cfq-iosched.c 91.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
16
#include "blk-cgroup.h"
L
Linus Torvalds 已提交
17 18 19 20

/*
 * tunables
 */
21 22
/* max queue in one round of service */
static const int cfq_quantum = 4;
23
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 25 26 27
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
28
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
29
static int cfq_slice_async = HZ / 25;
30
static const int cfq_slice_async_rq = 2;
31
static int cfq_slice_idle = HZ / 125;
32 33
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
34

35
/*
36
 * offset from end of service tree
37
 */
38
#define CFQ_IDLE_DELAY		(HZ / 5)
39 40 41 42 43 44

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

45 46 47 48 49 50
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

51
#define CFQ_SLICE_SCALE		(5)
52
#define CFQ_HW_QUEUE_MIN	(5)
53
#define CFQ_SERVICE_SHIFT       12
54

55 56
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
57
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
58

59 60
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
61

62
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63
static struct completion *ioc_gone;
64
static DEFINE_SPINLOCK(ioc_gone_lock);
65

66 67 68 69
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

70
#define sample_valid(samples)	((samples) > 80)
71
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
72

73 74 75 76 77 78 79 80 81
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
82
	unsigned count;
83
	u64 min_vdisktime;
84
	struct rb_node *active;
85
	unsigned total_weight;
86
};
87
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

118 119 120 121
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
122 123 124 125 126 127 128 129 130 131 132 133 134
	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

135 136 137 138
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
139
	unsigned long seeky_start;
140

141
	pid_t pid;
J
Jeff Moyer 已提交
142

143
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
144
	struct cfq_queue *new_cfqq;
145
	struct cfq_group *cfqg;
146 147
};

148
/*
149
 * First index in the service_trees.
150 151 152 153
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
154 155
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
156 157
};

158 159 160 161 162 163 164 165 166
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

167 168
/* This is per cgroup per device grouping structure */
struct cfq_group {
169 170 171 172 173
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
174
	unsigned int weight;
175 176 177 178 179
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

180 181
	/* Per group busy queus average. Useful for workload slice calc. */
	unsigned int busy_queues_avg[2];
182 183 184 185 186 187
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
188 189 190 191

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
192 193 194
	struct blkio_group blkg;
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	struct hlist_node cfqd_node;
195
	atomic_t ref;
196
#endif
197
};
198

199 200 201
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
202
struct cfq_data {
203
	struct request_queue *queue;
204 205
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
206
	struct cfq_group root_group;
207 208
	/* Number of active cfq groups on group service tree */
	int nr_groups;
209

210 211
	/*
	 * The priority currently being served
212
	 */
213
	enum wl_prio_t serving_prio;
214 215
	enum wl_type_t serving_type;
	unsigned long workload_expires;
216
	struct cfq_group *serving_group;
217
	bool noidle_tree_requires_idle;
218 219 220 221 222 223 224 225

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

226 227
	unsigned int busy_queues;

228
	int rq_in_driver[2];
229
	int sync_flight;
230 231 232 233 234

	/*
	 * queue-depth detection
	 */
	int rq_queued;
235
	int hw_tag;
236 237 238 239 240 241 242 243
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
244

245 246 247 248
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
249
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
250

251 252 253
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

254 255 256 257 258
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
259

J
Jens Axboe 已提交
260
	sector_t last_position;
L
Linus Torvalds 已提交
261 262 263 264 265

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
266
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
267 268
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
269 270 271
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
272
	unsigned int cfq_latency;
273 274

	struct list_head cic_list;
L
Linus Torvalds 已提交
275

276 277 278 279
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
280 281

	unsigned long last_end_sync_rq;
282 283 284

	/* List of cfq groups being managed on this device*/
	struct hlist_head cfqg_list;
L
Linus Torvalds 已提交
285 286
};

287 288
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

289 290
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
291
					    enum wl_type_t type,
292 293
					    struct cfq_data *cfqd)
{
294 295 296
	if (!cfqg)
		return NULL;

297
	if (prio == IDLE_WORKLOAD)
298
		return &cfqg->service_tree_idle;
299

300
	return &cfqg->service_trees[prio][type];
301 302
}

J
Jens Axboe 已提交
303
enum cfqq_state_flags {
304 305
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
306
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
307 308 309 310
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
311
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
312
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
313
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
314
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
J
Jens Axboe 已提交
315 316 317 318 319
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
320
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
321 322 323
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
324
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
325 326 327
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
328
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
329 330 331 332
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
333
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
334 335 336 337
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
338
CFQ_CFQQ_FNS(slice_new);
339
CFQ_CFQQ_FNS(sync);
340
CFQ_CFQQ_FNS(coop);
341
CFQ_CFQQ_FNS(deep);
J
Jens Axboe 已提交
342 343
#undef CFQ_CFQQ_FNS

344 345 346 347 348
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

349 350 351 352 353 354 355 356 357 358 359
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


360 361 362 363 364 365 366 367 368
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

369 370 371 372 373 374 375 376 377 378

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

379 380 381
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
382 383
{
	if (wl == IDLE_WORKLOAD)
384
		return cfqg->service_tree_idle.count;
385

386 387 388
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
389 390
}

391
static void cfq_dispatch_insert(struct request_queue *, struct request *);
392
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
393
				       struct io_context *, gfp_t);
394
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
395 396
						struct io_context *);

397 398 399 400 401
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

402
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
403
					    bool is_sync)
404
{
405
	return cic->cfqq[is_sync];
406 407 408
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
409
				struct cfq_queue *cfqq, bool is_sync)
410
{
411
	cic->cfqq[is_sync] = cfqq;
412 413 414 415 416 417
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
418
static inline bool cfq_bio_sync(struct bio *bio)
419
{
420
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
421
}
L
Linus Torvalds 已提交
422

A
Andrew Morton 已提交
423 424 425 426
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
427
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
428
{
429 430
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
431
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
432
	}
A
Andrew Morton 已提交
433 434
}

435
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
436 437 438
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

439
	return !cfqd->rq_queued;
A
Andrew Morton 已提交
440 441
}

442 443 444 445 446
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
447
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
448
				 unsigned short prio)
449
{
450
	const int base_slice = cfqd->cfq_slice[sync];
451

452 453 454 455
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
456

457 458 459 460
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
461 462
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

508 509 510 511 512 513
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

514 515
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
516
{
517 518 519
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
520
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
521

522 523 524
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
525
		cfq_hist_divisor;
526 527 528 529 530 531 532 533 534
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
535 536
}

537 538 539
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
540 541
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
542 543 544 545 546 547
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
548 549
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
550 551 552
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
553 554 555 556 557 558 559
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
560
			slice = max(slice * group_slice / expect_latency,
561 562 563
				    low_slice);
		}
	}
564
	cfqq->slice_start = jiffies;
565
	cfqq->slice_end = jiffies + slice;
566
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
567 568 569 570 571 572 573
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
574
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
575 576 577 578 579 580 581 582 583
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
584
/*
J
Jens Axboe 已提交
585
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
586
 * We choose the request that is closest to the head right now. Distance
587
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
588
 */
J
Jens Axboe 已提交
589
static struct request *
590
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
591
{
592
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
593
	unsigned long back_max;
594 595 596
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
597

J
Jens Axboe 已提交
598 599 600 601
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
602

J
Jens Axboe 已提交
603 604 605 606
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
607 608 609 610
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
611

612 613
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
630
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
631 632 633 634 635 636

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
637
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
638 639

	/* Found required data */
640 641 642 643 644 645

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
646
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
647
		if (d1 < d2)
J
Jens Axboe 已提交
648
			return rq1;
649
		else if (d2 < d1)
J
Jens Axboe 已提交
650
			return rq2;
651 652
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
653
				return rq1;
654
			else
J
Jens Axboe 已提交
655
				return rq2;
656
		}
L
Linus Torvalds 已提交
657

658
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
659
		return rq1;
660
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
661 662
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
663 664 665 666 667 668 669 670
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
671
			return rq1;
L
Linus Torvalds 已提交
672
		else
J
Jens Axboe 已提交
673
			return rq2;
L
Linus Torvalds 已提交
674 675 676
	}
}

677 678 679
/*
 * The below is leftmost cache rbtree addon
 */
680
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
681
{
682 683 684 685
	/* Service tree is empty */
	if (!root->count)
		return NULL;

686 687 688
	if (!root->left)
		root->left = rb_first(&root->rb);

689 690 691 692
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
693 694
}

695 696 697 698 699 700 701 702 703 704 705
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

706 707 708 709 710 711
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

712 713 714 715
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
716
	rb_erase_init(n, &root->rb);
717
	--root->count;
718 719
}

L
Linus Torvalds 已提交
720 721 722
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
723 724 725
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
726
{
727 728
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
729
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
730

731
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
732 733

	if (rbprev)
J
Jens Axboe 已提交
734
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
735

736
	if (rbnext)
J
Jens Axboe 已提交
737
		next = rb_entry_rq(rbnext);
738 739 740
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
741
			next = rb_entry_rq(rbnext);
742
	}
L
Linus Torvalds 已提交
743

744
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
745 746
}

747 748
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
749
{
750 751 752
	/*
	 * just an approximation, should be ok.
	 */
753
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
754
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
755 756
}

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
816 817
	cfqd->nr_groups++;
	st->total_weight += cfqg->weight;
818 819 820 821 822 823 824
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

825 826 827
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

828 829
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
830

831 832 833 834 835
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

	cfqg->on_st = false;
836 837
	cfqd->nr_groups--;
	st->total_weight -= cfqg->weight;
838 839
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	cfqg->saved_workload_slice = 0;
}

static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
{
	unsigned int slice_used, allocated_slice;

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
		allocated_slice = cfqq->slice_end - cfqq->slice_start;
		if (slice_used > allocated_slice)
			slice_used = allocated_slice;
	}

	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
				struct cfq_queue *cfqq)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	unsigned int used_sl;

	used_sl = cfq_cfqq_slice_usage(cfqq);

	/* Can't update vdisktime while group is on service tree */
	cfq_rb_erase(&cfqg->rb_node, st);
	cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
	__cfq_group_service_tree_add(st, cfqg);

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
892 893
}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct cfq_group, blkg);
	return NULL;
}

static struct cfq_group *
cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
	struct cfq_group *cfqg = NULL;
	void *key = cfqd;
	int i, j;
	struct cfq_rb_root *st;

	/* Do we need to take this reference */
	if (!css_tryget(&blkcg->css))
		return NULL;;

	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
	if (cfqg || !create)
		goto done;

	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
	if (!cfqg)
		goto done;

	cfqg->weight = blkcg->weight;
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
	RB_CLEAR_NODE(&cfqg->rb_node);

928 929 930 931 932 933 934 935
	/*
	 * Take the initial reference that will be released on destroy
	 * This can be thought of a joint reference by cgroup and
	 * elevator which will be dropped by either elevator exit
	 * or cgroup deletion path depending on who is exiting first.
	 */
	atomic_set(&cfqg->ref, 1);

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	/* Add group onto cgroup list */
	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd);

	/* Add group on cfqd list */
	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);

done:
	css_put(&blkcg->css);
	return cfqg;
}

/*
 * Search for the cfq group current task belongs to. If create = 1, then also
 * create the cfq group if it does not exist. request_queue lock must be held.
 */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	struct cgroup *cgroup;
	struct cfq_group *cfqg = NULL;

	rcu_read_lock();
	cgroup = task_cgroup(current, blkio_subsys_id);
	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
	if (!cfqg && create)
		cfqg = &cfqd->root_group;
	rcu_read_unlock();
	return cfqg;
}

static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	/* Currently, all async queues are mapped to root group */
	if (!cfq_cfqq_sync(cfqq))
		cfqg = &cfqq->cfqd->root_group;

	cfqq->cfqg = cfqg;
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	/* cfqq reference on cfqg */
	atomic_inc(&cfqq->cfqg->ref);
}

static void cfq_put_cfqg(struct cfq_group *cfqg)
{
	struct cfq_rb_root *st;
	int i, j;

	BUG_ON(atomic_read(&cfqg->ref) <= 0);
	if (!atomic_dec_and_test(&cfqg->ref))
		return;
	for_each_cfqg_st(cfqg, i, j, st)
		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
	kfree(cfqg);
}

static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	/* Something wrong if we are trying to remove same group twice */
	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));

	hlist_del_init(&cfqg->cfqd_node);

	/*
	 * Put the reference taken at the time of creation so that when all
	 * queues are gone, group can be destroyed.
	 */
	cfq_put_cfqg(cfqg);
}

static void cfq_release_cfq_groups(struct cfq_data *cfqd)
{
	struct hlist_node *pos, *n;
	struct cfq_group *cfqg;

	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
		/*
		 * If cgroup removal path got to blk_group first and removed
		 * it from cgroup list, then it will take care of destroying
		 * cfqg also.
		 */
		if (!blkiocg_del_blkio_group(&cfqg->blkg))
			cfq_destroy_cfqg(cfqd, cfqg);
	}
1017
}
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

/*
 * Blk cgroup controller notification saying that blkio_group object is being
 * delinked as associated cgroup object is going away. That also means that
 * no new IO will come in this group. So get rid of this group as soon as
 * any pending IO in the group is finished.
 *
 * This function is called under rcu_read_lock(). key is the rcu protected
 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
 * read lock.
 *
 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
 * it should not be NULL as even if elevator was exiting, cgroup deltion
 * path got to it first.
 */
void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
{
	unsigned long  flags;
	struct cfq_data *cfqd = key;

	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
#else /* GROUP_IOSCHED */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}
static inline void
cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
	cfqq->cfqg = cfqg;
}

1053 1054 1055
static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}

1056 1057
#endif /* GROUP_IOSCHED */

1058
/*
1059
 * The cfqd->service_trees holds all pending cfq_queue's that have
1060 1061 1062
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
1063
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1064
				 bool add_front)
1065
{
1066 1067
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
1068
	unsigned long rb_key;
1069
	struct cfq_rb_root *service_tree;
1070
	int left;
1071
	int new_cfqq = 1;
1072

1073 1074
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
						cfqq_type(cfqq), cfqd);
1075 1076
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
1077
		parent = rb_last(&service_tree->rb);
1078 1079 1080 1081 1082 1083
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
1084 1085 1086 1087 1088 1089
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
1090
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1091
		rb_key -= cfqq->slice_resid;
1092
		cfqq->slice_resid = 0;
1093 1094
	} else {
		rb_key = -HZ;
1095
		__cfqq = cfq_rb_first(service_tree);
1096 1097
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
1098

1099
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1100
		new_cfqq = 0;
1101
		/*
1102
		 * same position, nothing more to do
1103
		 */
1104 1105
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
1106
			return;
L
Linus Torvalds 已提交
1107

1108 1109
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
1110
	}
1111

1112
	left = 1;
1113
	parent = NULL;
1114 1115
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
1116
	while (*p) {
1117
		struct rb_node **n;
1118

1119 1120 1121
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

1122
		/*
1123
		 * sort by key, that represents service time.
1124
		 */
1125
		if (time_before(rb_key, __cfqq->rb_key))
1126
			n = &(*p)->rb_left;
1127
		else {
1128
			n = &(*p)->rb_right;
1129
			left = 0;
1130
		}
1131 1132

		p = n;
1133 1134
	}

1135
	if (left)
1136
		service_tree->left = &cfqq->rb_node;
1137

1138 1139
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
1140 1141
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
1142 1143
	if (add_front || !new_cfqq)
		return;
1144
	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1145 1146
}

1147
static struct cfq_queue *
1148 1149 1150
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
1167
		if (sector > blk_rq_pos(cfqq->next_rq))
1168
			n = &(*p)->rb_right;
1169
		else if (sector < blk_rq_pos(cfqq->next_rq))
1170 1171 1172 1173
			n = &(*p)->rb_left;
		else
			break;
		p = n;
1174
		cfqq = NULL;
1175 1176 1177 1178 1179
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
1180
	return cfqq;
1181 1182 1183 1184 1185 1186 1187
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

1188 1189 1190 1191
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1192 1193 1194 1195 1196 1197

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

1198
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1199 1200
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1201 1202
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
1203 1204 1205
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
1206 1207
}

1208 1209 1210
/*
 * Update cfqq's position in the service tree.
 */
1211
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1212 1213 1214 1215
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
1216
	if (cfq_cfqq_on_rr(cfqq)) {
1217
		cfq_service_tree_add(cfqd, cfqq, 0);
1218 1219
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
1220 1221
}

L
Linus Torvalds 已提交
1222 1223
/*
 * add to busy list of queues for service, trying to be fair in ordering
1224
 * the pending list according to last request service
L
Linus Torvalds 已提交
1225
 */
J
Jens Axboe 已提交
1226
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1227
{
1228
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
1229 1230
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1231 1232
	cfqd->busy_queues++;

1233
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
1234 1235
}

1236 1237 1238 1239
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
1240
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1241
{
1242
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
1243 1244
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1245

1246 1247 1248 1249
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
1250 1251 1252 1253
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1254

1255
	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1256 1257 1258 1259 1260 1261 1262
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
1263
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1264
{
J
Jens Axboe 已提交
1265 1266
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
1267

1268 1269
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
1270

J
Jens Axboe 已提交
1271
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
		/*
		 * Queue will be deleted from service tree when we actually
		 * expire it later. Right now just remove it from prio tree
		 * as it is empty.
		 */
		if (cfqq->p_root) {
			rb_erase(&cfqq->p_node, cfqq->p_root);
			cfqq->p_root = NULL;
		}
	}
L
Linus Torvalds 已提交
1284 1285
}

J
Jens Axboe 已提交
1286
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1287
{
J
Jens Axboe 已提交
1288
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
1289
	struct cfq_data *cfqd = cfqq->cfqd;
1290
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
1291

1292
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
1293 1294 1295 1296 1297

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
1298
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
1299
		cfq_dispatch_insert(cfqd->queue, __alias);
1300 1301 1302

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
1303 1304 1305 1306

	/*
	 * check if this request is a better next-serve candidate
	 */
1307
	prev = cfqq->next_rq;
1308
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1309 1310 1311 1312 1313 1314 1315

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

1316
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
1317 1318
}

J
Jens Axboe 已提交
1319
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
1320
{
1321 1322
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
1323
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
1324 1325
}

1326 1327
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
1328
{
1329
	struct task_struct *tsk = current;
1330
	struct cfq_io_context *cic;
1331
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
1332

1333
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1334 1335 1336 1337
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1338 1339 1340
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

1341
		return elv_rb_find(&cfqq->sort_list, sector);
1342
	}
L
Linus Torvalds 已提交
1343 1344 1345 1346

	return NULL;
}

1347
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1348
{
1349
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1350

1351
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
1352
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1353
						rq_in_driver(cfqd));
1354

1355
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1356 1357
}

1358
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1359
{
1360
	struct cfq_data *cfqd = q->elevator->elevator_data;
1361
	const int sync = rq_is_sync(rq);
1362

1363 1364
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
1365
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1366
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
1367 1368
}

1369
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
1370
{
J
Jens Axboe 已提交
1371
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1372

J
Jens Axboe 已提交
1373 1374
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
1375

1376
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1377
	cfq_del_rq_rb(rq);
1378

1379
	cfqq->cfqd->rq_queued--;
1380 1381 1382 1383
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
1384 1385
}

1386 1387
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
1388 1389 1390 1391
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

1392
	__rq = cfq_find_rq_fmerge(cfqd, bio);
1393
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1394 1395
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
1396 1397 1398 1399 1400
	}

	return ELEVATOR_NO_MERGE;
}

1401
static void cfq_merged_request(struct request_queue *q, struct request *req,
1402
			       int type)
L
Linus Torvalds 已提交
1403
{
1404
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
1405
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
1406

J
Jens Axboe 已提交
1407
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
1408 1409 1410 1411
	}
}

static void
1412
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
1413 1414
		    struct request *next)
{
1415
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1416 1417 1418 1419
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1420
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1421
		list_move(&rq->queuelist, &next->queuelist);
1422 1423
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
1424

1425 1426
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
1427
	cfq_remove_request(next);
1428 1429
}

1430
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1431 1432 1433
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1434
	struct cfq_io_context *cic;
1435 1436 1437
	struct cfq_queue *cfqq;

	/*
1438
	 * Disallow merge of a sync bio into an async request.
1439
	 */
1440
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1441
		return false;
1442 1443

	/*
1444 1445
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
1446
	 */
1447
	cic = cfq_cic_lookup(cfqd, current->io_context);
1448
	if (!cic)
1449
		return false;
1450

1451
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1452
	return cfqq == RQ_CFQQ(rq);
1453 1454
}

J
Jens Axboe 已提交
1455 1456
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1457 1458
{
	if (cfqq) {
1459
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1460 1461
		cfqq->slice_start = 0;
		cfqq->dispatch_start = jiffies;
1462
		cfqq->slice_end = 0;
1463 1464 1465
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1466
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1467 1468
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1469
		cfq_mark_cfqq_slice_new(cfqq);
1470 1471

		del_timer(&cfqd->idle_slice_timer);
1472 1473 1474 1475 1476
	}

	cfqd->active_queue = cfqq;
}

1477 1478 1479 1480 1481
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1482
		    bool timed_out)
1483
{
1484 1485
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1486 1487 1488 1489 1490 1491
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1492
	 * store what was left of this slice, if the queue idled/timed out
1493
	 */
1494
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1495
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1496 1497
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1498

1499 1500
	cfq_group_served(cfqd, cfqq->cfqg, cfqq);

1501 1502 1503
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
		cfq_del_cfqq_rr(cfqd, cfqq);

1504
	cfq_resort_rr_list(cfqd, cfqq);
1505 1506 1507 1508

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

1509 1510 1511
	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
		cfqd->grp_service_tree.active = NULL;

1512 1513 1514 1515 1516 1517
	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1518
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1519 1520 1521 1522
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1523
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1524 1525
}

1526 1527 1528 1529
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1530
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1531
{
1532
	struct cfq_rb_root *service_tree =
1533 1534
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
					cfqd->serving_type, cfqd);
1535

1536 1537 1538
	if (!cfqd->rq_queued)
		return NULL;

1539 1540 1541
	/* There is nothing to dispatch */
	if (!service_tree)
		return NULL;
1542 1543 1544
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1545 1546
}

1547 1548
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
1549
	struct cfq_group *cfqg;
1550 1551 1552 1553 1554 1555 1556
	struct cfq_queue *cfqq;
	int i, j;
	struct cfq_rb_root *st;

	if (!cfqd->rq_queued)
		return NULL;

1557 1558 1559 1560
	cfqg = cfq_get_next_cfqg(cfqd);
	if (!cfqg)
		return NULL;

1561 1562 1563 1564 1565 1566
	for_each_cfqg_st(cfqg, i, j, st)
		if ((cfqq = cfq_rb_first(st)) != NULL)
			return cfqq;
	return NULL;
}

1567 1568 1569
/*
 * Get and set a new active queue for service.
 */
1570 1571
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1572
{
1573
	if (!cfqq)
1574
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1575

1576
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1577
	return cfqq;
1578 1579
}

1580 1581 1582
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1583 1584
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1585
	else
1586
		return cfqd->last_position - blk_rq_pos(rq);
1587 1588
}

1589 1590
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1591

1592 1593
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1594
{
1595
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1596

1597 1598
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1599

1600
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1601 1602
}

1603 1604 1605
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1606
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1618
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1619 1620 1621 1622 1623 1624 1625 1626
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1627
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1628 1629
		return __cfqq;

1630
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1631 1632 1633 1634 1635 1636 1637
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1638
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1655
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1656
{
1657 1658
	struct cfq_queue *cfqq;

1659 1660 1661 1662 1663
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1664
	/*
1665 1666 1667
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1668
	 */
1669 1670 1671 1672
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1673 1674 1675 1676 1677
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1678 1679
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1680

1681 1682 1683 1684 1685 1686
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1687
	return cfqq;
J
Jens Axboe 已提交
1688 1689
}

1690 1691 1692 1693 1694 1695 1696
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1697
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1698

1699 1700 1701
	BUG_ON(!service_tree);
	BUG_ON(!service_tree->count);

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1714
	return service_tree->count == 1;
1715 1716
}

J
Jens Axboe 已提交
1717
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1718
{
1719
	struct cfq_queue *cfqq = cfqd->active_queue;
1720
	struct cfq_io_context *cic;
1721 1722
	unsigned long sl;

1723
	/*
J
Jens Axboe 已提交
1724 1725 1726
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1727
	 */
J
Jens Axboe 已提交
1728
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1729 1730
		return;

1731
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1732
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1733 1734 1735 1736

	/*
	 * idle is disabled, either manually or by past process history
	 */
1737
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1738 1739
		return;

1740
	/*
1741
	 * still active requests from this queue, don't idle
1742
	 */
1743
	if (cfqq->dispatched)
1744 1745
		return;

1746 1747 1748
	/*
	 * task has exited, don't wait
	 */
1749
	cic = cfqd->active_cic;
1750
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1751 1752
		return;

1753 1754 1755 1756 1757 1758 1759 1760 1761
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1762
	cfq_mark_cfqq_wait_request(cfqq);
1763

J
Jens Axboe 已提交
1764
	sl = cfqd->cfq_slice_idle;
1765

1766
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1767
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1768 1769
}

1770 1771 1772
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1773
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1774
{
1775
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1776
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1777

1778 1779
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1780
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1781
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1782
	cfqq->dispatched++;
1783
	elv_dispatch_sort(q, rq);
1784 1785 1786

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1787 1788 1789 1790 1791
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1792
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1793
{
1794
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1795

J
Jens Axboe 已提交
1796
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1797
		return NULL;
1798 1799 1800

	cfq_mark_cfqq_fifo_expire(cfqq);

1801 1802
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1803

1804
	rq = rq_entry_fifo(cfqq->fifo.next);
1805
	if (time_before(jiffies, rq_fifo_time(rq)))
1806
		rq = NULL;
L
Linus Torvalds 已提交
1807

1808
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1809
	return rq;
L
Linus Torvalds 已提交
1810 1811
}

1812 1813 1814 1815
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1816

1817
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1818

1819
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1820 1821
}

J
Jeff Moyer 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1837
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1866 1867
}

1868 1869 1870
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
				struct cfq_group *cfqg, enum wl_prio_t prio,
				bool prio_changed)
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
1884
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1885 1886
			return cur_best;
		cur_best = SYNC_WORKLOAD;
1887
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1888 1889 1890 1891 1892 1893 1894
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
1895
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

1907
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1908 1909 1910 1911 1912
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;
1913
	struct cfq_rb_root *st;
1914
	unsigned group_slice;
1915

1916 1917 1918 1919 1920 1921
	if (!cfqg) {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

1922
	/* Choose next priority. RT > BE > IDLE */
1923
	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1924
		cfqd->serving_prio = RT_WORKLOAD;
1925
	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
1939 1940 1941
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
1953 1954 1955 1956
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1957 1958 1959 1960 1961 1962

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
1963 1964 1965 1966 1967
	group_slice = cfq_group_slice(cfqd, cfqg);

	slice = group_slice * count /
		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
1979
	cfqd->noidle_tree_requires_idle = false;
1980 1981
}

1982 1983 1984
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1985
	struct cfq_group *cfqg;
1986 1987 1988

	if (RB_EMPTY_ROOT(&st->rb))
		return NULL;
1989 1990 1991 1992
	cfqg = cfq_rb_first_group(st);
	st->active = &cfqg->rb_node;
	update_min_vdisktime(st);
	return cfqg;
1993 1994
}

1995 1996
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
1997 1998 1999
	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);

	cfqd->serving_group = cfqg;
2000 2001 2002 2003 2004 2005 2006

	/* Restore the workload type data */
	if (cfqg->saved_workload_slice) {
		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
		cfqd->serving_type = cfqg->saved_workload;
		cfqd->serving_prio = cfqg->saved_serving_prio;
	}
2007
	choose_service_tree(cfqd, cfqg);
2008 2009
}

2010
/*
2011 2012
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
2013
 */
2014
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
2015
{
2016
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
2017

2018 2019 2020
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
2021

2022 2023
	if (!cfqd->rq_queued)
		return NULL;
2024
	/*
J
Jens Axboe 已提交
2025
	 * The active queue has run out of time, expire it and select new.
2026
	 */
2027
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
2028
		goto expire;
L
Linus Torvalds 已提交
2029

2030
	/*
J
Jens Axboe 已提交
2031 2032
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
2033
	 */
2034
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2035
		goto keep_queue;
J
Jens Axboe 已提交
2036

2037 2038 2039 2040
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
2041
	 * tree.  If possible, merge the expiring queue with the new cfqq.
2042
	 */
2043
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
2044 2045 2046
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
2047
		goto expire;
J
Jeff Moyer 已提交
2048
	}
2049

J
Jens Axboe 已提交
2050 2051 2052 2053 2054
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
2055
	if (timer_pending(&cfqd->idle_slice_timer) ||
2056
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2057 2058
		cfqq = NULL;
		goto keep_queue;
2059 2060
	}

J
Jens Axboe 已提交
2061
expire:
2062
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
2063
new_queue:
2064 2065 2066 2067 2068
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
2069
		cfq_choose_cfqg(cfqd);
2070

2071
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2072
keep_queue:
J
Jens Axboe 已提交
2073
	return cfqq;
2074 2075
}

J
Jens Axboe 已提交
2076
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2077 2078 2079 2080 2081 2082 2083 2084 2085
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
2086 2087 2088

	/* By default cfqq is not expired if it is empty. Do it explicitly */
	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2089 2090 2091
	return dispatched;
}

2092 2093 2094 2095
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
2096
static int cfq_forced_dispatch(struct cfq_data *cfqd)
2097
{
2098
	struct cfq_queue *cfqq;
2099
	int dispatched = 0;
2100

2101 2102
	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2103

2104
	cfq_slice_expired(cfqd, 0);
2105 2106
	BUG_ON(cfqd->busy_queues);

2107
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2108 2109 2110
	return dispatched;
}

2111
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2112 2113
{
	unsigned int max_dispatch;
2114

2115 2116 2117
	/*
	 * Drain async requests before we start sync IO
	 */
2118
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2119
		return false;
2120

2121 2122 2123 2124
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2125
		return false;
2126 2127 2128 2129

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
2130

2131 2132 2133 2134 2135 2136 2137
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
2138
		if (cfq_class_idle(cfqq))
2139
			return false;
2140

2141 2142 2143 2144
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
2145
			return false;
2146

2147
		/*
2148
		 * Sole queue user, no limit
2149
		 */
2150
		max_dispatch = -1;
2151 2152 2153 2154 2155 2156 2157
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
2158
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2159 2160
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
2161

2162
		depth = last_sync / cfqd->cfq_slice[1];
2163 2164
		if (!depth && !cfqq->dispatched)
			depth = 1;
2165 2166
		if (depth < max_dispatch)
			max_dispatch = depth;
2167
	}
2168

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
2227 2228
		return 0;

2229
	/*
2230
	 * Dispatch a request from this cfqq, if it is allowed
2231
	 */
2232 2233 2234
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

2235
	cfqq->slice_dispatch++;
2236
	cfq_clear_cfqq_must_dispatch(cfqq);
2237

2238 2239 2240 2241 2242 2243 2244 2245 2246
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
2247 2248
	}

2249
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2250
	return 1;
L
Linus Torvalds 已提交
2251 2252 2253
}

/*
J
Jens Axboe 已提交
2254 2255
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
2256
 *
2257
 * Each cfq queue took a reference on the parent group. Drop it now.
L
Linus Torvalds 已提交
2258 2259 2260 2261
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
2262
	struct cfq_data *cfqd = cfqq->cfqd;
2263
	struct cfq_group *cfqg;
2264 2265

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
2266 2267 2268 2269

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

2270
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
2271
	BUG_ON(rb_first(&cfqq->sort_list));
2272
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2273
	cfqg = cfqq->cfqg;
L
Linus Torvalds 已提交
2274

2275
	if (unlikely(cfqd->active_queue == cfqq)) {
2276
		__cfq_slice_expired(cfqd, cfqq, 0);
2277
		cfq_schedule_dispatch(cfqd);
2278
	}
2279

2280
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
2281
	kmem_cache_free(cfq_pool, cfqq);
2282
	cfq_put_cfqg(cfqg);
L
Linus Torvalds 已提交
2283 2284
}

2285 2286 2287
/*
 * Must always be called with the rcu_read_lock() held
 */
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

2299
/*
2300
 * Call func for each cic attached to this ioc.
2301
 */
2302
static void
2303 2304
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
2305
{
2306
	rcu_read_lock();
2307
	__call_for_each_cic(ioc, func);
2308
	rcu_read_unlock();
2309 2310 2311 2312 2313 2314 2315 2316 2317
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
2318
	elv_ioc_count_dec(cfq_ioc_count);
2319

2320 2321 2322 2323 2324 2325 2326
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
2327
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2328 2329 2330 2331 2332
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
2333
}
2334

2335 2336 2337
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2348
	hlist_del_rcu(&cic->cic_list);
2349 2350
	spin_unlock_irqrestore(&ioc->lock, flags);

2351
	cfq_cic_free(cic);
2352 2353
}

2354 2355 2356 2357 2358
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
2359 2360 2361
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
2362 2363 2364 2365
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
2366
	 */
2367
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
2368 2369
}

2370
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2371
{
J
Jeff Moyer 已提交
2372 2373
	struct cfq_queue *__cfqq, *next;

2374
	if (unlikely(cfqq == cfqd->active_queue)) {
2375
		__cfq_slice_expired(cfqd, cfqq, 0);
2376
		cfq_schedule_dispatch(cfqd);
2377
	}
2378

J
Jeff Moyer 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

2395 2396
	cfq_put_queue(cfqq);
}
2397

2398 2399 2400
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
2401 2402
	struct io_context *ioc = cic->ioc;

2403
	list_del_init(&cic->queue_list);
2404 2405 2406 2407

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
2408
	smp_wmb();
2409
	cic->dead_key = (unsigned long) cic->key;
2410 2411
	cic->key = NULL;

2412 2413 2414
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

2415 2416 2417
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
2418 2419
	}

2420 2421 2422
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
2423
	}
2424 2425
}

2426 2427
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
2428 2429 2430 2431
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
2432
		struct request_queue *q = cfqd->queue;
2433
		unsigned long flags;
2434

2435
		spin_lock_irqsave(q->queue_lock, flags);
2436 2437 2438 2439 2440 2441 2442 2443 2444

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

2445
		spin_unlock_irqrestore(q->queue_lock, flags);
2446
	}
L
Linus Torvalds 已提交
2447 2448
}

2449 2450 2451 2452
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
2453
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
2454
{
2455
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
2456 2457
}

2458
static struct cfq_io_context *
A
Al Viro 已提交
2459
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2460
{
2461
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
2462

2463 2464
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
2465
	if (cic) {
2466
		cic->last_end_request = jiffies;
2467
		INIT_LIST_HEAD(&cic->queue_list);
2468
		INIT_HLIST_NODE(&cic->cic_list);
2469 2470
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
2471
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
2472 2473 2474 2475 2476
	}

	return cic;
}

2477
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2478 2479 2480 2481
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
2482
	if (!cfq_cfqq_prio_changed(cfqq))
2483 2484
		return;

2485
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2486
	switch (ioprio_class) {
2487 2488 2489 2490
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
2491
		 * no prio set, inherit CPU scheduling settings
2492 2493
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
2494
		cfqq->ioprio_class = task_nice_ioclass(tsk);
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
2509 2510 2511 2512 2513 2514 2515 2516
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
2517
	cfq_clear_cfqq_prio_changed(cfqq);
2518 2519
}

J
Jens Axboe 已提交
2520
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2521
{
2522 2523
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
2524
	unsigned long flags;
2525

2526 2527 2528
	if (unlikely(!cfqd))
		return;

2529
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2530

2531
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2532 2533
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2534 2535
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2536
		if (new_cfqq) {
2537
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2538 2539
			cfq_put_queue(cfqq);
		}
2540
	}
2541

2542
	cfqq = cic->cfqq[BLK_RW_SYNC];
2543 2544 2545
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2546
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2547 2548
}

2549
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2550
{
2551
	call_for_each_cic(ioc, changed_ioprio);
2552
	ioc->ioprio_changed = 0;
2553 2554
}

2555
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2556
			  pid_t pid, bool is_sync)
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2575
static struct cfq_queue *
2576
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2577
		     struct io_context *ioc, gfp_t gfp_mask)
2578 2579
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2580
	struct cfq_io_context *cic;
2581
	struct cfq_group *cfqg;
2582 2583

retry:
2584
	cfqg = cfq_get_cfqg(cfqd, 1);
2585
	cic = cfq_cic_lookup(cfqd, ioc);
2586 2587
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2588

2589 2590 2591 2592 2593 2594
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2595 2596 2597 2598 2599
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2600
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2601
					gfp_mask | __GFP_ZERO,
2602
					cfqd->queue->node);
2603
			spin_lock_irq(cfqd->queue->queue_lock);
2604 2605
			if (new_cfqq)
				goto retry;
2606
		} else {
2607 2608 2609
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2610 2611
		}

2612 2613 2614
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
2615
			cfq_link_cfqq_cfqg(cfqq, cfqg);
2616 2617 2618
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2619 2620 2621 2622 2623 2624 2625 2626
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2627 2628 2629
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2630
	switch (ioprio_class) {
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2642
static struct cfq_queue *
2643
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2644 2645
	      gfp_t gfp_mask)
{
2646 2647
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2648
	struct cfq_queue **async_cfqq = NULL;
2649 2650
	struct cfq_queue *cfqq = NULL;

2651 2652 2653 2654 2655
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2656
	if (!cfqq)
2657
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2658 2659 2660 2661

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2662
	if (!is_sync && !(*async_cfqq)) {
2663
		atomic_inc(&cfqq->ref);
2664
		*async_cfqq = cfqq;
2665 2666 2667 2668 2669 2670
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2671 2672 2673
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2674
static void
2675 2676
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2677
{
2678 2679
	unsigned long flags;

2680
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2681

2682 2683
	spin_lock_irqsave(&ioc->lock, flags);

2684
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2685

2686
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2687
	hlist_del_rcu(&cic->cic_list);
2688 2689 2690
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2691 2692
}

2693
static struct cfq_io_context *
2694
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2695 2696
{
	struct cfq_io_context *cic;
2697
	unsigned long flags;
2698
	void *k;
2699

2700 2701 2702
	if (unlikely(!ioc))
		return NULL;

2703 2704
	rcu_read_lock();

J
Jens Axboe 已提交
2705 2706 2707
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2708
	cic = rcu_dereference(ioc->ioc_data);
2709 2710
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2711
		return cic;
2712
	}
J
Jens Axboe 已提交
2713

2714 2715 2716 2717 2718
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2719 2720 2721
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2722
			cfq_drop_dead_cic(cfqd, ioc, cic);
2723
			rcu_read_lock();
2724
			continue;
2725
		}
2726

2727
		spin_lock_irqsave(&ioc->lock, flags);
2728
		rcu_assign_pointer(ioc->ioc_data, cic);
2729
		spin_unlock_irqrestore(&ioc->lock, flags);
2730 2731
		break;
	} while (1);
2732

2733
	return cic;
2734 2735
}

2736 2737 2738 2739 2740
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2741 2742
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2743
{
2744
	unsigned long flags;
2745
	int ret;
2746

2747 2748 2749 2750
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2751

2752 2753 2754
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2755 2756
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2757
		spin_unlock_irqrestore(&ioc->lock, flags);
2758

2759 2760 2761 2762 2763 2764 2765
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2766 2767
	}

2768 2769
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2770

2771
	return ret;
2772 2773
}

L
Linus Torvalds 已提交
2774 2775 2776
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2777
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2778 2779
 */
static struct cfq_io_context *
2780
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2781
{
2782
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2783 2784
	struct cfq_io_context *cic;

2785
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2786

2787
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2788 2789 2790
	if (!ioc)
		return NULL;

2791
	cic = cfq_cic_lookup(cfqd, ioc);
2792 2793
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2794

2795 2796 2797
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2798

2799 2800 2801
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2802
out:
2803 2804 2805 2806
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2807
	return cic;
2808 2809
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2810 2811 2812 2813 2814
err:
	put_io_context(ioc);
	return NULL;
}

2815 2816
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2817
{
2818 2819
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2820

2821 2822 2823 2824
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2825

2826
static void
2827
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2828
		       struct request *rq)
2829 2830 2831 2832
{
	sector_t sdist;
	u64 total;

2833
	if (!cfqq->last_request_pos)
2834
		sdist = 0;
2835 2836
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2837
	else
2838
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2839 2840 2841 2842 2843

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2844 2845
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2846
	else
2847
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2848

2849 2850 2851 2852 2853
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2867
}
L
Linus Torvalds 已提交
2868

2869 2870 2871 2872 2873 2874 2875 2876
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2877
	int old_idle, enable_idle;
2878

2879 2880 2881 2882
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2883 2884
		return;

2885
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2886

2887 2888 2889
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

2890
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2891 2892
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
2893 2894
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2895
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2896 2897 2898
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2899 2900
	}

2901 2902 2903 2904 2905 2906 2907
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2908
}
L
Linus Torvalds 已提交
2909

2910 2911 2912 2913
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2914
static bool
2915
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2916
		   struct request *rq)
2917
{
J
Jens Axboe 已提交
2918
	struct cfq_queue *cfqq;
2919

J
Jens Axboe 已提交
2920 2921
	cfqq = cfqd->active_queue;
	if (!cfqq)
2922
		return false;
2923

J
Jens Axboe 已提交
2924
	if (cfq_slice_used(cfqq))
2925
		return true;
J
Jens Axboe 已提交
2926 2927

	if (cfq_class_idle(new_cfqq))
2928
		return false;
2929 2930

	if (cfq_class_idle(cfqq))
2931
		return true;
2932

2933
	/* Allow preemption only if we are idling on sync-noidle tree */
2934 2935
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2936 2937
	    new_cfqq->service_tree->count == 2 &&
	    RB_EMPTY_ROOT(&cfqq->sort_list))
2938 2939
		return true;

2940 2941 2942 2943
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2944
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2945
		return true;
2946

2947 2948 2949 2950 2951
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2952
		return true;
2953

2954 2955 2956 2957
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2958
		return true;
2959

2960
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2961
		return false;
2962 2963 2964 2965 2966

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2967
	if (cfq_rq_close(cfqd, cfqq, rq))
2968
		return true;
2969

2970
	return false;
2971 2972 2973 2974 2975 2976 2977 2978
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2979
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2980
	cfq_slice_expired(cfqd, 1);
2981

2982 2983 2984 2985 2986
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2987 2988

	cfq_service_tree_add(cfqd, cfqq, 1);
2989

2990 2991
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2992 2993 2994
}

/*
J
Jens Axboe 已提交
2995
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2996 2997 2998
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2999 3000
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
3001
{
J
Jens Axboe 已提交
3002
	struct cfq_io_context *cic = RQ_CIC(rq);
3003

3004
	cfqd->rq_queued++;
3005 3006 3007
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
3008
	cfq_update_io_thinktime(cfqd, cic);
3009
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
3010 3011
	cfq_update_idle_window(cfqd, cfqq, cic);

3012
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3013 3014 3015

	if (cfqq == cfqd->active_queue) {
		/*
3016 3017 3018
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
3019 3020
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
3021 3022 3023
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
3024
		 */
3025
		if (cfq_cfqq_wait_request(cfqq)) {
3026 3027
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
3028
				del_timer(&cfqd->idle_slice_timer);
3029 3030 3031
				__blk_run_queue(cfqd->queue);
			} else
				cfq_mark_cfqq_must_dispatch(cfqq);
3032
		}
J
Jens Axboe 已提交
3033
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3034 3035 3036
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
3037 3038
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
3039 3040
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
3041
		__blk_run_queue(cfqd->queue);
3042
	}
L
Linus Torvalds 已提交
3043 3044
}

3045
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3046
{
3047
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
3048
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3049

3050
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3051
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3052

3053
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3054
	list_add_tail(&rq->queuelist, &cfqq->fifo);
3055
	cfq_add_rq_rb(rq);
3056

J
Jens Axboe 已提交
3057
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
3058 3059
}

3060 3061 3062 3063 3064 3065
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
3066 3067
	struct cfq_queue *cfqq = cfqd->active_queue;

3068 3069 3070 3071 3072
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
3073 3074

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3075
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3076 3077
		return;

S
Shaohua Li 已提交
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

3088 3089 3090
	if (cfqd->hw_tag_samples++ < 50)
		return;

3091
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3092 3093 3094 3095 3096
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

3097
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3098
{
J
Jens Axboe 已提交
3099
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3100
	struct cfq_data *cfqd = cfqq->cfqd;
3101
	const int sync = rq_is_sync(rq);
3102
	unsigned long now;
L
Linus Torvalds 已提交
3103

3104
	now = jiffies;
3105
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
3106

3107 3108
	cfq_update_hw_tag(cfqd);

3109
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
3110
	WARN_ON(!cfqq->dispatched);
3111
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
3112
	cfqq->dispatched--;
L
Linus Torvalds 已提交
3113

3114 3115 3116
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

3117
	if (sync) {
J
Jens Axboe 已提交
3118
		RQ_CIC(rq)->last_end_request = now;
3119 3120
		cfqd->last_end_sync_rq = now;
	}
3121 3122 3123 3124 3125 3126

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
3127 3128
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

3129 3130 3131 3132
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
3133
		/*
3134 3135 3136 3137 3138 3139
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
3140
		 */
3141
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3142
			cfq_slice_expired(cfqd, 1);
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
			    || cfqd->noidle_tree_requires_idle)
				cfq_arm_slice_timer(cfqd);
		}
3155
	}
J
Jens Axboe 已提交
3156

3157
	if (!rq_in_driver(cfqd))
3158
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3159 3160
}

3161 3162 3163 3164 3165
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
3166
{
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
3178
		 * unboost the queue (if needed)
3179
		 */
3180 3181
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
3182 3183
	}
}
L
Linus Torvalds 已提交
3184

3185
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3186
{
3187
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
3188
		cfq_mark_cfqq_must_alloc_slice(cfqq);
3189
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
3190
	}
L
Linus Torvalds 已提交
3191

3192 3193 3194
	return ELV_MQUEUE_MAY;
}

3195
static int cfq_may_queue(struct request_queue *q, int rw)
3196 3197 3198
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
3199
	struct cfq_io_context *cic;
3200 3201 3202 3203 3204 3205 3206 3207
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
3208
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3209 3210 3211
	if (!cic)
		return ELV_MQUEUE_MAY;

3212
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3213
	if (cfqq) {
3214
		cfq_init_prio_data(cfqq, cic->ioc);
3215 3216
		cfq_prio_boost(cfqq);

3217
		return __cfq_may_queue(cfqq);
3218 3219 3220
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
3221 3222 3223 3224 3225
}

/*
 * queue lock held here
 */
3226
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
3227
{
J
Jens Axboe 已提交
3228
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
3229

J
Jens Axboe 已提交
3230
	if (cfqq) {
3231
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
3232

3233 3234
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
3235

J
Jens Axboe 已提交
3236
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3237 3238

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
3239
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
3240 3241 3242 3243 3244

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
3245 3246 3247 3248 3249 3250
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3251
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
3252 3253 3254 3255
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
3282
/*
3283
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
3284
 */
3285
static int
3286
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
3287 3288 3289 3290
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
3291
	const bool is_sync = rq_is_sync(rq);
3292
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
3293 3294 3295 3296
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

3297
	cic = cfq_get_io_context(cfqd, gfp_mask);
3298

L
Linus Torvalds 已提交
3299 3300
	spin_lock_irqsave(q->queue_lock, flags);

3301 3302 3303
	if (!cic)
		goto queue_fail;

3304
new_queue:
3305
	cfqq = cic_to_cfqq(cic, is_sync);
3306
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3307
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3308
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
3309
	} else {
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
3320 3321 3322 3323 3324 3325 3326 3327
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3328
	}
L
Linus Torvalds 已提交
3329 3330

	cfqq->allocated[rw]++;
3331
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
3332

J
Jens Axboe 已提交
3333
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
3334

J
Jens Axboe 已提交
3335 3336 3337
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
3338

3339 3340 3341
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
3342

3343
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3344
	spin_unlock_irqrestore(q->queue_lock, flags);
3345
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
3346 3347 3348
	return 1;
}

3349
static void cfq_kick_queue(struct work_struct *work)
3350
{
3351
	struct cfq_data *cfqd =
3352
		container_of(work, struct cfq_data, unplug_work);
3353
	struct request_queue *q = cfqd->queue;
3354

3355
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
3356
	__blk_run_queue(cfqd->queue);
3357
	spin_unlock_irq(q->queue_lock);
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
3368
	int timed_out = 1;
3369

3370 3371
	cfq_log(cfqd, "idle timer fired");

3372 3373
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

3374 3375
	cfqq = cfqd->active_queue;
	if (cfqq) {
3376 3377
		timed_out = 0;

3378 3379 3380 3381 3382 3383
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

3384 3385 3386
		/*
		 * expired
		 */
3387
		if (cfq_slice_used(cfqq))
3388 3389 3390 3391 3392 3393
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
3394
		if (!cfqd->busy_queues)
3395 3396 3397 3398 3399
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
3400
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3401
			goto out_kick;
3402 3403 3404 3405 3406

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
3407 3408
	}
expire:
3409
	cfq_slice_expired(cfqd, timed_out);
3410
out_kick:
3411
	cfq_schedule_dispatch(cfqd);
3412 3413 3414 3415
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
3416 3417 3418
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
3419
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
3420
}
3421

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
3432 3433 3434

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
3435 3436
}

J
Jens Axboe 已提交
3437
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
3438
{
3439
	struct cfq_data *cfqd = e->elevator_data;
3440
	struct request_queue *q = cfqd->queue;
3441

J
Jens Axboe 已提交
3442
	cfq_shutdown_timer_wq(cfqd);
3443

3444
	spin_lock_irq(q->queue_lock);
3445

3446
	if (cfqd->active_queue)
3447
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3448 3449

	while (!list_empty(&cfqd->cic_list)) {
3450 3451 3452
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
3453 3454

		__cfq_exit_single_io_context(cfqd, cic);
3455
	}
3456

3457
	cfq_put_async_queues(cfqd);
3458 3459
	cfq_release_cfq_groups(cfqd);
	blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3460

3461
	spin_unlock_irq(q->queue_lock);
3462 3463 3464

	cfq_shutdown_timer_wq(cfqd);

3465 3466
	/* Wait for cfqg->blkg->key accessors to exit their grace periods. */
	synchronize_rcu();
3467
	kfree(cfqd);
L
Linus Torvalds 已提交
3468 3469
}

3470
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
3471 3472
{
	struct cfq_data *cfqd;
3473
	int i, j;
3474
	struct cfq_group *cfqg;
3475
	struct cfq_rb_root *st;
L
Linus Torvalds 已提交
3476

3477
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
3478
	if (!cfqd)
J
Jens Axboe 已提交
3479
		return NULL;
L
Linus Torvalds 已提交
3480

3481 3482 3483
	/* Init root service tree */
	cfqd->grp_service_tree = CFQ_RB_ROOT;

3484 3485
	/* Init root group */
	cfqg = &cfqd->root_group;
3486 3487
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
3488
	RB_CLEAR_NODE(&cfqg->rb_node);
3489

3490 3491 3492
	/* Give preference to root group over other groups */
	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;

3493
#ifdef CONFIG_CFQ_GROUP_IOSCHED
3494 3495 3496 3497 3498
	/*
	 * Take a reference to root group which we never drop. This is just
	 * to make sure that cfq_put_cfqg() does not try to kfree root group
	 */
	atomic_set(&cfqg->ref, 1);
3499 3500
	blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd);
#endif
3501 3502 3503 3504 3505 3506 3507 3508
	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3509 3510 3511 3512 3513 3514 3515
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);
3516
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3517

3518
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
3519 3520 3521

	cfqd->queue = q;

3522 3523 3524 3525
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

3526
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3527

L
Linus Torvalds 已提交
3528
	cfqd->cfq_quantum = cfq_quantum;
3529 3530
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
3531 3532
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
3533 3534 3535 3536
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
3537
	cfqd->cfq_latency = 1;
3538
	cfqd->hw_tag = -1;
3539
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
3540
	return cfqd;
L
Linus Torvalds 已提交
3541 3542 3543 3544
}

static void cfq_slab_kill(void)
{
3545 3546 3547 3548
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
3549 3550 3551 3552 3553 3554 3555 3556
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3557
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3558 3559 3560
	if (!cfq_pool)
		goto fail;

3561
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3590
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3591
{									\
3592
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3593 3594 3595 3596 3597 3598
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3599 3600
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3601 3602
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3603 3604 3605 3606
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3607
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3608 3609 3610
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3611
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3612
{									\
3613
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3627 3628 3629 3630
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3631
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3632 3633
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3634 3635 3636
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3637 3638
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3639
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3640 3641
#undef STORE_FUNCTION

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3655
	CFQ_ATTR(low_latency),
3656
	__ATTR_NULL
L
Linus Torvalds 已提交
3657 3658 3659 3660 3661 3662 3663
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3664
		.elevator_allow_merge_fn =	cfq_allow_merge,
3665
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3666
		.elevator_add_req_fn =		cfq_insert_request,
3667
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3668 3669 3670
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3671 3672
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3673 3674 3675 3676 3677
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3678
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3679
	},
3680
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3681 3682 3683 3684 3685 3686
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3687 3688 3689 3690 3691 3692 3693 3694
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3695 3696 3697
	if (cfq_slab_setup())
		return -ENOMEM;

3698
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3699

3700
	return 0;
L
Linus Torvalds 已提交
3701 3702 3703 3704
}

static void __exit cfq_exit(void)
{
3705
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3706
	elv_unregister(&iosched_cfq);
3707
	ioc_gone = &all_gone;
3708 3709
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3710 3711 3712 3713 3714

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3715
	if (elv_ioc_count_read(cfq_ioc_count))
3716
		wait_for_completion(&all_gone);
3717
	cfq_slab_kill();
L
Linus Torvalds 已提交
3718 3719 3720 3721 3722 3723 3724 3725
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");