cfq-iosched.c 97.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
16
#include "blk-cgroup.h"
L
Linus Torvalds 已提交
17 18 19 20

/*
 * tunables
 */
21 22
/* max queue in one round of service */
static const int cfq_quantum = 4;
23
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 25 26 27
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
28
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
29
static int cfq_slice_async = HZ / 25;
30
static const int cfq_slice_async_rq = 2;
31
static int cfq_slice_idle = HZ / 125;
32 33
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
34

35
/*
36
 * offset from end of service tree
37
 */
38
#define CFQ_IDLE_DELAY		(HZ / 5)
39 40 41 42 43 44

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

45 46 47 48 49 50
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

51
#define CFQ_SLICE_SCALE		(5)
52
#define CFQ_HW_QUEUE_MIN	(5)
53
#define CFQ_SERVICE_SHIFT       12
54

55 56
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
57
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
58

59 60
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
61

62
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63
static struct completion *ioc_gone;
64
static DEFINE_SPINLOCK(ioc_gone_lock);
65

66 67 68 69
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

70
#define sample_valid(samples)	((samples) > 80)
71
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
72

73 74 75 76 77 78 79 80 81
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
82
	unsigned count;
83
	u64 min_vdisktime;
84
	struct rb_node *active;
85
	unsigned total_weight;
86
};
87
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

118 119
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
120
	unsigned int allocated_slice;
121 122
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
123 124 125 126 127 128 129 130 131 132 133 134 135
	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

136 137 138 139
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
140
	unsigned long seeky_start;
141

142
	pid_t pid;
J
Jeff Moyer 已提交
143

144
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
145
	struct cfq_queue *new_cfqq;
146
	struct cfq_group *cfqg;
147
	struct cfq_group *orig_cfqg;
148 149
	/* Sectors dispatched in current dispatch round */
	unsigned long nr_sectors;
150 151
};

152
/*
153
 * First index in the service_trees.
154 155 156 157
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
158 159
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
160 161
};

162 163 164 165 166 167 168 169 170
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

171 172
/* This is per cgroup per device grouping structure */
struct cfq_group {
173 174 175 176 177
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
178
	unsigned int weight;
179 180 181 182 183
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

184 185
	/* Per group busy queus average. Useful for workload slice calc. */
	unsigned int busy_queues_avg[2];
186 187 188 189 190 191
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
192 193 194 195

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
196 197 198
	struct blkio_group blkg;
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	struct hlist_node cfqd_node;
199
	atomic_t ref;
200
#endif
201
};
202

203 204 205
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
206
struct cfq_data {
207
	struct request_queue *queue;
208 209
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
210
	struct cfq_group root_group;
211 212
	/* Number of active cfq groups on group service tree */
	int nr_groups;
213

214 215
	/*
	 * The priority currently being served
216
	 */
217
	enum wl_prio_t serving_prio;
218 219
	enum wl_type_t serving_type;
	unsigned long workload_expires;
220
	struct cfq_group *serving_group;
221
	bool noidle_tree_requires_idle;
222 223 224 225 226 227 228 229

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

230 231
	unsigned int busy_queues;

232
	int rq_in_driver[2];
233
	int sync_flight;
234 235 236 237 238

	/*
	 * queue-depth detection
	 */
	int rq_queued;
239
	int hw_tag;
240 241 242 243 244 245 246 247
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
248

249 250 251 252
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
253
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
254

255 256 257
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

258 259 260 261 262
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
263

J
Jens Axboe 已提交
264
	sector_t last_position;
L
Linus Torvalds 已提交
265 266 267 268 269

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
270
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
271 272
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
273 274 275
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
276
	unsigned int cfq_latency;
277
	unsigned int cfq_group_isolation;
278 279

	struct list_head cic_list;
L
Linus Torvalds 已提交
280

281 282 283 284
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
285

286
	unsigned long last_delayed_sync;
287 288 289

	/* List of cfq groups being managed on this device*/
	struct hlist_head cfqg_list;
290
	struct rcu_head rcu;
L
Linus Torvalds 已提交
291 292
};

293 294
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

295 296
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
297
					    enum wl_type_t type,
298 299
					    struct cfq_data *cfqd)
{
300 301 302
	if (!cfqg)
		return NULL;

303
	if (prio == IDLE_WORKLOAD)
304
		return &cfqg->service_tree_idle;
305

306
	return &cfqg->service_trees[prio][type];
307 308
}

J
Jens Axboe 已提交
309
enum cfqq_state_flags {
310 311
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
312
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
313 314 315 316
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
317
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
318
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
319
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
320
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
321 322
	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
	CFQ_CFQQ_FLAG_wait_busy_done,	/* Got new request. Expire the queue */
J
Jens Axboe 已提交
323 324 325 326 327
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
328
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
329 330 331
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
332
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
333 334 335
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
336
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
337 338 339 340
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
341
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
342 343 344 345
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
346
CFQ_CFQQ_FNS(slice_new);
347
CFQ_CFQQ_FNS(sync);
348
CFQ_CFQQ_FNS(coop);
349
CFQ_CFQQ_FNS(deep);
350 351
CFQ_CFQQ_FNS(wait_busy);
CFQ_CFQQ_FNS(wait_busy_done);
J
Jens Axboe 已提交
352 353
#undef CFQ_CFQQ_FNS

V
Vivek Goyal 已提交
354 355 356 357 358 359 360 361 362 363 364
#ifdef CONFIG_DEBUG_CFQ_IOSCHED
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
			blkg_path(&(cfqq)->cfqg->blkg), ##args);

#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
				blkg_path(&(cfqg)->blkg), ##args);      \

#else
365 366
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
V
Vivek Goyal 已提交
367 368
#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
#endif
369 370 371
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

372 373 374 375 376 377 378 379 380 381 382
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


383 384 385 386 387 388 389 390 391
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

392 393 394 395 396 397 398 399 400 401

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

402 403 404
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
405 406
{
	if (wl == IDLE_WORKLOAD)
407
		return cfqg->service_tree_idle.count;
408

409 410 411
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
412 413
}

414 415 416 417 418 419 420
static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg)
{
	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
}

421
static void cfq_dispatch_insert(struct request_queue *, struct request *);
422
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
423
				       struct io_context *, gfp_t);
424
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
425 426
						struct io_context *);

427 428 429 430 431
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

432
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
433
					    bool is_sync)
434
{
435
	return cic->cfqq[is_sync];
436 437 438
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
439
				struct cfq_queue *cfqq, bool is_sync)
440
{
441
	cic->cfqq[is_sync] = cfqq;
442 443 444 445 446 447
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
448
static inline bool cfq_bio_sync(struct bio *bio)
449
{
450
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
451
}
L
Linus Torvalds 已提交
452

A
Andrew Morton 已提交
453 454 455 456
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
457
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
458
{
459 460
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
461
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
462
	}
A
Andrew Morton 已提交
463 464
}

465
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
466 467 468
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

469
	return !cfqd->rq_queued;
A
Andrew Morton 已提交
470 471
}

472 473 474 475 476
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
477
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
478
				 unsigned short prio)
479
{
480
	const int base_slice = cfqd->cfq_slice[sync];
481

482 483 484 485
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
486

487 488 489 490
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
491 492
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

538 539 540 541 542 543
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

544 545
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
546
{
547 548 549
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
550
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
551

552 553 554
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
555
		cfq_hist_divisor;
556 557 558 559 560 561 562 563 564
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
565 566
}

567 568 569
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
570 571
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
572 573 574 575 576 577
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
578 579
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
580 581 582
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
583 584 585 586 587 588 589
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
590
			slice = max(slice * group_slice / expect_latency,
591 592 593
				    low_slice);
		}
	}
594
	cfqq->slice_start = jiffies;
595
	cfqq->slice_end = jiffies + slice;
596
	cfqq->allocated_slice = slice;
597
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
598 599 600 601 602 603 604
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
605
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
606 607 608 609 610 611 612 613 614
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
615
/*
J
Jens Axboe 已提交
616
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
617
 * We choose the request that is closest to the head right now. Distance
618
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
619
 */
J
Jens Axboe 已提交
620
static struct request *
621
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
622
{
623
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
624
	unsigned long back_max;
625 626 627
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
628

J
Jens Axboe 已提交
629 630 631 632
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
633

J
Jens Axboe 已提交
634 635 636 637
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
638 639 640 641
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
642

643 644
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
661
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
662 663 664 665 666 667

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
668
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
669 670

	/* Found required data */
671 672 673 674 675 676

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
677
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
678
		if (d1 < d2)
J
Jens Axboe 已提交
679
			return rq1;
680
		else if (d2 < d1)
J
Jens Axboe 已提交
681
			return rq2;
682 683
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
684
				return rq1;
685
			else
J
Jens Axboe 已提交
686
				return rq2;
687
		}
L
Linus Torvalds 已提交
688

689
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
690
		return rq1;
691
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
692 693
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
694 695 696 697 698 699 700 701
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
702
			return rq1;
L
Linus Torvalds 已提交
703
		else
J
Jens Axboe 已提交
704
			return rq2;
L
Linus Torvalds 已提交
705 706 707
	}
}

708 709 710
/*
 * The below is leftmost cache rbtree addon
 */
711
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
712
{
713 714 715 716
	/* Service tree is empty */
	if (!root->count)
		return NULL;

717 718 719
	if (!root->left)
		root->left = rb_first(&root->rb);

720 721 722 723
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
724 725
}

726 727 728 729 730 731 732 733 734 735 736
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

737 738 739 740 741 742
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

743 744 745 746
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
747
	rb_erase_init(n, &root->rb);
748
	--root->count;
749 750
}

L
Linus Torvalds 已提交
751 752 753
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
754 755 756
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
757
{
758 759
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
760
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
761

762
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
763 764

	if (rbprev)
J
Jens Axboe 已提交
765
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
766

767
	if (rbnext)
J
Jens Axboe 已提交
768
		next = rb_entry_rq(rbnext);
769 770 771
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
772
			next = rb_entry_rq(rbnext);
773
	}
L
Linus Torvalds 已提交
774

775
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
776 777
}

778 779
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
780
{
781 782 783
	/*
	 * just an approximation, should be ok.
	 */
784
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
785
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
786 787
}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
847 848
	cfqd->nr_groups++;
	st->total_weight += cfqg->weight;
849 850 851 852 853 854 855
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

856 857 858
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

859 860
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
861

862 863 864 865
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

V
Vivek Goyal 已提交
866
	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
867
	cfqg->on_st = false;
868 869
	cfqd->nr_groups--;
	st->total_weight -= cfqg->weight;
870 871
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
872
	cfqg->saved_workload_slice = 0;
873
	blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
874 875 876 877
}

static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
{
878
	unsigned int slice_used;
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
895 896
		if (slice_used > cfqq->allocated_slice)
			slice_used = cfqq->allocated_slice;
897 898
	}

899 900
	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
				cfqq->nr_sectors);
901 902 903 904 905 906 907
	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
				struct cfq_queue *cfqq)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
908 909 910 911 912 913
	unsigned int used_sl, charge_sl;
	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
			- cfqg->service_tree_idle.count;

	BUG_ON(nr_sync < 0);
	used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
914

915 916
	if (!cfq_cfqq_sync(cfqq) && !nr_sync)
		charge_sl = cfqq->allocated_slice;
917 918 919

	/* Can't update vdisktime while group is on service tree */
	cfq_rb_erase(&cfqg->rb_node, st);
920
	cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
921 922 923 924 925 926 927 928 929 930
	__cfq_group_service_tree_add(st, cfqg);

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
V
Vivek Goyal 已提交
931 932 933

	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
					st->min_vdisktime);
934 935
	blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
						cfqq->nr_sectors);
936 937
}

938 939 940 941 942 943 944 945
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct cfq_group, blkg);
	return NULL;
}

946 947 948 949 950 951
void
cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
{
	cfqg_of_blkg(blkg)->weight = weight;
}

952 953 954 955 956 957 958 959
static struct cfq_group *
cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
	struct cfq_group *cfqg = NULL;
	void *key = cfqd;
	int i, j;
	struct cfq_rb_root *st;
960 961
	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
	unsigned int major, minor;
962 963

	/* Do we need to take this reference */
964
	if (!blkiocg_css_tryget(blkcg))
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		return NULL;;

	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
	if (cfqg || !create)
		goto done;

	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
	if (!cfqg)
		goto done;

	cfqg->weight = blkcg->weight;
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
	RB_CLEAR_NODE(&cfqg->rb_node);

980 981 982 983 984 985 986 987
	/*
	 * Take the initial reference that will be released on destroy
	 * This can be thought of a joint reference by cgroup and
	 * elevator which will be dropped by either elevator exit
	 * or cgroup deletion path depending on who is exiting first.
	 */
	atomic_set(&cfqg->ref, 1);

988
	/* Add group onto cgroup list */
989 990 991
	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
					MKDEV(major, minor));
992 993 994 995 996

	/* Add group on cfqd list */
	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);

done:
997
	blkiocg_css_put(blkcg);
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	return cfqg;
}

/*
 * Search for the cfq group current task belongs to. If create = 1, then also
 * create the cfq group if it does not exist. request_queue lock must be held.
 */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	struct cgroup *cgroup;
	struct cfq_group *cfqg = NULL;

	rcu_read_lock();
	cgroup = task_cgroup(current, blkio_subsys_id);
	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
	if (!cfqg && create)
		cfqg = &cfqd->root_group;
	rcu_read_unlock();
	return cfqg;
}

static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	/* Currently, all async queues are mapped to root group */
	if (!cfq_cfqq_sync(cfqq))
		cfqg = &cfqq->cfqd->root_group;

	cfqq->cfqg = cfqg;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	/* cfqq reference on cfqg */
	atomic_inc(&cfqq->cfqg->ref);
}

static void cfq_put_cfqg(struct cfq_group *cfqg)
{
	struct cfq_rb_root *st;
	int i, j;

	BUG_ON(atomic_read(&cfqg->ref) <= 0);
	if (!atomic_dec_and_test(&cfqg->ref))
		return;
	for_each_cfqg_st(cfqg, i, j, st)
		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
	kfree(cfqg);
}

static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	/* Something wrong if we are trying to remove same group twice */
	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));

	hlist_del_init(&cfqg->cfqd_node);

	/*
	 * Put the reference taken at the time of creation so that when all
	 * queues are gone, group can be destroyed.
	 */
	cfq_put_cfqg(cfqg);
}

static void cfq_release_cfq_groups(struct cfq_data *cfqd)
{
	struct hlist_node *pos, *n;
	struct cfq_group *cfqg;

	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
		/*
		 * If cgroup removal path got to blk_group first and removed
		 * it from cgroup list, then it will take care of destroying
		 * cfqg also.
		 */
		if (!blkiocg_del_blkio_group(&cfqg->blkg))
			cfq_destroy_cfqg(cfqd, cfqg);
	}
1071
}
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

/*
 * Blk cgroup controller notification saying that blkio_group object is being
 * delinked as associated cgroup object is going away. That also means that
 * no new IO will come in this group. So get rid of this group as soon as
 * any pending IO in the group is finished.
 *
 * This function is called under rcu_read_lock(). key is the rcu protected
 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
 * read lock.
 *
 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
 * it should not be NULL as even if elevator was exiting, cgroup deltion
 * path got to it first.
 */
void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
{
	unsigned long  flags;
	struct cfq_data *cfqd = key;

	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
#else /* GROUP_IOSCHED */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}
static inline void
cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
	cfqq->cfqg = cfqg;
}

1107 1108 1109
static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}

1110 1111
#endif /* GROUP_IOSCHED */

1112
/*
1113
 * The cfqd->service_trees holds all pending cfq_queue's that have
1114 1115 1116
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
1117
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1118
				 bool add_front)
1119
{
1120 1121
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
1122
	unsigned long rb_key;
1123
	struct cfq_rb_root *service_tree;
1124
	int left;
1125
	int new_cfqq = 1;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	int group_changed = 0;

#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (!cfqd->cfq_group_isolation
	    && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
	    && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
		/* Move this cfq to root group */
		cfq_log_cfqq(cfqd, cfqq, "moving to root group");
		if (!RB_EMPTY_NODE(&cfqq->rb_node))
			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
		cfqq->orig_cfqg = cfqq->cfqg;
		cfqq->cfqg = &cfqd->root_group;
		atomic_inc(&cfqd->root_group.ref);
		group_changed = 1;
	} else if (!cfqd->cfq_group_isolation
		   && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
		/* cfqq is sequential now needs to go to its original group */
		BUG_ON(cfqq->cfqg != &cfqd->root_group);
		if (!RB_EMPTY_NODE(&cfqq->rb_node))
			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
		cfq_put_cfqg(cfqq->cfqg);
		cfqq->cfqg = cfqq->orig_cfqg;
		cfqq->orig_cfqg = NULL;
		group_changed = 1;
		cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
	}
#endif
1153

1154 1155
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
						cfqq_type(cfqq), cfqd);
1156 1157
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
1158
		parent = rb_last(&service_tree->rb);
1159 1160 1161 1162 1163 1164
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
1165 1166 1167 1168 1169 1170
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
1171
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1172
		rb_key -= cfqq->slice_resid;
1173
		cfqq->slice_resid = 0;
1174 1175
	} else {
		rb_key = -HZ;
1176
		__cfqq = cfq_rb_first(service_tree);
1177 1178
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
1179

1180
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1181
		new_cfqq = 0;
1182
		/*
1183
		 * same position, nothing more to do
1184
		 */
1185 1186
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
1187
			return;
L
Linus Torvalds 已提交
1188

1189 1190
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
1191
	}
1192

1193
	left = 1;
1194
	parent = NULL;
1195 1196
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
1197
	while (*p) {
1198
		struct rb_node **n;
1199

1200 1201 1202
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

1203
		/*
1204
		 * sort by key, that represents service time.
1205
		 */
1206
		if (time_before(rb_key, __cfqq->rb_key))
1207
			n = &(*p)->rb_left;
1208
		else {
1209
			n = &(*p)->rb_right;
1210
			left = 0;
1211
		}
1212 1213

		p = n;
1214 1215
	}

1216
	if (left)
1217
		service_tree->left = &cfqq->rb_node;
1218

1219 1220
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
1221 1222
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
1223
	if ((add_front || !new_cfqq) && !group_changed)
1224
		return;
1225
	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1226 1227
}

1228
static struct cfq_queue *
1229 1230 1231
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
1248
		if (sector > blk_rq_pos(cfqq->next_rq))
1249
			n = &(*p)->rb_right;
1250
		else if (sector < blk_rq_pos(cfqq->next_rq))
1251 1252 1253 1254
			n = &(*p)->rb_left;
		else
			break;
		p = n;
1255
		cfqq = NULL;
1256 1257 1258 1259 1260
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
1261
	return cfqq;
1262 1263 1264 1265 1266 1267 1268
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

1269 1270 1271 1272
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1273 1274 1275 1276 1277 1278

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

1279
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1280 1281
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1282 1283
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
1284 1285 1286
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
1287 1288
}

1289 1290 1291
/*
 * Update cfqq's position in the service tree.
 */
1292
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1293 1294 1295 1296
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
1297
	if (cfq_cfqq_on_rr(cfqq)) {
1298
		cfq_service_tree_add(cfqd, cfqq, 0);
1299 1300
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
1301 1302
}

L
Linus Torvalds 已提交
1303 1304
/*
 * add to busy list of queues for service, trying to be fair in ordering
1305
 * the pending list according to last request service
L
Linus Torvalds 已提交
1306
 */
J
Jens Axboe 已提交
1307
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1308
{
1309
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
1310 1311
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1312 1313
	cfqd->busy_queues++;

1314
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
1315 1316
}

1317 1318 1319 1320
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
1321
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1322
{
1323
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
1324 1325
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1326

1327 1328 1329 1330
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
1331 1332 1333 1334
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1335

1336
	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1337 1338 1339 1340 1341 1342 1343
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
1344
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1345
{
J
Jens Axboe 已提交
1346 1347
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
1348

1349 1350
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
1351

J
Jens Axboe 已提交
1352
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
		/*
		 * Queue will be deleted from service tree when we actually
		 * expire it later. Right now just remove it from prio tree
		 * as it is empty.
		 */
		if (cfqq->p_root) {
			rb_erase(&cfqq->p_node, cfqq->p_root);
			cfqq->p_root = NULL;
		}
	}
L
Linus Torvalds 已提交
1365 1366
}

J
Jens Axboe 已提交
1367
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1368
{
J
Jens Axboe 已提交
1369
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
1370
	struct cfq_data *cfqd = cfqq->cfqd;
1371
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
1372

1373
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
1374 1375 1376 1377 1378

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
1379
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
1380
		cfq_dispatch_insert(cfqd->queue, __alias);
1381 1382 1383

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
1384 1385 1386 1387

	/*
	 * check if this request is a better next-serve candidate
	 */
1388
	prev = cfqq->next_rq;
1389
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1390 1391 1392 1393 1394 1395 1396

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

1397
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
1398 1399
}

J
Jens Axboe 已提交
1400
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
1401
{
1402 1403
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
1404
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
1405 1406
}

1407 1408
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
1409
{
1410
	struct task_struct *tsk = current;
1411
	struct cfq_io_context *cic;
1412
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
1413

1414
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1415 1416 1417 1418
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1419 1420 1421
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

1422
		return elv_rb_find(&cfqq->sort_list, sector);
1423
	}
L
Linus Torvalds 已提交
1424 1425 1426 1427

	return NULL;
}

1428
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1429
{
1430
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1431

1432
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
1433
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1434
						rq_in_driver(cfqd));
1435

1436
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1437 1438
}

1439
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1440
{
1441
	struct cfq_data *cfqd = q->elevator->elevator_data;
1442
	const int sync = rq_is_sync(rq);
1443

1444 1445
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
1446
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1447
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
1448 1449
}

1450
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
1451
{
J
Jens Axboe 已提交
1452
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1453

J
Jens Axboe 已提交
1454 1455
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
1456

1457
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1458
	cfq_del_rq_rb(rq);
1459

1460
	cfqq->cfqd->rq_queued--;
1461 1462 1463 1464
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
1465 1466
}

1467 1468
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
1469 1470 1471 1472
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

1473
	__rq = cfq_find_rq_fmerge(cfqd, bio);
1474
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1475 1476
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
1477 1478 1479 1480 1481
	}

	return ELEVATOR_NO_MERGE;
}

1482
static void cfq_merged_request(struct request_queue *q, struct request *req,
1483
			       int type)
L
Linus Torvalds 已提交
1484
{
1485
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
1486
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
1487

J
Jens Axboe 已提交
1488
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
1489 1490 1491 1492
	}
}

static void
1493
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
1494 1495
		    struct request *next)
{
1496
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1497 1498 1499 1500
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1501
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1502
		list_move(&rq->queuelist, &next->queuelist);
1503 1504
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
1505

1506 1507
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
1508
	cfq_remove_request(next);
1509 1510
}

1511
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1512 1513 1514
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1515
	struct cfq_io_context *cic;
1516 1517
	struct cfq_queue *cfqq;

1518 1519 1520
	/* Deny merge if bio and rq don't belong to same cfq group */
	if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
		return false;
1521
	/*
1522
	 * Disallow merge of a sync bio into an async request.
1523
	 */
1524
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1525
		return false;
1526 1527

	/*
1528 1529
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
1530
	 */
1531
	cic = cfq_cic_lookup(cfqd, current->io_context);
1532
	if (!cic)
1533
		return false;
1534

1535
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1536
	return cfqq == RQ_CFQQ(rq);
1537 1538
}

J
Jens Axboe 已提交
1539 1540
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1541 1542
{
	if (cfqq) {
1543
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1544 1545
		cfqq->slice_start = 0;
		cfqq->dispatch_start = jiffies;
1546
		cfqq->allocated_slice = 0;
1547
		cfqq->slice_end = 0;
1548
		cfqq->slice_dispatch = 0;
1549
		cfqq->nr_sectors = 0;
1550 1551

		cfq_clear_cfqq_wait_request(cfqq);
1552
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1553 1554
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1555
		cfq_mark_cfqq_slice_new(cfqq);
1556 1557

		del_timer(&cfqd->idle_slice_timer);
1558 1559 1560 1561 1562
	}

	cfqd->active_queue = cfqq;
}

1563 1564 1565 1566 1567
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1568
		    bool timed_out)
1569
{
1570 1571
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1572 1573 1574 1575
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);
1576 1577
	cfq_clear_cfqq_wait_busy(cfqq);
	cfq_clear_cfqq_wait_busy_done(cfqq);
1578 1579

	/*
1580
	 * store what was left of this slice, if the queue idled/timed out
1581
	 */
1582
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1583
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1584 1585
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1586

1587 1588
	cfq_group_served(cfqd, cfqq->cfqg, cfqq);

1589 1590 1591
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
		cfq_del_cfqq_rr(cfqd, cfqq);

1592
	cfq_resort_rr_list(cfqd, cfqq);
1593 1594 1595 1596

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

1597 1598 1599
	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
		cfqd->grp_service_tree.active = NULL;

1600 1601 1602 1603 1604 1605
	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1606
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1607 1608 1609 1610
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1611
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1612 1613
}

1614 1615 1616 1617
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1618
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1619
{
1620
	struct cfq_rb_root *service_tree =
1621 1622
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
					cfqd->serving_type, cfqd);
1623

1624 1625 1626
	if (!cfqd->rq_queued)
		return NULL;

1627 1628 1629
	/* There is nothing to dispatch */
	if (!service_tree)
		return NULL;
1630 1631 1632
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1633 1634
}

1635 1636
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
1637
	struct cfq_group *cfqg;
1638 1639 1640 1641 1642 1643 1644
	struct cfq_queue *cfqq;
	int i, j;
	struct cfq_rb_root *st;

	if (!cfqd->rq_queued)
		return NULL;

1645 1646 1647 1648
	cfqg = cfq_get_next_cfqg(cfqd);
	if (!cfqg)
		return NULL;

1649 1650 1651 1652 1653 1654
	for_each_cfqg_st(cfqg, i, j, st)
		if ((cfqq = cfq_rb_first(st)) != NULL)
			return cfqq;
	return NULL;
}

1655 1656 1657
/*
 * Get and set a new active queue for service.
 */
1658 1659
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1660
{
1661
	if (!cfqq)
1662
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1663

1664
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1665
	return cfqq;
1666 1667
}

1668 1669 1670
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1671 1672
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1673
	else
1674
		return cfqd->last_position - blk_rq_pos(rq);
1675 1676
}

1677 1678
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1679

1680 1681
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1682
{
1683
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1684

1685 1686
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1687

1688
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1689 1690
}

1691 1692 1693
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1694
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1706
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1707 1708 1709 1710 1711 1712 1713 1714
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1715
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1716 1717
		return __cfqq;

1718
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1719 1720 1721 1722 1723 1724 1725
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1726
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1743
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1744
{
1745 1746
	struct cfq_queue *cfqq;

1747 1748 1749 1750 1751
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

1752 1753 1754 1755 1756 1757
	/*
	 * Don't search priority tree if it's the only queue in the group.
	 */
	if (cur_cfqq->cfqg->nr_cfqq == 1)
		return NULL;

J
Jens Axboe 已提交
1758
	/*
1759 1760 1761
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1762
	 */
1763 1764 1765 1766
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

1767 1768 1769 1770
	/* If new queue belongs to different cfq_group, don't choose it */
	if (cur_cfqq->cfqg != cfqq->cfqg)
		return NULL;

J
Jeff Moyer 已提交
1771 1772 1773 1774 1775
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1776 1777
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1778

1779 1780 1781 1782 1783 1784
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1785
	return cfqq;
J
Jens Axboe 已提交
1786 1787
}

1788 1789 1790 1791 1792 1793 1794
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1795
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1796

1797 1798 1799
	BUG_ON(!service_tree);
	BUG_ON(!service_tree->count);

1800 1801 1802 1803 1804
	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
1805 1806
	if (cfq_cfqq_idle_window(cfqq) &&
	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1807 1808 1809 1810 1811 1812
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1813
	return service_tree->count == 1;
1814 1815
}

J
Jens Axboe 已提交
1816
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1817
{
1818
	struct cfq_queue *cfqq = cfqd->active_queue;
1819
	struct cfq_io_context *cic;
1820 1821
	unsigned long sl;

1822
	/*
J
Jens Axboe 已提交
1823 1824 1825
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1826
	 */
J
Jens Axboe 已提交
1827
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1828 1829
		return;

1830
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1831
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1832 1833 1834 1835

	/*
	 * idle is disabled, either manually or by past process history
	 */
1836
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1837 1838
		return;

1839
	/*
1840
	 * still active requests from this queue, don't idle
1841
	 */
1842
	if (cfqq->dispatched)
1843 1844
		return;

1845 1846 1847
	/*
	 * task has exited, don't wait
	 */
1848
	cic = cfqd->active_cic;
1849
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1850 1851
		return;

1852 1853 1854 1855 1856 1857 1858 1859 1860
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1861
	cfq_mark_cfqq_wait_request(cfqq);
1862

J
Jens Axboe 已提交
1863
	sl = cfqd->cfq_slice_idle;
1864

1865
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1866
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1867 1868
}

1869 1870 1871
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1872
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1873
{
1874
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1875
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1876

1877 1878
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1879
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1880
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1881
	cfqq->dispatched++;
1882
	elv_dispatch_sort(q, rq);
1883 1884 1885

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
1886
	cfqq->nr_sectors += blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1887 1888 1889 1890 1891
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1892
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1893
{
1894
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1895

J
Jens Axboe 已提交
1896
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1897
		return NULL;
1898 1899 1900

	cfq_mark_cfqq_fifo_expire(cfqq);

1901 1902
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1903

1904
	rq = rq_entry_fifo(cfqq->fifo.next);
1905
	if (time_before(jiffies, rq_fifo_time(rq)))
1906
		rq = NULL;
L
Linus Torvalds 已提交
1907

1908
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1909
	return rq;
L
Linus Torvalds 已提交
1910 1911
}

1912 1913 1914 1915
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1916

1917
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1918

1919
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1920 1921
}

J
Jeff Moyer 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1937
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1966 1967
}

1968 1969 1970
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
				struct cfq_group *cfqg, enum wl_prio_t prio,
				bool prio_changed)
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
1984
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1985 1986
			return cur_best;
		cur_best = SYNC_WORKLOAD;
1987
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1988 1989 1990 1991 1992 1993 1994
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
1995
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

2007
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2008 2009 2010 2011 2012
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;
2013
	struct cfq_rb_root *st;
2014
	unsigned group_slice;
2015

2016 2017 2018 2019 2020 2021
	if (!cfqg) {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

2022
	/* Choose next priority. RT > BE > IDLE */
2023
	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2024
		cfqd->serving_prio = RT_WORKLOAD;
2025
	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
2039 2040 2041
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
2053 2054 2055 2056
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
2057 2058 2059 2060 2061 2062

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
2063 2064 2065 2066 2067
	group_slice = cfq_group_slice(cfqd, cfqg);

	slice = group_slice * count /
		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2068

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	if (cfqd->serving_type == ASYNC_WORKLOAD) {
		unsigned int tmp;

		/*
		 * Async queues are currently system wide. Just taking
		 * proportion of queues with-in same group will lead to higher
		 * async ratio system wide as generally root group is going
		 * to have higher weight. A more accurate thing would be to
		 * calculate system wide asnc/sync ratio.
		 */
		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
		tmp = tmp/cfqd->busy_queues;
		slice = min_t(unsigned, slice, tmp);

2083 2084 2085
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2086
	} else
2087 2088 2089 2090 2091
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
2092
	cfqd->noidle_tree_requires_idle = false;
2093 2094
}

2095 2096 2097
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2098
	struct cfq_group *cfqg;
2099 2100 2101

	if (RB_EMPTY_ROOT(&st->rb))
		return NULL;
2102 2103 2104 2105
	cfqg = cfq_rb_first_group(st);
	st->active = &cfqg->rb_node;
	update_min_vdisktime(st);
	return cfqg;
2106 2107
}

2108 2109
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
2110 2111 2112
	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);

	cfqd->serving_group = cfqg;
2113 2114 2115 2116 2117 2118 2119

	/* Restore the workload type data */
	if (cfqg->saved_workload_slice) {
		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
		cfqd->serving_type = cfqg->saved_workload;
		cfqd->serving_prio = cfqg->saved_serving_prio;
	}
2120
	choose_service_tree(cfqd, cfqg);
2121 2122
}

2123
/*
2124 2125
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
2126
 */
2127
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
2128
{
2129
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
2130

2131 2132 2133
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
2134

2135 2136
	if (!cfqd->rq_queued)
		return NULL;
2137
	/*
J
Jens Axboe 已提交
2138
	 * The active queue has run out of time, expire it and select new.
2139
	 */
2140 2141
	if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
	     && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
2142
		goto expire;
L
Linus Torvalds 已提交
2143

2144
	/*
J
Jens Axboe 已提交
2145 2146
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
2147
	 */
2148
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2149
		goto keep_queue;
J
Jens Axboe 已提交
2150

2151 2152 2153 2154
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
2155
	 * tree.  If possible, merge the expiring queue with the new cfqq.
2156
	 */
2157
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
2158 2159 2160
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
2161
		goto expire;
J
Jeff Moyer 已提交
2162
	}
2163

J
Jens Axboe 已提交
2164 2165 2166 2167 2168
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
2169
	if (timer_pending(&cfqd->idle_slice_timer) ||
2170
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2171 2172
		cfqq = NULL;
		goto keep_queue;
2173 2174
	}

J
Jens Axboe 已提交
2175
expire:
2176
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
2177
new_queue:
2178 2179 2180 2181 2182
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
2183
		cfq_choose_cfqg(cfqd);
2184

2185
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2186
keep_queue:
J
Jens Axboe 已提交
2187
	return cfqq;
2188 2189
}

J
Jens Axboe 已提交
2190
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2191 2192 2193 2194 2195 2196 2197 2198 2199
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
2200 2201 2202

	/* By default cfqq is not expired if it is empty. Do it explicitly */
	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2203 2204 2205
	return dispatched;
}

2206 2207 2208 2209
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
2210
static int cfq_forced_dispatch(struct cfq_data *cfqd)
2211
{
2212
	struct cfq_queue *cfqq;
2213
	int dispatched = 0;
2214

2215 2216
	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2217

2218
	cfq_slice_expired(cfqd, 0);
2219 2220
	BUG_ON(cfqd->busy_queues);

2221
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2222 2223 2224
	return dispatched;
}

2225
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2226 2227
{
	unsigned int max_dispatch;
2228

2229 2230 2231
	/*
	 * Drain async requests before we start sync IO
	 */
2232
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2233
		return false;
2234

2235 2236 2237 2238
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2239
		return false;
2240 2241 2242 2243

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
2244

2245 2246 2247 2248 2249 2250 2251
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
2252
		if (cfq_class_idle(cfqq))
2253
			return false;
2254

2255 2256 2257 2258
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
2259
			return false;
2260

2261
		/*
2262
		 * Sole queue user, no limit
2263
		 */
2264
		max_dispatch = -1;
2265 2266 2267 2268 2269 2270 2271
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
2272
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2273
		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2274
		unsigned int depth;
2275

2276
		depth = last_sync / cfqd->cfq_slice[1];
2277 2278
		if (!depth && !cfqq->dispatched)
			depth = 1;
2279 2280
		if (depth < max_dispatch)
			max_dispatch = depth;
2281
	}
2282

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
2341 2342
		return 0;

2343
	/*
2344
	 * Dispatch a request from this cfqq, if it is allowed
2345
	 */
2346 2347 2348
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

2349
	cfqq->slice_dispatch++;
2350
	cfq_clear_cfqq_must_dispatch(cfqq);
2351

2352 2353 2354 2355 2356 2357 2358 2359 2360
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
2361 2362
	}

2363
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2364
	return 1;
L
Linus Torvalds 已提交
2365 2366 2367
}

/*
J
Jens Axboe 已提交
2368 2369
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
2370
 *
2371
 * Each cfq queue took a reference on the parent group. Drop it now.
L
Linus Torvalds 已提交
2372 2373 2374 2375
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
2376
	struct cfq_data *cfqd = cfqq->cfqd;
2377
	struct cfq_group *cfqg, *orig_cfqg;
2378 2379

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
2380 2381 2382 2383

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

2384
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
2385
	BUG_ON(rb_first(&cfqq->sort_list));
2386
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2387
	cfqg = cfqq->cfqg;
2388
	orig_cfqg = cfqq->orig_cfqg;
L
Linus Torvalds 已提交
2389

2390
	if (unlikely(cfqd->active_queue == cfqq)) {
2391
		__cfq_slice_expired(cfqd, cfqq, 0);
2392
		cfq_schedule_dispatch(cfqd);
2393
	}
2394

2395
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
2396
	kmem_cache_free(cfq_pool, cfqq);
2397
	cfq_put_cfqg(cfqg);
2398 2399
	if (orig_cfqg)
		cfq_put_cfqg(orig_cfqg);
L
Linus Torvalds 已提交
2400 2401
}

2402 2403 2404
/*
 * Must always be called with the rcu_read_lock() held
 */
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

2416
/*
2417
 * Call func for each cic attached to this ioc.
2418
 */
2419
static void
2420 2421
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
2422
{
2423
	rcu_read_lock();
2424
	__call_for_each_cic(ioc, func);
2425
	rcu_read_unlock();
2426 2427 2428 2429 2430 2431 2432 2433 2434
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
2435
	elv_ioc_count_dec(cfq_ioc_count);
2436

2437 2438 2439 2440 2441 2442 2443
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
2444
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2445 2446 2447 2448 2449
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
2450
}
2451

2452 2453 2454
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2465
	hlist_del_rcu(&cic->cic_list);
2466 2467
	spin_unlock_irqrestore(&ioc->lock, flags);

2468
	cfq_cic_free(cic);
2469 2470
}

2471 2472 2473 2474 2475
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
2476 2477 2478
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
2479 2480 2481 2482
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
2483
	 */
2484
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
2485 2486
}

2487
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2488
{
J
Jeff Moyer 已提交
2489 2490
	struct cfq_queue *__cfqq, *next;

2491
	if (unlikely(cfqq == cfqd->active_queue)) {
2492
		__cfq_slice_expired(cfqd, cfqq, 0);
2493
		cfq_schedule_dispatch(cfqd);
2494
	}
2495

J
Jeff Moyer 已提交
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

2512 2513
	cfq_put_queue(cfqq);
}
2514

2515 2516 2517
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
2518 2519
	struct io_context *ioc = cic->ioc;

2520
	list_del_init(&cic->queue_list);
2521 2522 2523 2524

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
2525
	smp_wmb();
2526
	cic->dead_key = (unsigned long) cic->key;
2527 2528
	cic->key = NULL;

2529 2530 2531
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

2532 2533 2534
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
2535 2536
	}

2537 2538 2539
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
2540
	}
2541 2542
}

2543 2544
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
2545 2546 2547 2548
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
2549
		struct request_queue *q = cfqd->queue;
2550
		unsigned long flags;
2551

2552
		spin_lock_irqsave(q->queue_lock, flags);
2553 2554 2555 2556 2557 2558 2559 2560 2561

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

2562
		spin_unlock_irqrestore(q->queue_lock, flags);
2563
	}
L
Linus Torvalds 已提交
2564 2565
}

2566 2567 2568 2569
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
2570
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
2571
{
2572
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
2573 2574
}

2575
static struct cfq_io_context *
A
Al Viro 已提交
2576
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2577
{
2578
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
2579

2580 2581
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
2582
	if (cic) {
2583
		cic->last_end_request = jiffies;
2584
		INIT_LIST_HEAD(&cic->queue_list);
2585
		INIT_HLIST_NODE(&cic->cic_list);
2586 2587
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
2588
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
2589 2590 2591 2592 2593
	}

	return cic;
}

2594
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2595 2596 2597 2598
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
2599
	if (!cfq_cfqq_prio_changed(cfqq))
2600 2601
		return;

2602
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2603
	switch (ioprio_class) {
2604 2605 2606 2607
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
2608
		 * no prio set, inherit CPU scheduling settings
2609 2610
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
2611
		cfqq->ioprio_class = task_nice_ioclass(tsk);
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
2626 2627 2628 2629 2630 2631 2632 2633
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
2634
	cfq_clear_cfqq_prio_changed(cfqq);
2635 2636
}

J
Jens Axboe 已提交
2637
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2638
{
2639 2640
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
2641
	unsigned long flags;
2642

2643 2644 2645
	if (unlikely(!cfqd))
		return;

2646
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2647

2648
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2649 2650
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2651 2652
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2653
		if (new_cfqq) {
2654
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2655 2656
			cfq_put_queue(cfqq);
		}
2657
	}
2658

2659
	cfqq = cic->cfqq[BLK_RW_SYNC];
2660 2661 2662
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2663
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2664 2665
}

2666
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2667
{
2668
	call_for_each_cic(ioc, changed_ioprio);
2669
	ioc->ioprio_changed = 0;
2670 2671
}

2672
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2673
			  pid_t pid, bool is_sync)
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
{
	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
	struct cfq_data *cfqd = cic->key;
	unsigned long flags;
	struct request_queue *q;

	if (unlikely(!cfqd))
		return;

	q = cfqd->queue;

	spin_lock_irqsave(q->queue_lock, flags);

	if (sync_cfqq) {
		/*
		 * Drop reference to sync queue. A new sync queue will be
		 * assigned in new group upon arrival of a fresh request.
		 */
		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
		cic_set_cfqq(cic, NULL, 1);
		cfq_put_queue(sync_cfqq);
	}

	spin_unlock_irqrestore(q->queue_lock, flags);
}

static void cfq_ioc_set_cgroup(struct io_context *ioc)
{
	call_for_each_cic(ioc, changed_cgroup);
	ioc->cgroup_changed = 0;
}
#endif  /* CONFIG_CFQ_GROUP_IOSCHED */

2727
static struct cfq_queue *
2728
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2729
		     struct io_context *ioc, gfp_t gfp_mask)
2730 2731
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2732
	struct cfq_io_context *cic;
2733
	struct cfq_group *cfqg;
2734 2735

retry:
2736
	cfqg = cfq_get_cfqg(cfqd, 1);
2737
	cic = cfq_cic_lookup(cfqd, ioc);
2738 2739
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2740

2741 2742 2743 2744 2745 2746
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2747 2748 2749 2750 2751
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2752
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2753
					gfp_mask | __GFP_ZERO,
2754
					cfqd->queue->node);
2755
			spin_lock_irq(cfqd->queue->queue_lock);
2756 2757
			if (new_cfqq)
				goto retry;
2758
		} else {
2759 2760 2761
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2762 2763
		}

2764 2765 2766
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
2767
			cfq_link_cfqq_cfqg(cfqq, cfqg);
2768 2769 2770
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2771 2772 2773 2774 2775 2776 2777 2778
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2779 2780 2781
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2782
	switch (ioprio_class) {
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2794
static struct cfq_queue *
2795
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2796 2797
	      gfp_t gfp_mask)
{
2798 2799
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2800
	struct cfq_queue **async_cfqq = NULL;
2801 2802
	struct cfq_queue *cfqq = NULL;

2803 2804 2805 2806 2807
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2808
	if (!cfqq)
2809
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2810 2811 2812 2813

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2814
	if (!is_sync && !(*async_cfqq)) {
2815
		atomic_inc(&cfqq->ref);
2816
		*async_cfqq = cfqq;
2817 2818 2819 2820 2821 2822
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2823 2824 2825
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2826
static void
2827 2828
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2829
{
2830 2831
	unsigned long flags;

2832
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2833

2834 2835
	spin_lock_irqsave(&ioc->lock, flags);

2836
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2837

2838
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2839
	hlist_del_rcu(&cic->cic_list);
2840 2841 2842
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2843 2844
}

2845
static struct cfq_io_context *
2846
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2847 2848
{
	struct cfq_io_context *cic;
2849
	unsigned long flags;
2850
	void *k;
2851

2852 2853 2854
	if (unlikely(!ioc))
		return NULL;

2855 2856
	rcu_read_lock();

J
Jens Axboe 已提交
2857 2858 2859
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2860
	cic = rcu_dereference(ioc->ioc_data);
2861 2862
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2863
		return cic;
2864
	}
J
Jens Axboe 已提交
2865

2866 2867 2868 2869 2870
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2871 2872 2873
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2874
			cfq_drop_dead_cic(cfqd, ioc, cic);
2875
			rcu_read_lock();
2876
			continue;
2877
		}
2878

2879
		spin_lock_irqsave(&ioc->lock, flags);
2880
		rcu_assign_pointer(ioc->ioc_data, cic);
2881
		spin_unlock_irqrestore(&ioc->lock, flags);
2882 2883
		break;
	} while (1);
2884

2885
	return cic;
2886 2887
}

2888 2889 2890 2891 2892
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2893 2894
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2895
{
2896
	unsigned long flags;
2897
	int ret;
2898

2899 2900 2901 2902
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2903

2904 2905 2906
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2907 2908
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2909
		spin_unlock_irqrestore(&ioc->lock, flags);
2910

2911 2912 2913 2914 2915 2916 2917
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2918 2919
	}

2920 2921
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2922

2923
	return ret;
2924 2925
}

L
Linus Torvalds 已提交
2926 2927 2928
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2929
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2930 2931
 */
static struct cfq_io_context *
2932
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2933
{
2934
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2935 2936
	struct cfq_io_context *cic;

2937
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2938

2939
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2940 2941 2942
	if (!ioc)
		return NULL;

2943
	cic = cfq_cic_lookup(cfqd, ioc);
2944 2945
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2946

2947 2948 2949
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2950

2951 2952 2953
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2954
out:
2955 2956 2957 2958
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

2959 2960 2961 2962
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (unlikely(ioc->cgroup_changed))
		cfq_ioc_set_cgroup(ioc);
#endif
L
Linus Torvalds 已提交
2963
	return cic;
2964 2965
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2966 2967 2968 2969 2970
err:
	put_io_context(ioc);
	return NULL;
}

2971 2972
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2973
{
2974 2975
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2976

2977 2978 2979 2980
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2981

2982
static void
2983
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2984
		       struct request *rq)
2985 2986 2987 2988
{
	sector_t sdist;
	u64 total;

2989
	if (!cfqq->last_request_pos)
2990
		sdist = 0;
2991 2992
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2993
	else
2994
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2995 2996 2997 2998 2999

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
3000 3001
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
3002
	else
3003
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
3004

3005 3006 3007 3008 3009
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
3023
}
L
Linus Torvalds 已提交
3024

3025 3026 3027 3028 3029 3030 3031 3032
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
3033
	int old_idle, enable_idle;
3034

3035 3036 3037 3038
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3039 3040
		return;

3041
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
3042

3043 3044 3045
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

3046
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3047 3048
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
3049 3050
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
3051
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
3052 3053 3054
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
3055 3056
	}

3057 3058 3059 3060 3061 3062 3063
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
3064
}
L
Linus Torvalds 已提交
3065

3066 3067 3068 3069
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
3070
static bool
3071
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
3072
		   struct request *rq)
3073
{
J
Jens Axboe 已提交
3074
	struct cfq_queue *cfqq;
3075

J
Jens Axboe 已提交
3076 3077
	cfqq = cfqd->active_queue;
	if (!cfqq)
3078
		return false;
3079

J
Jens Axboe 已提交
3080
	if (cfq_class_idle(new_cfqq))
3081
		return false;
3082 3083

	if (cfq_class_idle(cfqq))
3084
		return true;
3085

3086 3087 3088 3089
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
3090
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3091
		return true;
3092

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	if (new_cfqq->cfqg != cfqq->cfqg)
		return false;

	if (cfq_slice_used(cfqq))
		return true;

	/* Allow preemption only if we are idling on sync-noidle tree */
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
	    new_cfqq->service_tree->count == 2 &&
	    RB_EMPTY_ROOT(&cfqq->sort_list))
		return true;

3106 3107 3108 3109 3110
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
3111
		return true;
3112

3113 3114 3115 3116
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3117
		return true;
3118

3119
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3120
		return false;
3121 3122 3123 3124 3125

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
3126
	if (cfq_rq_close(cfqd, cfqq, rq))
3127
		return true;
3128

3129
	return false;
3130 3131 3132 3133 3134 3135 3136 3137
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
3138
	cfq_log_cfqq(cfqd, cfqq, "preempt");
3139
	cfq_slice_expired(cfqd, 1);
3140

3141 3142 3143 3144 3145
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3146 3147

	cfq_service_tree_add(cfqd, cfqq, 1);
3148

3149 3150
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
3151 3152 3153
}

/*
J
Jens Axboe 已提交
3154
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3155 3156 3157
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
3158 3159
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
3160
{
J
Jens Axboe 已提交
3161
	struct cfq_io_context *cic = RQ_CIC(rq);
3162

3163
	cfqd->rq_queued++;
3164 3165 3166
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
3167
	cfq_update_io_thinktime(cfqd, cic);
3168
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
3169 3170
	cfq_update_idle_window(cfqd, cfqq, cic);

3171
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3172 3173

	if (cfqq == cfqd->active_queue) {
3174 3175 3176 3177
		if (cfq_cfqq_wait_busy(cfqq)) {
			cfq_clear_cfqq_wait_busy(cfqq);
			cfq_mark_cfqq_wait_busy_done(cfqq);
		}
3178
		/*
3179 3180 3181
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
3182 3183
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
3184 3185 3186
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
3187
		 */
3188
		if (cfq_cfqq_wait_request(cfqq)) {
3189 3190
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
3191
				del_timer(&cfqd->idle_slice_timer);
3192 3193 3194
				__blk_run_queue(cfqd->queue);
			} else
				cfq_mark_cfqq_must_dispatch(cfqq);
3195
		}
J
Jens Axboe 已提交
3196
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3197 3198 3199
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
3200 3201
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
3202 3203
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
3204
		__blk_run_queue(cfqd->queue);
3205
	}
L
Linus Torvalds 已提交
3206 3207
}

3208
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3209
{
3210
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
3211
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3212

3213
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3214
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3215

3216
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3217
	list_add_tail(&rq->queuelist, &cfqq->fifo);
3218
	cfq_add_rq_rb(rq);
3219

J
Jens Axboe 已提交
3220
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
3221 3222
}

3223 3224 3225 3226 3227 3228
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
3229 3230
	struct cfq_queue *cfqq = cfqd->active_queue;

3231 3232 3233 3234 3235
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
3236 3237

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3238
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3239 3240
		return;

S
Shaohua Li 已提交
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

3251 3252 3253
	if (cfqd->hw_tag_samples++ < 50)
		return;

3254
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3255 3256 3257 3258 3259
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

3260
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3261
{
J
Jens Axboe 已提交
3262
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3263
	struct cfq_data *cfqd = cfqq->cfqd;
3264
	const int sync = rq_is_sync(rq);
3265
	unsigned long now;
L
Linus Torvalds 已提交
3266

3267
	now = jiffies;
V
Vivek Goyal 已提交
3268
	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
L
Linus Torvalds 已提交
3269

3270 3271
	cfq_update_hw_tag(cfqd);

3272
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
3273
	WARN_ON(!cfqq->dispatched);
3274
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
3275
	cfqq->dispatched--;
L
Linus Torvalds 已提交
3276

3277 3278 3279
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

3280
	if (sync) {
J
Jens Axboe 已提交
3281
		RQ_CIC(rq)->last_end_request = now;
3282 3283
		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
			cfqd->last_delayed_sync = now;
3284
	}
3285 3286 3287 3288 3289 3290

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
3291 3292
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

3293 3294 3295 3296
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307

		/*
		 * If this queue consumed its slice and this is last queue
		 * in the group, wait for next request before we expire
		 * the queue
		 */
		if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
			cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
			cfq_mark_cfqq_wait_busy(cfqq);
		}

3308
		/*
3309 3310 3311 3312 3313 3314
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
3315
		 */
3316
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3317
			cfq_slice_expired(cfqd, 1);
3318 3319 3320 3321 3322 3323 3324 3325 3326
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
3327 3328
			    || cfqd->noidle_tree_requires_idle
			    || cfqq->cfqg->nr_cfqq == 1)
3329 3330
				cfq_arm_slice_timer(cfqd);
		}
3331
	}
J
Jens Axboe 已提交
3332

3333
	if (!rq_in_driver(cfqd))
3334
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3335 3336
}

3337 3338 3339 3340 3341
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
3342
{
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
3354
		 * unboost the queue (if needed)
3355
		 */
3356 3357
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
3358 3359
	}
}
L
Linus Torvalds 已提交
3360

3361
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3362
{
3363
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
3364
		cfq_mark_cfqq_must_alloc_slice(cfqq);
3365
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
3366
	}
L
Linus Torvalds 已提交
3367

3368 3369 3370
	return ELV_MQUEUE_MAY;
}

3371
static int cfq_may_queue(struct request_queue *q, int rw)
3372 3373 3374
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
3375
	struct cfq_io_context *cic;
3376 3377 3378 3379 3380 3381 3382 3383
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
3384
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3385 3386 3387
	if (!cic)
		return ELV_MQUEUE_MAY;

3388
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3389
	if (cfqq) {
3390
		cfq_init_prio_data(cfqq, cic->ioc);
3391 3392
		cfq_prio_boost(cfqq);

3393
		return __cfq_may_queue(cfqq);
3394 3395 3396
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
3397 3398 3399 3400 3401
}

/*
 * queue lock held here
 */
3402
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
3403
{
J
Jens Axboe 已提交
3404
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
3405

J
Jens Axboe 已提交
3406
	if (cfqq) {
3407
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
3408

3409 3410
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
3411

J
Jens Axboe 已提交
3412
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3413 3414

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
3415
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
3416 3417 3418 3419 3420

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
3421 3422 3423 3424 3425 3426
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3427
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
3428 3429 3430 3431
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
3458
/*
3459
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
3460
 */
3461
static int
3462
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
3463 3464 3465 3466
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
3467
	const bool is_sync = rq_is_sync(rq);
3468
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
3469 3470 3471 3472
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

3473
	cic = cfq_get_io_context(cfqd, gfp_mask);
3474

L
Linus Torvalds 已提交
3475 3476
	spin_lock_irqsave(q->queue_lock, flags);

3477 3478 3479
	if (!cic)
		goto queue_fail;

3480
new_queue:
3481
	cfqq = cic_to_cfqq(cic, is_sync);
3482
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3483
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3484
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
3485
	} else {
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
3496 3497 3498 3499 3500 3501 3502 3503
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3504
	}
L
Linus Torvalds 已提交
3505 3506

	cfqq->allocated[rw]++;
3507
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
3508

J
Jens Axboe 已提交
3509
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
3510

J
Jens Axboe 已提交
3511 3512 3513
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
3514

3515 3516 3517
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
3518

3519
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3520
	spin_unlock_irqrestore(q->queue_lock, flags);
3521
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
3522 3523 3524
	return 1;
}

3525
static void cfq_kick_queue(struct work_struct *work)
3526
{
3527
	struct cfq_data *cfqd =
3528
		container_of(work, struct cfq_data, unplug_work);
3529
	struct request_queue *q = cfqd->queue;
3530

3531
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
3532
	__blk_run_queue(cfqd->queue);
3533
	spin_unlock_irq(q->queue_lock);
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
3544
	int timed_out = 1;
3545

3546 3547
	cfq_log(cfqd, "idle timer fired");

3548 3549
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

3550 3551
	cfqq = cfqd->active_queue;
	if (cfqq) {
3552 3553
		timed_out = 0;

3554 3555 3556 3557 3558 3559
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

3560 3561 3562
		/*
		 * expired
		 */
3563
		if (cfq_slice_used(cfqq))
3564 3565 3566 3567 3568 3569
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
3570
		if (!cfqd->busy_queues)
3571 3572 3573 3574 3575
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
3576
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3577
			goto out_kick;
3578 3579 3580 3581 3582

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
3583 3584
	}
expire:
3585
	cfq_slice_expired(cfqd, timed_out);
3586
out_kick:
3587
	cfq_schedule_dispatch(cfqd);
3588 3589 3590 3591
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
3592 3593 3594
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
3595
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
3596
}
3597

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
3608 3609 3610

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
3611 3612
}

3613 3614 3615 3616 3617
static void cfq_cfqd_free(struct rcu_head *head)
{
	kfree(container_of(head, struct cfq_data, rcu));
}

J
Jens Axboe 已提交
3618
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
3619
{
3620
	struct cfq_data *cfqd = e->elevator_data;
3621
	struct request_queue *q = cfqd->queue;
3622

J
Jens Axboe 已提交
3623
	cfq_shutdown_timer_wq(cfqd);
3624

3625
	spin_lock_irq(q->queue_lock);
3626

3627
	if (cfqd->active_queue)
3628
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3629 3630

	while (!list_empty(&cfqd->cic_list)) {
3631 3632 3633
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
3634 3635

		__cfq_exit_single_io_context(cfqd, cic);
3636
	}
3637

3638
	cfq_put_async_queues(cfqd);
3639 3640
	cfq_release_cfq_groups(cfqd);
	blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3641

3642
	spin_unlock_irq(q->queue_lock);
3643 3644 3645

	cfq_shutdown_timer_wq(cfqd);

3646
	/* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3647
	call_rcu(&cfqd->rcu, cfq_cfqd_free);
L
Linus Torvalds 已提交
3648 3649
}

3650
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
3651 3652
{
	struct cfq_data *cfqd;
3653
	int i, j;
3654
	struct cfq_group *cfqg;
3655
	struct cfq_rb_root *st;
L
Linus Torvalds 已提交
3656

3657
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
3658
	if (!cfqd)
J
Jens Axboe 已提交
3659
		return NULL;
L
Linus Torvalds 已提交
3660

3661 3662 3663
	/* Init root service tree */
	cfqd->grp_service_tree = CFQ_RB_ROOT;

3664 3665
	/* Init root group */
	cfqg = &cfqd->root_group;
3666 3667
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
3668
	RB_CLEAR_NODE(&cfqg->rb_node);
3669

3670 3671 3672
	/* Give preference to root group over other groups */
	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;

3673
#ifdef CONFIG_CFQ_GROUP_IOSCHED
3674 3675 3676 3677 3678
	/*
	 * Take a reference to root group which we never drop. This is just
	 * to make sure that cfq_put_cfqg() does not try to kfree root group
	 */
	atomic_set(&cfqg->ref, 1);
3679 3680
	blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
					0);
3681
#endif
3682 3683 3684 3685 3686 3687 3688 3689
	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3690 3691 3692 3693 3694 3695 3696
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);
3697
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3698

3699
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
3700 3701 3702

	cfqd->queue = q;

3703 3704 3705 3706
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

3707
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3708

L
Linus Torvalds 已提交
3709
	cfqd->cfq_quantum = cfq_quantum;
3710 3711
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
3712 3713
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
3714 3715 3716 3717
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
3718
	cfqd->cfq_latency = 1;
3719
	cfqd->cfq_group_isolation = 0;
3720
	cfqd->hw_tag = -1;
3721
	cfqd->last_delayed_sync = jiffies - HZ;
3722
	INIT_RCU_HEAD(&cfqd->rcu);
J
Jens Axboe 已提交
3723
	return cfqd;
L
Linus Torvalds 已提交
3724 3725 3726 3727
}

static void cfq_slab_kill(void)
{
3728 3729 3730 3731
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
3732 3733 3734 3735 3736 3737 3738 3739
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3740
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3741 3742 3743
	if (!cfq_pool)
		goto fail;

3744
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3773
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3774
{									\
3775
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3776 3777 3778 3779 3780 3781
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3782 3783
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3784 3785
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3786 3787 3788 3789
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3790
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3791
SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
L
Linus Torvalds 已提交
3792 3793 3794
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3795
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3796
{									\
3797
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3811 3812 3813 3814
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3815
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3816 3817
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3818 3819 3820
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3821 3822
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3823
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3824
STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
L
Linus Torvalds 已提交
3825 3826
#undef STORE_FUNCTION

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3840
	CFQ_ATTR(low_latency),
3841
	CFQ_ATTR(group_isolation),
3842
	__ATTR_NULL
L
Linus Torvalds 已提交
3843 3844 3845 3846 3847 3848 3849
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3850
		.elevator_allow_merge_fn =	cfq_allow_merge,
3851
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3852
		.elevator_add_req_fn =		cfq_insert_request,
3853
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3854 3855 3856
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3857 3858
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3859 3860 3861 3862 3863
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3864
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3865
	},
3866
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3867 3868 3869 3870
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static struct blkio_policy_type blkio_policy_cfq = {
	.ops = {
		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
	},
};
#else
static struct blkio_policy_type blkio_policy_cfq;
#endif

L
Linus Torvalds 已提交
3882 3883
static int __init cfq_init(void)
{
3884 3885 3886 3887 3888 3889 3890 3891
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3892 3893 3894
	if (cfq_slab_setup())
		return -ENOMEM;

3895
	elv_register(&iosched_cfq);
3896
	blkio_policy_register(&blkio_policy_cfq);
L
Linus Torvalds 已提交
3897

3898
	return 0;
L
Linus Torvalds 已提交
3899 3900 3901 3902
}

static void __exit cfq_exit(void)
{
3903
	DECLARE_COMPLETION_ONSTACK(all_gone);
3904
	blkio_policy_unregister(&blkio_policy_cfq);
L
Linus Torvalds 已提交
3905
	elv_unregister(&iosched_cfq);
3906
	ioc_gone = &all_gone;
3907 3908
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3909 3910 3911 3912 3913

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3914
	if (elv_ioc_count_read(cfq_ioc_count))
3915
		wait_for_completion(&all_gone);
3916
	cfq_slab_kill();
L
Linus Torvalds 已提交
3917 3918 3919 3920 3921 3922 3923 3924
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");