cfq-iosched.c 96.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
16
#include "blk-cgroup.h"
17
#include "cfq-iosched.h"
L
Linus Torvalds 已提交
18 19 20 21

/*
 * tunables
 */
22 23
/* max queue in one round of service */
static const int cfq_quantum = 4;
24
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 26 27 28
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
29
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
30
static int cfq_slice_async = HZ / 25;
31
static const int cfq_slice_async_rq = 2;
32
static int cfq_slice_idle = HZ / 125;
33 34
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
35

36
/*
37
 * offset from end of service tree
38
 */
39
#define CFQ_IDLE_DELAY		(HZ / 5)
40 41 42 43 44 45

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

46 47 48 49 50 51
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

52
#define CFQ_SLICE_SCALE		(5)
53
#define CFQ_HW_QUEUE_MIN	(5)
54
#define CFQ_SERVICE_SHIFT       12
55

56 57
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
58
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
59

60 61
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
62

63
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
64
static struct completion *ioc_gone;
65
static DEFINE_SPINLOCK(ioc_gone_lock);
66

67 68 69 70
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

71
#define sample_valid(samples)	((samples) > 80)
72
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
73

74 75 76 77 78 79 80 81 82
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
83
	unsigned count;
84
	u64 min_vdisktime;
85
	struct rb_node *active;
86
	unsigned total_weight;
87
};
88
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
89

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

119 120
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
121
	unsigned int allocated_slice;
122 123
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
124 125 126 127 128 129 130 131 132 133 134 135 136
	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

137 138 139 140
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
141
	unsigned long seeky_start;
142

143
	pid_t pid;
J
Jeff Moyer 已提交
144

145
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
146
	struct cfq_queue *new_cfqq;
147
	struct cfq_group *cfqg;
148
	struct cfq_group *orig_cfqg;
149 150
	/* Sectors dispatched in current dispatch round */
	unsigned long nr_sectors;
151 152
};

153
/*
154
 * First index in the service_trees.
155 156 157 158
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
159 160
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
161 162
};

163 164 165 166 167 168 169 170 171
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

172 173
/* This is per cgroup per device grouping structure */
struct cfq_group {
174 175 176 177 178
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
179
	unsigned int weight;
180 181 182 183 184
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

185 186
	/* Per group busy queus average. Useful for workload slice calc. */
	unsigned int busy_queues_avg[2];
187 188 189 190 191 192
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
193 194 195 196

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
197 198 199
	struct blkio_group blkg;
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	struct hlist_node cfqd_node;
200
	atomic_t ref;
201
#endif
202
};
203

204 205 206
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
207
struct cfq_data {
208
	struct request_queue *queue;
209 210
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
211
	struct cfq_group root_group;
212 213
	/* Number of active cfq groups on group service tree */
	int nr_groups;
214

215 216
	/*
	 * The priority currently being served
217
	 */
218
	enum wl_prio_t serving_prio;
219 220
	enum wl_type_t serving_type;
	unsigned long workload_expires;
221
	struct cfq_group *serving_group;
222
	bool noidle_tree_requires_idle;
223 224 225 226 227 228 229 230

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

231 232
	unsigned int busy_queues;

233
	int rq_in_driver[2];
234
	int sync_flight;
235 236 237 238 239

	/*
	 * queue-depth detection
	 */
	int rq_queued;
240
	int hw_tag;
241 242 243 244 245 246 247 248
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
249

250 251 252 253
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
254
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
255

256 257 258
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

259 260 261 262 263
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
264

J
Jens Axboe 已提交
265
	sector_t last_position;
L
Linus Torvalds 已提交
266 267 268 269 270

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
271
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
272 273
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
274 275 276
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
277
	unsigned int cfq_latency;
278
	unsigned int cfq_group_isolation;
279 280

	struct list_head cic_list;
L
Linus Torvalds 已提交
281

282 283 284 285
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
286 287

	unsigned long last_end_sync_rq;
288 289 290

	/* List of cfq groups being managed on this device*/
	struct hlist_head cfqg_list;
L
Linus Torvalds 已提交
291 292
};

293 294
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

295 296
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
297
					    enum wl_type_t type,
298 299
					    struct cfq_data *cfqd)
{
300 301 302
	if (!cfqg)
		return NULL;

303
	if (prio == IDLE_WORKLOAD)
304
		return &cfqg->service_tree_idle;
305

306
	return &cfqg->service_trees[prio][type];
307 308
}

J
Jens Axboe 已提交
309
enum cfqq_state_flags {
310 311
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
312
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
313 314 315 316
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
317
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
318
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
319
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
320
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
321 322
	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
	CFQ_CFQQ_FLAG_wait_busy_done,	/* Got new request. Expire the queue */
J
Jens Axboe 已提交
323 324 325 326 327
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
328
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
329 330 331
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
332
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
333 334 335
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
336
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
337 338 339 340
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
341
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
342 343 344 345
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
346
CFQ_CFQQ_FNS(slice_new);
347
CFQ_CFQQ_FNS(sync);
348
CFQ_CFQQ_FNS(coop);
349
CFQ_CFQQ_FNS(deep);
350 351
CFQ_CFQQ_FNS(wait_busy);
CFQ_CFQQ_FNS(wait_busy_done);
J
Jens Axboe 已提交
352 353
#undef CFQ_CFQQ_FNS

V
Vivek Goyal 已提交
354 355 356 357 358 359 360 361 362 363 364
#ifdef CONFIG_DEBUG_CFQ_IOSCHED
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
			blkg_path(&(cfqq)->cfqg->blkg), ##args);

#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
				blkg_path(&(cfqg)->blkg), ##args);      \

#else
365 366
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
V
Vivek Goyal 已提交
367 368
#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
#endif
369 370 371
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

372 373 374 375 376 377 378 379 380 381 382
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


383 384 385 386 387 388 389 390 391
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

392 393 394 395 396 397 398 399 400 401

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

402 403 404
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
405 406
{
	if (wl == IDLE_WORKLOAD)
407
		return cfqg->service_tree_idle.count;
408

409 410 411
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
412 413
}

414 415 416 417 418 419 420
static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg)
{
	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
}

421
static void cfq_dispatch_insert(struct request_queue *, struct request *);
422
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
423
				       struct io_context *, gfp_t);
424
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
425 426
						struct io_context *);

427 428 429 430 431
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

432
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
433
					    bool is_sync)
434
{
435
	return cic->cfqq[is_sync];
436 437 438
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
439
				struct cfq_queue *cfqq, bool is_sync)
440
{
441
	cic->cfqq[is_sync] = cfqq;
442 443 444 445 446 447
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
448
static inline bool cfq_bio_sync(struct bio *bio)
449
{
450
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
451
}
L
Linus Torvalds 已提交
452

A
Andrew Morton 已提交
453 454 455 456
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
457
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
458
{
459 460
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
461
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
462
	}
A
Andrew Morton 已提交
463 464
}

465
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
466 467 468
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

469
	return !cfqd->rq_queued;
A
Andrew Morton 已提交
470 471
}

472 473 474 475 476
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
477
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
478
				 unsigned short prio)
479
{
480
	const int base_slice = cfqd->cfq_slice[sync];
481

482 483 484 485
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
486

487 488 489 490
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
491 492
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

538 539 540 541 542 543
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

544 545
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
546
{
547 548 549
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
550
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
551

552 553 554
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
555
		cfq_hist_divisor;
556 557 558 559 560 561 562 563 564
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
565 566
}

567 568 569
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
570 571
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
572 573 574 575 576 577
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
578 579
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
580 581 582
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
583 584 585 586 587 588 589
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
590
			slice = max(slice * group_slice / expect_latency,
591 592 593
				    low_slice);
		}
	}
594
	cfqq->slice_start = jiffies;
595
	cfqq->slice_end = jiffies + slice;
596
	cfqq->allocated_slice = slice;
597
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
598 599 600 601 602 603 604
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
605
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
606 607 608 609 610 611 612 613 614
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
615
/*
J
Jens Axboe 已提交
616
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
617
 * We choose the request that is closest to the head right now. Distance
618
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
619
 */
J
Jens Axboe 已提交
620
static struct request *
621
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
622
{
623
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
624
	unsigned long back_max;
625 626 627
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
628

J
Jens Axboe 已提交
629 630 631 632
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
633

J
Jens Axboe 已提交
634 635 636 637
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
638 639 640 641
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
642

643 644
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
661
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
662 663 664 665 666 667

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
668
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
669 670

	/* Found required data */
671 672 673 674 675 676

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
677
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
678
		if (d1 < d2)
J
Jens Axboe 已提交
679
			return rq1;
680
		else if (d2 < d1)
J
Jens Axboe 已提交
681
			return rq2;
682 683
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
684
				return rq1;
685
			else
J
Jens Axboe 已提交
686
				return rq2;
687
		}
L
Linus Torvalds 已提交
688

689
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
690
		return rq1;
691
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
692 693
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
694 695 696 697 698 699 700 701
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
702
			return rq1;
L
Linus Torvalds 已提交
703
		else
J
Jens Axboe 已提交
704
			return rq2;
L
Linus Torvalds 已提交
705 706 707
	}
}

708 709 710
/*
 * The below is leftmost cache rbtree addon
 */
711
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
712
{
713 714 715 716
	/* Service tree is empty */
	if (!root->count)
		return NULL;

717 718 719
	if (!root->left)
		root->left = rb_first(&root->rb);

720 721 722 723
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
724 725
}

726 727 728 729 730 731 732 733 734 735 736
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

737 738 739 740 741 742
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

743 744 745 746
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
747
	rb_erase_init(n, &root->rb);
748
	--root->count;
749 750
}

L
Linus Torvalds 已提交
751 752 753
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
754 755 756
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
757
{
758 759
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
760
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
761

762
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
763 764

	if (rbprev)
J
Jens Axboe 已提交
765
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
766

767
	if (rbnext)
J
Jens Axboe 已提交
768
		next = rb_entry_rq(rbnext);
769 770 771
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
772
			next = rb_entry_rq(rbnext);
773
	}
L
Linus Torvalds 已提交
774

775
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
776 777
}

778 779
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
780
{
781 782 783
	/*
	 * just an approximation, should be ok.
	 */
784
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
785
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
786 787
}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
847 848
	cfqd->nr_groups++;
	st->total_weight += cfqg->weight;
849 850 851 852 853 854 855
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

856 857 858
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

859 860
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
861

862 863 864 865
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

V
Vivek Goyal 已提交
866
	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
867
	cfqg->on_st = false;
868 869
	cfqd->nr_groups--;
	st->total_weight -= cfqg->weight;
870 871
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
872
	cfqg->saved_workload_slice = 0;
873
	blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
874 875 876 877
}

static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
{
878
	unsigned int slice_used;
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
895 896
		if (slice_used > cfqq->allocated_slice)
			slice_used = cfqq->allocated_slice;
897 898
	}

899 900
	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
				cfqq->nr_sectors);
901 902 903 904 905 906 907
	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
				struct cfq_queue *cfqq)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
908 909 910 911 912 913
	unsigned int used_sl, charge_sl;
	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
			- cfqg->service_tree_idle.count;

	BUG_ON(nr_sync < 0);
	used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
914

915 916
	if (!cfq_cfqq_sync(cfqq) && !nr_sync)
		charge_sl = cfqq->allocated_slice;
917 918 919

	/* Can't update vdisktime while group is on service tree */
	cfq_rb_erase(&cfqg->rb_node, st);
920
	cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
921 922 923 924 925 926 927 928 929 930
	__cfq_group_service_tree_add(st, cfqg);

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
V
Vivek Goyal 已提交
931 932 933

	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
					st->min_vdisktime);
934 935
	blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
						cfqq->nr_sectors);
936 937
}

938 939 940 941 942 943 944 945
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct cfq_group, blkg);
	return NULL;
}

946 947 948 949 950 951
void
cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
{
	cfqg_of_blkg(blkg)->weight = weight;
}

952 953 954 955 956 957 958 959
static struct cfq_group *
cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
	struct cfq_group *cfqg = NULL;
	void *key = cfqd;
	int i, j;
	struct cfq_rb_root *st;
960 961
	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
	unsigned int major, minor;
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979

	/* Do we need to take this reference */
	if (!css_tryget(&blkcg->css))
		return NULL;;

	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
	if (cfqg || !create)
		goto done;

	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
	if (!cfqg)
		goto done;

	cfqg->weight = blkcg->weight;
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
	RB_CLEAR_NODE(&cfqg->rb_node);

980 981 982 983 984 985 986 987
	/*
	 * Take the initial reference that will be released on destroy
	 * This can be thought of a joint reference by cgroup and
	 * elevator which will be dropped by either elevator exit
	 * or cgroup deletion path depending on who is exiting first.
	 */
	atomic_set(&cfqg->ref, 1);

988
	/* Add group onto cgroup list */
989 990 991
	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
					MKDEV(major, minor));
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

	/* Add group on cfqd list */
	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);

done:
	css_put(&blkcg->css);
	return cfqg;
}

/*
 * Search for the cfq group current task belongs to. If create = 1, then also
 * create the cfq group if it does not exist. request_queue lock must be held.
 */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	struct cgroup *cgroup;
	struct cfq_group *cfqg = NULL;

	rcu_read_lock();
	cgroup = task_cgroup(current, blkio_subsys_id);
	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
	if (!cfqg && create)
		cfqg = &cfqd->root_group;
	rcu_read_unlock();
	return cfqg;
}

static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	/* Currently, all async queues are mapped to root group */
	if (!cfq_cfqq_sync(cfqq))
		cfqg = &cfqq->cfqd->root_group;

	cfqq->cfqg = cfqg;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	/* cfqq reference on cfqg */
	atomic_inc(&cfqq->cfqg->ref);
}

static void cfq_put_cfqg(struct cfq_group *cfqg)
{
	struct cfq_rb_root *st;
	int i, j;

	BUG_ON(atomic_read(&cfqg->ref) <= 0);
	if (!atomic_dec_and_test(&cfqg->ref))
		return;
	for_each_cfqg_st(cfqg, i, j, st)
		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
	kfree(cfqg);
}

static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	/* Something wrong if we are trying to remove same group twice */
	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));

	hlist_del_init(&cfqg->cfqd_node);

	/*
	 * Put the reference taken at the time of creation so that when all
	 * queues are gone, group can be destroyed.
	 */
	cfq_put_cfqg(cfqg);
}

static void cfq_release_cfq_groups(struct cfq_data *cfqd)
{
	struct hlist_node *pos, *n;
	struct cfq_group *cfqg;

	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
		/*
		 * If cgroup removal path got to blk_group first and removed
		 * it from cgroup list, then it will take care of destroying
		 * cfqg also.
		 */
		if (!blkiocg_del_blkio_group(&cfqg->blkg))
			cfq_destroy_cfqg(cfqd, cfqg);
	}
1071
}
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

/*
 * Blk cgroup controller notification saying that blkio_group object is being
 * delinked as associated cgroup object is going away. That also means that
 * no new IO will come in this group. So get rid of this group as soon as
 * any pending IO in the group is finished.
 *
 * This function is called under rcu_read_lock(). key is the rcu protected
 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
 * read lock.
 *
 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
 * it should not be NULL as even if elevator was exiting, cgroup deltion
 * path got to it first.
 */
void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
{
	unsigned long  flags;
	struct cfq_data *cfqd = key;

	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
#else /* GROUP_IOSCHED */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}
static inline void
cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
	cfqq->cfqg = cfqg;
}

1107 1108 1109
static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}

1110 1111
#endif /* GROUP_IOSCHED */

1112
/*
1113
 * The cfqd->service_trees holds all pending cfq_queue's that have
1114 1115 1116
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
1117
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1118
				 bool add_front)
1119
{
1120 1121
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
1122
	unsigned long rb_key;
1123
	struct cfq_rb_root *service_tree;
1124
	int left;
1125
	int new_cfqq = 1;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	int group_changed = 0;

#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (!cfqd->cfq_group_isolation
	    && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
	    && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
		/* Move this cfq to root group */
		cfq_log_cfqq(cfqd, cfqq, "moving to root group");
		if (!RB_EMPTY_NODE(&cfqq->rb_node))
			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
		cfqq->orig_cfqg = cfqq->cfqg;
		cfqq->cfqg = &cfqd->root_group;
		atomic_inc(&cfqd->root_group.ref);
		group_changed = 1;
	} else if (!cfqd->cfq_group_isolation
		   && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
		/* cfqq is sequential now needs to go to its original group */
		BUG_ON(cfqq->cfqg != &cfqd->root_group);
		if (!RB_EMPTY_NODE(&cfqq->rb_node))
			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
		cfq_put_cfqg(cfqq->cfqg);
		cfqq->cfqg = cfqq->orig_cfqg;
		cfqq->orig_cfqg = NULL;
		group_changed = 1;
		cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
	}
#endif
1153

1154 1155
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
						cfqq_type(cfqq), cfqd);
1156 1157
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
1158
		parent = rb_last(&service_tree->rb);
1159 1160 1161 1162 1163 1164
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
1165 1166 1167 1168 1169 1170
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
1171
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1172
		rb_key -= cfqq->slice_resid;
1173
		cfqq->slice_resid = 0;
1174 1175
	} else {
		rb_key = -HZ;
1176
		__cfqq = cfq_rb_first(service_tree);
1177 1178
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
1179

1180
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1181
		new_cfqq = 0;
1182
		/*
1183
		 * same position, nothing more to do
1184
		 */
1185 1186
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
1187
			return;
L
Linus Torvalds 已提交
1188

1189 1190
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
1191
	}
1192

1193
	left = 1;
1194
	parent = NULL;
1195 1196
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
1197
	while (*p) {
1198
		struct rb_node **n;
1199

1200 1201 1202
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

1203
		/*
1204
		 * sort by key, that represents service time.
1205
		 */
1206
		if (time_before(rb_key, __cfqq->rb_key))
1207
			n = &(*p)->rb_left;
1208
		else {
1209
			n = &(*p)->rb_right;
1210
			left = 0;
1211
		}
1212 1213

		p = n;
1214 1215
	}

1216
	if (left)
1217
		service_tree->left = &cfqq->rb_node;
1218

1219 1220
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
1221 1222
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
1223
	if ((add_front || !new_cfqq) && !group_changed)
1224
		return;
1225
	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1226 1227
}

1228
static struct cfq_queue *
1229 1230 1231
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
1248
		if (sector > blk_rq_pos(cfqq->next_rq))
1249
			n = &(*p)->rb_right;
1250
		else if (sector < blk_rq_pos(cfqq->next_rq))
1251 1252 1253 1254
			n = &(*p)->rb_left;
		else
			break;
		p = n;
1255
		cfqq = NULL;
1256 1257 1258 1259 1260
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
1261
	return cfqq;
1262 1263 1264 1265 1266 1267 1268
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

1269 1270 1271 1272
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1273 1274 1275 1276 1277 1278

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

1279
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1280 1281
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1282 1283
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
1284 1285 1286
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
1287 1288
}

1289 1290 1291
/*
 * Update cfqq's position in the service tree.
 */
1292
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1293 1294 1295 1296
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
1297
	if (cfq_cfqq_on_rr(cfqq)) {
1298
		cfq_service_tree_add(cfqd, cfqq, 0);
1299 1300
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
1301 1302
}

L
Linus Torvalds 已提交
1303 1304
/*
 * add to busy list of queues for service, trying to be fair in ordering
1305
 * the pending list according to last request service
L
Linus Torvalds 已提交
1306
 */
J
Jens Axboe 已提交
1307
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1308
{
1309
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
1310 1311
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1312 1313
	cfqd->busy_queues++;

1314
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
1315 1316
}

1317 1318 1319 1320
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
1321
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1322
{
1323
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
1324 1325
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1326

1327 1328 1329 1330
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
1331 1332 1333 1334
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1335

1336
	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1337 1338 1339 1340 1341 1342 1343
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
1344
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1345
{
J
Jens Axboe 已提交
1346 1347
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
1348

1349 1350
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
1351

J
Jens Axboe 已提交
1352
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
		/*
		 * Queue will be deleted from service tree when we actually
		 * expire it later. Right now just remove it from prio tree
		 * as it is empty.
		 */
		if (cfqq->p_root) {
			rb_erase(&cfqq->p_node, cfqq->p_root);
			cfqq->p_root = NULL;
		}
	}
L
Linus Torvalds 已提交
1365 1366
}

J
Jens Axboe 已提交
1367
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1368
{
J
Jens Axboe 已提交
1369
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
1370
	struct cfq_data *cfqd = cfqq->cfqd;
1371
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
1372

1373
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
1374 1375 1376 1377 1378

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
1379
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
1380
		cfq_dispatch_insert(cfqd->queue, __alias);
1381 1382 1383

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
1384 1385 1386 1387

	/*
	 * check if this request is a better next-serve candidate
	 */
1388
	prev = cfqq->next_rq;
1389
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1390 1391 1392 1393 1394 1395 1396

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

1397
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
1398 1399
}

J
Jens Axboe 已提交
1400
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
1401
{
1402 1403
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
1404
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
1405 1406
}

1407 1408
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
1409
{
1410
	struct task_struct *tsk = current;
1411
	struct cfq_io_context *cic;
1412
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
1413

1414
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1415 1416 1417 1418
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1419 1420 1421
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

1422
		return elv_rb_find(&cfqq->sort_list, sector);
1423
	}
L
Linus Torvalds 已提交
1424 1425 1426 1427

	return NULL;
}

1428
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1429
{
1430
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1431

1432
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
1433
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1434
						rq_in_driver(cfqd));
1435

1436
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1437 1438
}

1439
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1440
{
1441
	struct cfq_data *cfqd = q->elevator->elevator_data;
1442
	const int sync = rq_is_sync(rq);
1443

1444 1445
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
1446
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1447
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
1448 1449
}

1450
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
1451
{
J
Jens Axboe 已提交
1452
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1453

J
Jens Axboe 已提交
1454 1455
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
1456

1457
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1458
	cfq_del_rq_rb(rq);
1459

1460
	cfqq->cfqd->rq_queued--;
1461 1462 1463 1464
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
1465 1466
}

1467 1468
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
1469 1470 1471 1472
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

1473
	__rq = cfq_find_rq_fmerge(cfqd, bio);
1474
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1475 1476
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
1477 1478 1479 1480 1481
	}

	return ELEVATOR_NO_MERGE;
}

1482
static void cfq_merged_request(struct request_queue *q, struct request *req,
1483
			       int type)
L
Linus Torvalds 已提交
1484
{
1485
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
1486
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
1487

J
Jens Axboe 已提交
1488
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
1489 1490 1491 1492
	}
}

static void
1493
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
1494 1495
		    struct request *next)
{
1496
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1497 1498 1499 1500
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1501
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1502
		list_move(&rq->queuelist, &next->queuelist);
1503 1504
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
1505

1506 1507
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
1508
	cfq_remove_request(next);
1509 1510
}

1511
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1512 1513 1514
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1515
	struct cfq_io_context *cic;
1516 1517
	struct cfq_queue *cfqq;

1518 1519 1520
	/* Deny merge if bio and rq don't belong to same cfq group */
	if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
		return false;
1521
	/*
1522
	 * Disallow merge of a sync bio into an async request.
1523
	 */
1524
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1525
		return false;
1526 1527

	/*
1528 1529
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
1530
	 */
1531
	cic = cfq_cic_lookup(cfqd, current->io_context);
1532
	if (!cic)
1533
		return false;
1534

1535
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1536
	return cfqq == RQ_CFQQ(rq);
1537 1538
}

J
Jens Axboe 已提交
1539 1540
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1541 1542
{
	if (cfqq) {
1543
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1544 1545
		cfqq->slice_start = 0;
		cfqq->dispatch_start = jiffies;
1546
		cfqq->allocated_slice = 0;
1547
		cfqq->slice_end = 0;
1548
		cfqq->slice_dispatch = 0;
1549
		cfqq->nr_sectors = 0;
1550 1551

		cfq_clear_cfqq_wait_request(cfqq);
1552
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1553 1554
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1555
		cfq_mark_cfqq_slice_new(cfqq);
1556 1557

		del_timer(&cfqd->idle_slice_timer);
1558 1559 1560 1561 1562
	}

	cfqd->active_queue = cfqq;
}

1563 1564 1565 1566 1567
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1568
		    bool timed_out)
1569
{
1570 1571
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1572 1573 1574 1575
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);
1576 1577
	cfq_clear_cfqq_wait_busy(cfqq);
	cfq_clear_cfqq_wait_busy_done(cfqq);
1578 1579

	/*
1580
	 * store what was left of this slice, if the queue idled/timed out
1581
	 */
1582
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1583
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1584 1585
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1586

1587 1588
	cfq_group_served(cfqd, cfqq->cfqg, cfqq);

1589 1590 1591
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
		cfq_del_cfqq_rr(cfqd, cfqq);

1592
	cfq_resort_rr_list(cfqd, cfqq);
1593 1594 1595 1596

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

1597 1598 1599
	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
		cfqd->grp_service_tree.active = NULL;

1600 1601 1602 1603 1604 1605
	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1606
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1607 1608 1609 1610
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1611
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1612 1613
}

1614 1615 1616 1617
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1618
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1619
{
1620
	struct cfq_rb_root *service_tree =
1621 1622
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
					cfqd->serving_type, cfqd);
1623

1624 1625 1626
	if (!cfqd->rq_queued)
		return NULL;

1627 1628 1629
	/* There is nothing to dispatch */
	if (!service_tree)
		return NULL;
1630 1631 1632
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1633 1634
}

1635 1636
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
1637
	struct cfq_group *cfqg;
1638 1639 1640 1641 1642 1643 1644
	struct cfq_queue *cfqq;
	int i, j;
	struct cfq_rb_root *st;

	if (!cfqd->rq_queued)
		return NULL;

1645 1646 1647 1648
	cfqg = cfq_get_next_cfqg(cfqd);
	if (!cfqg)
		return NULL;

1649 1650 1651 1652 1653 1654
	for_each_cfqg_st(cfqg, i, j, st)
		if ((cfqq = cfq_rb_first(st)) != NULL)
			return cfqq;
	return NULL;
}

1655 1656 1657
/*
 * Get and set a new active queue for service.
 */
1658 1659
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1660
{
1661
	if (!cfqq)
1662
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1663

1664
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1665
	return cfqq;
1666 1667
}

1668 1669 1670
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1671 1672
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1673
	else
1674
		return cfqd->last_position - blk_rq_pos(rq);
1675 1676
}

1677 1678
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1679

1680 1681
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1682
{
1683
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1684

1685 1686
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1687

1688
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1689 1690
}

1691 1692 1693
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1694
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1706
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1707 1708 1709 1710 1711 1712 1713 1714
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1715
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1716 1717
		return __cfqq;

1718
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1719 1720 1721 1722 1723 1724 1725
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1726
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1743
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1744
{
1745 1746
	struct cfq_queue *cfqq;

1747 1748 1749 1750 1751
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1752
	/*
1753 1754 1755
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1756
	 */
1757 1758 1759 1760
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

1761 1762 1763 1764
	/* If new queue belongs to different cfq_group, don't choose it */
	if (cur_cfqq->cfqg != cfqq->cfqg)
		return NULL;

J
Jeff Moyer 已提交
1765 1766 1767 1768 1769
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1770 1771
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1772

1773 1774 1775 1776 1777 1778
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1779
	return cfqq;
J
Jens Axboe 已提交
1780 1781
}

1782 1783 1784 1785 1786 1787 1788
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1789
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1790

1791 1792 1793
	BUG_ON(!service_tree);
	BUG_ON(!service_tree->count);

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1806
	return service_tree->count == 1;
1807 1808
}

J
Jens Axboe 已提交
1809
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1810
{
1811
	struct cfq_queue *cfqq = cfqd->active_queue;
1812
	struct cfq_io_context *cic;
1813 1814
	unsigned long sl;

1815
	/*
J
Jens Axboe 已提交
1816 1817 1818
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1819
	 */
J
Jens Axboe 已提交
1820
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1821 1822
		return;

1823
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1824
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1825 1826 1827 1828

	/*
	 * idle is disabled, either manually or by past process history
	 */
1829
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1830 1831
		return;

1832
	/*
1833
	 * still active requests from this queue, don't idle
1834
	 */
1835
	if (cfqq->dispatched)
1836 1837
		return;

1838 1839 1840
	/*
	 * task has exited, don't wait
	 */
1841
	cic = cfqd->active_cic;
1842
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1843 1844
		return;

1845 1846 1847 1848 1849 1850 1851 1852 1853
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1854
	cfq_mark_cfqq_wait_request(cfqq);
1855

J
Jens Axboe 已提交
1856
	sl = cfqd->cfq_slice_idle;
1857

1858
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1859
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1860 1861
}

1862 1863 1864
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1865
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1866
{
1867
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1868
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1869

1870 1871
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1872
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1873
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1874
	cfqq->dispatched++;
1875
	elv_dispatch_sort(q, rq);
1876 1877 1878

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
1879
	cfqq->nr_sectors += blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1880 1881 1882 1883 1884
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1885
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1886
{
1887
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1888

J
Jens Axboe 已提交
1889
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1890
		return NULL;
1891 1892 1893

	cfq_mark_cfqq_fifo_expire(cfqq);

1894 1895
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1896

1897
	rq = rq_entry_fifo(cfqq->fifo.next);
1898
	if (time_before(jiffies, rq_fifo_time(rq)))
1899
		rq = NULL;
L
Linus Torvalds 已提交
1900

1901
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1902
	return rq;
L
Linus Torvalds 已提交
1903 1904
}

1905 1906 1907 1908
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1909

1910
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1911

1912
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1913 1914
}

J
Jeff Moyer 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1930
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1959 1960
}

1961 1962 1963
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
				struct cfq_group *cfqg, enum wl_prio_t prio,
				bool prio_changed)
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
1977
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1978 1979
			return cur_best;
		cur_best = SYNC_WORKLOAD;
1980
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1981 1982 1983 1984 1985 1986 1987
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
1988
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

2000
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2001 2002 2003 2004 2005
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;
2006
	struct cfq_rb_root *st;
2007
	unsigned group_slice;
2008

2009 2010 2011 2012 2013 2014
	if (!cfqg) {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

2015
	/* Choose next priority. RT > BE > IDLE */
2016
	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2017
		cfqd->serving_prio = RT_WORKLOAD;
2018
	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
2032 2033 2034
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
2046 2047 2048 2049
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
2050 2051 2052 2053 2054 2055

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
2056 2057 2058 2059 2060
	group_slice = cfq_group_slice(cfqd, cfqg);

	slice = group_slice * count /
		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2061

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	if (cfqd->serving_type == ASYNC_WORKLOAD) {
		unsigned int tmp;

		/*
		 * Async queues are currently system wide. Just taking
		 * proportion of queues with-in same group will lead to higher
		 * async ratio system wide as generally root group is going
		 * to have higher weight. A more accurate thing would be to
		 * calculate system wide asnc/sync ratio.
		 */
		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
		tmp = tmp/cfqd->busy_queues;
		slice = min_t(unsigned, slice, tmp);

2076 2077 2078
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2079
	} else
2080 2081 2082 2083 2084
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
2085
	cfqd->noidle_tree_requires_idle = false;
2086 2087
}

2088 2089 2090
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2091
	struct cfq_group *cfqg;
2092 2093 2094

	if (RB_EMPTY_ROOT(&st->rb))
		return NULL;
2095 2096 2097 2098
	cfqg = cfq_rb_first_group(st);
	st->active = &cfqg->rb_node;
	update_min_vdisktime(st);
	return cfqg;
2099 2100
}

2101 2102
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
2103 2104 2105
	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);

	cfqd->serving_group = cfqg;
2106 2107 2108 2109 2110 2111 2112

	/* Restore the workload type data */
	if (cfqg->saved_workload_slice) {
		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
		cfqd->serving_type = cfqg->saved_workload;
		cfqd->serving_prio = cfqg->saved_serving_prio;
	}
2113
	choose_service_tree(cfqd, cfqg);
2114 2115
}

2116
/*
2117 2118
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
2119
 */
2120
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
2121
{
2122
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
2123

2124 2125 2126
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
2127

2128 2129
	if (!cfqd->rq_queued)
		return NULL;
2130
	/*
J
Jens Axboe 已提交
2131
	 * The active queue has run out of time, expire it and select new.
2132
	 */
2133 2134
	if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
	     && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
2135
		goto expire;
L
Linus Torvalds 已提交
2136

2137
	/*
J
Jens Axboe 已提交
2138 2139
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
2140
	 */
2141
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2142
		goto keep_queue;
J
Jens Axboe 已提交
2143

2144 2145 2146 2147
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
2148
	 * tree.  If possible, merge the expiring queue with the new cfqq.
2149
	 */
2150
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
2151 2152 2153
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
2154
		goto expire;
J
Jeff Moyer 已提交
2155
	}
2156

J
Jens Axboe 已提交
2157 2158 2159 2160 2161
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
2162
	if (timer_pending(&cfqd->idle_slice_timer) ||
2163
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2164 2165
		cfqq = NULL;
		goto keep_queue;
2166 2167
	}

J
Jens Axboe 已提交
2168
expire:
2169
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
2170
new_queue:
2171 2172 2173 2174 2175
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
2176
		cfq_choose_cfqg(cfqd);
2177

2178
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2179
keep_queue:
J
Jens Axboe 已提交
2180
	return cfqq;
2181 2182
}

J
Jens Axboe 已提交
2183
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2184 2185 2186 2187 2188 2189 2190 2191 2192
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
2193 2194 2195

	/* By default cfqq is not expired if it is empty. Do it explicitly */
	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2196 2197 2198
	return dispatched;
}

2199 2200 2201 2202
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
2203
static int cfq_forced_dispatch(struct cfq_data *cfqd)
2204
{
2205
	struct cfq_queue *cfqq;
2206
	int dispatched = 0;
2207

2208 2209
	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2210

2211
	cfq_slice_expired(cfqd, 0);
2212 2213
	BUG_ON(cfqd->busy_queues);

2214
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2215 2216 2217
	return dispatched;
}

2218
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2219 2220
{
	unsigned int max_dispatch;
2221

2222 2223 2224
	/*
	 * Drain async requests before we start sync IO
	 */
2225
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2226
		return false;
2227

2228 2229 2230 2231
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2232
		return false;
2233 2234 2235 2236

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
2237

2238 2239 2240 2241 2242 2243 2244
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
2245
		if (cfq_class_idle(cfqq))
2246
			return false;
2247

2248 2249 2250 2251
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
2252
			return false;
2253

2254
		/*
2255
		 * Sole queue user, no limit
2256
		 */
2257
		max_dispatch = -1;
2258 2259 2260 2261 2262 2263 2264
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
2265
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2266 2267
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
2268

2269
		depth = last_sync / cfqd->cfq_slice[1];
2270 2271
		if (!depth && !cfqq->dispatched)
			depth = 1;
2272 2273
		if (depth < max_dispatch)
			max_dispatch = depth;
2274
	}
2275

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
2334 2335
		return 0;

2336
	/*
2337
	 * Dispatch a request from this cfqq, if it is allowed
2338
	 */
2339 2340 2341
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

2342
	cfqq->slice_dispatch++;
2343
	cfq_clear_cfqq_must_dispatch(cfqq);
2344

2345 2346 2347 2348 2349 2350 2351 2352 2353
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
2354 2355
	}

2356
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2357
	return 1;
L
Linus Torvalds 已提交
2358 2359 2360
}

/*
J
Jens Axboe 已提交
2361 2362
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
2363
 *
2364
 * Each cfq queue took a reference on the parent group. Drop it now.
L
Linus Torvalds 已提交
2365 2366 2367 2368
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
2369
	struct cfq_data *cfqd = cfqq->cfqd;
2370
	struct cfq_group *cfqg;
2371 2372

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
2373 2374 2375 2376

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

2377
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
2378
	BUG_ON(rb_first(&cfqq->sort_list));
2379
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2380
	cfqg = cfqq->cfqg;
L
Linus Torvalds 已提交
2381

2382
	if (unlikely(cfqd->active_queue == cfqq)) {
2383
		__cfq_slice_expired(cfqd, cfqq, 0);
2384
		cfq_schedule_dispatch(cfqd);
2385
	}
2386

2387
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
2388
	kmem_cache_free(cfq_pool, cfqq);
2389
	cfq_put_cfqg(cfqg);
2390 2391
	if (cfqq->orig_cfqg)
		cfq_put_cfqg(cfqq->orig_cfqg);
L
Linus Torvalds 已提交
2392 2393
}

2394 2395 2396
/*
 * Must always be called with the rcu_read_lock() held
 */
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

2408
/*
2409
 * Call func for each cic attached to this ioc.
2410
 */
2411
static void
2412 2413
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
2414
{
2415
	rcu_read_lock();
2416
	__call_for_each_cic(ioc, func);
2417
	rcu_read_unlock();
2418 2419 2420 2421 2422 2423 2424 2425 2426
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
2427
	elv_ioc_count_dec(cfq_ioc_count);
2428

2429 2430 2431 2432 2433 2434 2435
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
2436
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2437 2438 2439 2440 2441
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
2442
}
2443

2444 2445 2446
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2457
	hlist_del_rcu(&cic->cic_list);
2458 2459
	spin_unlock_irqrestore(&ioc->lock, flags);

2460
	cfq_cic_free(cic);
2461 2462
}

2463 2464 2465 2466 2467
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
2468 2469 2470
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
2471 2472 2473 2474
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
2475
	 */
2476
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
2477 2478
}

2479
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2480
{
J
Jeff Moyer 已提交
2481 2482
	struct cfq_queue *__cfqq, *next;

2483
	if (unlikely(cfqq == cfqd->active_queue)) {
2484
		__cfq_slice_expired(cfqd, cfqq, 0);
2485
		cfq_schedule_dispatch(cfqd);
2486
	}
2487

J
Jeff Moyer 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

2504 2505
	cfq_put_queue(cfqq);
}
2506

2507 2508 2509
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
2510 2511
	struct io_context *ioc = cic->ioc;

2512
	list_del_init(&cic->queue_list);
2513 2514 2515 2516

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
2517
	smp_wmb();
2518
	cic->dead_key = (unsigned long) cic->key;
2519 2520
	cic->key = NULL;

2521 2522 2523
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

2524 2525 2526
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
2527 2528
	}

2529 2530 2531
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
2532
	}
2533 2534
}

2535 2536
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
2537 2538 2539 2540
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
2541
		struct request_queue *q = cfqd->queue;
2542
		unsigned long flags;
2543

2544
		spin_lock_irqsave(q->queue_lock, flags);
2545 2546 2547 2548 2549 2550 2551 2552 2553

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

2554
		spin_unlock_irqrestore(q->queue_lock, flags);
2555
	}
L
Linus Torvalds 已提交
2556 2557
}

2558 2559 2560 2561
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
2562
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
2563
{
2564
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
2565 2566
}

2567
static struct cfq_io_context *
A
Al Viro 已提交
2568
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2569
{
2570
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
2571

2572 2573
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
2574
	if (cic) {
2575
		cic->last_end_request = jiffies;
2576
		INIT_LIST_HEAD(&cic->queue_list);
2577
		INIT_HLIST_NODE(&cic->cic_list);
2578 2579
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
2580
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
2581 2582 2583 2584 2585
	}

	return cic;
}

2586
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2587 2588 2589 2590
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
2591
	if (!cfq_cfqq_prio_changed(cfqq))
2592 2593
		return;

2594
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2595
	switch (ioprio_class) {
2596 2597 2598 2599
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
2600
		 * no prio set, inherit CPU scheduling settings
2601 2602
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
2603
		cfqq->ioprio_class = task_nice_ioclass(tsk);
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
2618 2619 2620 2621 2622 2623 2624 2625
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
2626
	cfq_clear_cfqq_prio_changed(cfqq);
2627 2628
}

J
Jens Axboe 已提交
2629
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2630
{
2631 2632
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
2633
	unsigned long flags;
2634

2635 2636 2637
	if (unlikely(!cfqd))
		return;

2638
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2639

2640
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2641 2642
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2643 2644
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2645
		if (new_cfqq) {
2646
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2647 2648
			cfq_put_queue(cfqq);
		}
2649
	}
2650

2651
	cfqq = cic->cfqq[BLK_RW_SYNC];
2652 2653 2654
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2655
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2656 2657
}

2658
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2659
{
2660
	call_for_each_cic(ioc, changed_ioprio);
2661
	ioc->ioprio_changed = 0;
2662 2663
}

2664
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2665
			  pid_t pid, bool is_sync)
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
{
	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
	struct cfq_data *cfqd = cic->key;
	unsigned long flags;
	struct request_queue *q;

	if (unlikely(!cfqd))
		return;

	q = cfqd->queue;

	spin_lock_irqsave(q->queue_lock, flags);

	if (sync_cfqq) {
		/*
		 * Drop reference to sync queue. A new sync queue will be
		 * assigned in new group upon arrival of a fresh request.
		 */
		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
		cic_set_cfqq(cic, NULL, 1);
		cfq_put_queue(sync_cfqq);
	}

	spin_unlock_irqrestore(q->queue_lock, flags);
}

static void cfq_ioc_set_cgroup(struct io_context *ioc)
{
	call_for_each_cic(ioc, changed_cgroup);
	ioc->cgroup_changed = 0;
}
#endif  /* CONFIG_CFQ_GROUP_IOSCHED */

2719
static struct cfq_queue *
2720
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2721
		     struct io_context *ioc, gfp_t gfp_mask)
2722 2723
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2724
	struct cfq_io_context *cic;
2725
	struct cfq_group *cfqg;
2726 2727

retry:
2728
	cfqg = cfq_get_cfqg(cfqd, 1);
2729
	cic = cfq_cic_lookup(cfqd, ioc);
2730 2731
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2732

2733 2734 2735 2736 2737 2738
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2739 2740 2741 2742 2743
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2744
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2745
					gfp_mask | __GFP_ZERO,
2746
					cfqd->queue->node);
2747
			spin_lock_irq(cfqd->queue->queue_lock);
2748 2749
			if (new_cfqq)
				goto retry;
2750
		} else {
2751 2752 2753
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2754 2755
		}

2756 2757 2758
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
2759
			cfq_link_cfqq_cfqg(cfqq, cfqg);
2760 2761 2762
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2763 2764 2765 2766 2767 2768 2769 2770
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2771 2772 2773
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2774
	switch (ioprio_class) {
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2786
static struct cfq_queue *
2787
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2788 2789
	      gfp_t gfp_mask)
{
2790 2791
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2792
	struct cfq_queue **async_cfqq = NULL;
2793 2794
	struct cfq_queue *cfqq = NULL;

2795 2796 2797 2798 2799
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2800
	if (!cfqq)
2801
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2802 2803 2804 2805

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2806
	if (!is_sync && !(*async_cfqq)) {
2807
		atomic_inc(&cfqq->ref);
2808
		*async_cfqq = cfqq;
2809 2810 2811 2812 2813 2814
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2815 2816 2817
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2818
static void
2819 2820
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2821
{
2822 2823
	unsigned long flags;

2824
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2825

2826 2827
	spin_lock_irqsave(&ioc->lock, flags);

2828
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2829

2830
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2831
	hlist_del_rcu(&cic->cic_list);
2832 2833 2834
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2835 2836
}

2837
static struct cfq_io_context *
2838
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2839 2840
{
	struct cfq_io_context *cic;
2841
	unsigned long flags;
2842
	void *k;
2843

2844 2845 2846
	if (unlikely(!ioc))
		return NULL;

2847 2848
	rcu_read_lock();

J
Jens Axboe 已提交
2849 2850 2851
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2852
	cic = rcu_dereference(ioc->ioc_data);
2853 2854
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2855
		return cic;
2856
	}
J
Jens Axboe 已提交
2857

2858 2859 2860 2861 2862
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2863 2864 2865
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2866
			cfq_drop_dead_cic(cfqd, ioc, cic);
2867
			rcu_read_lock();
2868
			continue;
2869
		}
2870

2871
		spin_lock_irqsave(&ioc->lock, flags);
2872
		rcu_assign_pointer(ioc->ioc_data, cic);
2873
		spin_unlock_irqrestore(&ioc->lock, flags);
2874 2875
		break;
	} while (1);
2876

2877
	return cic;
2878 2879
}

2880 2881 2882 2883 2884
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2885 2886
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2887
{
2888
	unsigned long flags;
2889
	int ret;
2890

2891 2892 2893 2894
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2895

2896 2897 2898
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2899 2900
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2901
		spin_unlock_irqrestore(&ioc->lock, flags);
2902

2903 2904 2905 2906 2907 2908 2909
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2910 2911
	}

2912 2913
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2914

2915
	return ret;
2916 2917
}

L
Linus Torvalds 已提交
2918 2919 2920
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2921
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2922 2923
 */
static struct cfq_io_context *
2924
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2925
{
2926
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2927 2928
	struct cfq_io_context *cic;

2929
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2930

2931
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2932 2933 2934
	if (!ioc)
		return NULL;

2935
	cic = cfq_cic_lookup(cfqd, ioc);
2936 2937
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2938

2939 2940 2941
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2942

2943 2944 2945
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2946
out:
2947 2948 2949 2950
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

2951 2952 2953 2954
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (unlikely(ioc->cgroup_changed))
		cfq_ioc_set_cgroup(ioc);
#endif
L
Linus Torvalds 已提交
2955
	return cic;
2956 2957
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2958 2959 2960 2961 2962
err:
	put_io_context(ioc);
	return NULL;
}

2963 2964
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2965
{
2966 2967
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2968

2969 2970 2971 2972
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2973

2974
static void
2975
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2976
		       struct request *rq)
2977 2978 2979 2980
{
	sector_t sdist;
	u64 total;

2981
	if (!cfqq->last_request_pos)
2982
		sdist = 0;
2983 2984
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2985
	else
2986
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2987 2988 2989 2990 2991

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2992 2993
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2994
	else
2995
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2996

2997 2998 2999 3000 3001
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
3015
}
L
Linus Torvalds 已提交
3016

3017 3018 3019 3020 3021 3022 3023 3024
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
3025
	int old_idle, enable_idle;
3026

3027 3028 3029 3030
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3031 3032
		return;

3033
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
3034

3035 3036 3037
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

3038
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3039 3040
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
3041 3042
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
3043
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
3044 3045 3046
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
3047 3048
	}

3049 3050 3051 3052 3053 3054 3055
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
3056
}
L
Linus Torvalds 已提交
3057

3058 3059 3060 3061
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
3062
static bool
3063
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
3064
		   struct request *rq)
3065
{
J
Jens Axboe 已提交
3066
	struct cfq_queue *cfqq;
3067

J
Jens Axboe 已提交
3068 3069
	cfqq = cfqd->active_queue;
	if (!cfqq)
3070
		return false;
3071

J
Jens Axboe 已提交
3072
	if (cfq_class_idle(new_cfqq))
3073
		return false;
3074 3075

	if (cfq_class_idle(cfqq))
3076
		return true;
3077

3078 3079 3080 3081
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
3082
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3083
		return true;
3084

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
	if (new_cfqq->cfqg != cfqq->cfqg)
		return false;

	if (cfq_slice_used(cfqq))
		return true;

	/* Allow preemption only if we are idling on sync-noidle tree */
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
	    new_cfqq->service_tree->count == 2 &&
	    RB_EMPTY_ROOT(&cfqq->sort_list))
		return true;

3098 3099 3100 3101 3102
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
3103
		return true;
3104

3105 3106 3107 3108
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3109
		return true;
3110

3111
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3112
		return false;
3113 3114 3115 3116 3117

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
3118
	if (cfq_rq_close(cfqd, cfqq, rq))
3119
		return true;
3120

3121
	return false;
3122 3123 3124 3125 3126 3127 3128 3129
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
3130
	cfq_log_cfqq(cfqd, cfqq, "preempt");
3131
	cfq_slice_expired(cfqd, 1);
3132

3133 3134 3135 3136 3137
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3138 3139

	cfq_service_tree_add(cfqd, cfqq, 1);
3140

3141 3142
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
3143 3144 3145
}

/*
J
Jens Axboe 已提交
3146
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3147 3148 3149
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
3150 3151
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
3152
{
J
Jens Axboe 已提交
3153
	struct cfq_io_context *cic = RQ_CIC(rq);
3154

3155
	cfqd->rq_queued++;
3156 3157 3158
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
3159
	cfq_update_io_thinktime(cfqd, cic);
3160
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
3161 3162
	cfq_update_idle_window(cfqd, cfqq, cic);

3163
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3164 3165

	if (cfqq == cfqd->active_queue) {
3166 3167 3168 3169
		if (cfq_cfqq_wait_busy(cfqq)) {
			cfq_clear_cfqq_wait_busy(cfqq);
			cfq_mark_cfqq_wait_busy_done(cfqq);
		}
3170
		/*
3171 3172 3173
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
3174 3175
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
3176 3177 3178
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
3179
		 */
3180
		if (cfq_cfqq_wait_request(cfqq)) {
3181 3182
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
3183
				del_timer(&cfqd->idle_slice_timer);
3184 3185 3186
				__blk_run_queue(cfqd->queue);
			} else
				cfq_mark_cfqq_must_dispatch(cfqq);
3187
		}
J
Jens Axboe 已提交
3188
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3189 3190 3191
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
3192 3193
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
3194 3195
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
3196
		__blk_run_queue(cfqd->queue);
3197
	}
L
Linus Torvalds 已提交
3198 3199
}

3200
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3201
{
3202
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
3203
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3204

3205
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3206
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3207

3208
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3209
	list_add_tail(&rq->queuelist, &cfqq->fifo);
3210
	cfq_add_rq_rb(rq);
3211

J
Jens Axboe 已提交
3212
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
3213 3214
}

3215 3216 3217 3218 3219 3220
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
3221 3222
	struct cfq_queue *cfqq = cfqd->active_queue;

3223 3224 3225 3226 3227
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
3228 3229

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3230
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3231 3232
		return;

S
Shaohua Li 已提交
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

3243 3244 3245
	if (cfqd->hw_tag_samples++ < 50)
		return;

3246
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3247 3248 3249 3250 3251
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

3252
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3253
{
J
Jens Axboe 已提交
3254
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3255
	struct cfq_data *cfqd = cfqq->cfqd;
3256
	const int sync = rq_is_sync(rq);
3257
	unsigned long now;
L
Linus Torvalds 已提交
3258

3259
	now = jiffies;
V
Vivek Goyal 已提交
3260
	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
L
Linus Torvalds 已提交
3261

3262 3263
	cfq_update_hw_tag(cfqd);

3264
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
3265
	WARN_ON(!cfqq->dispatched);
3266
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
3267
	cfqq->dispatched--;
L
Linus Torvalds 已提交
3268

3269 3270 3271
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

3272
	if (sync) {
J
Jens Axboe 已提交
3273
		RQ_CIC(rq)->last_end_request = now;
3274 3275
		cfqd->last_end_sync_rq = now;
	}
3276 3277 3278 3279 3280 3281

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
3282 3283
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

3284 3285 3286 3287
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298

		/*
		 * If this queue consumed its slice and this is last queue
		 * in the group, wait for next request before we expire
		 * the queue
		 */
		if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
			cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
			cfq_mark_cfqq_wait_busy(cfqq);
		}

3299
		/*
3300 3301 3302 3303 3304 3305
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
3306
		 */
3307
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3308
			cfq_slice_expired(cfqd, 1);
3309 3310 3311 3312 3313 3314 3315 3316 3317
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
3318 3319
			    || cfqd->noidle_tree_requires_idle
			    || cfqq->cfqg->nr_cfqq == 1)
3320 3321
				cfq_arm_slice_timer(cfqd);
		}
3322
	}
J
Jens Axboe 已提交
3323

3324
	if (!rq_in_driver(cfqd))
3325
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3326 3327
}

3328 3329 3330 3331 3332
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
3333
{
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
3345
		 * unboost the queue (if needed)
3346
		 */
3347 3348
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
3349 3350
	}
}
L
Linus Torvalds 已提交
3351

3352
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3353
{
3354
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
3355
		cfq_mark_cfqq_must_alloc_slice(cfqq);
3356
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
3357
	}
L
Linus Torvalds 已提交
3358

3359 3360 3361
	return ELV_MQUEUE_MAY;
}

3362
static int cfq_may_queue(struct request_queue *q, int rw)
3363 3364 3365
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
3366
	struct cfq_io_context *cic;
3367 3368 3369 3370 3371 3372 3373 3374
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
3375
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3376 3377 3378
	if (!cic)
		return ELV_MQUEUE_MAY;

3379
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3380
	if (cfqq) {
3381
		cfq_init_prio_data(cfqq, cic->ioc);
3382 3383
		cfq_prio_boost(cfqq);

3384
		return __cfq_may_queue(cfqq);
3385 3386 3387
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
3388 3389 3390 3391 3392
}

/*
 * queue lock held here
 */
3393
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
3394
{
J
Jens Axboe 已提交
3395
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
3396

J
Jens Axboe 已提交
3397
	if (cfqq) {
3398
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
3399

3400 3401
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
3402

J
Jens Axboe 已提交
3403
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3404 3405

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
3406
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
3407 3408 3409 3410 3411

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
3412 3413 3414 3415 3416 3417
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3418
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
3419 3420 3421 3422
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
3449
/*
3450
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
3451
 */
3452
static int
3453
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
3454 3455 3456 3457
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
3458
	const bool is_sync = rq_is_sync(rq);
3459
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
3460 3461 3462 3463
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

3464
	cic = cfq_get_io_context(cfqd, gfp_mask);
3465

L
Linus Torvalds 已提交
3466 3467
	spin_lock_irqsave(q->queue_lock, flags);

3468 3469 3470
	if (!cic)
		goto queue_fail;

3471
new_queue:
3472
	cfqq = cic_to_cfqq(cic, is_sync);
3473
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3474
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3475
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
3476
	} else {
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
3487 3488 3489 3490 3491 3492 3493 3494
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3495
	}
L
Linus Torvalds 已提交
3496 3497

	cfqq->allocated[rw]++;
3498
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
3499

J
Jens Axboe 已提交
3500
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
3501

J
Jens Axboe 已提交
3502 3503 3504
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
3505

3506 3507 3508
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
3509

3510
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3511
	spin_unlock_irqrestore(q->queue_lock, flags);
3512
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
3513 3514 3515
	return 1;
}

3516
static void cfq_kick_queue(struct work_struct *work)
3517
{
3518
	struct cfq_data *cfqd =
3519
		container_of(work, struct cfq_data, unplug_work);
3520
	struct request_queue *q = cfqd->queue;
3521

3522
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
3523
	__blk_run_queue(cfqd->queue);
3524
	spin_unlock_irq(q->queue_lock);
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
3535
	int timed_out = 1;
3536

3537 3538
	cfq_log(cfqd, "idle timer fired");

3539 3540
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

3541 3542
	cfqq = cfqd->active_queue;
	if (cfqq) {
3543 3544
		timed_out = 0;

3545 3546 3547 3548 3549 3550
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

3551 3552 3553
		/*
		 * expired
		 */
3554
		if (cfq_slice_used(cfqq))
3555 3556 3557 3558 3559 3560
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
3561
		if (!cfqd->busy_queues)
3562 3563 3564 3565 3566
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
3567
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3568
			goto out_kick;
3569 3570 3571 3572 3573

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
3574 3575
	}
expire:
3576
	cfq_slice_expired(cfqd, timed_out);
3577
out_kick:
3578
	cfq_schedule_dispatch(cfqd);
3579 3580 3581 3582
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
3583 3584 3585
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
3586
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
3587
}
3588

3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
3599 3600 3601

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
3602 3603
}

J
Jens Axboe 已提交
3604
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
3605
{
3606
	struct cfq_data *cfqd = e->elevator_data;
3607
	struct request_queue *q = cfqd->queue;
3608

J
Jens Axboe 已提交
3609
	cfq_shutdown_timer_wq(cfqd);
3610

3611
	spin_lock_irq(q->queue_lock);
3612

3613
	if (cfqd->active_queue)
3614
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3615 3616

	while (!list_empty(&cfqd->cic_list)) {
3617 3618 3619
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
3620 3621

		__cfq_exit_single_io_context(cfqd, cic);
3622
	}
3623

3624
	cfq_put_async_queues(cfqd);
3625 3626
	cfq_release_cfq_groups(cfqd);
	blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3627

3628
	spin_unlock_irq(q->queue_lock);
3629 3630 3631

	cfq_shutdown_timer_wq(cfqd);

3632 3633
	/* Wait for cfqg->blkg->key accessors to exit their grace periods. */
	synchronize_rcu();
3634
	kfree(cfqd);
L
Linus Torvalds 已提交
3635 3636
}

3637
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
3638 3639
{
	struct cfq_data *cfqd;
3640
	int i, j;
3641
	struct cfq_group *cfqg;
3642
	struct cfq_rb_root *st;
L
Linus Torvalds 已提交
3643

3644
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
3645
	if (!cfqd)
J
Jens Axboe 已提交
3646
		return NULL;
L
Linus Torvalds 已提交
3647

3648 3649 3650
	/* Init root service tree */
	cfqd->grp_service_tree = CFQ_RB_ROOT;

3651 3652
	/* Init root group */
	cfqg = &cfqd->root_group;
3653 3654
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
3655
	RB_CLEAR_NODE(&cfqg->rb_node);
3656

3657 3658 3659
	/* Give preference to root group over other groups */
	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;

3660
#ifdef CONFIG_CFQ_GROUP_IOSCHED
3661 3662 3663 3664 3665
	/*
	 * Take a reference to root group which we never drop. This is just
	 * to make sure that cfq_put_cfqg() does not try to kfree root group
	 */
	atomic_set(&cfqg->ref, 1);
3666 3667
	blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
					0);
3668
#endif
3669 3670 3671 3672 3673 3674 3675 3676
	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3677 3678 3679 3680 3681 3682 3683
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);
3684
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3685

3686
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
3687 3688 3689

	cfqd->queue = q;

3690 3691 3692 3693
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

3694
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3695

L
Linus Torvalds 已提交
3696
	cfqd->cfq_quantum = cfq_quantum;
3697 3698
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
3699 3700
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
3701 3702 3703 3704
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
3705
	cfqd->cfq_latency = 1;
3706
	cfqd->cfq_group_isolation = 0;
3707
	cfqd->hw_tag = -1;
3708
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
3709
	return cfqd;
L
Linus Torvalds 已提交
3710 3711 3712 3713
}

static void cfq_slab_kill(void)
{
3714 3715 3716 3717
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
3718 3719 3720 3721 3722 3723 3724 3725
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3726
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3727 3728 3729
	if (!cfq_pool)
		goto fail;

3730
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3759
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3760
{									\
3761
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3762 3763 3764 3765 3766 3767
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3768 3769
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3770 3771
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3772 3773 3774 3775
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3776
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3777
SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
L
Linus Torvalds 已提交
3778 3779 3780
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3781
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3782
{									\
3783
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3797 3798 3799 3800
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3801
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3802 3803
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3804 3805 3806
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3807 3808
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3809
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3810
STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
L
Linus Torvalds 已提交
3811 3812
#undef STORE_FUNCTION

3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3826
	CFQ_ATTR(low_latency),
3827
	CFQ_ATTR(group_isolation),
3828
	__ATTR_NULL
L
Linus Torvalds 已提交
3829 3830 3831 3832 3833 3834 3835
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3836
		.elevator_allow_merge_fn =	cfq_allow_merge,
3837
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3838
		.elevator_add_req_fn =		cfq_insert_request,
3839
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3840 3841 3842
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3843 3844
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3845 3846 3847 3848 3849
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3850
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3851
	},
3852
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3853 3854 3855 3856 3857 3858
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3859 3860 3861 3862 3863 3864 3865 3866
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3867 3868 3869
	if (cfq_slab_setup())
		return -ENOMEM;

3870
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3871

3872
	return 0;
L
Linus Torvalds 已提交
3873 3874 3875 3876
}

static void __exit cfq_exit(void)
{
3877
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3878
	elv_unregister(&iosched_cfq);
3879
	ioc_gone = &all_gone;
3880 3881
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3882 3883 3884 3885 3886

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3887
	if (elv_ioc_count_read(cfq_ioc_count))
3888
		wait_for_completion(&all_gone);
3889
	cfq_slab_kill();
L
Linus Torvalds 已提交
3890 3891 3892 3893 3894 3895 3896 3897
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");