cfq-iosched.c 86.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
16
#include "blk-cgroup.h"
L
Linus Torvalds 已提交
17 18 19 20

/*
 * tunables
 */
21 22
/* max queue in one round of service */
static const int cfq_quantum = 4;
23
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 25 26 27
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
28
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
29
static int cfq_slice_async = HZ / 25;
30
static const int cfq_slice_async_rq = 2;
31
static int cfq_slice_idle = HZ / 125;
32 33
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
34

35
/*
36
 * offset from end of service tree
37
 */
38
#define CFQ_IDLE_DELAY		(HZ / 5)
39 40 41 42 43 44

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

45 46 47 48 49 50
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

51
#define CFQ_SLICE_SCALE		(5)
52
#define CFQ_HW_QUEUE_MIN	(5)
53
#define CFQ_SERVICE_SHIFT       12
54

55 56
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
57
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
58

59 60
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
61

62
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63
static struct completion *ioc_gone;
64
static DEFINE_SPINLOCK(ioc_gone_lock);
65

66 67 68 69
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

70
#define sample_valid(samples)	((samples) > 80)
71
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
72

73 74 75 76 77 78 79 80 81
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
82
	unsigned count;
83
	u64 min_vdisktime;
84
	struct rb_node *active;
85
	unsigned total_weight;
86
};
87
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

118 119 120 121
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
122 123 124 125 126 127 128 129 130 131 132 133 134
	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

135 136 137 138
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
139
	unsigned long seeky_start;
140

141
	pid_t pid;
J
Jeff Moyer 已提交
142

143
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
144
	struct cfq_queue *new_cfqq;
145
	struct cfq_group *cfqg;
146 147
};

148
/*
149
 * First index in the service_trees.
150 151 152 153
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
154 155
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
156 157
};

158 159 160 161 162 163 164 165 166
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

167 168
/* This is per cgroup per device grouping structure */
struct cfq_group {
169 170 171 172 173
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
174
	unsigned int weight;
175 176 177 178 179
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

180 181
	/* Per group busy queus average. Useful for workload slice calc. */
	unsigned int busy_queues_avg[2];
182 183 184 185 186 187
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
188 189 190 191

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
192
};
193

194 195 196
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
197
struct cfq_data {
198
	struct request_queue *queue;
199 200
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
201
	struct cfq_group root_group;
202 203
	/* Number of active cfq groups on group service tree */
	int nr_groups;
204

205 206
	/*
	 * The priority currently being served
207
	 */
208
	enum wl_prio_t serving_prio;
209 210
	enum wl_type_t serving_type;
	unsigned long workload_expires;
211
	struct cfq_group *serving_group;
212
	bool noidle_tree_requires_idle;
213 214 215 216 217 218 219 220

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

221 222
	unsigned int busy_queues;

223
	int rq_in_driver[2];
224
	int sync_flight;
225 226 227 228 229

	/*
	 * queue-depth detection
	 */
	int rq_queued;
230
	int hw_tag;
231 232 233 234 235 236 237 238
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
239

240 241 242 243
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
244
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
245

246 247 248
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

249 250 251 252 253
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
254

J
Jens Axboe 已提交
255
	sector_t last_position;
L
Linus Torvalds 已提交
256 257 258 259 260

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
261
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
262 263
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
264 265 266
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
267
	unsigned int cfq_latency;
268 269

	struct list_head cic_list;
L
Linus Torvalds 已提交
270

271 272 273 274
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
275 276

	unsigned long last_end_sync_rq;
L
Linus Torvalds 已提交
277 278
};

279 280
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
281
					    enum wl_type_t type,
282 283
					    struct cfq_data *cfqd)
{
284 285 286
	if (!cfqg)
		return NULL;

287
	if (prio == IDLE_WORKLOAD)
288
		return &cfqg->service_tree_idle;
289

290
	return &cfqg->service_trees[prio][type];
291 292
}

J
Jens Axboe 已提交
293
enum cfqq_state_flags {
294 295
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
296
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
297 298 299 300
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
301
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
302
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
303
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
304
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
J
Jens Axboe 已提交
305 306 307 308 309
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
310
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
311 312 313
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
314
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
315 316 317
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
318
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
319 320 321 322
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
323
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
324 325 326 327
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
328
CFQ_CFQQ_FNS(slice_new);
329
CFQ_CFQQ_FNS(sync);
330
CFQ_CFQQ_FNS(coop);
331
CFQ_CFQQ_FNS(deep);
J
Jens Axboe 已提交
332 333
#undef CFQ_CFQQ_FNS

334 335 336 337 338
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

339 340 341 342 343 344 345 346 347 348 349
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


350 351 352 353 354 355 356 357 358
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

359 360 361 362 363 364 365 366 367 368

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

369 370 371
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
372 373
{
	if (wl == IDLE_WORKLOAD)
374
		return cfqg->service_tree_idle.count;
375

376 377 378
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
379 380
}

381
static void cfq_dispatch_insert(struct request_queue *, struct request *);
382
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
383
				       struct io_context *, gfp_t);
384
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
385 386
						struct io_context *);

387 388 389 390 391
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

392
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
393
					    bool is_sync)
394
{
395
	return cic->cfqq[is_sync];
396 397 398
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
399
				struct cfq_queue *cfqq, bool is_sync)
400
{
401
	cic->cfqq[is_sync] = cfqq;
402 403 404 405 406 407
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
408
static inline bool cfq_bio_sync(struct bio *bio)
409
{
410
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
411
}
L
Linus Torvalds 已提交
412

A
Andrew Morton 已提交
413 414 415 416
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
417
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
418
{
419 420
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
421
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
422
	}
A
Andrew Morton 已提交
423 424
}

425
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
426 427 428
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

429
	return !cfqd->rq_queued;
A
Andrew Morton 已提交
430 431
}

432 433 434 435 436
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
437
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
438
				 unsigned short prio)
439
{
440
	const int base_slice = cfqd->cfq_slice[sync];
441

442 443 444 445
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
446

447 448 449 450
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
451 452
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

498 499 500 501 502 503
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

504 505
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
506
{
507 508 509
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
510
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
511

512 513 514
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
515
		cfq_hist_divisor;
516 517 518 519 520 521 522 523 524
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
525 526
}

527 528 529
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
530 531
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
532 533 534 535 536 537
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
538 539
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
540 541 542
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
543 544 545 546 547 548 549
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
550
			slice = max(slice * group_slice / expect_latency,
551 552 553
				    low_slice);
		}
	}
554
	cfqq->slice_start = jiffies;
555
	cfqq->slice_end = jiffies + slice;
556
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
557 558 559 560 561 562 563
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
564
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
565 566 567 568 569 570 571 572 573
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
574
/*
J
Jens Axboe 已提交
575
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
576
 * We choose the request that is closest to the head right now. Distance
577
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
578
 */
J
Jens Axboe 已提交
579
static struct request *
580
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
581
{
582
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
583
	unsigned long back_max;
584 585 586
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
587

J
Jens Axboe 已提交
588 589 590 591
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
592

J
Jens Axboe 已提交
593 594 595 596
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
597 598 599 600
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
601

602 603
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
620
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
621 622 623 624 625 626

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
627
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
628 629

	/* Found required data */
630 631 632 633 634 635

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
636
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
637
		if (d1 < d2)
J
Jens Axboe 已提交
638
			return rq1;
639
		else if (d2 < d1)
J
Jens Axboe 已提交
640
			return rq2;
641 642
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
643
				return rq1;
644
			else
J
Jens Axboe 已提交
645
				return rq2;
646
		}
L
Linus Torvalds 已提交
647

648
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
649
		return rq1;
650
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
651 652
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
653 654 655 656 657 658 659 660
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
661
			return rq1;
L
Linus Torvalds 已提交
662
		else
J
Jens Axboe 已提交
663
			return rq2;
L
Linus Torvalds 已提交
664 665 666
	}
}

667 668 669
/*
 * The below is leftmost cache rbtree addon
 */
670
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
671
{
672 673 674 675
	/* Service tree is empty */
	if (!root->count)
		return NULL;

676 677 678
	if (!root->left)
		root->left = rb_first(&root->rb);

679 680 681 682
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
683 684
}

685 686 687 688 689 690 691 692 693 694 695
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

696 697 698 699 700 701
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

702 703 704 705
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
706
	rb_erase_init(n, &root->rb);
707
	--root->count;
708 709
}

L
Linus Torvalds 已提交
710 711 712
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
713 714 715
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
716
{
717 718
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
719
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
720

721
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
722 723

	if (rbprev)
J
Jens Axboe 已提交
724
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
725

726
	if (rbnext)
J
Jens Axboe 已提交
727
		next = rb_entry_rq(rbnext);
728 729 730
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
731
			next = rb_entry_rq(rbnext);
732
	}
L
Linus Torvalds 已提交
733

734
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
735 736
}

737 738
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
739
{
740 741 742
	/*
	 * just an approximation, should be ok.
	 */
743
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
744
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
745 746
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
806 807
	cfqd->nr_groups++;
	st->total_weight += cfqg->weight;
808 809 810 811 812 813 814
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

815 816 817
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

818 819
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
820

821 822 823 824 825
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

	cfqg->on_st = false;
826 827
	cfqd->nr_groups--;
	st->total_weight -= cfqg->weight;
828 829
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	cfqg->saved_workload_slice = 0;
}

static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
{
	unsigned int slice_used, allocated_slice;

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
		allocated_slice = cfqq->slice_end - cfqq->slice_start;
		if (slice_used > allocated_slice)
			slice_used = allocated_slice;
	}

	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
				struct cfq_queue *cfqq)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	unsigned int used_sl;

	used_sl = cfq_cfqq_slice_usage(cfqq);

	/* Can't update vdisktime while group is on service tree */
	cfq_rb_erase(&cfqg->rb_node, st);
	cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
	__cfq_group_service_tree_add(st, cfqg);

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
882 883
}

884
/*
885
 * The cfqd->service_trees holds all pending cfq_queue's that have
886 887 888
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
889
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
890
				 bool add_front)
891
{
892 893
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
894
	unsigned long rb_key;
895
	struct cfq_rb_root *service_tree;
896
	int left;
897
	int new_cfqq = 1;
898

899 900
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
						cfqq_type(cfqq), cfqd);
901 902
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
903
		parent = rb_last(&service_tree->rb);
904 905 906 907 908 909
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
910 911 912 913 914 915
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
916
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
917
		rb_key -= cfqq->slice_resid;
918
		cfqq->slice_resid = 0;
919 920
	} else {
		rb_key = -HZ;
921
		__cfqq = cfq_rb_first(service_tree);
922 923
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
924

925
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
926
		new_cfqq = 0;
927
		/*
928
		 * same position, nothing more to do
929
		 */
930 931
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
932
			return;
L
Linus Torvalds 已提交
933

934 935
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
936
	}
937

938
	left = 1;
939
	parent = NULL;
940 941
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
942
	while (*p) {
943
		struct rb_node **n;
944

945 946 947
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

948
		/*
949
		 * sort by key, that represents service time.
950
		 */
951
		if (time_before(rb_key, __cfqq->rb_key))
952
			n = &(*p)->rb_left;
953
		else {
954
			n = &(*p)->rb_right;
955
			left = 0;
956
		}
957 958

		p = n;
959 960
	}

961
	if (left)
962
		service_tree->left = &cfqq->rb_node;
963

964 965
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
966 967
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
968 969
	if (add_front || !new_cfqq)
		return;
970
	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
971 972
}

973
static struct cfq_queue *
974 975 976
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
993
		if (sector > blk_rq_pos(cfqq->next_rq))
994
			n = &(*p)->rb_right;
995
		else if (sector < blk_rq_pos(cfqq->next_rq))
996 997 998 999
			n = &(*p)->rb_left;
		else
			break;
		p = n;
1000
		cfqq = NULL;
1001 1002 1003 1004 1005
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
1006
	return cfqq;
1007 1008 1009 1010 1011 1012 1013
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

1014 1015 1016 1017
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1018 1019 1020 1021 1022 1023

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

1024
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1025 1026
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1027 1028
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
1029 1030 1031
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
1032 1033
}

1034 1035 1036
/*
 * Update cfqq's position in the service tree.
 */
1037
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1038 1039 1040 1041
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
1042
	if (cfq_cfqq_on_rr(cfqq)) {
1043
		cfq_service_tree_add(cfqd, cfqq, 0);
1044 1045
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
1046 1047
}

L
Linus Torvalds 已提交
1048 1049
/*
 * add to busy list of queues for service, trying to be fair in ordering
1050
 * the pending list according to last request service
L
Linus Torvalds 已提交
1051
 */
J
Jens Axboe 已提交
1052
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1053
{
1054
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
1055 1056
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1057 1058
	cfqd->busy_queues++;

1059
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
1060 1061
}

1062 1063 1064 1065
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
1066
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1067
{
1068
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
1069 1070
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1071

1072 1073 1074 1075
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
1076 1077 1078 1079
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1080

1081
	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1082 1083 1084 1085 1086 1087 1088
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
1089
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1090
{
J
Jens Axboe 已提交
1091 1092
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
1093

1094 1095
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
1096

J
Jens Axboe 已提交
1097
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
		/*
		 * Queue will be deleted from service tree when we actually
		 * expire it later. Right now just remove it from prio tree
		 * as it is empty.
		 */
		if (cfqq->p_root) {
			rb_erase(&cfqq->p_node, cfqq->p_root);
			cfqq->p_root = NULL;
		}
	}
L
Linus Torvalds 已提交
1110 1111
}

J
Jens Axboe 已提交
1112
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1113
{
J
Jens Axboe 已提交
1114
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
1115
	struct cfq_data *cfqd = cfqq->cfqd;
1116
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
1117

1118
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
1119 1120 1121 1122 1123

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
1124
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
1125
		cfq_dispatch_insert(cfqd->queue, __alias);
1126 1127 1128

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
1129 1130 1131 1132

	/*
	 * check if this request is a better next-serve candidate
	 */
1133
	prev = cfqq->next_rq;
1134
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1135 1136 1137 1138 1139 1140 1141

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

1142
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
1143 1144
}

J
Jens Axboe 已提交
1145
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
1146
{
1147 1148
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
1149
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
1150 1151
}

1152 1153
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
1154
{
1155
	struct task_struct *tsk = current;
1156
	struct cfq_io_context *cic;
1157
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
1158

1159
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1160 1161 1162 1163
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1164 1165 1166
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

1167
		return elv_rb_find(&cfqq->sort_list, sector);
1168
	}
L
Linus Torvalds 已提交
1169 1170 1171 1172

	return NULL;
}

1173
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1174
{
1175
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1176

1177
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
1178
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1179
						rq_in_driver(cfqd));
1180

1181
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1182 1183
}

1184
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1185
{
1186
	struct cfq_data *cfqd = q->elevator->elevator_data;
1187
	const int sync = rq_is_sync(rq);
1188

1189 1190
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
1191
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1192
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
1193 1194
}

1195
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
1196
{
J
Jens Axboe 已提交
1197
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1198

J
Jens Axboe 已提交
1199 1200
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
1201

1202
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1203
	cfq_del_rq_rb(rq);
1204

1205
	cfqq->cfqd->rq_queued--;
1206 1207 1208 1209
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
1210 1211
}

1212 1213
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
1214 1215 1216 1217
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

1218
	__rq = cfq_find_rq_fmerge(cfqd, bio);
1219
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1220 1221
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
1222 1223 1224 1225 1226
	}

	return ELEVATOR_NO_MERGE;
}

1227
static void cfq_merged_request(struct request_queue *q, struct request *req,
1228
			       int type)
L
Linus Torvalds 已提交
1229
{
1230
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
1231
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
1232

J
Jens Axboe 已提交
1233
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
1234 1235 1236 1237
	}
}

static void
1238
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
1239 1240
		    struct request *next)
{
1241
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1242 1243 1244 1245
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1246
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1247
		list_move(&rq->queuelist, &next->queuelist);
1248 1249
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
1250

1251 1252
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
1253
	cfq_remove_request(next);
1254 1255
}

1256
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1257 1258 1259
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1260
	struct cfq_io_context *cic;
1261 1262 1263
	struct cfq_queue *cfqq;

	/*
1264
	 * Disallow merge of a sync bio into an async request.
1265
	 */
1266
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1267
		return false;
1268 1269

	/*
1270 1271
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
1272
	 */
1273
	cic = cfq_cic_lookup(cfqd, current->io_context);
1274
	if (!cic)
1275
		return false;
1276

1277
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1278
	return cfqq == RQ_CFQQ(rq);
1279 1280
}

J
Jens Axboe 已提交
1281 1282
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1283 1284
{
	if (cfqq) {
1285
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1286 1287
		cfqq->slice_start = 0;
		cfqq->dispatch_start = jiffies;
1288
		cfqq->slice_end = 0;
1289 1290 1291
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1292
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1293 1294
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1295
		cfq_mark_cfqq_slice_new(cfqq);
1296 1297

		del_timer(&cfqd->idle_slice_timer);
1298 1299 1300 1301 1302
	}

	cfqd->active_queue = cfqq;
}

1303 1304 1305 1306 1307
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1308
		    bool timed_out)
1309
{
1310 1311
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1312 1313 1314 1315 1316 1317
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1318
	 * store what was left of this slice, if the queue idled/timed out
1319
	 */
1320
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1321
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1322 1323
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1324

1325 1326
	cfq_group_served(cfqd, cfqq->cfqg, cfqq);

1327 1328 1329
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
		cfq_del_cfqq_rr(cfqd, cfqq);

1330
	cfq_resort_rr_list(cfqd, cfqq);
1331 1332 1333 1334

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

1335 1336 1337
	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
		cfqd->grp_service_tree.active = NULL;

1338 1339 1340 1341 1342 1343
	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1344
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1345 1346 1347 1348
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1349
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1350 1351
}

1352 1353 1354 1355
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1356
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1357
{
1358
	struct cfq_rb_root *service_tree =
1359 1360
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
					cfqd->serving_type, cfqd);
1361

1362 1363 1364
	if (!cfqd->rq_queued)
		return NULL;

1365 1366 1367
	/* There is nothing to dispatch */
	if (!service_tree)
		return NULL;
1368 1369 1370
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1371 1372
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
	struct cfq_group *cfqg = &cfqd->root_group;
	struct cfq_queue *cfqq;
	int i, j;
	struct cfq_rb_root *st;

	if (!cfqd->rq_queued)
		return NULL;

	for_each_cfqg_st(cfqg, i, j, st)
		if ((cfqq = cfq_rb_first(st)) != NULL)
			return cfqq;
	return NULL;
}

1389 1390 1391
/*
 * Get and set a new active queue for service.
 */
1392 1393
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1394
{
1395
	if (!cfqq)
1396
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1397

1398
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1399
	return cfqq;
1400 1401
}

1402 1403 1404
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1405 1406
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1407
	else
1408
		return cfqd->last_position - blk_rq_pos(rq);
1409 1410
}

1411 1412
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1413

1414 1415
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1416
{
1417
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1418

1419 1420
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1421

1422
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1423 1424
}

1425 1426 1427
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1428
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1440
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1441 1442 1443 1444 1445 1446 1447 1448
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1449
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1450 1451
		return __cfqq;

1452
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1453 1454 1455 1456 1457 1458 1459
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1460
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1477
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1478
{
1479 1480
	struct cfq_queue *cfqq;

1481 1482 1483 1484 1485
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1486
	/*
1487 1488 1489
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1490
	 */
1491 1492 1493 1494
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1495 1496 1497 1498 1499
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1500 1501
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1502

1503 1504 1505 1506 1507 1508
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1509
	return cfqq;
J
Jens Axboe 已提交
1510 1511
}

1512 1513 1514 1515 1516 1517 1518
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1519
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1520

1521 1522 1523
	BUG_ON(!service_tree);
	BUG_ON(!service_tree->count);

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1536
	return service_tree->count == 1;
1537 1538
}

J
Jens Axboe 已提交
1539
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1540
{
1541
	struct cfq_queue *cfqq = cfqd->active_queue;
1542
	struct cfq_io_context *cic;
1543 1544
	unsigned long sl;

1545
	/*
J
Jens Axboe 已提交
1546 1547 1548
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1549
	 */
J
Jens Axboe 已提交
1550
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1551 1552
		return;

1553
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1554
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1555 1556 1557 1558

	/*
	 * idle is disabled, either manually or by past process history
	 */
1559
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1560 1561
		return;

1562
	/*
1563
	 * still active requests from this queue, don't idle
1564
	 */
1565
	if (cfqq->dispatched)
1566 1567
		return;

1568 1569 1570
	/*
	 * task has exited, don't wait
	 */
1571
	cic = cfqd->active_cic;
1572
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1573 1574
		return;

1575 1576 1577 1578 1579 1580 1581 1582 1583
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1584
	cfq_mark_cfqq_wait_request(cfqq);
1585

J
Jens Axboe 已提交
1586
	sl = cfqd->cfq_slice_idle;
1587

1588
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1589
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1590 1591
}

1592 1593 1594
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1595
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1596
{
1597
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1598
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1599

1600 1601
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1602
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1603
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1604
	cfqq->dispatched++;
1605
	elv_dispatch_sort(q, rq);
1606 1607 1608

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1609 1610 1611 1612 1613
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1614
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1615
{
1616
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1617

J
Jens Axboe 已提交
1618
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1619
		return NULL;
1620 1621 1622

	cfq_mark_cfqq_fifo_expire(cfqq);

1623 1624
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1625

1626
	rq = rq_entry_fifo(cfqq->fifo.next);
1627
	if (time_before(jiffies, rq_fifo_time(rq)))
1628
		rq = NULL;
L
Linus Torvalds 已提交
1629

1630
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1631
	return rq;
L
Linus Torvalds 已提交
1632 1633
}

1634 1635 1636 1637
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1638

1639
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1640

1641
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1642 1643
}

J
Jeff Moyer 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1659
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1688 1689
}

1690 1691 1692
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
				struct cfq_group *cfqg, enum wl_prio_t prio,
				bool prio_changed)
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
1706
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1707 1708
			return cur_best;
		cur_best = SYNC_WORKLOAD;
1709
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1710 1711 1712 1713 1714 1715 1716
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
1717
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

1729
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1730 1731 1732 1733 1734
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;
1735
	struct cfq_rb_root *st;
1736
	unsigned group_slice;
1737

1738 1739 1740 1741 1742 1743
	if (!cfqg) {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

1744
	/* Choose next priority. RT > BE > IDLE */
1745
	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1746
		cfqd->serving_prio = RT_WORKLOAD;
1747
	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
1761 1762 1763
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
1775 1776 1777 1778
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1779 1780 1781 1782 1783 1784

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
1785 1786 1787 1788 1789
	group_slice = cfq_group_slice(cfqd, cfqg);

	slice = group_slice * count /
		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
1801
	cfqd->noidle_tree_requires_idle = false;
1802 1803
}

1804 1805 1806
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1807
	struct cfq_group *cfqg;
1808 1809 1810

	if (RB_EMPTY_ROOT(&st->rb))
		return NULL;
1811 1812 1813 1814
	cfqg = cfq_rb_first_group(st);
	st->active = &cfqg->rb_node;
	update_min_vdisktime(st);
	return cfqg;
1815 1816
}

1817 1818
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
1819 1820 1821
	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);

	cfqd->serving_group = cfqg;
1822 1823 1824 1825 1826 1827 1828

	/* Restore the workload type data */
	if (cfqg->saved_workload_slice) {
		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
		cfqd->serving_type = cfqg->saved_workload;
		cfqd->serving_prio = cfqg->saved_serving_prio;
	}
1829
	choose_service_tree(cfqd, cfqg);
1830 1831
}

1832
/*
1833 1834
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
1835
 */
1836
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
1837
{
1838
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
1839

1840 1841 1842
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
1843

1844 1845
	if (!cfqd->rq_queued)
		return NULL;
1846
	/*
J
Jens Axboe 已提交
1847
	 * The active queue has run out of time, expire it and select new.
1848
	 */
1849
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
1850
		goto expire;
L
Linus Torvalds 已提交
1851

1852
	/*
J
Jens Axboe 已提交
1853 1854
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
1855
	 */
1856
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1857
		goto keep_queue;
J
Jens Axboe 已提交
1858

1859 1860 1861 1862
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
1863
	 * tree.  If possible, merge the expiring queue with the new cfqq.
1864
	 */
1865
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
1866 1867 1868
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
1869
		goto expire;
J
Jeff Moyer 已提交
1870
	}
1871

J
Jens Axboe 已提交
1872 1873 1874 1875 1876
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
1877
	if (timer_pending(&cfqd->idle_slice_timer) ||
1878
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1879 1880
		cfqq = NULL;
		goto keep_queue;
1881 1882
	}

J
Jens Axboe 已提交
1883
expire:
1884
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
1885
new_queue:
1886 1887 1888 1889 1890
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
1891
		cfq_choose_cfqg(cfqd);
1892

1893
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1894
keep_queue:
J
Jens Axboe 已提交
1895
	return cfqq;
1896 1897
}

J
Jens Axboe 已提交
1898
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1899 1900 1901 1902 1903 1904 1905 1906 1907
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
1908 1909 1910

	/* By default cfqq is not expired if it is empty. Do it explicitly */
	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
1911 1912 1913
	return dispatched;
}

1914 1915 1916 1917
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
1918
static int cfq_forced_dispatch(struct cfq_data *cfqd)
1919
{
1920
	struct cfq_queue *cfqq;
1921
	int dispatched = 0;
1922

1923 1924
	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1925

1926
	cfq_slice_expired(cfqd, 0);
1927 1928
	BUG_ON(cfqd->busy_queues);

1929
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1930 1931 1932
	return dispatched;
}

1933
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1934 1935
{
	unsigned int max_dispatch;
1936

1937 1938 1939
	/*
	 * Drain async requests before we start sync IO
	 */
1940
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1941
		return false;
1942

1943 1944 1945 1946
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1947
		return false;
1948 1949 1950 1951

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
1952

1953 1954 1955 1956 1957 1958 1959
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
1960
		if (cfq_class_idle(cfqq))
1961
			return false;
1962

1963 1964 1965 1966
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
1967
			return false;
1968

1969
		/*
1970
		 * Sole queue user, no limit
1971
		 */
1972
		max_dispatch = -1;
1973 1974 1975 1976 1977 1978 1979
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
1980
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1981 1982
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
1983

1984
		depth = last_sync / cfqd->cfq_slice[1];
1985 1986
		if (!depth && !cfqq->dispatched)
			depth = 1;
1987 1988
		if (depth < max_dispatch)
			max_dispatch = depth;
1989
	}
1990

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
2049 2050
		return 0;

2051
	/*
2052
	 * Dispatch a request from this cfqq, if it is allowed
2053
	 */
2054 2055 2056
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

2057
	cfqq->slice_dispatch++;
2058
	cfq_clear_cfqq_must_dispatch(cfqq);
2059

2060 2061 2062 2063 2064 2065 2066 2067 2068
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
2069 2070
	}

2071
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2072
	return 1;
L
Linus Torvalds 已提交
2073 2074 2075
}

/*
J
Jens Axboe 已提交
2076 2077
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
2078 2079 2080 2081 2082
 *
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
2083 2084 2085
	struct cfq_data *cfqd = cfqq->cfqd;

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
2086 2087 2088 2089

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

2090
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
2091
	BUG_ON(rb_first(&cfqq->sort_list));
2092
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
L
Linus Torvalds 已提交
2093

2094
	if (unlikely(cfqd->active_queue == cfqq)) {
2095
		__cfq_slice_expired(cfqd, cfqq, 0);
2096
		cfq_schedule_dispatch(cfqd);
2097
	}
2098

2099
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
2100 2101 2102
	kmem_cache_free(cfq_pool, cfqq);
}

2103 2104 2105
/*
 * Must always be called with the rcu_read_lock() held
 */
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

2117
/*
2118
 * Call func for each cic attached to this ioc.
2119
 */
2120
static void
2121 2122
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
2123
{
2124
	rcu_read_lock();
2125
	__call_for_each_cic(ioc, func);
2126
	rcu_read_unlock();
2127 2128 2129 2130 2131 2132 2133 2134 2135
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
2136
	elv_ioc_count_dec(cfq_ioc_count);
2137

2138 2139 2140 2141 2142 2143 2144
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
2145
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2146 2147 2148 2149 2150
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
2151
}
2152

2153 2154 2155
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2166
	hlist_del_rcu(&cic->cic_list);
2167 2168
	spin_unlock_irqrestore(&ioc->lock, flags);

2169
	cfq_cic_free(cic);
2170 2171
}

2172 2173 2174 2175 2176
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
2177 2178 2179
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
2180 2181 2182 2183
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
2184
	 */
2185
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
2186 2187
}

2188
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2189
{
J
Jeff Moyer 已提交
2190 2191
	struct cfq_queue *__cfqq, *next;

2192
	if (unlikely(cfqq == cfqd->active_queue)) {
2193
		__cfq_slice_expired(cfqd, cfqq, 0);
2194
		cfq_schedule_dispatch(cfqd);
2195
	}
2196

J
Jeff Moyer 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

2213 2214
	cfq_put_queue(cfqq);
}
2215

2216 2217 2218
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
2219 2220
	struct io_context *ioc = cic->ioc;

2221
	list_del_init(&cic->queue_list);
2222 2223 2224 2225

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
2226
	smp_wmb();
2227
	cic->dead_key = (unsigned long) cic->key;
2228 2229
	cic->key = NULL;

2230 2231 2232
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

2233 2234 2235
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
2236 2237
	}

2238 2239 2240
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
2241
	}
2242 2243
}

2244 2245
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
2246 2247 2248 2249
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
2250
		struct request_queue *q = cfqd->queue;
2251
		unsigned long flags;
2252

2253
		spin_lock_irqsave(q->queue_lock, flags);
2254 2255 2256 2257 2258 2259 2260 2261 2262

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

2263
		spin_unlock_irqrestore(q->queue_lock, flags);
2264
	}
L
Linus Torvalds 已提交
2265 2266
}

2267 2268 2269 2270
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
2271
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
2272
{
2273
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
2274 2275
}

2276
static struct cfq_io_context *
A
Al Viro 已提交
2277
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2278
{
2279
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
2280

2281 2282
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
2283
	if (cic) {
2284
		cic->last_end_request = jiffies;
2285
		INIT_LIST_HEAD(&cic->queue_list);
2286
		INIT_HLIST_NODE(&cic->cic_list);
2287 2288
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
2289
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
2290 2291 2292 2293 2294
	}

	return cic;
}

2295
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2296 2297 2298 2299
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
2300
	if (!cfq_cfqq_prio_changed(cfqq))
2301 2302
		return;

2303
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2304
	switch (ioprio_class) {
2305 2306 2307 2308
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
2309
		 * no prio set, inherit CPU scheduling settings
2310 2311
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
2312
		cfqq->ioprio_class = task_nice_ioclass(tsk);
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
2327 2328 2329 2330 2331 2332 2333 2334
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
2335
	cfq_clear_cfqq_prio_changed(cfqq);
2336 2337
}

J
Jens Axboe 已提交
2338
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2339
{
2340 2341
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
2342
	unsigned long flags;
2343

2344 2345 2346
	if (unlikely(!cfqd))
		return;

2347
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2348

2349
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2350 2351
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2352 2353
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2354
		if (new_cfqq) {
2355
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2356 2357
			cfq_put_queue(cfqq);
		}
2358
	}
2359

2360
	cfqq = cic->cfqq[BLK_RW_SYNC];
2361 2362 2363
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2364
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2365 2366
}

2367
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2368
{
2369
	call_for_each_cic(ioc, changed_ioprio);
2370
	ioc->ioprio_changed = 0;
2371 2372
}

2373
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2374
			  pid_t pid, bool is_sync)
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	cfqq->cfqg = cfqg;
}

static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}

2403
static struct cfq_queue *
2404
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2405
		     struct io_context *ioc, gfp_t gfp_mask)
2406 2407
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2408
	struct cfq_io_context *cic;
2409
	struct cfq_group *cfqg;
2410 2411

retry:
2412
	cfqg = cfq_get_cfqg(cfqd, 1);
2413
	cic = cfq_cic_lookup(cfqd, ioc);
2414 2415
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2416

2417 2418 2419 2420 2421 2422
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2423 2424 2425 2426 2427
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2428
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2429
					gfp_mask | __GFP_ZERO,
2430
					cfqd->queue->node);
2431
			spin_lock_irq(cfqd->queue->queue_lock);
2432 2433
			if (new_cfqq)
				goto retry;
2434
		} else {
2435 2436 2437
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2438 2439
		}

2440 2441 2442
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
2443
			cfq_link_cfqq_cfqg(cfqq, cfqg);
2444 2445 2446
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2447 2448 2449 2450 2451 2452 2453 2454
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2455 2456 2457
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2458
	switch (ioprio_class) {
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2470
static struct cfq_queue *
2471
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2472 2473
	      gfp_t gfp_mask)
{
2474 2475
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2476
	struct cfq_queue **async_cfqq = NULL;
2477 2478
	struct cfq_queue *cfqq = NULL;

2479 2480 2481 2482 2483
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2484
	if (!cfqq)
2485
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2486 2487 2488 2489

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2490
	if (!is_sync && !(*async_cfqq)) {
2491
		atomic_inc(&cfqq->ref);
2492
		*async_cfqq = cfqq;
2493 2494 2495 2496 2497 2498
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2499 2500 2501
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2502
static void
2503 2504
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2505
{
2506 2507
	unsigned long flags;

2508
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2509

2510 2511
	spin_lock_irqsave(&ioc->lock, flags);

2512
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2513

2514
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2515
	hlist_del_rcu(&cic->cic_list);
2516 2517 2518
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2519 2520
}

2521
static struct cfq_io_context *
2522
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2523 2524
{
	struct cfq_io_context *cic;
2525
	unsigned long flags;
2526
	void *k;
2527

2528 2529 2530
	if (unlikely(!ioc))
		return NULL;

2531 2532
	rcu_read_lock();

J
Jens Axboe 已提交
2533 2534 2535
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2536
	cic = rcu_dereference(ioc->ioc_data);
2537 2538
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2539
		return cic;
2540
	}
J
Jens Axboe 已提交
2541

2542 2543 2544 2545 2546
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2547 2548 2549
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2550
			cfq_drop_dead_cic(cfqd, ioc, cic);
2551
			rcu_read_lock();
2552
			continue;
2553
		}
2554

2555
		spin_lock_irqsave(&ioc->lock, flags);
2556
		rcu_assign_pointer(ioc->ioc_data, cic);
2557
		spin_unlock_irqrestore(&ioc->lock, flags);
2558 2559
		break;
	} while (1);
2560

2561
	return cic;
2562 2563
}

2564 2565 2566 2567 2568
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2569 2570
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2571
{
2572
	unsigned long flags;
2573
	int ret;
2574

2575 2576 2577 2578
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2579

2580 2581 2582
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2583 2584
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2585
		spin_unlock_irqrestore(&ioc->lock, flags);
2586

2587 2588 2589 2590 2591 2592 2593
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2594 2595
	}

2596 2597
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2598

2599
	return ret;
2600 2601
}

L
Linus Torvalds 已提交
2602 2603 2604
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2605
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2606 2607
 */
static struct cfq_io_context *
2608
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2609
{
2610
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2611 2612
	struct cfq_io_context *cic;

2613
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2614

2615
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2616 2617 2618
	if (!ioc)
		return NULL;

2619
	cic = cfq_cic_lookup(cfqd, ioc);
2620 2621
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2622

2623 2624 2625
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2626

2627 2628 2629
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2630
out:
2631 2632 2633 2634
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2635
	return cic;
2636 2637
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2638 2639 2640 2641 2642
err:
	put_io_context(ioc);
	return NULL;
}

2643 2644
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2645
{
2646 2647
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2648

2649 2650 2651 2652
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2653

2654
static void
2655
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2656
		       struct request *rq)
2657 2658 2659 2660
{
	sector_t sdist;
	u64 total;

2661
	if (!cfqq->last_request_pos)
2662
		sdist = 0;
2663 2664
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2665
	else
2666
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2667 2668 2669 2670 2671

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2672 2673
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2674
	else
2675
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2676

2677 2678 2679 2680 2681
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2695
}
L
Linus Torvalds 已提交
2696

2697 2698 2699 2700 2701 2702 2703 2704
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2705
	int old_idle, enable_idle;
2706

2707 2708 2709 2710
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2711 2712
		return;

2713
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2714

2715 2716 2717
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

2718
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2719 2720
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
2721 2722
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2723
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2724 2725 2726
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2727 2728
	}

2729 2730 2731 2732 2733 2734 2735
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2736
}
L
Linus Torvalds 已提交
2737

2738 2739 2740 2741
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2742
static bool
2743
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2744
		   struct request *rq)
2745
{
J
Jens Axboe 已提交
2746
	struct cfq_queue *cfqq;
2747

J
Jens Axboe 已提交
2748 2749
	cfqq = cfqd->active_queue;
	if (!cfqq)
2750
		return false;
2751

J
Jens Axboe 已提交
2752
	if (cfq_slice_used(cfqq))
2753
		return true;
J
Jens Axboe 已提交
2754 2755

	if (cfq_class_idle(new_cfqq))
2756
		return false;
2757 2758

	if (cfq_class_idle(cfqq))
2759
		return true;
2760

2761
	/* Allow preemption only if we are idling on sync-noidle tree */
2762 2763
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2764 2765
	    new_cfqq->service_tree->count == 2 &&
	    RB_EMPTY_ROOT(&cfqq->sort_list))
2766 2767
		return true;

2768 2769 2770 2771
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2772
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2773
		return true;
2774

2775 2776 2777 2778 2779
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2780
		return true;
2781

2782 2783 2784 2785
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2786
		return true;
2787

2788
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2789
		return false;
2790 2791 2792 2793 2794

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2795
	if (cfq_rq_close(cfqd, cfqq, rq))
2796
		return true;
2797

2798
	return false;
2799 2800 2801 2802 2803 2804 2805 2806
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2807
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2808
	cfq_slice_expired(cfqd, 1);
2809

2810 2811 2812 2813 2814
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2815 2816

	cfq_service_tree_add(cfqd, cfqq, 1);
2817

2818 2819
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2820 2821 2822
}

/*
J
Jens Axboe 已提交
2823
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2824 2825 2826
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2827 2828
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
2829
{
J
Jens Axboe 已提交
2830
	struct cfq_io_context *cic = RQ_CIC(rq);
2831

2832
	cfqd->rq_queued++;
2833 2834 2835
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
2836
	cfq_update_io_thinktime(cfqd, cic);
2837
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
2838 2839
	cfq_update_idle_window(cfqd, cfqq, cic);

2840
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2841 2842 2843

	if (cfqq == cfqd->active_queue) {
		/*
2844 2845 2846
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
2847 2848
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
2849 2850 2851
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
2852
		 */
2853
		if (cfq_cfqq_wait_request(cfqq)) {
2854 2855
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
2856
				del_timer(&cfqd->idle_slice_timer);
2857 2858 2859
				__blk_run_queue(cfqd->queue);
			} else
				cfq_mark_cfqq_must_dispatch(cfqq);
2860
		}
J
Jens Axboe 已提交
2861
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2862 2863 2864
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
2865 2866
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
2867 2868
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
2869
		__blk_run_queue(cfqd->queue);
2870
	}
L
Linus Torvalds 已提交
2871 2872
}

2873
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2874
{
2875
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2876
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2877

2878
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2879
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2880

2881
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2882
	list_add_tail(&rq->queuelist, &cfqq->fifo);
2883
	cfq_add_rq_rb(rq);
2884

J
Jens Axboe 已提交
2885
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
2886 2887
}

2888 2889 2890 2891 2892 2893
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
2894 2895
	struct cfq_queue *cfqq = cfqd->active_queue;

2896 2897 2898 2899 2900
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
2901 2902

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2903
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2904 2905
		return;

S
Shaohua Li 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

2916 2917 2918
	if (cfqd->hw_tag_samples++ < 50)
		return;

2919
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2920 2921 2922 2923 2924
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

2925
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2926
{
J
Jens Axboe 已提交
2927
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2928
	struct cfq_data *cfqd = cfqq->cfqd;
2929
	const int sync = rq_is_sync(rq);
2930
	unsigned long now;
L
Linus Torvalds 已提交
2931

2932
	now = jiffies;
2933
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
2934

2935 2936
	cfq_update_hw_tag(cfqd);

2937
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
2938
	WARN_ON(!cfqq->dispatched);
2939
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
2940
	cfqq->dispatched--;
L
Linus Torvalds 已提交
2941

2942 2943 2944
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

2945
	if (sync) {
J
Jens Axboe 已提交
2946
		RQ_CIC(rq)->last_end_request = now;
2947 2948
		cfqd->last_end_sync_rq = now;
	}
2949 2950 2951 2952 2953 2954

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
2955 2956
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

2957 2958 2959 2960
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
2961
		/*
2962 2963 2964 2965 2966 2967
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
2968
		 */
2969
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2970
			cfq_slice_expired(cfqd, 1);
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
			    || cfqd->noidle_tree_requires_idle)
				cfq_arm_slice_timer(cfqd);
		}
2983
	}
J
Jens Axboe 已提交
2984

2985
	if (!rq_in_driver(cfqd))
2986
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2987 2988
}

2989 2990 2991 2992 2993
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2994
{
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
3006
		 * unboost the queue (if needed)
3007
		 */
3008 3009
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
3010 3011
	}
}
L
Linus Torvalds 已提交
3012

3013
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3014
{
3015
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
3016
		cfq_mark_cfqq_must_alloc_slice(cfqq);
3017
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
3018
	}
L
Linus Torvalds 已提交
3019

3020 3021 3022
	return ELV_MQUEUE_MAY;
}

3023
static int cfq_may_queue(struct request_queue *q, int rw)
3024 3025 3026
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
3027
	struct cfq_io_context *cic;
3028 3029 3030 3031 3032 3033 3034 3035
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
3036
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3037 3038 3039
	if (!cic)
		return ELV_MQUEUE_MAY;

3040
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3041
	if (cfqq) {
3042
		cfq_init_prio_data(cfqq, cic->ioc);
3043 3044
		cfq_prio_boost(cfqq);

3045
		return __cfq_may_queue(cfqq);
3046 3047 3048
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
3049 3050 3051 3052 3053
}

/*
 * queue lock held here
 */
3054
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
3055
{
J
Jens Axboe 已提交
3056
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
3057

J
Jens Axboe 已提交
3058
	if (cfqq) {
3059
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
3060

3061 3062
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
3063

J
Jens Axboe 已提交
3064
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3065 3066

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
3067
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
3068 3069 3070 3071 3072

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
3073 3074 3075 3076 3077 3078
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3079
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
3080 3081 3082 3083
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
3110
/*
3111
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
3112
 */
3113
static int
3114
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
3115 3116 3117 3118
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
3119
	const bool is_sync = rq_is_sync(rq);
3120
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
3121 3122 3123 3124
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

3125
	cic = cfq_get_io_context(cfqd, gfp_mask);
3126

L
Linus Torvalds 已提交
3127 3128
	spin_lock_irqsave(q->queue_lock, flags);

3129 3130 3131
	if (!cic)
		goto queue_fail;

3132
new_queue:
3133
	cfqq = cic_to_cfqq(cic, is_sync);
3134
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3135
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3136
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
3137
	} else {
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
3148 3149 3150 3151 3152 3153 3154 3155
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3156
	}
L
Linus Torvalds 已提交
3157 3158

	cfqq->allocated[rw]++;
3159
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
3160

J
Jens Axboe 已提交
3161
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
3162

J
Jens Axboe 已提交
3163 3164 3165
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
3166

3167 3168 3169
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
3170

3171
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3172
	spin_unlock_irqrestore(q->queue_lock, flags);
3173
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
3174 3175 3176
	return 1;
}

3177
static void cfq_kick_queue(struct work_struct *work)
3178
{
3179
	struct cfq_data *cfqd =
3180
		container_of(work, struct cfq_data, unplug_work);
3181
	struct request_queue *q = cfqd->queue;
3182

3183
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
3184
	__blk_run_queue(cfqd->queue);
3185
	spin_unlock_irq(q->queue_lock);
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
3196
	int timed_out = 1;
3197

3198 3199
	cfq_log(cfqd, "idle timer fired");

3200 3201
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

3202 3203
	cfqq = cfqd->active_queue;
	if (cfqq) {
3204 3205
		timed_out = 0;

3206 3207 3208 3209 3210 3211
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

3212 3213 3214
		/*
		 * expired
		 */
3215
		if (cfq_slice_used(cfqq))
3216 3217 3218 3219 3220 3221
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
3222
		if (!cfqd->busy_queues)
3223 3224 3225 3226 3227
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
3228
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3229
			goto out_kick;
3230 3231 3232 3233 3234

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
3235 3236
	}
expire:
3237
	cfq_slice_expired(cfqd, timed_out);
3238
out_kick:
3239
	cfq_schedule_dispatch(cfqd);
3240 3241 3242 3243
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
3244 3245 3246
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
3247
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
3248
}
3249

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
3260 3261 3262

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
3263 3264
}

J
Jens Axboe 已提交
3265
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
3266
{
3267
	struct cfq_data *cfqd = e->elevator_data;
3268
	struct request_queue *q = cfqd->queue;
3269

J
Jens Axboe 已提交
3270
	cfq_shutdown_timer_wq(cfqd);
3271

3272
	spin_lock_irq(q->queue_lock);
3273

3274
	if (cfqd->active_queue)
3275
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3276 3277

	while (!list_empty(&cfqd->cic_list)) {
3278 3279 3280
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
3281 3282

		__cfq_exit_single_io_context(cfqd, cic);
3283
	}
3284

3285
	cfq_put_async_queues(cfqd);
3286

3287
	spin_unlock_irq(q->queue_lock);
3288 3289 3290 3291

	cfq_shutdown_timer_wq(cfqd);

	kfree(cfqd);
L
Linus Torvalds 已提交
3292 3293
}

3294
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
3295 3296
{
	struct cfq_data *cfqd;
3297
	int i, j;
3298
	struct cfq_group *cfqg;
3299
	struct cfq_rb_root *st;
L
Linus Torvalds 已提交
3300

3301
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
3302
	if (!cfqd)
J
Jens Axboe 已提交
3303
		return NULL;
L
Linus Torvalds 已提交
3304

3305 3306 3307
	/* Init root service tree */
	cfqd->grp_service_tree = CFQ_RB_ROOT;

3308 3309
	/* Init root group */
	cfqg = &cfqd->root_group;
3310 3311
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
3312
	RB_CLEAR_NODE(&cfqg->rb_node);
3313

3314 3315 3316
	/* Give preference to root group over other groups */
	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;

3317 3318 3319 3320 3321 3322 3323 3324
	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3325 3326 3327 3328 3329 3330 3331
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);
3332
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3333

3334
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
3335 3336 3337

	cfqd->queue = q;

3338 3339 3340 3341
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

3342
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3343

L
Linus Torvalds 已提交
3344
	cfqd->cfq_quantum = cfq_quantum;
3345 3346
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
3347 3348
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
3349 3350 3351 3352
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
3353
	cfqd->cfq_latency = 1;
3354
	cfqd->hw_tag = -1;
3355
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
3356
	return cfqd;
L
Linus Torvalds 已提交
3357 3358 3359 3360
}

static void cfq_slab_kill(void)
{
3361 3362 3363 3364
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
3365 3366 3367 3368 3369 3370 3371 3372
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3373
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3374 3375 3376
	if (!cfq_pool)
		goto fail;

3377
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3406
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3407
{									\
3408
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3409 3410 3411 3412 3413 3414
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3415 3416
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3417 3418
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3419 3420 3421 3422
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3423
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3424 3425 3426
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3427
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3428
{									\
3429
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3443 3444 3445 3446
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3447
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3448 3449
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3450 3451 3452
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3453 3454
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3455
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3456 3457
#undef STORE_FUNCTION

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3471
	CFQ_ATTR(low_latency),
3472
	__ATTR_NULL
L
Linus Torvalds 已提交
3473 3474 3475 3476 3477 3478 3479
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3480
		.elevator_allow_merge_fn =	cfq_allow_merge,
3481
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3482
		.elevator_add_req_fn =		cfq_insert_request,
3483
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3484 3485 3486
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3487 3488
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3489 3490 3491 3492 3493
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3494
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3495
	},
3496
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3497 3498 3499 3500 3501 3502
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3503 3504 3505 3506 3507 3508 3509 3510
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3511 3512 3513
	if (cfq_slab_setup())
		return -ENOMEM;

3514
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3515

3516
	return 0;
L
Linus Torvalds 已提交
3517 3518 3519 3520
}

static void __exit cfq_exit(void)
{
3521
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3522
	elv_unregister(&iosched_cfq);
3523
	ioc_gone = &all_gone;
3524 3525
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3526 3527 3528 3529 3530

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3531
	if (elv_ioc_count_read(cfq_ioc_count))
3532
		wait_for_completion(&all_gone);
3533
	cfq_slab_kill();
L
Linus Torvalds 已提交
3534 3535 3536 3537 3538 3539 3540 3541
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");