cfq-iosched.c 76.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
L
Linus Torvalds 已提交
16 17 18 19

/*
 * tunables
 */
20 21
/* max queue in one round of service */
static const int cfq_quantum = 4;
22
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 24 25 26
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
27
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
28
static int cfq_slice_async = HZ / 25;
29
static const int cfq_slice_async_rq = 2;
30
static int cfq_slice_idle = HZ / 125;
31 32
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
33

34
/*
35
 * offset from end of service tree
36
 */
37
#define CFQ_IDLE_DELAY		(HZ / 5)
38 39 40 41 42 43

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

44 45 46 47 48 49
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

50
#define CFQ_SLICE_SCALE		(5)
51
#define CFQ_HW_QUEUE_MIN	(5)
52

53 54
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
55
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
56

57 58
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
59

60
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61
static struct completion *ioc_gone;
62
static DEFINE_SPINLOCK(ioc_gone_lock);
63

64 65 66 67
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

68 69
#define sample_valid(samples)	((samples) > 80)

70 71 72 73 74 75 76 77 78
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
79
	unsigned count;
80
};
81
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

125 126 127 128
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
129
	unsigned long seeky_start;
130

131
	pid_t pid;
J
Jeff Moyer 已提交
132

133
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
134
	struct cfq_queue *new_cfqq;
135 136
};

137
/*
138
 * First index in the service_trees.
139 140 141 142 143 144 145 146
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	IDLE_WORKLOAD = -1,
	BE_WORKLOAD = 0,
	RT_WORKLOAD = 1
};

147 148 149 150 151 152 153 154 155 156
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};


157 158 159
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
160
struct cfq_data {
161
	struct request_queue *queue;
162 163

	/*
164 165 166
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
167
	struct cfq_rb_root service_trees[2][3];
168 169 170
	struct cfq_rb_root service_tree_idle;
	/*
	 * The priority currently being served
171
	 */
172
	enum wl_prio_t serving_prio;
173 174
	enum wl_type_t serving_type;
	unsigned long workload_expires;
175 176 177 178 179 180 181 182

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

183
	unsigned int busy_queues;
184
	unsigned int busy_queues_avg[2];
185

186
	int rq_in_driver[2];
187
	int sync_flight;
188 189 190 191 192

	/*
	 * queue-depth detection
	 */
	int rq_queued;
193
	int hw_tag;
194 195 196 197 198 199 200 201
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
202

203 204 205 206
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
207
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
208

209 210 211
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

212 213 214 215 216
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
217

J
Jens Axboe 已提交
218
	sector_t last_position;
L
Linus Torvalds 已提交
219 220 221 222 223

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
224
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
225 226
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
227 228 229
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
230
	unsigned int cfq_latency;
231 232

	struct list_head cic_list;
L
Linus Torvalds 已提交
233

234 235 236 237
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
238 239

	unsigned long last_end_sync_rq;
L
Linus Torvalds 已提交
240 241
};

242
static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
243
					    enum wl_type_t type,
244 245 246 247 248
					    struct cfq_data *cfqd)
{
	if (prio == IDLE_WORKLOAD)
		return &cfqd->service_tree_idle;

249
	return &cfqd->service_trees[prio][type];
250 251
}

J
Jens Axboe 已提交
252
enum cfqq_state_flags {
253 254
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
255
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
256 257 258 259
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
260
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
261
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
262
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
J
Jens Axboe 已提交
263 264 265 266 267
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
268
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
269 270 271
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
272
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
273 274 275
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
276
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
277 278 279 280
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
281
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
282 283 284 285
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
286
CFQ_CFQQ_FNS(slice_new);
287
CFQ_CFQQ_FNS(sync);
288
CFQ_CFQQ_FNS(coop);
J
Jens Axboe 已提交
289 290
#undef CFQ_CFQQ_FNS

291 292 293 294 295
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

296 297 298 299 300 301 302 303 304
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

305 306 307 308 309 310 311 312 313 314

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

315 316 317 318 319
static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
{
	if (wl == IDLE_WORKLOAD)
		return cfqd->service_tree_idle.count;

320 321 322
	return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_WORKLOAD].count;
323 324
}

325
static void cfq_dispatch_insert(struct request_queue *, struct request *);
326
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
327
				       struct io_context *, gfp_t);
328
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
329 330
						struct io_context *);

331 332 333 334 335
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

336
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
337
					    bool is_sync)
338
{
339
	return cic->cfqq[is_sync];
340 341 342
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
343
				struct cfq_queue *cfqq, bool is_sync)
344
{
345
	cic->cfqq[is_sync] = cfqq;
346 347 348 349 350 351
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
352
static inline bool cfq_bio_sync(struct bio *bio)
353
{
354
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
355
}
L
Linus Torvalds 已提交
356

A
Andrew Morton 已提交
357 358 359 360
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
361
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
362
{
363 364
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
365
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
366
	}
A
Andrew Morton 已提交
367 368
}

369
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
370 371 372
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

373
	return !cfqd->busy_queues;
A
Andrew Morton 已提交
374 375
}

376 377 378 379 380
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
381
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
382
				 unsigned short prio)
383
{
384
	const int base_slice = cfqd->cfq_slice[sync];
385

386 387 388 389
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
390

391 392 393 394
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
395 396
}

397 398 399 400 401 402
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

403 404
static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
{
405 406 407
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
408
	unsigned busy = cfq_busy_queues_wl(rt, cfqd);
409 410 411 412 413 414 415 416

	min_q = min(cfqd->busy_queues_avg[rt], busy);
	max_q = max(cfqd->busy_queues_avg[rt], busy);
	cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
		cfq_hist_divisor;
	return cfqd->busy_queues_avg[rt];
}

417 418 419
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
		/* interested queues (we consider only the ones with the same
		 * priority class) */
		unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
		if (expect_latency > cfq_target_latency) {
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
			slice = max(slice * cfq_target_latency / expect_latency,
				    low_slice);
		}
	}
	cfqq->slice_end = jiffies + slice;
440
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
441 442 443 444 445 446 447
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
448
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
449 450 451 452 453 454 455 456 457
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
458
/*
J
Jens Axboe 已提交
459
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
460
 * We choose the request that is closest to the head right now. Distance
461
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
462
 */
J
Jens Axboe 已提交
463
static struct request *
464
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
465
{
466
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
467
	unsigned long back_max;
468 469 470
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
471

J
Jens Axboe 已提交
472 473 474 475
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
476

J
Jens Axboe 已提交
477 478 479 480
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
481 482 483 484
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
485

486 487
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
504
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
505 506 507 508 509 510

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
511
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
512 513

	/* Found required data */
514 515 516 517 518 519

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
520
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
521
		if (d1 < d2)
J
Jens Axboe 已提交
522
			return rq1;
523
		else if (d2 < d1)
J
Jens Axboe 已提交
524
			return rq2;
525 526
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
527
				return rq1;
528
			else
J
Jens Axboe 已提交
529
				return rq2;
530
		}
L
Linus Torvalds 已提交
531

532
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
533
		return rq1;
534
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
535 536
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
537 538 539 540 541 542 543 544
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
545
			return rq1;
L
Linus Torvalds 已提交
546
		else
J
Jens Axboe 已提交
547
			return rq2;
L
Linus Torvalds 已提交
548 549 550
	}
}

551 552 553
/*
 * The below is leftmost cache rbtree addon
 */
554
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
555 556 557 558
{
	if (!root->left)
		root->left = rb_first(&root->rb);

559 560 561 562
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
563 564
}

565 566 567 568 569 570
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

571 572 573 574
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
575
	rb_erase_init(n, &root->rb);
576
	--root->count;
577 578
}

L
Linus Torvalds 已提交
579 580 581
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
582 583 584
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
585
{
586 587
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
588
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
589

590
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
591 592

	if (rbprev)
J
Jens Axboe 已提交
593
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
594

595
	if (rbnext)
J
Jens Axboe 已提交
596
		next = rb_entry_rq(rbnext);
597 598 599
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
600
			next = rb_entry_rq(rbnext);
601
	}
L
Linus Torvalds 已提交
602

603
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
604 605
}

606 607
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
608
{
609 610 611 612
	struct cfq_rb_root *service_tree;

	service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);

613 614 615
	/*
	 * just an approximation, should be ok.
	 */
616 617
	return  service_tree->count * (cfq_prio_slice(cfqd, 1, 0) -
		   cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
618 619
}

620
/*
621
 * The cfqd->service_trees holds all pending cfq_queue's that have
622 623 624
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
625
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
626
				 bool add_front)
627
{
628 629
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
630
	unsigned long rb_key;
631
	struct cfq_rb_root *service_tree;
632
	int left;
633

634
	service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
635 636
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
637
		parent = rb_last(&service_tree->rb);
638 639 640 641 642 643
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
644 645 646 647 648 649
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
650
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
651
		rb_key -= cfqq->slice_resid;
652
		cfqq->slice_resid = 0;
653 654
	} else {
		rb_key = -HZ;
655
		__cfqq = cfq_rb_first(service_tree);
656 657
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
658

659
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
660
		/*
661
		 * same position, nothing more to do
662
		 */
663 664
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
665
			return;
L
Linus Torvalds 已提交
666

667 668
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
669
	}
670

671
	left = 1;
672
	parent = NULL;
673 674
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
675
	while (*p) {
676
		struct rb_node **n;
677

678 679 680
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

681
		/*
682
		 * sort by key, that represents service time.
683
		 */
684
		if (time_before(rb_key, __cfqq->rb_key))
685
			n = &(*p)->rb_left;
686
		else {
687
			n = &(*p)->rb_right;
688
			left = 0;
689
		}
690 691

		p = n;
692 693
	}

694
	if (left)
695
		service_tree->left = &cfqq->rb_node;
696

697 698
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
699 700
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
L
Linus Torvalds 已提交
701 702
}

703
static struct cfq_queue *
704 705 706
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
723
		if (sector > blk_rq_pos(cfqq->next_rq))
724
			n = &(*p)->rb_right;
725
		else if (sector < blk_rq_pos(cfqq->next_rq))
726 727 728 729
			n = &(*p)->rb_left;
		else
			break;
		p = n;
730
		cfqq = NULL;
731 732 733 734 735
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
736
	return cfqq;
737 738 739 740 741 742 743
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

744 745 746 747
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
748 749 750 751 752 753

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

754
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
755 756
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
757 758
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
759 760 761
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
762 763
}

764 765 766
/*
 * Update cfqq's position in the service tree.
 */
767
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
768 769 770 771
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
772
	if (cfq_cfqq_on_rr(cfqq)) {
773
		cfq_service_tree_add(cfqd, cfqq, 0);
774 775
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
776 777
}

L
Linus Torvalds 已提交
778 779
/*
 * add to busy list of queues for service, trying to be fair in ordering
780
 * the pending list according to last request service
L
Linus Torvalds 已提交
781
 */
J
Jens Axboe 已提交
782
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
783
{
784
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
785 786
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
787 788
	cfqd->busy_queues++;

789
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
790 791
}

792 793 794 795
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
796
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
797
{
798
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
799 800
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
801

802 803 804 805
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
806 807 808 809
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
810

L
Linus Torvalds 已提交
811 812 813 814 815 816 817
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
818
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
819
{
J
Jens Axboe 已提交
820
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
821
	struct cfq_data *cfqd = cfqq->cfqd;
J
Jens Axboe 已提交
822
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
823

824 825
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
826

J
Jens Axboe 已提交
827
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
828

829
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
830
		cfq_del_cfqq_rr(cfqd, cfqq);
L
Linus Torvalds 已提交
831 832
}

J
Jens Axboe 已提交
833
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
834
{
J
Jens Axboe 已提交
835
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
836
	struct cfq_data *cfqd = cfqq->cfqd;
837
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
838

839
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
840 841 842 843 844

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
845
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
846
		cfq_dispatch_insert(cfqd->queue, __alias);
847 848 849

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
850 851 852 853

	/*
	 * check if this request is a better next-serve candidate
	 */
854
	prev = cfqq->next_rq;
855
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
856 857 858 859 860 861 862

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

863
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
864 865
}

J
Jens Axboe 已提交
866
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
867
{
868 869
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
870
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
871 872
}

873 874
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
875
{
876
	struct task_struct *tsk = current;
877
	struct cfq_io_context *cic;
878
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
879

880
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
881 882 883 884
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
885 886 887
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

888
		return elv_rb_find(&cfqq->sort_list, sector);
889
	}
L
Linus Torvalds 已提交
890 891 892 893

	return NULL;
}

894
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
895
{
896
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
897

898
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
899
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
900
						rq_in_driver(cfqd));
901

902
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
903 904
}

905
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
906
{
907
	struct cfq_data *cfqd = q->elevator->elevator_data;
908
	const int sync = rq_is_sync(rq);
909

910 911
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
912
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
913
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
914 915
}

916
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
917
{
J
Jens Axboe 已提交
918
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
919

J
Jens Axboe 已提交
920 921
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
922

923
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
924
	cfq_del_rq_rb(rq);
925

926
	cfqq->cfqd->rq_queued--;
927 928 929 930
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
931 932
}

933 934
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
935 936 937 938
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

939
	__rq = cfq_find_rq_fmerge(cfqd, bio);
940
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
941 942
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
943 944 945 946 947
	}

	return ELEVATOR_NO_MERGE;
}

948
static void cfq_merged_request(struct request_queue *q, struct request *req,
949
			       int type)
L
Linus Torvalds 已提交
950
{
951
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
952
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
953

J
Jens Axboe 已提交
954
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
955 956 957 958
	}
}

static void
959
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
960 961
		    struct request *next)
{
962
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
963 964 965 966
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
967
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
968
		list_move(&rq->queuelist, &next->queuelist);
969 970
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
971

972 973
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
974
	cfq_remove_request(next);
975 976
}

977
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
978 979 980
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
981
	struct cfq_io_context *cic;
982 983 984
	struct cfq_queue *cfqq;

	/*
985
	 * Disallow merge of a sync bio into an async request.
986
	 */
987
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
988
		return false;
989 990

	/*
991 992
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
993
	 */
994
	cic = cfq_cic_lookup(cfqd, current->io_context);
995
	if (!cic)
996
		return false;
997

998
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
999
	return cfqq == RQ_CFQQ(rq);
1000 1001
}

J
Jens Axboe 已提交
1002 1003
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1004 1005
{
	if (cfqq) {
1006
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1007
		cfqq->slice_end = 0;
1008 1009 1010
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1011
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1012 1013
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1014
		cfq_mark_cfqq_slice_new(cfqq);
1015 1016

		del_timer(&cfqd->idle_slice_timer);
1017 1018 1019 1020 1021
	}

	cfqd->active_queue = cfqq;
}

1022 1023 1024 1025 1026
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1027
		    bool timed_out)
1028
{
1029 1030
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1031 1032 1033 1034 1035 1036
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1037
	 * store what was left of this slice, if the queue idled/timed out
1038
	 */
1039
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1040
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1041 1042
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1043

1044
	cfq_resort_rr_list(cfqd, cfqq);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1055
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1056 1057 1058 1059
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1060
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1061 1062
}

1063 1064 1065 1066
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1067
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1068
{
1069
	struct cfq_rb_root *service_tree =
1070
		service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
1071

1072 1073 1074
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1075 1076
}

1077 1078 1079
/*
 * Get and set a new active queue for service.
 */
1080 1081
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1082
{
1083
	if (!cfqq)
1084
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1085

1086
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1087
	return cfqq;
1088 1089
}

1090 1091 1092
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1093 1094
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1095
	else
1096
		return cfqd->last_position - blk_rq_pos(rq);
1097 1098
}

1099 1100
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1101

1102 1103
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1104
{
1105
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1106

1107 1108
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1109

1110
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1111 1112
}

1113 1114 1115
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1116
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1128
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1129 1130 1131 1132 1133 1134 1135 1136
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1137
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1138 1139
		return __cfqq;

1140
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1141 1142 1143 1144 1145 1146 1147
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1148
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1165
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1166
{
1167 1168
	struct cfq_queue *cfqq;

1169 1170 1171 1172 1173
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1174
	/*
1175 1176 1177
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1178
	 */
1179 1180 1181 1182
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1183 1184 1185 1186 1187
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1188 1189
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1190

1191 1192 1193 1194 1195 1196
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1197
	return cfqq;
J
Jens Axboe 已提交
1198 1199
}

1200 1201 1202 1203 1204 1205 1206
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1207
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1221 1222 1223
	if (!service_tree)
		service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);

1224 1225 1226 1227 1228 1229
	if (service_tree->count == 0)
		return true;

	return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
}

J
Jens Axboe 已提交
1230
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1231
{
1232
	struct cfq_queue *cfqq = cfqd->active_queue;
1233
	struct cfq_io_context *cic;
1234 1235
	unsigned long sl;

1236
	/*
J
Jens Axboe 已提交
1237 1238 1239
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1240
	 */
J
Jens Axboe 已提交
1241
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1242 1243
		return;

1244
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1245
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1246 1247 1248 1249

	/*
	 * idle is disabled, either manually or by past process history
	 */
1250
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1251 1252
		return;

1253 1254 1255
	/*
	 * still requests with the driver, don't idle
	 */
1256
	if (rq_in_driver(cfqd))
1257 1258
		return;

1259 1260 1261
	/*
	 * task has exited, don't wait
	 */
1262
	cic = cfqd->active_cic;
1263
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1264 1265
		return;

1266 1267 1268 1269 1270 1271 1272 1273 1274
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1275
	cfq_mark_cfqq_wait_request(cfqq);
1276

J
Jens Axboe 已提交
1277
	sl = cfqd->cfq_slice_idle;
1278

1279
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1280
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1281 1282
}

1283 1284 1285
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1286
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1287
{
1288
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1289
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1290

1291 1292
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1293
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1294
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1295
	cfqq->dispatched++;
1296
	elv_dispatch_sort(q, rq);
1297 1298 1299

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1300 1301 1302 1303 1304
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1305
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1306
{
1307
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1308

J
Jens Axboe 已提交
1309
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1310
		return NULL;
1311 1312 1313

	cfq_mark_cfqq_fifo_expire(cfqq);

1314 1315
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1316

1317
	rq = rq_entry_fifo(cfqq->fifo.next);
1318
	if (time_before(jiffies, rq_fifo_time(rq)))
1319
		rq = NULL;
L
Linus Torvalds 已提交
1320

1321
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1322
	return rq;
L
Linus Torvalds 已提交
1323 1324
}

1325 1326 1327 1328
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1329

1330
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1331

1332
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1333 1334
}

J
Jeff Moyer 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1350
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1379 1380
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
				    bool prio_changed)
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;
		cur_best = SYNC_WORKLOAD;
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
		queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

static void choose_service_tree(struct cfq_data *cfqd)
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;

	/* Choose next priority. RT > BE > IDLE */
	if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
		cfqd->serving_prio = RT_WORKLOAD;
	else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
		cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
	slice = cfq_target_latency * count /
		max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
		      cfq_busy_queues_wl(cfqd->serving_prio, cfqd));

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
}

1481
/*
1482 1483
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
1484
 */
1485
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
1486
{
1487
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
1488

1489 1490 1491
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
1492

1493
	/*
J
Jens Axboe 已提交
1494
	 * The active queue has run out of time, expire it and select new.
1495
	 */
1496
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
1497
		goto expire;
L
Linus Torvalds 已提交
1498

1499
	/*
J
Jens Axboe 已提交
1500 1501
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
1502
	 */
1503
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1504
		goto keep_queue;
J
Jens Axboe 已提交
1505

1506 1507 1508 1509
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
1510
	 * tree.  If possible, merge the expiring queue with the new cfqq.
1511
	 */
1512
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
1513 1514 1515
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
1516
		goto expire;
J
Jeff Moyer 已提交
1517
	}
1518

J
Jens Axboe 已提交
1519 1520 1521 1522 1523
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
1524
	if (timer_pending(&cfqd->idle_slice_timer) ||
1525
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1526 1527
		cfqq = NULL;
		goto keep_queue;
1528 1529
	}

J
Jens Axboe 已提交
1530
expire:
1531
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
1532
new_queue:
1533 1534 1535 1536 1537 1538 1539
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
		choose_service_tree(cfqd);

1540
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1541
keep_queue:
J
Jens Axboe 已提交
1542
	return cfqq;
1543 1544
}

J
Jens Axboe 已提交
1545
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
	return dispatched;
}

1558 1559 1560 1561
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
1562
static int cfq_forced_dispatch(struct cfq_data *cfqd)
1563
{
1564
	struct cfq_queue *cfqq;
1565
	int dispatched = 0;
1566
	int i, j;
1567
	for (i = 0; i < 2; ++i)
1568 1569 1570 1571
		for (j = 0; j < 3; ++j)
			while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
				!= NULL)
				dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1572

1573
	while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1574
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1575

1576
	cfq_slice_expired(cfqd, 0);
1577 1578 1579

	BUG_ON(cfqd->busy_queues);

1580
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1581 1582 1583
	return dispatched;
}

1584
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1585 1586
{
	unsigned int max_dispatch;
1587

1588 1589 1590
	/*
	 * Drain async requests before we start sync IO
	 */
1591
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1592
		return false;
1593

1594 1595 1596 1597
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1598
		return false;
1599 1600 1601 1602

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
1603

1604 1605 1606 1607 1608 1609 1610
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
1611
		if (cfq_class_idle(cfqq))
1612
			return false;
1613

1614 1615 1616 1617
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
1618
			return false;
1619

1620
		/*
1621
		 * Sole queue user, allow bigger slice
1622
		 */
1623 1624 1625 1626 1627 1628 1629 1630
		max_dispatch *= 4;
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
1631
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1632 1633
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
1634

1635
		depth = last_sync / cfqd->cfq_slice[1];
1636 1637
		if (!depth && !cfqq->dispatched)
			depth = 1;
1638 1639
		if (depth < max_dispatch)
			max_dispatch = depth;
1640
	}
1641

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
1700 1701
		return 0;

1702
	/*
1703
	 * Dispatch a request from this cfqq, if it is allowed
1704
	 */
1705 1706 1707
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

1708
	cfqq->slice_dispatch++;
1709
	cfq_clear_cfqq_must_dispatch(cfqq);
1710

1711 1712 1713 1714 1715 1716 1717 1718 1719
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
1720 1721
	}

1722
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1723
	return 1;
L
Linus Torvalds 已提交
1724 1725 1726
}

/*
J
Jens Axboe 已提交
1727 1728
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
1729 1730 1731 1732 1733
 *
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
1734 1735 1736
	struct cfq_data *cfqd = cfqq->cfqd;

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
1737 1738 1739 1740

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

1741
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
1742
	BUG_ON(rb_first(&cfqq->sort_list));
1743
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
J
Jens Axboe 已提交
1744
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
1745

1746
	if (unlikely(cfqd->active_queue == cfqq)) {
1747
		__cfq_slice_expired(cfqd, cfqq, 0);
1748
		cfq_schedule_dispatch(cfqd);
1749
	}
1750

L
Linus Torvalds 已提交
1751 1752 1753
	kmem_cache_free(cfq_pool, cfqq);
}

1754 1755 1756
/*
 * Must always be called with the rcu_read_lock() held
 */
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

1768
/*
1769
 * Call func for each cic attached to this ioc.
1770
 */
1771
static void
1772 1773
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
1774
{
1775
	rcu_read_lock();
1776
	__call_for_each_cic(ioc, func);
1777
	rcu_read_unlock();
1778 1779 1780 1781 1782 1783 1784 1785 1786
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
1787
	elv_ioc_count_dec(cfq_ioc_count);
1788

1789 1790 1791 1792 1793 1794 1795
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
1796
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1797 1798 1799 1800 1801
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
1802
}
1803

1804 1805 1806
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1817
	hlist_del_rcu(&cic->cic_list);
1818 1819
	spin_unlock_irqrestore(&ioc->lock, flags);

1820
	cfq_cic_free(cic);
1821 1822
}

1823 1824 1825 1826 1827
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
1828 1829 1830
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
1831 1832 1833 1834
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
1835
	 */
1836
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
1837 1838
}

1839
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1840
{
J
Jeff Moyer 已提交
1841 1842
	struct cfq_queue *__cfqq, *next;

1843
	if (unlikely(cfqq == cfqd->active_queue)) {
1844
		__cfq_slice_expired(cfqd, cfqq, 0);
1845
		cfq_schedule_dispatch(cfqd);
1846
	}
1847

J
Jeff Moyer 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

1864 1865
	cfq_put_queue(cfqq);
}
1866

1867 1868 1869
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
1870 1871
	struct io_context *ioc = cic->ioc;

1872
	list_del_init(&cic->queue_list);
1873 1874 1875 1876

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
1877
	smp_wmb();
1878
	cic->dead_key = (unsigned long) cic->key;
1879 1880
	cic->key = NULL;

1881 1882 1883
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

1884 1885 1886
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
1887 1888
	}

1889 1890 1891
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
1892
	}
1893 1894
}

1895 1896
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
1897 1898 1899 1900
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
1901
		struct request_queue *q = cfqd->queue;
1902
		unsigned long flags;
1903

1904
		spin_lock_irqsave(q->queue_lock, flags);
1905 1906 1907 1908 1909 1910 1911 1912 1913

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

1914
		spin_unlock_irqrestore(q->queue_lock, flags);
1915
	}
L
Linus Torvalds 已提交
1916 1917
}

1918 1919 1920 1921
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
1922
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
1923
{
1924
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
1925 1926
}

1927
static struct cfq_io_context *
A
Al Viro 已提交
1928
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1929
{
1930
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
1931

1932 1933
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
1934
	if (cic) {
1935
		cic->last_end_request = jiffies;
1936
		INIT_LIST_HEAD(&cic->queue_list);
1937
		INIT_HLIST_NODE(&cic->cic_list);
1938 1939
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
1940
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945
	}

	return cic;
}

1946
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1947 1948 1949 1950
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
1951
	if (!cfq_cfqq_prio_changed(cfqq))
1952 1953
		return;

1954
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1955
	switch (ioprio_class) {
1956 1957 1958 1959
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
1960
		 * no prio set, inherit CPU scheduling settings
1961 1962
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
1963
		cfqq->ioprio_class = task_nice_ioclass(tsk);
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
1978 1979 1980 1981 1982 1983 1984 1985
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
1986
	cfq_clear_cfqq_prio_changed(cfqq);
1987 1988
}

J
Jens Axboe 已提交
1989
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1990
{
1991 1992
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
1993
	unsigned long flags;
1994

1995 1996 1997
	if (unlikely(!cfqd))
		return;

1998
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1999

2000
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2001 2002
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2003 2004
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2005
		if (new_cfqq) {
2006
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2007 2008
			cfq_put_queue(cfqq);
		}
2009
	}
2010

2011
	cfqq = cic->cfqq[BLK_RW_SYNC];
2012 2013 2014
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2015
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2016 2017
}

2018
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2019
{
2020
	call_for_each_cic(ioc, changed_ioprio);
2021
	ioc->ioprio_changed = 0;
2022 2023
}

2024
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2025
			  pid_t pid, bool is_sync)
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2044
static struct cfq_queue *
2045
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2046
		     struct io_context *ioc, gfp_t gfp_mask)
2047 2048
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2049
	struct cfq_io_context *cic;
2050 2051

retry:
2052
	cic = cfq_cic_lookup(cfqd, ioc);
2053 2054
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2055

2056 2057 2058 2059 2060 2061
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2062 2063 2064 2065 2066
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2067
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2068
					gfp_mask | __GFP_ZERO,
2069
					cfqd->queue->node);
2070
			spin_lock_irq(cfqd->queue->queue_lock);
2071 2072
			if (new_cfqq)
				goto retry;
2073
		} else {
2074 2075 2076
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2077 2078
		}

2079 2080 2081 2082 2083 2084
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2085 2086 2087 2088 2089 2090 2091 2092
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2093 2094 2095
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2096
	switch (ioprio_class) {
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2108
static struct cfq_queue *
2109
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2110 2111
	      gfp_t gfp_mask)
{
2112 2113
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2114
	struct cfq_queue **async_cfqq = NULL;
2115 2116
	struct cfq_queue *cfqq = NULL;

2117 2118 2119 2120 2121
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2122
	if (!cfqq)
2123
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2124 2125 2126 2127

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2128
	if (!is_sync && !(*async_cfqq)) {
2129
		atomic_inc(&cfqq->ref);
2130
		*async_cfqq = cfqq;
2131 2132 2133 2134 2135 2136
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2137 2138 2139
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2140
static void
2141 2142
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2143
{
2144 2145
	unsigned long flags;

2146
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2147

2148 2149
	spin_lock_irqsave(&ioc->lock, flags);

2150
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2151

2152
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2153
	hlist_del_rcu(&cic->cic_list);
2154 2155 2156
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2157 2158
}

2159
static struct cfq_io_context *
2160
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2161 2162
{
	struct cfq_io_context *cic;
2163
	unsigned long flags;
2164
	void *k;
2165

2166 2167 2168
	if (unlikely(!ioc))
		return NULL;

2169 2170
	rcu_read_lock();

J
Jens Axboe 已提交
2171 2172 2173
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2174
	cic = rcu_dereference(ioc->ioc_data);
2175 2176
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2177
		return cic;
2178
	}
J
Jens Axboe 已提交
2179

2180 2181 2182 2183 2184
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2185 2186 2187
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2188
			cfq_drop_dead_cic(cfqd, ioc, cic);
2189
			rcu_read_lock();
2190
			continue;
2191
		}
2192

2193
		spin_lock_irqsave(&ioc->lock, flags);
2194
		rcu_assign_pointer(ioc->ioc_data, cic);
2195
		spin_unlock_irqrestore(&ioc->lock, flags);
2196 2197
		break;
	} while (1);
2198

2199
	return cic;
2200 2201
}

2202 2203 2204 2205 2206
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2207 2208
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2209
{
2210
	unsigned long flags;
2211
	int ret;
2212

2213 2214 2215 2216
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2217

2218 2219 2220
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2221 2222
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2223
		spin_unlock_irqrestore(&ioc->lock, flags);
2224

2225 2226 2227 2228 2229 2230 2231
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2232 2233
	}

2234 2235
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2236

2237
	return ret;
2238 2239
}

L
Linus Torvalds 已提交
2240 2241 2242
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2243
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2244 2245
 */
static struct cfq_io_context *
2246
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2247
{
2248
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2249 2250
	struct cfq_io_context *cic;

2251
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2252

2253
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2254 2255 2256
	if (!ioc)
		return NULL;

2257
	cic = cfq_cic_lookup(cfqd, ioc);
2258 2259
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2260

2261 2262 2263
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2264

2265 2266 2267
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2268
out:
2269 2270 2271 2272
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2273
	return cic;
2274 2275
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2276 2277 2278 2279 2280
err:
	put_io_context(ioc);
	return NULL;
}

2281 2282
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2283
{
2284 2285
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2286

2287 2288 2289 2290
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2291

2292
static void
2293
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2294
		       struct request *rq)
2295 2296 2297 2298
{
	sector_t sdist;
	u64 total;

2299
	if (!cfqq->last_request_pos)
2300
		sdist = 0;
2301 2302
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2303
	else
2304
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2305 2306 2307 2308 2309

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2310 2311
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2312
	else
2313
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2314

2315 2316 2317 2318 2319
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2333
}
L
Linus Torvalds 已提交
2334

2335 2336 2337 2338 2339 2340 2341 2342
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2343
	int old_idle, enable_idle;
2344

2345 2346 2347 2348
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2349 2350
		return;

2351
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2352

2353
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2354
	    (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq)))
2355 2356
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2357
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2358 2359 2360
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2361 2362
	}

2363 2364 2365 2366 2367 2368 2369
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2370
}
L
Linus Torvalds 已提交
2371

2372 2373 2374 2375
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2376
static bool
2377
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2378
		   struct request *rq)
2379
{
J
Jens Axboe 已提交
2380
	struct cfq_queue *cfqq;
2381

J
Jens Axboe 已提交
2382 2383
	cfqq = cfqd->active_queue;
	if (!cfqq)
2384
		return false;
2385

J
Jens Axboe 已提交
2386
	if (cfq_slice_used(cfqq))
2387
		return true;
J
Jens Axboe 已提交
2388 2389

	if (cfq_class_idle(new_cfqq))
2390
		return false;
2391 2392

	if (cfq_class_idle(cfqq))
2393
		return true;
2394

2395 2396 2397
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
	    new_cfqq->service_tree->count == 1)
2398 2399
		return true;

2400 2401 2402 2403
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2404
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2405
		return true;
2406

2407 2408 2409 2410 2411
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2412
		return true;
2413

2414 2415 2416 2417
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2418
		return true;
2419

2420
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2421
		return false;
2422 2423 2424 2425 2426

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2427
	if (cfq_rq_close(cfqd, cfqq, rq))
2428
		return true;
2429

2430
	return false;
2431 2432 2433 2434 2435 2436 2437 2438
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2439
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2440
	cfq_slice_expired(cfqd, 1);
2441

2442 2443 2444 2445 2446
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2447 2448

	cfq_service_tree_add(cfqd, cfqq, 1);
2449

2450 2451
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2452 2453 2454
}

/*
J
Jens Axboe 已提交
2455
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2456 2457 2458
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2459 2460
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
2461
{
J
Jens Axboe 已提交
2462
	struct cfq_io_context *cic = RQ_CIC(rq);
2463

2464
	cfqd->rq_queued++;
2465 2466 2467
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
2468
	cfq_update_io_thinktime(cfqd, cic);
2469
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
2470 2471
	cfq_update_idle_window(cfqd, cfqq, cic);

2472
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2473 2474 2475

	if (cfqq == cfqd->active_queue) {
		/*
2476 2477 2478
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
2479 2480
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
2481 2482 2483
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
2484
		 */
2485
		if (cfq_cfqq_wait_request(cfqq)) {
2486 2487
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
2488
				del_timer(&cfqd->idle_slice_timer);
T
Tejun Heo 已提交
2489
			__blk_run_queue(cfqd->queue);
2490
			}
2491
			cfq_mark_cfqq_must_dispatch(cfqq);
2492
		}
J
Jens Axboe 已提交
2493
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2494 2495 2496
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
2497 2498
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
2499 2500
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
2501
		__blk_run_queue(cfqd->queue);
2502
	}
L
Linus Torvalds 已提交
2503 2504
}

2505
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2506
{
2507
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2508
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2509

2510
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2511
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2512

2513
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2514
	list_add_tail(&rq->queuelist, &cfqq->fifo);
2515
	cfq_add_rq_rb(rq);
2516

J
Jens Axboe 已提交
2517
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
2518 2519
}

2520 2521 2522 2523 2524 2525
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
2526 2527
	struct cfq_queue *cfqq = cfqd->active_queue;

2528 2529 2530 2531 2532
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
2533 2534

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2535
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2536 2537
		return;

S
Shaohua Li 已提交
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

2548 2549 2550
	if (cfqd->hw_tag_samples++ < 50)
		return;

2551
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2552 2553 2554 2555 2556
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

2557
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2558
{
J
Jens Axboe 已提交
2559
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2560
	struct cfq_data *cfqd = cfqq->cfqd;
2561
	const int sync = rq_is_sync(rq);
2562
	unsigned long now;
L
Linus Torvalds 已提交
2563

2564
	now = jiffies;
2565
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
2566

2567 2568
	cfq_update_hw_tag(cfqd);

2569
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
2570
	WARN_ON(!cfqq->dispatched);
2571
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
2572
	cfqq->dispatched--;
L
Linus Torvalds 已提交
2573

2574 2575 2576
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

2577
	if (sync) {
J
Jens Axboe 已提交
2578
		RQ_CIC(rq)->last_end_request = now;
2579 2580
		cfqd->last_end_sync_rq = now;
	}
2581 2582 2583 2584 2585 2586

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
2587 2588
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

2589 2590 2591 2592
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
2593 2594 2595 2596 2597 2598 2599
		/*
		 * If there are no requests waiting in this queue, and
		 * there are other queues ready to issue requests, AND
		 * those other queues are issuing requests within our
		 * mean seek distance, give them a chance to run instead
		 * of idling.
		 */
2600
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2601
			cfq_slice_expired(cfqd, 1);
2602
		else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2603
			 sync && !rq_noidle(rq))
J
Jens Axboe 已提交
2604
			cfq_arm_slice_timer(cfqd);
2605
	}
J
Jens Axboe 已提交
2606

2607
	if (!rq_in_driver(cfqd))
2608
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2609 2610
}

2611 2612 2613 2614 2615
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2616
{
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
2628
		 * unboost the queue (if needed)
2629
		 */
2630 2631
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
2632 2633
	}
}
L
Linus Torvalds 已提交
2634

2635
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2636
{
2637
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
2638
		cfq_mark_cfqq_must_alloc_slice(cfqq);
2639
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
2640
	}
L
Linus Torvalds 已提交
2641

2642 2643 2644
	return ELV_MQUEUE_MAY;
}

2645
static int cfq_may_queue(struct request_queue *q, int rw)
2646 2647 2648
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
2649
	struct cfq_io_context *cic;
2650 2651 2652 2653 2654 2655 2656 2657
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
2658
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2659 2660 2661
	if (!cic)
		return ELV_MQUEUE_MAY;

2662
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2663
	if (cfqq) {
2664
		cfq_init_prio_data(cfqq, cic->ioc);
2665 2666
		cfq_prio_boost(cfqq);

2667
		return __cfq_may_queue(cfqq);
2668 2669 2670
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
2671 2672 2673 2674 2675
}

/*
 * queue lock held here
 */
2676
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
2677
{
J
Jens Axboe 已提交
2678
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
2679

J
Jens Axboe 已提交
2680
	if (cfqq) {
2681
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
2682

2683 2684
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
2685

J
Jens Axboe 已提交
2686
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2687 2688

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
2689
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
2690 2691 2692 2693 2694

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
2695 2696 2697 2698 2699 2700
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2701
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
2702 2703 2704 2705
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
2732
/*
2733
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
2734
 */
2735
static int
2736
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2737 2738 2739 2740
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
2741
	const bool is_sync = rq_is_sync(rq);
2742
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
2743 2744 2745 2746
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

2747
	cic = cfq_get_io_context(cfqd, gfp_mask);
2748

L
Linus Torvalds 已提交
2749 2750
	spin_lock_irqsave(q->queue_lock, flags);

2751 2752 2753
	if (!cic)
		goto queue_fail;

2754
new_queue:
2755
	cfqq = cic_to_cfqq(cic, is_sync);
2756
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2757
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2758
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
2759
	} else {
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
2770 2771 2772 2773 2774 2775 2776 2777
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2778
	}
L
Linus Torvalds 已提交
2779 2780

	cfqq->allocated[rw]++;
2781
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
2782

J
Jens Axboe 已提交
2783
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
2784

J
Jens Axboe 已提交
2785 2786 2787
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
2788

2789 2790 2791
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
2792

2793
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2794
	spin_unlock_irqrestore(q->queue_lock, flags);
2795
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
2796 2797 2798
	return 1;
}

2799
static void cfq_kick_queue(struct work_struct *work)
2800
{
2801
	struct cfq_data *cfqd =
2802
		container_of(work, struct cfq_data, unplug_work);
2803
	struct request_queue *q = cfqd->queue;
2804

2805
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
2806
	__blk_run_queue(cfqd->queue);
2807
	spin_unlock_irq(q->queue_lock);
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
2818
	int timed_out = 1;
2819

2820 2821
	cfq_log(cfqd, "idle timer fired");

2822 2823
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

2824 2825
	cfqq = cfqd->active_queue;
	if (cfqq) {
2826 2827
		timed_out = 0;

2828 2829 2830 2831 2832 2833
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

2834 2835 2836
		/*
		 * expired
		 */
2837
		if (cfq_slice_used(cfqq))
2838 2839 2840 2841 2842 2843
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
2844
		if (!cfqd->busy_queues)
2845 2846 2847 2848 2849
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
2850
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2851 2852 2853
			goto out_kick;
	}
expire:
2854
	cfq_slice_expired(cfqd, timed_out);
2855
out_kick:
2856
	cfq_schedule_dispatch(cfqd);
2857 2858 2859 2860
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
2861 2862 2863
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
2864
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
2865
}
2866

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
2877 2878 2879

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
2880 2881
}

J
Jens Axboe 已提交
2882
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
2883
{
2884
	struct cfq_data *cfqd = e->elevator_data;
2885
	struct request_queue *q = cfqd->queue;
2886

J
Jens Axboe 已提交
2887
	cfq_shutdown_timer_wq(cfqd);
2888

2889
	spin_lock_irq(q->queue_lock);
2890

2891
	if (cfqd->active_queue)
2892
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2893 2894

	while (!list_empty(&cfqd->cic_list)) {
2895 2896 2897
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
2898 2899

		__cfq_exit_single_io_context(cfqd, cic);
2900
	}
2901

2902
	cfq_put_async_queues(cfqd);
2903

2904
	spin_unlock_irq(q->queue_lock);
2905 2906 2907 2908

	cfq_shutdown_timer_wq(cfqd);

	kfree(cfqd);
L
Linus Torvalds 已提交
2909 2910
}

2911
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
2912 2913
{
	struct cfq_data *cfqd;
2914
	int i, j;
L
Linus Torvalds 已提交
2915

2916
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
2917
	if (!cfqd)
J
Jens Axboe 已提交
2918
		return NULL;
L
Linus Torvalds 已提交
2919

2920
	for (i = 0; i < 2; ++i)
2921 2922
		for (j = 0; j < 3; ++j)
			cfqd->service_trees[i][j] = CFQ_RB_ROOT;
2923
	cfqd->service_tree_idle = CFQ_RB_ROOT;
2924 2925 2926 2927 2928 2929 2930 2931 2932

	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

2933 2934 2935 2936 2937 2938 2939 2940
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);

2941
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
2942 2943 2944

	cfqd->queue = q;

2945 2946 2947 2948
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

2949
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2950

L
Linus Torvalds 已提交
2951
	cfqd->cfq_quantum = cfq_quantum;
2952 2953
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
2954 2955
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
2956 2957 2958 2959
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
2960
	cfqd->cfq_latency = 1;
2961
	cfqd->hw_tag = -1;
2962
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
2963
	return cfqd;
L
Linus Torvalds 已提交
2964 2965 2966 2967
}

static void cfq_slab_kill(void)
{
2968 2969 2970 2971
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
2972 2973 2974 2975 2976 2977 2978 2979
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
2980
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
2981 2982 2983
	if (!cfq_pool)
		goto fail;

2984
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3013
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3014
{									\
3015
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3016 3017 3018 3019 3020 3021
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3022 3023
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3024 3025
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3026 3027 3028 3029
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3030
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3031 3032 3033
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3034
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3035
{									\
3036
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3050 3051 3052 3053
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3054
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3055 3056
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3057 3058 3059
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3060 3061
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3062
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3063 3064
#undef STORE_FUNCTION

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3078
	CFQ_ATTR(low_latency),
3079
	__ATTR_NULL
L
Linus Torvalds 已提交
3080 3081 3082 3083 3084 3085 3086
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3087
		.elevator_allow_merge_fn =	cfq_allow_merge,
3088
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3089
		.elevator_add_req_fn =		cfq_insert_request,
3090
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3091 3092 3093
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3094 3095
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3096 3097 3098 3099 3100
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3101
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3102
	},
3103
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3104 3105 3106 3107 3108 3109
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3110 3111 3112 3113 3114 3115 3116 3117
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3118 3119 3120
	if (cfq_slab_setup())
		return -ENOMEM;

3121
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3122

3123
	return 0;
L
Linus Torvalds 已提交
3124 3125 3126 3127
}

static void __exit cfq_exit(void)
{
3128
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3129
	elv_unregister(&iosched_cfq);
3130
	ioc_gone = &all_gone;
3131 3132
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3133 3134 3135 3136 3137

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3138
	if (elv_ioc_count_read(cfq_ioc_count))
3139
		wait_for_completion(&all_gone);
3140
	cfq_slab_kill();
L
Linus Torvalds 已提交
3141 3142 3143 3144 3145 3146 3147 3148
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");