

1153
	__rq = cfq_find_rq_fmerge(cfqd, bio);
1154
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1155 1156
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
1157 1158 1159 1160 1161
	}

	return ELEVATOR_NO_MERGE;
}

1162
static void cfq_merged_request(struct request_queue *q, struct request *req,
1163
			       int type)
L
Linus Torvalds 已提交
1164
{
1165
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
1166
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
1167

J
Jens Axboe 已提交
1168
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
1169 1170 1171 1172
	}
}

static void
1173
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
1174 1175
		    struct request *next)
{
1176
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1177 1178 1179 1180
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1181
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1182
		list_move(&rq->queuelist, &next->queuelist);
1183 1184
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
1185

1186 1187
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
1188
	cfq_remove_request(next);
1189 1190
}

1191
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1192 1193 1194
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1195
	struct cfq_io_context *cic;
1196 1197 1198
	struct cfq_queue *cfqq;

	/*
1199
	 * Disallow merge of a sync bio into an async request.
1200
	 */
1201
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1202
		return false;
1203 1204

	/*
1205 1206
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
1207
	 */
1208
	cic = cfq_cic_lookup(cfqd, current->io_context);
1209
	if (!cic)
1210
		return false;
1211

1212
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1213
	return cfqq == RQ_CFQQ(rq);
1214 1215
}

J
Jens Axboe 已提交
1216 1217
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1218 1219
{
	if (cfqq) {
1220
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1221
		cfqq->slice_end = 0;
1222 1223 1224
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1225
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1226 1227
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1228
		cfq_mark_cfqq_slice_new(cfqq);
1229 1230

		del_timer(&cfqd->idle_slice_timer);
1231 1232 1233 1234 1235
	}

	cfqd->active_queue = cfqq;
}

1236 1237 1238 1239 1240
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1241
		    bool timed_out)
1242
{
1243 1244
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1245 1246 1247 1248 1249 1250
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1251
	 * store what was left of this slice, if the queue idled/timed out
1252
	 */
1253
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1254
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1255 1256
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1257

1258 1259 1260
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
		cfq_del_cfqq_rr(cfqd, cfqq);

1261
	cfq_resort_rr_list(cfqd, cfqq);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1272
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1273 1274 1275 1276
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1277
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1278 1279
}

1280 1281 1282 1283
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1284
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1285
{
1286
	struct cfq_rb_root *service_tree =
1287 1288
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
					cfqd->serving_type, cfqd);
1289

1290 1291 1292
	if (!cfqd->rq_queued)
		return NULL;

1293 1294 1295
	/* There is nothing to dispatch */
	if (!service_tree)
		return NULL;
1296 1297 1298
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1299 1300
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
	struct cfq_group *cfqg = &cfqd->root_group;
	struct cfq_queue *cfqq;
	int i, j;
	struct cfq_rb_root *st;

	if (!cfqd->rq_queued)
		return NULL;

	for_each_cfqg_st(cfqg, i, j, st)
		if ((cfqq = cfq_rb_first(st)) != NULL)
			return cfqq;
	return NULL;
}

1317 1318 1319
/*
 * Get and set a new active queue for service.
 */
1320 1321
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1322
{
1323
	if (!cfqq)
1324
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1325

1326
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1327
	return cfqq;
1328 1329
}

1330 1331 1332
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1333 1334
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1335
	else
1336
		return cfqd->last_position - blk_rq_pos(rq);
1337 1338
}

1339 1340
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1341

1342 1343
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1344
{
1345
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1346

1347 1348
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1349

1350
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1351 1352
}

1353 1354 1355
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1356
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1368
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1369 1370 1371 1372 1373 1374 1375 1376
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1377
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1378 1379
		return __cfqq;

1380
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1381 1382 1383 1384 1385 1386 1387
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1388
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1405
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1406
{
1407 1408
	struct cfq_queue *cfqq;

1409 1410 1411 1412 1413
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1414
	/*
1415 1416 1417
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1418
	 */
1419 1420 1421 1422
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1423 1424 1425 1426 1427
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1428 1429
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1430

1431 1432 1433 1434 1435 1436
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1437
	return cfqq;
J
Jens Axboe 已提交
1438 1439
}

1440 1441 1442 1443 1444 1445 1446
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1447
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1448

1449 1450 1451
	BUG_ON(!service_tree);
	BUG_ON(!service_tree->count);

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1464
	return service_tree->count == 1;
1465 1466
}

J
Jens Axboe 已提交
1467
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1468
{
1469
	struct cfq_queue *cfqq = cfqd->active_queue;
1470
	struct cfq_io_context *cic;
1471 1472
	unsigned long sl;

1473
	/*
J
Jens Axboe 已提交
1474 1475 1476
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1477
	 */
J
Jens Axboe 已提交
1478
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1479 1480
		return;

1481
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1482
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1483 1484 1485 1486

	/*
	 * idle is disabled, either manually or by past process history
	 */
1487
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1488 1489
		return;

1490
	/*
1491
	 * still active requests from this queue, don't idle
1492
	 */
1493
	if (cfqq->dispatched)
1494 1495
		return;

1496 1497 1498
	/*
	 * task has exited, don't wait
	 */
1499
	cic = cfqd->active_cic;
1500
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1501 1502
		return;

1503 1504 1505 1506 1507 1508 1509 1510 1511
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1512
	cfq_mark_cfqq_wait_request(cfqq);
1513

J
Jens Axboe 已提交
1514
	sl = cfqd->cfq_slice_idle;
1515

1516
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1517
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1518 1519
}

1520 1521 1522
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1523
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1524
{
1525
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1526
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1527

1528 1529
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1530
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1531
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1532
	cfqq->dispatched++;
1533
	elv_dispatch_sort(q, rq);
1534 1535 1536

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1537 1538 1539 1540 1541
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1542
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1543
{
1544
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1545

J
Jens Axboe 已提交
1546
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1547
		return NULL;
1548 1549 1550

	cfq_mark_cfqq_fifo_expire(cfqq);

1551 1552
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1553

1554
	rq = rq_entry_fifo(cfqq->fifo.next);
1555
	if (time_before(jiffies, rq_fifo_time(rq)))
1556
		rq = NULL;
L
Linus Torvalds 已提交
1557

1558
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1559
	return rq;
L
Linus Torvalds 已提交
1560 1561
}

1562 1563 1564 1565
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1566

1567
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1568

1569
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1570 1571
}

J
Jeff Moyer 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1587
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1616 1617
}

1618 1619 1620
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
				struct cfq_group *cfqg, enum wl_prio_t prio,
				bool prio_changed)
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
1634
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1635 1636
			return cur_best;
		cur_best = SYNC_WORKLOAD;
1637
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1638 1639 1640 1641 1642 1643 1644
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
1645
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

1657
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1658 1659 1660 1661 1662
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;
1663
	struct cfq_rb_root *st;
1664
	unsigned group_slice;
1665

1666 1667 1668 1669 1670 1671
	if (!cfqg) {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

1672
	/* Choose next priority. RT > BE > IDLE */
1673
	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1674
		cfqd->serving_prio = RT_WORKLOAD;
1675
	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
1689 1690 1691
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
1703 1704 1705 1706
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1707 1708 1709 1710 1711 1712

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
1713 1714 1715 1716 1717
	group_slice = cfq_group_slice(cfqd, cfqg);

	slice = group_slice * count /
		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
1729
	cfqd->noidle_tree_requires_idle = false;
1730 1731
}

1732 1733 1734
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1735
	struct cfq_group *cfqg;
1736 1737 1738

	if (RB_EMPTY_ROOT(&st->rb))
		return NULL;
1739 1740 1741 1742
	cfqg = cfq_rb_first_group(st);
	st->active = &cfqg->rb_node;
	update_min_vdisktime(st);
	return cfqg;
1743 1744
}

1745 1746
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
1747 1748 1749 1750
	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);

	cfqd->serving_group = cfqg;
	choose_service_tree(cfqd, cfqg);
1751 1752
}

1753
/*
1754 1755
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
1756
 */
1757
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
1758
{
1759
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
1760

1761 1762 1763
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
1764

1765 1766
	if (!cfqd->rq_queued)
		return NULL;
1767
	/*
J
Jens Axboe 已提交
1768
	 * The active queue has run out of time, expire it and select new.
1769
	 */
1770
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
1771
		goto expire;
L
Linus Torvalds 已提交
1772

1773
	/*
J
Jens Axboe 已提交
1774 1775
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
1776
	 */
1777
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1778
		goto keep_queue;
J
Jens Axboe 已提交
1779

1780 1781 1782 1783
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
1784
	 * tree.  If possible, merge the expiring queue with the new cfqq.
1785
	 */
1786
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
1787 1788 1789
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
1790
		goto expire;
J
Jeff Moyer 已提交
1791
	}
1792

J
Jens Axboe 已提交
1793 1794 1795 1796 1797
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
1798
	if (timer_pending(&cfqd->idle_slice_timer) ||
1799
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1800 1801
		cfqq = NULL;
		goto keep_queue;
1802 1803
	}

J
Jens Axboe 已提交
1804
expire:
1805
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
1806
new_queue:
1807 1808 1809 1810 1811
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
1812
		cfq_choose_cfqg(cfqd);
1813

1814
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1815
keep_queue:
J
Jens Axboe 已提交
1816
	return cfqq;
1817 1818
}

J
Jens Axboe 已提交
1819
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1820 1821 1822 1823 1824 1825 1826 1827 1828
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
1829 1830 1831

	/* By default cfqq is not expired if it is empty. Do it explicitly */
	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
1832 1833 1834
	return dispatched;
}

1835 1836 1837 1838
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
1839
static int cfq_forced_dispatch(struct cfq_data *cfqd)
1840
{
1841
	struct cfq_queue *cfqq;
1842
	int dispatched = 0;
1843

1844 1845
	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1846

1847
	cfq_slice_expired(cfqd, 0);
1848 1849
	BUG_ON(cfqd->busy_queues);

1850
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1851 1852 1853
	return dispatched;
}

1854
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1855 1856
{
	unsigned int max_dispatch;
1857

1858 1859 1860
	/*
	 * Drain async requests before we start sync IO
	 */
1861
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1862
		return false;
1863

1864 1865 1866 1867
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1868
		return false;
1869 1870 1871 1872

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
1873

1874 1875 1876 1877 1878 1879 1880
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
1881
		if (cfq_class_idle(cfqq))
1882
			return false;
1883

1884 1885 1886 1887
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
1888
			return false;
1889

1890
		/*
1891
		 * Sole queue user, no limit
1892
		 */
1893
		max_dispatch = -1;
1894 1895 1896 1897 1898 1899 1900
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
1901
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1902 1903
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
1904

1905
		depth = last_sync / cfqd->cfq_slice[1];
1906 1907
		if (!depth && !cfqq->dispatched)
			depth = 1;
1908 1909
		if (depth < max_dispatch)
			max_dispatch = depth;
1910
	}
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
1970 1971
		return 0;

1972
	/*
1973
	 * Dispatch a request from this cfqq, if it is allowed
1974
	 */
1975 1976 1977
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

1978
	cfqq->slice_dispatch++;
1979
	cfq_clear_cfqq_must_dispatch(cfqq);
1980

1981 1982 1983 1984 1985 1986 1987 1988 1989
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
1990 1991
	}

1992
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1993
	return 1;
L
Linus Torvalds 已提交
1994 1995 1996
}

/*
J
Jens Axboe 已提交
1997 1998
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
1999 2000 2001 2002 2003
 *
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
2004 2005 2006
	struct cfq_data *cfqd = cfqq->cfqd;

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
2007 2008 2009 2010

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

2011
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
2012
	BUG_ON(rb_first(&cfqq->sort_list));
2013
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
L
Linus Torvalds 已提交
2014

2015
	if (unlikely(cfqd->active_queue == cfqq)) {
2016
		__cfq_slice_expired(cfqd, cfqq, 0);
2017
		cfq_schedule_dispatch(cfqd);
2018
	}
2019

2020
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
2021 2022 2023
	kmem_cache_free(cfq_pool, cfqq);
}

2024 2025 2026
/*
 * Must always be called with the rcu_read_lock() held
 */
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

2038
/*
2039
 * Call func for each cic attached to this ioc.
2040
 */
2041
static void
2042 2043
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
2044
{
2045
	rcu_read_lock();
2046
	__call_for_each_cic(ioc, func);
2047
	rcu_read_unlock();
2048 2049 2050 2051 2052 2053 2054 2055 2056
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
2057
	elv_ioc_count_dec(cfq_ioc_count);
2058

2059 2060 2061 2062 2063 2064 2065
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
2066
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2067 2068 2069 2070 2071
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
2072
}
2073

2074 2075 2076
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2087
	hlist_del_rcu(&cic->cic_list);
2088 2089
	spin_unlock_irqrestore(&ioc->lock, flags);

2090
	cfq_cic_free(cic);
2091 2092
}

2093 2094 2095 2096 2097
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
2098 2099 2100
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
2101 2102 2103 2104
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
2105
	 */
2106
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
2107 2108
}

2109
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2110
{
J
Jeff Moyer 已提交
2111 2112
	struct cfq_queue *__cfqq, *next;

2113
	if (unlikely(cfqq == cfqd->active_queue)) {
2114
		__cfq_slice_expired(cfqd, cfqq, 0);
2115
		cfq_schedule_dispatch(cfqd);
2116
	}
2117

J
Jeff Moyer 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

2134 2135
	cfq_put_queue(cfqq);
}
2136

2137 2138 2139
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
2140 2141
	struct io_context *ioc = cic->ioc;

2142
	list_del_init(&cic->queue_list);
2143 2144 2145 2146

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
2147
	smp_wmb();
2148
	cic->dead_key = (unsigned long) cic->key;
2149 2150
	cic->key = NULL;

2151 2152 2153
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

2154 2155 2156
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
2157 2158
	}

2159 2160 2161
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
2162
	}
2163 2164
}

2165 2166
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
2167 2168 2169 2170
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
2171
		struct request_queue *q = cfqd->queue;
2172
		unsigned long flags;
2173

2174
		spin_lock_irqsave(q->queue_lock, flags);
2175 2176 2177 2178 2179 2180 2181 2182 2183

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

2184
		spin_unlock_irqrestore(q->queue_lock, flags);
2185
	}
L
Linus Torvalds 已提交
2186 2187
}

2188 2189 2190 2191
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
2192
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
2193
{
2194
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
2195 2196
}

2197
static struct cfq_io_context *
A
Al Viro 已提交
2198
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2199
{
2200
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
2201

2202 2203
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
2204
	if (cic) {
2205
		cic->last_end_request = jiffies;
2206
		INIT_LIST_HEAD(&cic->queue_list);
2207
		INIT_HLIST_NODE(&cic->cic_list);
2208 2209
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
2210
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
2211 2212 2213 2214 2215
	}

	return cic;
}

2216
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2217 2218 2219 2220
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
2221
	if (!cfq_cfqq_prio_changed(cfqq))
2222 2223
		return;

2224
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2225
	switch (ioprio_class) {
2226 2227 2228 2229
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
2230
		 * no prio set, inherit CPU scheduling settings
2231 2232
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
2233
		cfqq->ioprio_class = task_nice_ioclass(tsk);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
2248 2249 2250 2251 2252 2253 2254 2255
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
2256
	cfq_clear_cfqq_prio_changed(cfqq);
2257 2258
}

J
Jens Axboe 已提交
2259
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2260
{
2261 2262
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
2263
	unsigned long flags;
2264

2265 2266 2267
	if (unlikely(!cfqd))
		return;

2268
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2269

2270
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2271 2272
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2273 2274
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2275
		if (new_cfqq) {
2276
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2277 2278
			cfq_put_queue(cfqq);
		}
2279
	}
2280

2281
	cfqq = cic->cfqq[BLK_RW_SYNC];
2282 2283 2284
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2285
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2286 2287
}

2288
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2289
{
2290
	call_for_each_cic(ioc, changed_ioprio);
2291
	ioc->ioprio_changed = 0;
2292 2293
}

2294
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2295
			  pid_t pid, bool is_sync)
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	cfqq->cfqg = cfqg;
}

static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}

2324
static struct cfq_queue *
2325
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2326
		     struct io_context *ioc, gfp_t gfp_mask)
2327 2328
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2329
	struct cfq_io_context *cic;
2330
	struct cfq_group *cfqg;
2331 2332

retry:
2333
	cfqg = cfq_get_cfqg(cfqd, 1);
2334
	cic = cfq_cic_lookup(cfqd, ioc);
2335 2336
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2337

2338 2339 2340 2341 2342 2343
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2344 2345 2346 2347 2348
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2349
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2350
					gfp_mask | __GFP_ZERO,
2351
					cfqd->queue->node);
2352
			spin_lock_irq(cfqd->queue->queue_lock);
2353 2354
			if (new_cfqq)
				goto retry;
2355
		} else {
2356 2357 2358
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2359 2360
		}

2361 2362 2363
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
2364
			cfq_link_cfqq_cfqg(cfqq, cfqg);
2365 2366 2367
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2368 2369 2370 2371 2372 2373 2374 2375
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2376 2377 2378
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2379
	switch (ioprio_class) {
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2391
static struct cfq_queue *
2392
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2393 2394
	      gfp_t gfp_mask)
{
2395 2396
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2397
	struct cfq_queue **async_cfqq = NULL;
2398 2399
	struct cfq_queue *cfqq = NULL;

2400 2401 2402 2403 2404
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2405
	if (!cfqq)
2406
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2407 2408 2409 2410

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2411
	if (!is_sync && !(*async_cfqq)) {
2412
		atomic_inc(&cfqq->ref);
2413
		*async_cfqq = cfqq;
2414 2415 2416 2417 2418 2419
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2420 2421 2422
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2423
static void
2424 2425
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2426
{
2427 2428
	unsigned long flags;

2429
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2430

2431 2432
	spin_lock_irqsave(&ioc->lock, flags);

2433
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2434

2435
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2436
	hlist_del_rcu(&cic->cic_list);
2437 2438 2439
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2440 2441
}

2442
static struct cfq_io_context *
2443
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2444 2445
{
	struct cfq_io_context *cic;
2446
	unsigned long flags;
2447
	void *k;
2448

2449 2450 2451
	if (unlikely(!ioc))
		return NULL;

2452 2453
	rcu_read_lock();

J
Jens Axboe 已提交
2454 2455 2456
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2457
	cic = rcu_dereference(ioc->ioc_data);
2458 2459
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2460
		return cic;
2461
	}
J
Jens Axboe 已提交
2462

2463 2464 2465 2466 2467
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2468 2469 2470
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2471
			cfq_drop_dead_cic(cfqd, ioc, cic);
2472
			rcu_read_lock();
2473
			continue;
2474
		}
2475

2476
		spin_lock_irqsave(&ioc->lock, flags);
2477
		rcu_assign_pointer(ioc->ioc_data, cic);
2478
		spin_unlock_irqrestore(&ioc->lock, flags);
2479 2480
		break;
	} while (1);
2481

2482
	return cic;
2483 2484
}

2485 2486 2487 2488 2489
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2490 2491
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2492
{
2493
	unsigned long flags;
2494
	int ret;
2495

2496 2497 2498 2499
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2500

2501 2502 2503
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2504 2505
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2506
		spin_unlock_irqrestore(&ioc->lock, flags);
2507

2508 2509 2510 2511 2512 2513 2514
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2515 2516
	}

2517 2518
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2519

2520
	return ret;
2521 2522
}

L
Linus Torvalds 已提交
2523 2524 2525
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2526
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2527 2528
 */
static struct cfq_io_context *
2529
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2530
{
2531
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2532 2533
	struct cfq_io_context *cic;

2534
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2535

2536
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2537 2538 2539
	if (!ioc)
		return NULL;

2540
	cic = cfq_cic_lookup(cfqd, ioc);
2541 2542
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2543

2544 2545 2546
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2547

2548 2549 2550
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2551
out:
2552 2553 2554 2555
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2556
	return cic;
2557 2558
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2559 2560 2561 2562 2563
err:
	put_io_context(ioc);
	return NULL;
}

2564 2565
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2566
{
2567 2568
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2569

2570 2571 2572 2573
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2574

2575
static void
2576
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2577
		       struct request *rq)
2578 2579 2580 2581
{
	sector_t sdist;
	u64 total;

2582
	if (!cfqq->last_request_pos)
2583
		sdist = 0;
2584 2585
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2586
	else
2587
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2588 2589 2590 2591 2592

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2593 2594
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2595
	else
2596
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2597

2598 2599 2600 2601 2602
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2616
}
L
Linus Torvalds 已提交
2617

2618 2619 2620 2621 2622 2623 2624 2625
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2626
	int old_idle, enable_idle;
2627

2628 2629 2630 2631
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2632 2633
		return;

2634
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2635

2636 2637 2638
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

2639
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2640 2641
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
2642 2643
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2644
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2645 2646 2647
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2648 2649
	}

2650 2651 2652 2653 2654 2655 2656
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2657
}
L
Linus Torvalds 已提交
2658

2659 2660 2661 2662
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2663
static bool
2664
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2665
		   struct request *rq)
2666
{
J
Jens Axboe 已提交
2667
	struct cfq_queue *cfqq;
2668

J
Jens Axboe 已提交
2669 2670
	cfqq = cfqd->active_queue;
	if (!cfqq)
2671
		return false;
2672

J
Jens Axboe 已提交
2673
	if (cfq_slice_used(cfqq))
2674
		return true;
J
Jens Axboe 已提交
2675 2676

	if (cfq_class_idle(new_cfqq))
2677
		return false;
2678 2679

	if (cfq_class_idle(cfqq))
2680
		return true;
2681

2682
	/* Allow preemption only if we are idling on sync-noidle tree */
2683 2684
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2685 2686
	    new_cfqq->service_tree->count == 2 &&
	    RB_EMPTY_ROOT(&cfqq->sort_list))
2687 2688
		return true;

2689 2690 2691 2692
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2693
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2694
		return true;
2695

2696 2697 2698 2699 2700
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2701
		return true;
2702

2703 2704 2705 2706
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2707
		return true;
2708

2709
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2710
		return false;
2711 2712 2713 2714 2715

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2716
	if (cfq_rq_close(cfqd, cfqq, rq))
2717
		return true;
2718

2719
	return false;
2720 2721 2722 2723 2724 2725 2726 2727
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2728
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2729
	cfq_slice_expired(cfqd, 1);
2730

2731 2732 2733 2734 2735
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2736 2737

	cfq_service_tree_add(cfqd, cfqq, 1);
2738

2739 2740
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2741 2742 2743
}

/*
J
Jens Axboe 已提交
2744
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2745 2746 2747
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2748 2749
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
2750
{
J
Jens Axboe 已提交
2751
	struct cfq_io_context *cic = RQ_CIC(rq);
2752

2753
	cfqd->rq_queued++;
2754 2755 2756
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
2757
	cfq_update_io_thinktime(cfqd, cic);
2758
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
2759 2760
	cfq_update_idle_window(cfqd, cfqq, cic);

2761
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2762 2763 2764

	if (cfqq == cfqd->active_queue) {
		/*
2765 2766 2767
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
2768 2769
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
2770 2771 2772
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
2773
		 */
2774
		if (cfq_cfqq_wait_request(cfqq)) {
2775 2776
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
2777
				del_timer(&cfqd->idle_slice_timer);
2778 2779 2780
				__blk_run_queue(cfqd->queue);
			} else
				cfq_mark_cfqq_must_dispatch(cfqq);
2781
		}
J
Jens Axboe 已提交
2782
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2783 2784 2785
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
2786 2787
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
2788 2789
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
2790
		__blk_run_queue(cfqd->queue);
2791
	}
L
Linus Torvalds 已提交
2792 2793
}

2794
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2795
{
2796
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2797
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2798

2799
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2800
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2801

2802
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2803
	list_add_tail(&rq->queuelist, &cfqq->fifo);
2804
	cfq_add_rq_rb(rq);
2805

J
Jens Axboe 已提交
2806
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
2807 2808
}

2809 2810 2811 2812 2813 2814
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
2815 2816
	struct cfq_queue *cfqq = cfqd->active_queue;

2817 2818 2819 2820 2821
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
2822 2823

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2824
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2825 2826
		return;

S
Shaohua Li 已提交
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

2837 2838 2839
	if (cfqd->hw_tag_samples++ < 50)
		return;

2840
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2841 2842 2843 2844 2845
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

2846
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2847
{
J
Jens Axboe 已提交
2848
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2849
	struct cfq_data *cfqd = cfqq->cfqd;
2850
	const int sync = rq_is_sync(rq);
2851
	unsigned long now;
L
Linus Torvalds 已提交
2852

2853
	now = jiffies;
2854
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
2855

2856 2857
	cfq_update_hw_tag(cfqd);

2858
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
2859
	WARN_ON(!cfqq->dispatched);
2860
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
2861
	cfqq->dispatched--;
L
Linus Torvalds 已提交
2862

2863 2864 2865
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

2866
	if (sync) {
J
Jens Axboe 已提交
2867
		RQ_CIC(rq)->last_end_request = now;
2868 2869
		cfqd->last_end_sync_rq = now;
	}
2870 2871 2872 2873 2874 2875

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
2876 2877
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

2878 2879 2880 2881
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
2882
		/*
2883 2884 2885 2886 2887 2888
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
2889
		 */
2890
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2891
			cfq_slice_expired(cfqd, 1);
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
			    || cfqd->noidle_tree_requires_idle)
				cfq_arm_slice_timer(cfqd);
		}
2904
	}
J
Jens Axboe 已提交
2905

2906
	if (!rq_in_driver(cfqd))
2907
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2908 2909
}

2910 2911 2912 2913 2914
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2915
{
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
2927
		 * unboost the queue (if needed)
2928
		 */
2929 2930
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
2931 2932
	}
}
L
Linus Torvalds 已提交
2933

2934
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2935
{
2936
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
2937
		cfq_mark_cfqq_must_alloc_slice(cfqq);
2938
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
2939
	}
L
Linus Torvalds 已提交
2940

2941 2942 2943
	return ELV_MQUEUE_MAY;
}

2944
static int cfq_may_queue(struct request_queue *q, int rw)
2945 2946 2947
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
2948
	struct cfq_io_context *cic;
2949 2950 2951 2952 2953 2954 2955 2956
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
2957
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2958 2959 2960
	if (!cic)
		return ELV_MQUEUE_MAY;

2961
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2962
	if (cfqq) {
2963
		cfq_init_prio_data(cfqq, cic->ioc);
2964 2965
		cfq_prio_boost(cfqq);

2966
		return __cfq_may_queue(cfqq);
2967 2968 2969
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
2970 2971 2972 2973 2974
}

/*
 * queue lock held here
 */
2975
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
2976
{
J
Jens Axboe 已提交
2977
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
2978

J
Jens Axboe 已提交
2979
	if (cfqq) {
2980
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
2981

2982 2983
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
2984

J
Jens Axboe 已提交
2985
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2986 2987

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
2988
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
2989 2990 2991 2992 2993

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
2994 2995 2996 2997 2998 2999
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3000
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
3001 3002 3003 3004
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
3031
/*
3032
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
3033
 */
3034
static int
3035
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
3036 3037 3038 3039
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
3040
	const bool is_sync = rq_is_sync(rq);
3041
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
3042 3043 3044 3045
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

3046
	cic = cfq_get_io_context(cfqd, gfp_mask);
3047

L
Linus Torvalds 已提交
3048 3049
	spin_lock_irqsave(q->queue_lock, flags);

3050 3051 3052
	if (!cic)
		goto queue_fail;

3053
new_queue:
3054
	cfqq = cic_to_cfqq(cic, is_sync);
3055
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3056
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3057
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
3058
	} else {
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
3069 3070 3071 3072 3073 3074 3075 3076
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3077
	}
L
Linus Torvalds 已提交
3078 3079

	cfqq->allocated[rw]++;
3080
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
3081

J
Jens Axboe 已提交
3082
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
3083

J
Jens Axboe 已提交
3084 3085 3086
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
3087

3088 3089 3090
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
3091

3092
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3093
	spin_unlock_irqrestore(q->queue_lock, flags);
3094
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
3095 3096 3097
	return 1;
}

3098
static void cfq_kick_queue(struct work_struct *work)
3099
{
3100
	struct cfq_data *cfqd =
3101
		container_of(work, struct cfq_data, unplug_work);
3102
	struct request_queue *q = cfqd->queue;
3103

3104
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
3105
	__blk_run_queue(cfqd->queue);
3106
	spin_unlock_irq(q->queue_lock);
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
3117
	int timed_out = 1;
3118

3119 3120
	cfq_log(cfqd, "idle timer fired");

3121 3122
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

3123 3124
	cfqq = cfqd->active_queue;
	if (cfqq) {
3125 3126
		timed_out = 0;

3127 3128 3129 3130 3131 3132
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

3133 3134 3135
		/*
		 * expired
		 */
3136
		if (cfq_slice_used(cfqq))
3137 3138 3139 3140 3141 3142
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
3143
		if (!cfqd->busy_queues)
3144 3145 3146 3147 3148
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
3149
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3150
			goto out_kick;
3151 3152 3153 3154 3155

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
3156 3157
	}
expire:
3158
	cfq_slice_expired(cfqd, timed_out);
3159
out_kick:
3160
	cfq_schedule_dispatch(cfqd);
3161 3162 3163 3164
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
3165 3166 3167
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
3168
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
3169
}
3170

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
3181 3182 3183

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
3184 3185
}

J
Jens Axboe 已提交
3186
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
3187
{
3188
	struct cfq_data *cfqd = e->elevator_data;
3189
	struct request_queue *q = cfqd->queue;
3190

J
Jens Axboe 已提交
3191
	cfq_shutdown_timer_wq(cfqd);
3192

3193
	spin_lock_irq(q->queue_lock);
3194

3195
	if (cfqd->active_queue)
3196
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3197 3198

	while (!list_empty(&cfqd->cic_list)) {
3199 3200 3201
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
3202 3203

		__cfq_exit_single_io_context(cfqd, cic);
3204
	}
3205

3206
	cfq_put_async_queues(cfqd);
3207

3208
	spin_unlock_irq(q->queue_lock);
3209 3210 3211 3212

	cfq_shutdown_timer_wq(cfqd);

	kfree(cfqd);
L
Linus Torvalds 已提交
3213 3214
}

3215
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
3216 3217
{
	struct cfq_data *cfqd;
3218
	int i, j;
3219
	struct cfq_group *cfqg;
3220
	struct cfq_rb_root *st;
L
Linus Torvalds 已提交
3221

3222
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
3223
	if (!cfqd)
J
Jens Axboe 已提交
3224
		return NULL;
L
Linus Torvalds 已提交
3225

3226 3227 3228
	/* Init root service tree */
	cfqd->grp_service_tree = CFQ_RB_ROOT;

3229 3230
	/* Init root group */
	cfqg = &cfqd->root_group;
3231 3232
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
3233
	RB_CLEAR_NODE(&cfqg->rb_node);
3234

3235 3236 3237
	/* Give preference to root group over other groups */
	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;

3238 3239 3240 3241 3242 3243 3244 3245
	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3246 3247 3248 3249 3250 3251 3252
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);
3253
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3254

3255
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
3256 3257 3258

	cfqd->queue = q;

3259 3260 3261 3262
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

3263
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3264

L
Linus Torvalds 已提交
3265
	cfqd->cfq_quantum = cfq_quantum;
3266 3267
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
3268 3269
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
3270 3271 3272 3273
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
3274
	cfqd->cfq_latency = 1;
3275
	cfqd->hw_tag = -1;
3276
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
3277
	return cfqd;
L
Linus Torvalds 已提交
3278 3279 3280 3281
}

static void cfq_slab_kill(void)
{
3282 3283 3284 3285
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
3286 3287 3288 3289 3290 3291 3292 3293
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3294
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3295 3296 3297
	if (!cfq_pool)
		goto fail;

3298
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3327
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3328
{									\
3329
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3330 3331 3332 3333 3334 3335
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3336 3337
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3338 3339
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3340 3341 3342 3343
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3344
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3345 3346 3347
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3348
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3349
{									\
3350
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3364 3365 3366 3367
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3368
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3369 3370
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3371 3372 3373
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3374 3375
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3376
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3377 3378
#undef STORE_FUNCTION

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3392
	CFQ_ATTR(low_latency),
3393
	__ATTR_NULL
L
Linus Torvalds 已提交
3394 3395 3396 3397 3398 3399 3400
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3401
		.elevator_allow_merge_fn =	cfq_allow_merge,
3402
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3403
		.elevator_add_req_fn =		cfq_insert_request,
3404
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3405 3406 3407
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3408 3409
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3410 3411 3412 3413 3414
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3415
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3416
	},
3417
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3418 3419 3420 3421 3422 3423
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3424 3425 3426 3427 3428 3429 3430 3431
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3432 3433 3434
	if (cfq_slab_setup())
		return -ENOMEM;

3435
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3436

3437
	return 0;
L
Linus Torvalds 已提交
3438 3439 3440 3441
}

static void __exit cfq_exit(void)
{
3442
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3443
	elv_unregister(&iosched_cfq);
3444
	ioc_gone = &all_gone;
3445 3446
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3447 3448 3449 3450 3451

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3452
	if (elv_ioc_count_read(cfq_ioc_count))
3453
		wait_for_completion(&all_gone);
3454
	cfq_slab_kill();
L
Linus Torvalds 已提交
3455 3456 3457 3458 3459 3460 3461 3462
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");