cfq-iosched.c 97.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
16
#include "blk-cgroup.h"
L
Linus Torvalds 已提交
17 18 19 20

/*
 * tunables
 */
21 22
/* max queue in one round of service */
static const int cfq_quantum = 4;
23
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 25 26 27
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
28
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
29
static int cfq_slice_async = HZ / 25;
30
static const int cfq_slice_async_rq = 2;
31
static int cfq_slice_idle = HZ / 125;
32 33
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
34

35
/*
36
 * offset from end of service tree
37
 */
38
#define CFQ_IDLE_DELAY		(HZ / 5)
39 40 41 42 43 44

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

45
#define CFQ_SLICE_SCALE		(5)
46
#define CFQ_HW_QUEUE_MIN	(5)
47
#define CFQ_SERVICE_SHIFT       12
48

49 50
#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
51

52 53
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
54
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
55

56 57
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
58

59
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
60
static struct completion *ioc_gone;
61
static DEFINE_SPINLOCK(ioc_gone_lock);
62

63 64 65 66
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

67
#define sample_valid(samples)	((samples) > 80)
68
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
69

70 71 72 73 74 75 76 77 78
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
79
	unsigned count;
80
	u64 min_vdisktime;
81
	struct rb_node *active;
82
	unsigned total_weight;
83
};
84
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
85

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

115 116
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
117
	unsigned int allocated_slice;
118
	unsigned int slice_dispatch;
119 120
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
121 122 123 124 125 126 127 128 129 130 131 132
	unsigned long slice_end;
	long slice_resid;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

133 134
	pid_t pid;

135
	u32 seek_history;
136 137
	sector_t last_request_pos;

138
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
139
	struct cfq_queue *new_cfqq;
140
	struct cfq_group *cfqg;
141
	struct cfq_group *orig_cfqg;
142 143
	/* Sectors dispatched in current dispatch round */
	unsigned long nr_sectors;
144 145
};

146
/*
147
 * First index in the service_trees.
148 149 150 151
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
152 153
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
154 155
};

156 157 158 159 160 161 162 163 164
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

165 166
/* This is per cgroup per device grouping structure */
struct cfq_group {
167 168 169 170 171
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
172
	unsigned int weight;
173 174 175 176 177
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

178 179
	/* Per group busy queus average. Useful for workload slice calc. */
	unsigned int busy_queues_avg[2];
180 181 182 183 184 185
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
186 187 188 189

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
190 191 192
	struct blkio_group blkg;
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	struct hlist_node cfqd_node;
193
	atomic_t ref;
194
#endif
195
};
196

197 198 199
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
200
struct cfq_data {
201
	struct request_queue *queue;
202 203
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
204
	struct cfq_group root_group;
205

206 207
	/*
	 * The priority currently being served
208
	 */
209
	enum wl_prio_t serving_prio;
210 211
	enum wl_type_t serving_type;
	unsigned long workload_expires;
212
	struct cfq_group *serving_group;
213
	bool noidle_tree_requires_idle;
214 215 216 217 218 219 220 221

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

222 223
	unsigned int busy_queues;

224
	int rq_in_driver[2];
225
	int sync_flight;
226 227 228 229 230

	/*
	 * queue-depth detection
	 */
	int rq_queued;
231
	int hw_tag;
232 233 234 235 236 237 238 239
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
240

241 242 243 244
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
245
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
246

247 248 249
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

250 251 252 253 254
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
255

J
Jens Axboe 已提交
256
	sector_t last_position;
L
Linus Torvalds 已提交
257 258 259 260 261

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
262
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
263 264
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
265 266 267
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
268
	unsigned int cfq_latency;
269
	unsigned int cfq_group_isolation;
270 271

	struct list_head cic_list;
L
Linus Torvalds 已提交
272

273 274 275 276
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
277

278
	unsigned long last_delayed_sync;
279 280 281

	/* List of cfq groups being managed on this device*/
	struct hlist_head cfqg_list;
282
	struct rcu_head rcu;
L
Linus Torvalds 已提交
283 284
};

285 286
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

287 288
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
289
					    enum wl_type_t type)
290
{
291 292 293
	if (!cfqg)
		return NULL;

294
	if (prio == IDLE_WORKLOAD)
295
		return &cfqg->service_tree_idle;
296

297
	return &cfqg->service_trees[prio][type];
298 299
}

J
Jens Axboe 已提交
300
enum cfqq_state_flags {
301 302
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
303
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
304 305 306 307
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
308
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
309
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
310
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
311
	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
312
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
313
	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
J
Jens Axboe 已提交
314 315 316 317 318
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
319
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
320 321 322
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
323
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
324 325 326
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
327
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
328 329 330 331
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
332
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
333 334 335 336
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
337
CFQ_CFQQ_FNS(slice_new);
338
CFQ_CFQQ_FNS(sync);
339
CFQ_CFQQ_FNS(coop);
340
CFQ_CFQQ_FNS(split_coop);
341
CFQ_CFQQ_FNS(deep);
342
CFQ_CFQQ_FNS(wait_busy);
J
Jens Axboe 已提交
343 344
#undef CFQ_CFQQ_FNS

V
Vivek Goyal 已提交
345 346 347 348 349 350 351 352 353 354 355
#ifdef CONFIG_DEBUG_CFQ_IOSCHED
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
			blkg_path(&(cfqq)->cfqg->blkg), ##args);

#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
				blkg_path(&(cfqg)->blkg), ##args);      \

#else
356 357
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
V
Vivek Goyal 已提交
358 359
#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
#endif
360 361 362
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

363 364 365 366 367 368 369 370 371 372 373
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


374 375 376 377 378 379 380 381 382
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

383 384 385 386 387 388 389 390 391 392

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

393 394 395
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
396 397
{
	if (wl == IDLE_WORKLOAD)
398
		return cfqg->service_tree_idle.count;
399

400 401 402
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
403 404
}

405 406 407 408 409 410 411
static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg)
{
	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
}

412
static void cfq_dispatch_insert(struct request_queue *, struct request *);
413
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
414
				       struct io_context *, gfp_t);
415
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
416 417
						struct io_context *);

418 419 420 421 422
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

423
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
424
					    bool is_sync)
425
{
426
	return cic->cfqq[is_sync];
427 428 429
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
430
				struct cfq_queue *cfqq, bool is_sync)
431
{
432
	cic->cfqq[is_sync] = cfqq;
433 434 435 436 437 438
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
439
static inline bool cfq_bio_sync(struct bio *bio)
440
{
441
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
442
}
L
Linus Torvalds 已提交
443

A
Andrew Morton 已提交
444 445 446 447
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
448
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
449
{
450 451
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
452
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
453
	}
A
Andrew Morton 已提交
454 455
}

456
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
457 458 459
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

460
	return !cfqd->rq_queued;
A
Andrew Morton 已提交
461 462
}

463 464 465 466 467
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
468
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
469
				 unsigned short prio)
470
{
471
	const int base_slice = cfqd->cfq_slice[sync];
472

473 474 475 476
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
477

478 479 480 481
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
482 483
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

529 530 531 532 533 534
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

535 536
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
537
{
538 539 540
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
541
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
542

543 544 545
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
546
		cfq_hist_divisor;
547 548 549 550 551 552 553 554 555
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
556 557
}

558 559 560
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
561 562
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
563 564 565 566 567 568
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
569 570
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
571 572 573
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
574 575 576 577 578 579 580
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
581
			slice = max(slice * group_slice / expect_latency,
582 583 584
				    low_slice);
		}
	}
585
	cfqq->slice_start = jiffies;
586
	cfqq->slice_end = jiffies + slice;
587
	cfqq->allocated_slice = slice;
588
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
589 590 591 592 593 594 595
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
596
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
597 598 599 600 601 602 603 604 605
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
606
/*
J
Jens Axboe 已提交
607
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
608
 * We choose the request that is closest to the head right now. Distance
609
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
610
 */
J
Jens Axboe 已提交
611
static struct request *
612
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
613
{
614
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
615
	unsigned long back_max;
616 617 618
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
619

J
Jens Axboe 已提交
620 621 622 623
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
624

J
Jens Axboe 已提交
625 626 627 628
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
629 630 631 632
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
633

634 635
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
652
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
653 654 655 656 657 658

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
659
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
660 661

	/* Found required data */
662 663 664 665 666 667

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
668
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
669
		if (d1 < d2)
J
Jens Axboe 已提交
670
			return rq1;
671
		else if (d2 < d1)
J
Jens Axboe 已提交
672
			return rq2;
673 674
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
675
				return rq1;
676
			else
J
Jens Axboe 已提交
677
				return rq2;
678
		}
L
Linus Torvalds 已提交
679

680
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
681
		return rq1;
682
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
683 684
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
685 686 687 688 689 690 691 692
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
693
			return rq1;
L
Linus Torvalds 已提交
694
		else
J
Jens Axboe 已提交
695
			return rq2;
L
Linus Torvalds 已提交
696 697 698
	}
}

699 700 701
/*
 * The below is leftmost cache rbtree addon
 */
702
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
703
{
704 705 706 707
	/* Service tree is empty */
	if (!root->count)
		return NULL;

708 709 710
	if (!root->left)
		root->left = rb_first(&root->rb);

711 712 713 714
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
715 716
}

717 718 719 720 721 722 723 724 725 726 727
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

728 729 730 731 732 733
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

734 735 736 737
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
738
	rb_erase_init(n, &root->rb);
739
	--root->count;
740 741
}

L
Linus Torvalds 已提交
742 743 744
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
745 746 747
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
748
{
749 750
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
751
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
752

753
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
754 755

	if (rbprev)
J
Jens Axboe 已提交
756
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
757

758
	if (rbnext)
J
Jens Axboe 已提交
759
		next = rb_entry_rq(rbnext);
760 761 762
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
763
			next = rb_entry_rq(rbnext);
764
	}
L
Linus Torvalds 已提交
765

766
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
767 768
}

769 770
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
771
{
772 773 774
	/*
	 * just an approximation, should be ok.
	 */
775
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
776
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
777 778
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
838
	st->total_weight += cfqg->weight;
839 840 841 842 843 844 845
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

846 847 848
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

849 850
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
851

852 853 854 855
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

V
Vivek Goyal 已提交
856
	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
857
	cfqg->on_st = false;
858
	st->total_weight -= cfqg->weight;
859 860
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
861
	cfqg->saved_workload_slice = 0;
862
	blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
863 864 865 866
}

static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
{
867
	unsigned int slice_used;
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
884 885
		if (slice_used > cfqq->allocated_slice)
			slice_used = cfqq->allocated_slice;
886 887
	}

888 889
	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
				cfqq->nr_sectors);
890 891 892 893 894 895 896
	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
				struct cfq_queue *cfqq)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
897 898 899 900 901 902
	unsigned int used_sl, charge_sl;
	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
			- cfqg->service_tree_idle.count;

	BUG_ON(nr_sync < 0);
	used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
903

904 905
	if (!cfq_cfqq_sync(cfqq) && !nr_sync)
		charge_sl = cfqq->allocated_slice;
906 907 908

	/* Can't update vdisktime while group is on service tree */
	cfq_rb_erase(&cfqg->rb_node, st);
909
	cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
910 911 912 913 914 915 916 917 918 919
	__cfq_group_service_tree_add(st, cfqg);

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
V
Vivek Goyal 已提交
920 921 922

	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
					st->min_vdisktime);
923 924
	blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
						cfqq->nr_sectors);
925 926
}

927 928 929 930 931 932 933 934
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct cfq_group, blkg);
	return NULL;
}

935 936 937 938 939 940
void
cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
{
	cfqg_of_blkg(blkg)->weight = weight;
}

941 942 943 944 945 946 947 948
static struct cfq_group *
cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
	struct cfq_group *cfqg = NULL;
	void *key = cfqd;
	int i, j;
	struct cfq_rb_root *st;
949 950
	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
	unsigned int major, minor;
951 952 953 954 955 956 957 958 959 960 961 962 963 964

	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
	if (cfqg || !create)
		goto done;

	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
	if (!cfqg)
		goto done;

	cfqg->weight = blkcg->weight;
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
	RB_CLEAR_NODE(&cfqg->rb_node);

965 966 967 968 969 970 971 972
	/*
	 * Take the initial reference that will be released on destroy
	 * This can be thought of a joint reference by cgroup and
	 * elevator which will be dropped by either elevator exit
	 * or cgroup deletion path depending on who is exiting first.
	 */
	atomic_set(&cfqg->ref, 1);

973
	/* Add group onto cgroup list */
974 975 976
	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
					MKDEV(major, minor));
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	/* Add group on cfqd list */
	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);

done:
	return cfqg;
}

/*
 * Search for the cfq group current task belongs to. If create = 1, then also
 * create the cfq group if it does not exist. request_queue lock must be held.
 */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	struct cgroup *cgroup;
	struct cfq_group *cfqg = NULL;

	rcu_read_lock();
	cgroup = task_cgroup(current, blkio_subsys_id);
	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
	if (!cfqg && create)
		cfqg = &cfqd->root_group;
	rcu_read_unlock();
	return cfqg;
}

static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	/* Currently, all async queues are mapped to root group */
	if (!cfq_cfqq_sync(cfqq))
		cfqg = &cfqq->cfqd->root_group;

	cfqq->cfqg = cfqg;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	/* cfqq reference on cfqg */
	atomic_inc(&cfqq->cfqg->ref);
}

static void cfq_put_cfqg(struct cfq_group *cfqg)
{
	struct cfq_rb_root *st;
	int i, j;

	BUG_ON(atomic_read(&cfqg->ref) <= 0);
	if (!atomic_dec_and_test(&cfqg->ref))
		return;
	for_each_cfqg_st(cfqg, i, j, st)
		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
	kfree(cfqg);
}

static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	/* Something wrong if we are trying to remove same group twice */
	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));

	hlist_del_init(&cfqg->cfqd_node);

	/*
	 * Put the reference taken at the time of creation so that when all
	 * queues are gone, group can be destroyed.
	 */
	cfq_put_cfqg(cfqg);
}

static void cfq_release_cfq_groups(struct cfq_data *cfqd)
{
	struct hlist_node *pos, *n;
	struct cfq_group *cfqg;

	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
		/*
		 * If cgroup removal path got to blk_group first and removed
		 * it from cgroup list, then it will take care of destroying
		 * cfqg also.
		 */
		if (!blkiocg_del_blkio_group(&cfqg->blkg))
			cfq_destroy_cfqg(cfqd, cfqg);
	}
1055
}
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

/*
 * Blk cgroup controller notification saying that blkio_group object is being
 * delinked as associated cgroup object is going away. That also means that
 * no new IO will come in this group. So get rid of this group as soon as
 * any pending IO in the group is finished.
 *
 * This function is called under rcu_read_lock(). key is the rcu protected
 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
 * read lock.
 *
 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
 * it should not be NULL as even if elevator was exiting, cgroup deltion
 * path got to it first.
 */
void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
{
	unsigned long  flags;
	struct cfq_data *cfqd = key;

	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
#else /* GROUP_IOSCHED */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}
static inline void
cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
	cfqq->cfqg = cfqg;
}

1091 1092 1093
static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}

1094 1095
#endif /* GROUP_IOSCHED */

1096
/*
1097
 * The cfqd->service_trees holds all pending cfq_queue's that have
1098 1099 1100
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
1101
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1102
				 bool add_front)
1103
{
1104 1105
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
1106
	unsigned long rb_key;
1107
	struct cfq_rb_root *service_tree;
1108
	int left;
1109
	int new_cfqq = 1;
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	int group_changed = 0;

#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (!cfqd->cfq_group_isolation
	    && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
	    && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
		/* Move this cfq to root group */
		cfq_log_cfqq(cfqd, cfqq, "moving to root group");
		if (!RB_EMPTY_NODE(&cfqq->rb_node))
			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
		cfqq->orig_cfqg = cfqq->cfqg;
		cfqq->cfqg = &cfqd->root_group;
		atomic_inc(&cfqd->root_group.ref);
		group_changed = 1;
	} else if (!cfqd->cfq_group_isolation
		   && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
		/* cfqq is sequential now needs to go to its original group */
		BUG_ON(cfqq->cfqg != &cfqd->root_group);
		if (!RB_EMPTY_NODE(&cfqq->rb_node))
			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
		cfq_put_cfqg(cfqq->cfqg);
		cfqq->cfqg = cfqq->orig_cfqg;
		cfqq->orig_cfqg = NULL;
		group_changed = 1;
		cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
	}
#endif
1137

1138
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1139
						cfqq_type(cfqq));
1140 1141
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
1142
		parent = rb_last(&service_tree->rb);
1143 1144 1145 1146 1147 1148
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
1149 1150 1151 1152 1153 1154
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
1155
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1156
		rb_key -= cfqq->slice_resid;
1157
		cfqq->slice_resid = 0;
1158 1159
	} else {
		rb_key = -HZ;
1160
		__cfqq = cfq_rb_first(service_tree);
1161 1162
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
1163

1164
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1165
		new_cfqq = 0;
1166
		/*
1167
		 * same position, nothing more to do
1168
		 */
1169 1170
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
1171
			return;
L
Linus Torvalds 已提交
1172

1173 1174
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
1175
	}
1176

1177
	left = 1;
1178
	parent = NULL;
1179 1180
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
1181
	while (*p) {
1182
		struct rb_node **n;
1183

1184 1185 1186
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

1187
		/*
1188
		 * sort by key, that represents service time.
1189
		 */
1190
		if (time_before(rb_key, __cfqq->rb_key))
1191
			n = &(*p)->rb_left;
1192
		else {
1193
			n = &(*p)->rb_right;
1194
			left = 0;
1195
		}
1196 1197

		p = n;
1198 1199
	}

1200
	if (left)
1201
		service_tree->left = &cfqq->rb_node;
1202

1203 1204
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
1205 1206
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
1207
	if ((add_front || !new_cfqq) && !group_changed)
1208
		return;
1209
	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1210 1211
}

1212
static struct cfq_queue *
1213 1214 1215
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
1232
		if (sector > blk_rq_pos(cfqq->next_rq))
1233
			n = &(*p)->rb_right;
1234
		else if (sector < blk_rq_pos(cfqq->next_rq))
1235 1236 1237 1238
			n = &(*p)->rb_left;
		else
			break;
		p = n;
1239
		cfqq = NULL;
1240 1241 1242 1243 1244
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
1245
	return cfqq;
1246 1247 1248 1249 1250 1251 1252
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

1253 1254 1255 1256
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1257 1258 1259 1260 1261 1262

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

1263
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1264 1265
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1266 1267
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
1268 1269 1270
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
1271 1272
}

1273 1274 1275
/*
 * Update cfqq's position in the service tree.
 */
1276
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1277 1278 1279 1280
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
1281
	if (cfq_cfqq_on_rr(cfqq)) {
1282
		cfq_service_tree_add(cfqd, cfqq, 0);
1283 1284
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
1285 1286
}

L
Linus Torvalds 已提交
1287 1288
/*
 * add to busy list of queues for service, trying to be fair in ordering
1289
 * the pending list according to last request service
L
Linus Torvalds 已提交
1290
 */
J
Jens Axboe 已提交
1291
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1292
{
1293
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
1294 1295
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1296 1297
	cfqd->busy_queues++;

1298
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
1299 1300
}

1301 1302 1303 1304
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
1305
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1306
{
1307
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
1308 1309
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1310

1311 1312 1313 1314
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
1315 1316 1317 1318
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1319

1320
	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1321 1322 1323 1324 1325 1326 1327
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
1328
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1329
{
J
Jens Axboe 已提交
1330 1331
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
1332

1333 1334
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
1335

J
Jens Axboe 已提交
1336
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
		/*
		 * Queue will be deleted from service tree when we actually
		 * expire it later. Right now just remove it from prio tree
		 * as it is empty.
		 */
		if (cfqq->p_root) {
			rb_erase(&cfqq->p_node, cfqq->p_root);
			cfqq->p_root = NULL;
		}
	}
L
Linus Torvalds 已提交
1349 1350
}

J
Jens Axboe 已提交
1351
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1352
{
J
Jens Axboe 已提交
1353
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
1354
	struct cfq_data *cfqd = cfqq->cfqd;
1355
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
1356

1357
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
1358 1359 1360 1361 1362

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
1363
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
1364
		cfq_dispatch_insert(cfqd->queue, __alias);
1365 1366 1367

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
1368 1369 1370 1371

	/*
	 * check if this request is a better next-serve candidate
	 */
1372
	prev = cfqq->next_rq;
1373
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1374 1375 1376 1377 1378 1379 1380

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

1381
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
1382 1383
}

J
Jens Axboe 已提交
1384
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
1385
{
1386 1387
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
1388
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
1389 1390
}

1391 1392
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
1393
{
1394
	struct task_struct *tsk = current;
1395
	struct cfq_io_context *cic;
1396
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
1397

1398
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1399 1400 1401 1402
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1403 1404 1405
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

1406
		return elv_rb_find(&cfqq->sort_list, sector);
1407
	}
L
Linus Torvalds 已提交
1408 1409 1410 1411

	return NULL;
}

1412
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1413
{
1414
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1415

1416
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
1417
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1418
						rq_in_driver(cfqd));
1419

1420
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1421 1422
}

1423
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1424
{
1425
	struct cfq_data *cfqd = q->elevator->elevator_data;
1426
	const int sync = rq_is_sync(rq);
1427

1428 1429
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
1430
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1431
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
1432 1433
}

1434
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
1435
{
J
Jens Axboe 已提交
1436
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1437

J
Jens Axboe 已提交
1438 1439
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
1440

1441
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1442
	cfq_del_rq_rb(rq);
1443

1444
	cfqq->cfqd->rq_queued--;
1445 1446 1447 1448
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
1449 1450
}

1451 1452
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
1453 1454 1455 1456
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

1457
	__rq = cfq_find_rq_fmerge(cfqd, bio);
1458
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1459 1460
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
1461 1462 1463 1464 1465
	}

	return ELEVATOR_NO_MERGE;
}

1466
static void cfq_merged_request(struct request_queue *q, struct request *req,
1467
			       int type)
L
Linus Torvalds 已提交
1468
{
1469
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
1470
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
1471

J
Jens Axboe 已提交
1472
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
1473 1474 1475 1476
	}
}

static void
1477
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
1478 1479
		    struct request *next)
{
1480
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1481 1482 1483 1484
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1485
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1486
		list_move(&rq->queuelist, &next->queuelist);
1487 1488
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
1489

1490 1491
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
1492
	cfq_remove_request(next);
1493 1494
}

1495
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1496 1497 1498
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1499
	struct cfq_io_context *cic;
1500 1501 1502
	struct cfq_queue *cfqq;

	/*
1503
	 * Disallow merge of a sync bio into an async request.
1504
	 */
1505
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1506
		return false;
1507 1508

	/*
1509 1510
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
1511
	 */
1512
	cic = cfq_cic_lookup(cfqd, current->io_context);
1513
	if (!cic)
1514
		return false;
1515

1516
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1517
	return cfqq == RQ_CFQQ(rq);
1518 1519
}

J
Jens Axboe 已提交
1520 1521
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1522 1523
{
	if (cfqq) {
1524
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1525 1526
		cfqq->slice_start = 0;
		cfqq->dispatch_start = jiffies;
1527
		cfqq->allocated_slice = 0;
1528
		cfqq->slice_end = 0;
1529
		cfqq->slice_dispatch = 0;
1530
		cfqq->nr_sectors = 0;
1531 1532

		cfq_clear_cfqq_wait_request(cfqq);
1533
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1534 1535
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1536
		cfq_mark_cfqq_slice_new(cfqq);
1537 1538

		del_timer(&cfqd->idle_slice_timer);
1539 1540 1541 1542 1543
	}

	cfqd->active_queue = cfqq;
}

1544 1545 1546 1547 1548
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1549
		    bool timed_out)
1550
{
1551 1552
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1553 1554 1555 1556
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);
1557
	cfq_clear_cfqq_wait_busy(cfqq);
1558

1559 1560 1561 1562 1563 1564 1565 1566 1567
	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
		cfq_mark_cfqq_split_coop(cfqq);

1568
	/*
1569
	 * store what was left of this slice, if the queue idled/timed out
1570
	 */
1571
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1572
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1573 1574
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1575

1576 1577
	cfq_group_served(cfqd, cfqq->cfqg, cfqq);

1578 1579 1580
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
		cfq_del_cfqq_rr(cfqd, cfqq);

1581
	cfq_resort_rr_list(cfqd, cfqq);
1582 1583 1584 1585

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

1586 1587 1588
	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
		cfqd->grp_service_tree.active = NULL;

1589 1590 1591 1592 1593 1594
	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1595
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1596 1597 1598 1599
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1600
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1601 1602
}

1603 1604 1605 1606
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1607
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1608
{
1609
	struct cfq_rb_root *service_tree =
1610
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1611
					cfqd->serving_type);
1612

1613 1614 1615
	if (!cfqd->rq_queued)
		return NULL;

1616 1617 1618
	/* There is nothing to dispatch */
	if (!service_tree)
		return NULL;
1619 1620 1621
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1622 1623
}

1624 1625
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
1626
	struct cfq_group *cfqg;
1627 1628 1629 1630 1631 1632 1633
	struct cfq_queue *cfqq;
	int i, j;
	struct cfq_rb_root *st;

	if (!cfqd->rq_queued)
		return NULL;

1634 1635 1636 1637
	cfqg = cfq_get_next_cfqg(cfqd);
	if (!cfqg)
		return NULL;

1638 1639 1640 1641 1642 1643
	for_each_cfqg_st(cfqg, i, j, st)
		if ((cfqq = cfq_rb_first(st)) != NULL)
			return cfqq;
	return NULL;
}

1644 1645 1646
/*
 * Get and set a new active queue for service.
 */
1647 1648
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1649
{
1650
	if (!cfqq)
1651
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1652

1653
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1654
	return cfqq;
1655 1656
}

1657 1658 1659
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1660 1661
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1662
	else
1663
		return cfqd->last_position - blk_rq_pos(rq);
1664 1665
}

1666
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1667
			       struct request *rq, bool for_preempt)
J
Jens Axboe 已提交
1668
{
1669
	return cfq_dist_from_last(cfqd, rq) <= CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1670 1671
}

1672 1673 1674
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1675
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1687
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1688 1689 1690 1691 1692 1693 1694 1695
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1696
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1697 1698
		return __cfqq;

1699
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1700 1701 1702 1703 1704 1705 1706
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1707
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1724
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1725
{
1726 1727
	struct cfq_queue *cfqq;

1728 1729 1730 1731 1732
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

1733 1734 1735 1736 1737 1738
	/*
	 * Don't search priority tree if it's the only queue in the group.
	 */
	if (cur_cfqq->cfqg->nr_cfqq == 1)
		return NULL;

J
Jens Axboe 已提交
1739
	/*
1740 1741 1742
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1743
	 */
1744 1745 1746 1747
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

1748 1749 1750 1751
	/* If new queue belongs to different cfq_group, don't choose it */
	if (cur_cfqq->cfqg != cfqq->cfqg)
		return NULL;

J
Jeff Moyer 已提交
1752 1753 1754 1755 1756
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1757 1758
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1759

1760 1761 1762 1763 1764 1765
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1766
	return cfqq;
J
Jens Axboe 已提交
1767 1768
}

1769 1770 1771 1772 1773 1774 1775
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1776
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1777

1778 1779 1780
	BUG_ON(!service_tree);
	BUG_ON(!service_tree->count);

1781 1782 1783 1784 1785
	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
1786 1787
	if (cfq_cfqq_idle_window(cfqq) &&
	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1788 1789 1790 1791 1792 1793
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1794
	return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
1795 1796
}

J
Jens Axboe 已提交
1797
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1798
{
1799
	struct cfq_queue *cfqq = cfqd->active_queue;
1800
	struct cfq_io_context *cic;
1801 1802
	unsigned long sl;

1803
	/*
J
Jens Axboe 已提交
1804 1805 1806
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1807
	 */
J
Jens Axboe 已提交
1808
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1809 1810
		return;

1811
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1812
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1813 1814 1815 1816

	/*
	 * idle is disabled, either manually or by past process history
	 */
1817
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1818 1819
		return;

1820
	/*
1821
	 * still active requests from this queue, don't idle
1822
	 */
1823
	if (cfqq->dispatched)
1824 1825
		return;

1826 1827 1828
	/*
	 * task has exited, don't wait
	 */
1829
	cic = cfqd->active_cic;
1830
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1831 1832
		return;

1833 1834 1835 1836 1837 1838 1839 1840 1841
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1842
	cfq_mark_cfqq_wait_request(cfqq);
1843

J
Jens Axboe 已提交
1844
	sl = cfqd->cfq_slice_idle;
1845

1846
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1847
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1848 1849
}

1850 1851 1852
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1853
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1854
{
1855
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1856
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1857

1858 1859
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1860
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1861
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1862
	cfqq->dispatched++;
1863
	elv_dispatch_sort(q, rq);
1864 1865 1866

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
1867
	cfqq->nr_sectors += blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1868 1869 1870 1871 1872
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1873
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1874
{
1875
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1876

J
Jens Axboe 已提交
1877
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1878
		return NULL;
1879 1880 1881

	cfq_mark_cfqq_fifo_expire(cfqq);

1882 1883
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1884

1885
	rq = rq_entry_fifo(cfqq->fifo.next);
1886
	if (time_before(jiffies, rq_fifo_time(rq)))
1887
		rq = NULL;
L
Linus Torvalds 已提交
1888

1889
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1890
	return rq;
L
Linus Torvalds 已提交
1891 1892
}

1893 1894 1895 1896
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1897

1898
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1899

1900
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1901 1902
}

J
Jeff Moyer 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1918
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1947 1948
}

1949
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1950
				struct cfq_group *cfqg, enum wl_prio_t prio)
1951 1952 1953 1954 1955 1956 1957
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

1958 1959 1960
	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
		/* select the one with lowest rb_key */
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

1972
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1973 1974 1975
{
	unsigned slice;
	unsigned count;
1976
	struct cfq_rb_root *st;
1977
	unsigned group_slice;
1978

1979 1980 1981 1982 1983 1984
	if (!cfqg) {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

1985
	/* Choose next priority. RT > BE > IDLE */
1986
	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1987
		cfqd->serving_prio = RT_WORKLOAD;
1988
	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
2001
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2002
	count = st->count;
2003 2004

	/*
2005
	 * check workload expiration, and that we still have other queues ready
2006
	 */
2007
	if (count && !time_after(jiffies, cfqd->workload_expires))
2008 2009 2010 2011
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
2012 2013
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2014
	count = st->count;
2015 2016 2017 2018 2019 2020

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
2021 2022 2023 2024 2025
	group_slice = cfq_group_slice(cfqd, cfqg);

	slice = group_slice * count /
		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2026

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	if (cfqd->serving_type == ASYNC_WORKLOAD) {
		unsigned int tmp;

		/*
		 * Async queues are currently system wide. Just taking
		 * proportion of queues with-in same group will lead to higher
		 * async ratio system wide as generally root group is going
		 * to have higher weight. A more accurate thing would be to
		 * calculate system wide asnc/sync ratio.
		 */
		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
		tmp = tmp/cfqd->busy_queues;
		slice = min_t(unsigned, slice, tmp);

2041 2042 2043
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2044
	} else
2045 2046 2047 2048 2049
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
2050
	cfqd->noidle_tree_requires_idle = false;
2051 2052
}

2053 2054 2055
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2056
	struct cfq_group *cfqg;
2057 2058 2059

	if (RB_EMPTY_ROOT(&st->rb))
		return NULL;
2060 2061 2062 2063
	cfqg = cfq_rb_first_group(st);
	st->active = &cfqg->rb_node;
	update_min_vdisktime(st);
	return cfqg;
2064 2065
}

2066 2067
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
2068 2069 2070
	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);

	cfqd->serving_group = cfqg;
2071 2072 2073 2074 2075 2076

	/* Restore the workload type data */
	if (cfqg->saved_workload_slice) {
		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
		cfqd->serving_type = cfqg->saved_workload;
		cfqd->serving_prio = cfqg->saved_serving_prio;
2077 2078 2079
	} else
		cfqd->workload_expires = jiffies - 1;

2080
	choose_service_tree(cfqd, cfqg);
2081 2082
}

2083
/*
2084 2085
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
2086
 */
2087
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
2088
{
2089
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
2090

2091 2092 2093
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
2094

2095 2096
	if (!cfqd->rq_queued)
		return NULL;
2097 2098 2099 2100 2101 2102 2103

	/*
	 * We were waiting for group to get backlogged. Expire the queue
	 */
	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
		goto expire;

2104
	/*
J
Jens Axboe 已提交
2105
	 * The active queue has run out of time, expire it and select new.
2106
	 */
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
		/*
		 * If slice had not expired at the completion of last request
		 * we might not have turned on wait_busy flag. Don't expire
		 * the queue yet. Allow the group to get backlogged.
		 *
		 * The very fact that we have used the slice, that means we
		 * have been idling all along on this queue and it should be
		 * ok to wait for this request to complete.
		 */
2117 2118 2119
		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
			cfqq = NULL;
2120
			goto keep_queue;
2121
		} else
2122 2123
			goto expire;
	}
L
Linus Torvalds 已提交
2124

2125
	/*
J
Jens Axboe 已提交
2126 2127
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
2128
	 */
2129
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2130
		goto keep_queue;
J
Jens Axboe 已提交
2131

2132 2133 2134 2135
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
2136
	 * tree.  If possible, merge the expiring queue with the new cfqq.
2137
	 */
2138
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
2139 2140 2141
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
2142
		goto expire;
J
Jeff Moyer 已提交
2143
	}
2144

J
Jens Axboe 已提交
2145 2146 2147 2148 2149
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
2150
	if (timer_pending(&cfqd->idle_slice_timer) ||
2151
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2152 2153
		cfqq = NULL;
		goto keep_queue;
2154 2155
	}

J
Jens Axboe 已提交
2156
expire:
2157
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
2158
new_queue:
2159 2160 2161 2162 2163
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
2164
		cfq_choose_cfqg(cfqd);
2165

2166
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2167
keep_queue:
J
Jens Axboe 已提交
2168
	return cfqq;
2169 2170
}

J
Jens Axboe 已提交
2171
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2172 2173 2174 2175 2176 2177 2178 2179 2180
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
2181 2182 2183

	/* By default cfqq is not expired if it is empty. Do it explicitly */
	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2184 2185 2186
	return dispatched;
}

2187 2188 2189 2190
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
2191
static int cfq_forced_dispatch(struct cfq_data *cfqd)
2192
{
2193
	struct cfq_queue *cfqq;
2194
	int dispatched = 0;
2195

2196 2197
	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2198

2199
	cfq_slice_expired(cfqd, 0);
2200 2201
	BUG_ON(cfqd->busy_queues);

2202
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2203 2204 2205
	return dispatched;
}

2206
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2207 2208
{
	unsigned int max_dispatch;
2209

2210 2211 2212
	/*
	 * Drain async requests before we start sync IO
	 */
2213
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2214
		return false;
2215

2216 2217 2218 2219
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2220
		return false;
2221 2222 2223 2224

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
2225

2226 2227 2228 2229 2230 2231 2232
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
2233
		if (cfq_class_idle(cfqq))
2234
			return false;
2235

2236 2237 2238 2239
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
2240
			return false;
2241

2242
		/*
2243
		 * Sole queue user, no limit
2244
		 */
2245
		max_dispatch = -1;
2246 2247 2248 2249 2250 2251 2252
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
2253
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2254
		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2255
		unsigned int depth;
2256

2257
		depth = last_sync / cfqd->cfq_slice[1];
2258 2259
		if (!depth && !cfqq->dispatched)
			depth = 1;
2260 2261
		if (depth < max_dispatch)
			max_dispatch = depth;
2262
	}
2263

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
2322 2323
		return 0;

2324
	/*
2325
	 * Dispatch a request from this cfqq, if it is allowed
2326
	 */
2327 2328 2329
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

2330
	cfqq->slice_dispatch++;
2331
	cfq_clear_cfqq_must_dispatch(cfqq);
2332

2333 2334 2335 2336 2337 2338 2339 2340 2341
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
2342 2343
	}

2344
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2345
	return 1;
L
Linus Torvalds 已提交
2346 2347 2348
}

/*
J
Jens Axboe 已提交
2349 2350
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
2351
 *
2352
 * Each cfq queue took a reference on the parent group. Drop it now.
L
Linus Torvalds 已提交
2353 2354 2355 2356
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
2357
	struct cfq_data *cfqd = cfqq->cfqd;
2358
	struct cfq_group *cfqg, *orig_cfqg;
2359 2360

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
2361 2362 2363 2364

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

2365
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
2366
	BUG_ON(rb_first(&cfqq->sort_list));
2367
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2368
	cfqg = cfqq->cfqg;
2369
	orig_cfqg = cfqq->orig_cfqg;
L
Linus Torvalds 已提交
2370

2371
	if (unlikely(cfqd->active_queue == cfqq)) {
2372
		__cfq_slice_expired(cfqd, cfqq, 0);
2373
		cfq_schedule_dispatch(cfqd);
2374
	}
2375

2376
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
2377
	kmem_cache_free(cfq_pool, cfqq);
2378
	cfq_put_cfqg(cfqg);
2379 2380
	if (orig_cfqg)
		cfq_put_cfqg(orig_cfqg);
L
Linus Torvalds 已提交
2381 2382
}

2383 2384 2385
/*
 * Must always be called with the rcu_read_lock() held
 */
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

2397
/*
2398
 * Call func for each cic attached to this ioc.
2399
 */
2400
static void
2401 2402
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
2403
{
2404
	rcu_read_lock();
2405
	__call_for_each_cic(ioc, func);
2406
	rcu_read_unlock();
2407 2408 2409 2410 2411 2412 2413 2414 2415
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
2416
	elv_ioc_count_dec(cfq_ioc_count);
2417

2418 2419 2420 2421 2422 2423 2424
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
2425
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2426 2427 2428 2429 2430
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
2431
}
2432

2433 2434 2435
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2446
	hlist_del_rcu(&cic->cic_list);
2447 2448
	spin_unlock_irqrestore(&ioc->lock, flags);

2449
	cfq_cic_free(cic);
2450 2451
}

2452 2453 2454 2455 2456
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
2457 2458 2459
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
2460 2461 2462 2463
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
2464
	 */
2465
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
2466 2467
}

2468
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2469
{
J
Jeff Moyer 已提交
2470 2471
	struct cfq_queue *__cfqq, *next;

2472
	if (unlikely(cfqq == cfqd->active_queue)) {
2473
		__cfq_slice_expired(cfqd, cfqq, 0);
2474
		cfq_schedule_dispatch(cfqd);
2475
	}
2476

J
Jeff Moyer 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

2493 2494
	cfq_put_queue(cfqq);
}
2495

2496 2497 2498
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
2499 2500
	struct io_context *ioc = cic->ioc;

2501
	list_del_init(&cic->queue_list);
2502 2503 2504 2505

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
2506
	smp_wmb();
2507
	cic->dead_key = (unsigned long) cic->key;
2508 2509
	cic->key = NULL;

2510 2511 2512
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

2513 2514 2515
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
2516 2517
	}

2518 2519 2520
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
2521
	}
2522 2523
}

2524 2525
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
2526 2527 2528 2529
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
2530
		struct request_queue *q = cfqd->queue;
2531
		unsigned long flags;
2532

2533
		spin_lock_irqsave(q->queue_lock, flags);
2534 2535 2536 2537 2538 2539 2540 2541 2542

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

2543
		spin_unlock_irqrestore(q->queue_lock, flags);
2544
	}
L
Linus Torvalds 已提交
2545 2546
}

2547 2548 2549 2550
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
2551
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
2552
{
2553
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
2554 2555
}

2556
static struct cfq_io_context *
A
Al Viro 已提交
2557
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2558
{
2559
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
2560

2561 2562
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
2563
	if (cic) {
2564
		cic->last_end_request = jiffies;
2565
		INIT_LIST_HEAD(&cic->queue_list);
2566
		INIT_HLIST_NODE(&cic->cic_list);
2567 2568
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
2569
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
2570 2571 2572 2573 2574
	}

	return cic;
}

2575
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2576 2577 2578 2579
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
2580
	if (!cfq_cfqq_prio_changed(cfqq))
2581 2582
		return;

2583
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2584
	switch (ioprio_class) {
2585 2586 2587 2588
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
2589
		 * no prio set, inherit CPU scheduling settings
2590 2591
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
2592
		cfqq->ioprio_class = task_nice_ioclass(tsk);
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
2607 2608 2609 2610 2611 2612 2613 2614
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
2615
	cfq_clear_cfqq_prio_changed(cfqq);
2616 2617
}

J
Jens Axboe 已提交
2618
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2619
{
2620 2621
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
2622
	unsigned long flags;
2623

2624 2625 2626
	if (unlikely(!cfqd))
		return;

2627
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2628

2629
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2630 2631
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2632 2633
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2634
		if (new_cfqq) {
2635
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2636 2637
			cfq_put_queue(cfqq);
		}
2638
	}
2639

2640
	cfqq = cic->cfqq[BLK_RW_SYNC];
2641 2642 2643
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2644
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2645 2646
}

2647
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2648
{
2649
	call_for_each_cic(ioc, changed_ioprio);
2650
	ioc->ioprio_changed = 0;
2651 2652
}

2653
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2654
			  pid_t pid, bool is_sync)
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
{
	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
	struct cfq_data *cfqd = cic->key;
	unsigned long flags;
	struct request_queue *q;

	if (unlikely(!cfqd))
		return;

	q = cfqd->queue;

	spin_lock_irqsave(q->queue_lock, flags);

	if (sync_cfqq) {
		/*
		 * Drop reference to sync queue. A new sync queue will be
		 * assigned in new group upon arrival of a fresh request.
		 */
		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
		cic_set_cfqq(cic, NULL, 1);
		cfq_put_queue(sync_cfqq);
	}

	spin_unlock_irqrestore(q->queue_lock, flags);
}

static void cfq_ioc_set_cgroup(struct io_context *ioc)
{
	call_for_each_cic(ioc, changed_cgroup);
	ioc->cgroup_changed = 0;
}
#endif  /* CONFIG_CFQ_GROUP_IOSCHED */

2708
static struct cfq_queue *
2709
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2710
		     struct io_context *ioc, gfp_t gfp_mask)
2711 2712
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2713
	struct cfq_io_context *cic;
2714
	struct cfq_group *cfqg;
2715 2716

retry:
2717
	cfqg = cfq_get_cfqg(cfqd, 1);
2718
	cic = cfq_cic_lookup(cfqd, ioc);
2719 2720
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2721

2722 2723 2724 2725 2726 2727
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2728 2729 2730 2731 2732
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2733
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2734
					gfp_mask | __GFP_ZERO,
2735
					cfqd->queue->node);
2736
			spin_lock_irq(cfqd->queue->queue_lock);
2737 2738
			if (new_cfqq)
				goto retry;
2739
		} else {
2740 2741 2742
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2743 2744
		}

2745 2746 2747
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
2748
			cfq_link_cfqq_cfqg(cfqq, cfqg);
2749 2750 2751
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2752 2753 2754 2755 2756 2757 2758 2759
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2760 2761 2762
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2763
	switch (ioprio_class) {
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2775
static struct cfq_queue *
2776
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2777 2778
	      gfp_t gfp_mask)
{
2779 2780
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2781
	struct cfq_queue **async_cfqq = NULL;
2782 2783
	struct cfq_queue *cfqq = NULL;

2784 2785 2786 2787 2788
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2789
	if (!cfqq)
2790
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2791 2792 2793 2794

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2795
	if (!is_sync && !(*async_cfqq)) {
2796
		atomic_inc(&cfqq->ref);
2797
		*async_cfqq = cfqq;
2798 2799 2800 2801 2802 2803
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2804 2805 2806
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2807
static void
2808 2809
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2810
{
2811 2812
	unsigned long flags;

2813
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2814

2815 2816
	spin_lock_irqsave(&ioc->lock, flags);

2817
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2818

2819
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2820
	hlist_del_rcu(&cic->cic_list);
2821 2822 2823
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2824 2825
}

2826
static struct cfq_io_context *
2827
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2828 2829
{
	struct cfq_io_context *cic;
2830
	unsigned long flags;
2831
	void *k;
2832

2833 2834 2835
	if (unlikely(!ioc))
		return NULL;

2836 2837
	rcu_read_lock();

J
Jens Axboe 已提交
2838 2839 2840
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2841
	cic = rcu_dereference(ioc->ioc_data);
2842 2843
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2844
		return cic;
2845
	}
J
Jens Axboe 已提交
2846

2847 2848 2849 2850 2851
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2852 2853 2854
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2855
			cfq_drop_dead_cic(cfqd, ioc, cic);
2856
			rcu_read_lock();
2857
			continue;
2858
		}
2859

2860
		spin_lock_irqsave(&ioc->lock, flags);
2861
		rcu_assign_pointer(ioc->ioc_data, cic);
2862
		spin_unlock_irqrestore(&ioc->lock, flags);
2863 2864
		break;
	} while (1);
2865

2866
	return cic;
2867 2868
}

2869 2870 2871 2872 2873
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2874 2875
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2876
{
2877
	unsigned long flags;
2878
	int ret;
2879

2880 2881 2882 2883
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2884

2885 2886 2887
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2888 2889
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2890
		spin_unlock_irqrestore(&ioc->lock, flags);
2891

2892 2893 2894 2895 2896 2897 2898
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2899 2900
	}

2901 2902
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2903

2904
	return ret;
2905 2906
}

L
Linus Torvalds 已提交
2907 2908 2909
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2910
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2911 2912
 */
static struct cfq_io_context *
2913
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2914
{
2915
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2916 2917
	struct cfq_io_context *cic;

2918
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2919

2920
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2921 2922 2923
	if (!ioc)
		return NULL;

2924
	cic = cfq_cic_lookup(cfqd, ioc);
2925 2926
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2927

2928 2929 2930
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2931

2932 2933 2934
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2935
out:
2936 2937 2938 2939
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

2940 2941 2942 2943
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (unlikely(ioc->cgroup_changed))
		cfq_ioc_set_cgroup(ioc);
#endif
L
Linus Torvalds 已提交
2944
	return cic;
2945 2946
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2947 2948 2949 2950 2951
err:
	put_io_context(ioc);
	return NULL;
}

2952 2953
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2954
{
2955 2956
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2957

2958 2959 2960 2961
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2962

2963
static void
2964
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2965
		       struct request *rq)
2966
{
2967 2968 2969 2970 2971 2972 2973
	sector_t sdist = 0;
	if (cfqq->last_request_pos) {
		if (cfqq->last_request_pos < blk_rq_pos(rq))
			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
		else
			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
	}
2974

2975 2976
	cfqq->seek_history <<= 1;
	cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2977
}
L
Linus Torvalds 已提交
2978

2979 2980 2981 2982 2983 2984 2985 2986
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2987
	int old_idle, enable_idle;
2988

2989 2990 2991 2992
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2993 2994
		return;

2995
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2996

2997 2998 2999
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

3000
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3001
	    (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3002 3003
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
3004
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
3005 3006 3007
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
3008 3009
	}

3010 3011 3012 3013 3014 3015 3016
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
3017
}
L
Linus Torvalds 已提交
3018

3019 3020 3021 3022
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
3023
static bool
3024
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
3025
		   struct request *rq)
3026
{
J
Jens Axboe 已提交
3027
	struct cfq_queue *cfqq;
3028

J
Jens Axboe 已提交
3029 3030
	cfqq = cfqd->active_queue;
	if (!cfqq)
3031
		return false;
3032

J
Jens Axboe 已提交
3033
	if (cfq_class_idle(new_cfqq))
3034
		return false;
3035 3036

	if (cfq_class_idle(cfqq))
3037
		return true;
3038

3039 3040 3041 3042 3043 3044
	/*
	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
	 */
	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
		return false;

3045 3046 3047 3048
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
3049
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3050
		return true;
3051

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	if (new_cfqq->cfqg != cfqq->cfqg)
		return false;

	if (cfq_slice_used(cfqq))
		return true;

	/* Allow preemption only if we are idling on sync-noidle tree */
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
	    new_cfqq->service_tree->count == 2 &&
	    RB_EMPTY_ROOT(&cfqq->sort_list))
		return true;

3065 3066 3067 3068 3069
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
3070
		return true;
3071

3072 3073 3074 3075
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3076
		return true;
3077

3078
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3079
		return false;
3080 3081 3082 3083 3084

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
3085
	if (cfq_rq_close(cfqd, cfqq, rq, true))
3086
		return true;
3087

3088
	return false;
3089 3090 3091 3092 3093 3094 3095 3096
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
3097
	cfq_log_cfqq(cfqd, cfqq, "preempt");
3098
	cfq_slice_expired(cfqd, 1);
3099

3100 3101 3102 3103 3104
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3105 3106

	cfq_service_tree_add(cfqd, cfqq, 1);
3107

3108 3109
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
3110 3111 3112
}

/*
J
Jens Axboe 已提交
3113
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3114 3115 3116
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
3117 3118
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
3119
{
J
Jens Axboe 已提交
3120
	struct cfq_io_context *cic = RQ_CIC(rq);
3121

3122
	cfqd->rq_queued++;
3123 3124 3125
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
3126
	cfq_update_io_thinktime(cfqd, cic);
3127
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
3128 3129
	cfq_update_idle_window(cfqd, cfqq, cic);

3130
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3131 3132 3133

	if (cfqq == cfqd->active_queue) {
		/*
3134 3135 3136
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
3137 3138
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
3139 3140 3141
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
3142
		 */
3143
		if (cfq_cfqq_wait_request(cfqq)) {
3144 3145
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
3146
				del_timer(&cfqd->idle_slice_timer);
3147
				cfq_clear_cfqq_wait_request(cfqq);
3148 3149 3150
				__blk_run_queue(cfqd->queue);
			} else
				cfq_mark_cfqq_must_dispatch(cfqq);
3151
		}
J
Jens Axboe 已提交
3152
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3153 3154 3155
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
3156 3157
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
3158 3159
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
3160
		__blk_run_queue(cfqd->queue);
3161
	}
L
Linus Torvalds 已提交
3162 3163
}

3164
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3165
{
3166
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
3167
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3168

3169
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3170
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3171

3172
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3173
	list_add_tail(&rq->queuelist, &cfqq->fifo);
3174
	cfq_add_rq_rb(rq);
3175

J
Jens Axboe 已提交
3176
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
3177 3178
}

3179 3180 3181 3182 3183 3184
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
3185 3186
	struct cfq_queue *cfqq = cfqd->active_queue;

3187 3188 3189 3190 3191
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
3192 3193

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3194
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3195 3196
		return;

S
Shaohua Li 已提交
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

3207 3208 3209
	if (cfqd->hw_tag_samples++ < 50)
		return;

3210
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3211 3212 3213 3214 3215
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct cfq_io_context *cic = cfqd->active_cic;

	/* If there are other queues in the group, don't wait */
	if (cfqq->cfqg->nr_cfqq > 1)
		return false;

	if (cfq_slice_used(cfqq))
		return true;

	/* if slice left is less than think time, wait busy */
	if (cic && sample_valid(cic->ttime_samples)
	    && (cfqq->slice_end - jiffies < cic->ttime_mean))
		return true;

	/*
	 * If think times is less than a jiffy than ttime_mean=0 and above
	 * will not be true. It might happen that slice has not expired yet
	 * but will expire soon (4-5 ns) during select_queue(). To cover the
	 * case where think time is less than a jiffy, mark the queue wait
	 * busy if only 1 jiffy is left in the slice.
	 */
	if (cfqq->slice_end - jiffies == 1)
		return true;

	return false;
}

3245
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3246
{
J
Jens Axboe 已提交
3247
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3248
	struct cfq_data *cfqd = cfqq->cfqd;
3249
	const int sync = rq_is_sync(rq);
3250
	unsigned long now;
L
Linus Torvalds 已提交
3251

3252
	now = jiffies;
V
Vivek Goyal 已提交
3253
	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
L
Linus Torvalds 已提交
3254

3255 3256
	cfq_update_hw_tag(cfqd);

3257
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
3258
	WARN_ON(!cfqq->dispatched);
3259
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
3260
	cfqq->dispatched--;
L
Linus Torvalds 已提交
3261

3262 3263 3264
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

3265
	if (sync) {
J
Jens Axboe 已提交
3266
		RQ_CIC(rq)->last_end_request = now;
3267 3268
		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
			cfqd->last_delayed_sync = now;
3269
	}
3270 3271 3272 3273 3274 3275

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
3276 3277
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

3278 3279 3280 3281
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
3282 3283

		/*
3284 3285
		 * Should we wait for next request to come in before we expire
		 * the queue.
3286
		 */
3287
		if (cfq_should_wait_busy(cfqd, cfqq)) {
3288 3289 3290 3291
			cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
			cfq_mark_cfqq_wait_busy(cfqq);
		}

3292
		/*
3293 3294 3295 3296 3297 3298
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
3299
		 */
3300
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3301
			cfq_slice_expired(cfqd, 1);
3302 3303 3304 3305 3306 3307 3308 3309 3310
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
3311 3312
			    || cfqd->noidle_tree_requires_idle
			    || cfqq->cfqg->nr_cfqq == 1)
3313 3314
				cfq_arm_slice_timer(cfqd);
		}
3315
	}
J
Jens Axboe 已提交
3316

3317
	if (!rq_in_driver(cfqd))
3318
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3319 3320
}

3321 3322 3323 3324 3325
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
3326
{
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
3338
		 * unboost the queue (if needed)
3339
		 */
3340 3341
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
3342 3343
	}
}
L
Linus Torvalds 已提交
3344

3345
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3346
{
3347
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
3348
		cfq_mark_cfqq_must_alloc_slice(cfqq);
3349
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
3350
	}
L
Linus Torvalds 已提交
3351

3352 3353 3354
	return ELV_MQUEUE_MAY;
}

3355
static int cfq_may_queue(struct request_queue *q, int rw)
3356 3357 3358
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
3359
	struct cfq_io_context *cic;
3360 3361 3362 3363 3364 3365 3366 3367
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
3368
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3369 3370 3371
	if (!cic)
		return ELV_MQUEUE_MAY;

3372
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3373
	if (cfqq) {
3374
		cfq_init_prio_data(cfqq, cic->ioc);
3375 3376
		cfq_prio_boost(cfqq);

3377
		return __cfq_may_queue(cfqq);
3378 3379 3380
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
3381 3382 3383 3384 3385
}

/*
 * queue lock held here
 */
3386
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
3387
{
J
Jens Axboe 已提交
3388
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
3389

J
Jens Axboe 已提交
3390
	if (cfqq) {
3391
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
3392

3393 3394
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
3395

J
Jens Axboe 已提交
3396
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3397 3398

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
3399
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
3400 3401 3402 3403 3404

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
3405 3406 3407 3408 3409 3410
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3411
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
3412 3413 3414 3415
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
3426
		cfq_clear_cfqq_split_coop(cfqq);
3427 3428 3429 3430 3431 3432 3433
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
3434
/*
3435
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
3436
 */
3437
static int
3438
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
3439 3440 3441 3442
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
3443
	const bool is_sync = rq_is_sync(rq);
3444
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
3445 3446 3447 3448
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

3449
	cic = cfq_get_io_context(cfqd, gfp_mask);
3450

L
Linus Torvalds 已提交
3451 3452
	spin_lock_irqsave(q->queue_lock, flags);

3453 3454 3455
	if (!cic)
		goto queue_fail;

3456
new_queue:
3457
	cfqq = cic_to_cfqq(cic, is_sync);
3458
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3459
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3460
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
3461
	} else {
3462 3463 3464
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
3465
		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3466 3467 3468 3469 3470 3471
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
3472 3473 3474 3475 3476 3477 3478 3479
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3480
	}
L
Linus Torvalds 已提交
3481 3482

	cfqq->allocated[rw]++;
3483
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
3484

J
Jens Axboe 已提交
3485
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
3486

J
Jens Axboe 已提交
3487 3488 3489
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
3490

3491 3492 3493
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
3494

3495
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3496
	spin_unlock_irqrestore(q->queue_lock, flags);
3497
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
3498 3499 3500
	return 1;
}

3501
static void cfq_kick_queue(struct work_struct *work)
3502
{
3503
	struct cfq_data *cfqd =
3504
		container_of(work, struct cfq_data, unplug_work);
3505
	struct request_queue *q = cfqd->queue;
3506

3507
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
3508
	__blk_run_queue(cfqd->queue);
3509
	spin_unlock_irq(q->queue_lock);
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
3520
	int timed_out = 1;
3521

3522 3523
	cfq_log(cfqd, "idle timer fired");

3524 3525
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

3526 3527
	cfqq = cfqd->active_queue;
	if (cfqq) {
3528 3529
		timed_out = 0;

3530 3531 3532 3533 3534 3535
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

3536 3537 3538
		/*
		 * expired
		 */
3539
		if (cfq_slice_used(cfqq))
3540 3541 3542 3543 3544 3545
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
3546
		if (!cfqd->busy_queues)
3547 3548 3549 3550 3551
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
3552
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3553
			goto out_kick;
3554 3555 3556 3557 3558

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
3559 3560
	}
expire:
3561
	cfq_slice_expired(cfqd, timed_out);
3562
out_kick:
3563
	cfq_schedule_dispatch(cfqd);
3564 3565 3566 3567
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
3568 3569 3570
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
3571
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
3572
}
3573

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
3584 3585 3586

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
3587 3588
}

3589 3590 3591 3592 3593
static void cfq_cfqd_free(struct rcu_head *head)
{
	kfree(container_of(head, struct cfq_data, rcu));
}

J
Jens Axboe 已提交
3594
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
3595
{
3596
	struct cfq_data *cfqd = e->elevator_data;
3597
	struct request_queue *q = cfqd->queue;
3598

J
Jens Axboe 已提交
3599
	cfq_shutdown_timer_wq(cfqd);
3600

3601
	spin_lock_irq(q->queue_lock);
3602

3603
	if (cfqd->active_queue)
3604
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3605 3606

	while (!list_empty(&cfqd->cic_list)) {
3607 3608 3609
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
3610 3611

		__cfq_exit_single_io_context(cfqd, cic);
3612
	}
3613

3614
	cfq_put_async_queues(cfqd);
3615 3616
	cfq_release_cfq_groups(cfqd);
	blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3617

3618
	spin_unlock_irq(q->queue_lock);
3619 3620 3621

	cfq_shutdown_timer_wq(cfqd);

3622
	/* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3623
	call_rcu(&cfqd->rcu, cfq_cfqd_free);
L
Linus Torvalds 已提交
3624 3625
}

3626
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
3627 3628
{
	struct cfq_data *cfqd;
3629
	int i, j;
3630
	struct cfq_group *cfqg;
3631
	struct cfq_rb_root *st;
L
Linus Torvalds 已提交
3632

3633
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
3634
	if (!cfqd)
J
Jens Axboe 已提交
3635
		return NULL;
L
Linus Torvalds 已提交
3636

3637 3638 3639
	/* Init root service tree */
	cfqd->grp_service_tree = CFQ_RB_ROOT;

3640 3641
	/* Init root group */
	cfqg = &cfqd->root_group;
3642 3643
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
3644
	RB_CLEAR_NODE(&cfqg->rb_node);
3645

3646 3647 3648
	/* Give preference to root group over other groups */
	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;

3649
#ifdef CONFIG_CFQ_GROUP_IOSCHED
3650 3651 3652 3653 3654
	/*
	 * Take a reference to root group which we never drop. This is just
	 * to make sure that cfq_put_cfqg() does not try to kfree root group
	 */
	atomic_set(&cfqg->ref, 1);
3655 3656
	blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
					0);
3657
#endif
3658 3659 3660 3661 3662 3663 3664 3665
	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3666 3667 3668 3669 3670 3671 3672
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);
3673
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3674

3675
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
3676 3677 3678

	cfqd->queue = q;

3679 3680 3681 3682
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

3683
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3684

L
Linus Torvalds 已提交
3685
	cfqd->cfq_quantum = cfq_quantum;
3686 3687
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
3688 3689
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
3690 3691 3692 3693
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
3694
	cfqd->cfq_latency = 1;
3695
	cfqd->cfq_group_isolation = 0;
3696
	cfqd->hw_tag = -1;
3697 3698 3699 3700
	/*
	 * we optimistically start assuming sync ops weren't delayed in last
	 * second, in order to have larger depth for async operations.
	 */
3701
	cfqd->last_delayed_sync = jiffies - HZ;
3702
	INIT_RCU_HEAD(&cfqd->rcu);
J
Jens Axboe 已提交
3703
	return cfqd;
L
Linus Torvalds 已提交
3704 3705 3706 3707
}

static void cfq_slab_kill(void)
{
3708 3709 3710 3711
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
3712 3713 3714 3715 3716 3717 3718 3719
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3720
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3721 3722 3723
	if (!cfq_pool)
		goto fail;

3724
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3753
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3754
{									\
3755
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3756 3757 3758 3759 3760 3761
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3762 3763
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3764 3765
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3766 3767 3768 3769
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3770
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3771
SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
L
Linus Torvalds 已提交
3772 3773 3774
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3775
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3776
{									\
3777
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3791 3792 3793 3794
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3795
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3796 3797
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3798 3799 3800
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3801 3802
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3803
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3804
STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
L
Linus Torvalds 已提交
3805 3806
#undef STORE_FUNCTION

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3820
	CFQ_ATTR(low_latency),
3821
	CFQ_ATTR(group_isolation),
3822
	__ATTR_NULL
L
Linus Torvalds 已提交
3823 3824 3825 3826 3827 3828 3829
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3830
		.elevator_allow_merge_fn =	cfq_allow_merge,
3831
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3832
		.elevator_add_req_fn =		cfq_insert_request,
3833
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3834 3835 3836
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3837 3838
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3839 3840 3841 3842 3843
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3844
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3845
	},
3846
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3847 3848 3849 3850
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static struct blkio_policy_type blkio_policy_cfq = {
	.ops = {
		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
	},
};
#else
static struct blkio_policy_type blkio_policy_cfq;
#endif

L
Linus Torvalds 已提交
3862 3863
static int __init cfq_init(void)
{
3864 3865 3866 3867 3868 3869 3870 3871
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3872 3873 3874
	if (cfq_slab_setup())
		return -ENOMEM;

3875
	elv_register(&iosched_cfq);
3876
	blkio_policy_register(&blkio_policy_cfq);
L
Linus Torvalds 已提交
3877

3878
	return 0;
L
Linus Torvalds 已提交
3879 3880 3881 3882
}

static void __exit cfq_exit(void)
{
3883
	DECLARE_COMPLETION_ONSTACK(all_gone);
3884
	blkio_policy_unregister(&blkio_policy_cfq);
L
Linus Torvalds 已提交
3885
	elv_unregister(&iosched_cfq);
3886
	ioc_gone = &all_gone;
3887 3888
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3889 3890 3891 3892 3893

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3894
	if (elv_ioc_count_read(cfq_ioc_count))
3895
		wait_for_completion(&all_gone);
3896
	cfq_slab_kill();
L
Linus Torvalds 已提交
3897 3898 3899 3900 3901 3902 3903 3904
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");