cfq-iosched.c 98.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
16
#include "blk-cgroup.h"
L
Linus Torvalds 已提交
17 18 19 20

/*
 * tunables
 */
21 22
/* max queue in one round of service */
static const int cfq_quantum = 4;
23
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 25 26 27
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
28
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
29
static int cfq_slice_async = HZ / 25;
30
static const int cfq_slice_async_rq = 2;
31
static int cfq_slice_idle = HZ / 125;
32 33
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
34

35
/*
36
 * offset from end of service tree
37
 */
38
#define CFQ_IDLE_DELAY		(HZ / 5)
39 40 41 42 43 44

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

45 46 47 48 49 50
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

51
#define CFQ_SLICE_SCALE		(5)
52
#define CFQ_HW_QUEUE_MIN	(5)
53
#define CFQ_SERVICE_SHIFT       12
54

55 56
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
57
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
58

59 60
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
61

62
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63
static struct completion *ioc_gone;
64
static DEFINE_SPINLOCK(ioc_gone_lock);
65

66 67 68 69
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

70
#define sample_valid(samples)	((samples) > 80)
71
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
72

73 74 75 76 77 78 79 80 81
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
82
	unsigned count;
83
	u64 min_vdisktime;
84
	struct rb_node *active;
85
	unsigned total_weight;
86
};
87
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

118 119
	/* time when queue got scheduled in to dispatch first request. */
	unsigned long dispatch_start;
120
	unsigned int allocated_slice;
121 122
	/* time when first request from queue completed and slice started. */
	unsigned long slice_start;
123 124 125 126 127 128 129 130 131 132 133 134 135
	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

136 137 138 139
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
140
	unsigned long seeky_start;
141

142
	pid_t pid;
J
Jeff Moyer 已提交
143

144
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
145
	struct cfq_queue *new_cfqq;
146
	struct cfq_group *cfqg;
147
	struct cfq_group *orig_cfqg;
148 149
	/* Sectors dispatched in current dispatch round */
	unsigned long nr_sectors;
150 151
};

152
/*
153
 * First index in the service_trees.
154 155 156 157
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
158 159
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
160 161
};

162 163 164 165 166 167 168 169 170
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

171 172
/* This is per cgroup per device grouping structure */
struct cfq_group {
173 174 175 176 177
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
178
	unsigned int weight;
179 180 181 182 183
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

184 185
	/* Per group busy queus average. Useful for workload slice calc. */
	unsigned int busy_queues_avg[2];
186 187 188 189 190 191
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
192 193 194 195

	unsigned long saved_workload_slice;
	enum wl_type_t saved_workload;
	enum wl_prio_t saved_serving_prio;
196 197 198
	struct blkio_group blkg;
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	struct hlist_node cfqd_node;
199
	atomic_t ref;
200
#endif
201
};
202

203 204 205
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
206
struct cfq_data {
207
	struct request_queue *queue;
208 209
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
210
	struct cfq_group root_group;
211 212
	/* Number of active cfq groups on group service tree */
	int nr_groups;
213

214 215
	/*
	 * The priority currently being served
216
	 */
217
	enum wl_prio_t serving_prio;
218 219
	enum wl_type_t serving_type;
	unsigned long workload_expires;
220
	struct cfq_group *serving_group;
221
	bool noidle_tree_requires_idle;
222 223 224 225 226 227 228 229

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

230 231
	unsigned int busy_queues;

232
	int rq_in_driver[2];
233
	int sync_flight;
234 235 236 237 238

	/*
	 * queue-depth detection
	 */
	int rq_queued;
239
	int hw_tag;
240 241 242 243 244 245 246 247
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
248

249 250 251 252
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
253
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
254

255 256 257
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

258 259 260 261 262
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
263

J
Jens Axboe 已提交
264
	sector_t last_position;
L
Linus Torvalds 已提交
265 266 267 268 269

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
270
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
271 272
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
273 274 275
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
276
	unsigned int cfq_latency;
277
	unsigned int cfq_group_isolation;
278 279

	struct list_head cic_list;
L
Linus Torvalds 已提交
280

281 282 283 284
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
285

286
	unsigned long last_delayed_sync;
287 288 289

	/* List of cfq groups being managed on this device*/
	struct hlist_head cfqg_list;
290
	struct rcu_head rcu;
L
Linus Torvalds 已提交
291 292
};

293 294
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);

295 296
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
297
					    enum wl_type_t type,
298 299
					    struct cfq_data *cfqd)
{
300 301 302
	if (!cfqg)
		return NULL;

303
	if (prio == IDLE_WORKLOAD)
304
		return &cfqg->service_tree_idle;
305

306
	return &cfqg->service_trees[prio][type];
307 308
}

J
Jens Axboe 已提交
309
enum cfqq_state_flags {
310 311
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
312
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
313 314 315 316
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
317
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
318
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
319
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
320
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
321
	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
J
Jens Axboe 已提交
322 323 324 325 326
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
327
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
328 329 330
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
331
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
332 333 334
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
335
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
336 337 338 339
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
340
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
341 342 343 344
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
345
CFQ_CFQQ_FNS(slice_new);
346
CFQ_CFQQ_FNS(sync);
347
CFQ_CFQQ_FNS(coop);
348
CFQ_CFQQ_FNS(deep);
349
CFQ_CFQQ_FNS(wait_busy);
J
Jens Axboe 已提交
350 351
#undef CFQ_CFQQ_FNS

V
Vivek Goyal 已提交
352 353 354 355 356 357 358 359 360 361 362
#ifdef CONFIG_DEBUG_CFQ_IOSCHED
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
			blkg_path(&(cfqq)->cfqg->blkg), ##args);

#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
				blkg_path(&(cfqg)->blkg), ##args);      \

#else
363 364
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
V
Vivek Goyal 已提交
365 366
#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
#endif
367 368 369
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

370 371 372 373 374 375 376 377 378 379 380
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


381 382 383 384 385 386 387 388 389
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

390 391 392 393 394 395 396 397 398 399

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

400 401 402
static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
					struct cfq_data *cfqd,
					struct cfq_group *cfqg)
403 404
{
	if (wl == IDLE_WORKLOAD)
405
		return cfqg->service_tree_idle.count;
406

407 408 409
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
410 411
}

412 413 414 415 416 417 418
static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg)
{
	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
}

419
static void cfq_dispatch_insert(struct request_queue *, struct request *);
420
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
421
				       struct io_context *, gfp_t);
422
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
423 424
						struct io_context *);

425 426 427 428 429
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

430
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
431
					    bool is_sync)
432
{
433
	return cic->cfqq[is_sync];
434 435 436
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
437
				struct cfq_queue *cfqq, bool is_sync)
438
{
439
	cic->cfqq[is_sync] = cfqq;
440 441 442 443 444 445
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
446
static inline bool cfq_bio_sync(struct bio *bio)
447
{
448
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
449
}
L
Linus Torvalds 已提交
450

A
Andrew Morton 已提交
451 452 453 454
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
455
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
456
{
457 458
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
459
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
460
	}
A
Andrew Morton 已提交
461 462
}

463
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
464 465 466
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

467
	return !cfqd->rq_queued;
A
Andrew Morton 已提交
468 469
}

470 471 472 473 474
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
475
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
476
				 unsigned short prio)
477
{
478
	const int base_slice = cfqd->cfq_slice[sync];
479

480 481 482 483
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
484

485 486 487 488
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
489 490
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

536 537 538 539 540 541
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

542 543
static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
					struct cfq_group *cfqg, bool rt)
544
{
545 546 547
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
548
	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
549

550 551 552
	min_q = min(cfqg->busy_queues_avg[rt], busy);
	max_q = max(cfqg->busy_queues_avg[rt], busy);
	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
553
		cfq_hist_divisor;
554 555 556 557 558 559 560 561 562
	return cfqg->busy_queues_avg[rt];
}

static inline unsigned
cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

	return cfq_target_latency * cfqg->weight / st->total_weight;
563 564
}

565 566 567
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
568 569
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
570 571 572 573 574 575
		/*
		 * interested queues (we consider only the ones with the same
		 * priority class in the cfq group)
		 */
		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
						cfq_class_rt(cfqq));
576 577
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
578 579 580
		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);

		if (expect_latency > group_slice) {
581 582 583 584 585 586 587
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
588
			slice = max(slice * group_slice / expect_latency,
589 590 591
				    low_slice);
		}
	}
592
	cfqq->slice_start = jiffies;
593
	cfqq->slice_end = jiffies + slice;
594
	cfqq->allocated_slice = slice;
595
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
596 597 598 599 600 601 602
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
603
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
604 605 606 607 608 609 610 611 612
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
613
/*
J
Jens Axboe 已提交
614
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
615
 * We choose the request that is closest to the head right now. Distance
616
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
617
 */
J
Jens Axboe 已提交
618
static struct request *
619
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
620
{
621
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
622
	unsigned long back_max;
623 624 625
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
626

J
Jens Axboe 已提交
627 628 629 630
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
631

J
Jens Axboe 已提交
632 633 634 635
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
636 637 638 639
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
640

641 642
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
659
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
660 661 662 663 664 665

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
666
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
667 668

	/* Found required data */
669 670 671 672 673 674

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
675
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
676
		if (d1 < d2)
J
Jens Axboe 已提交
677
			return rq1;
678
		else if (d2 < d1)
J
Jens Axboe 已提交
679
			return rq2;
680 681
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
682
				return rq1;
683
			else
J
Jens Axboe 已提交
684
				return rq2;
685
		}
L
Linus Torvalds 已提交
686

687
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
688
		return rq1;
689
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
690 691
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
692 693 694 695 696 697 698 699
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
700
			return rq1;
L
Linus Torvalds 已提交
701
		else
J
Jens Axboe 已提交
702
			return rq2;
L
Linus Torvalds 已提交
703 704 705
	}
}

706 707 708
/*
 * The below is leftmost cache rbtree addon
 */
709
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
710
{
711 712 713 714
	/* Service tree is empty */
	if (!root->count)
		return NULL;

715 716 717
	if (!root->left)
		root->left = rb_first(&root->rb);

718 719 720 721
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
722 723
}

724 725 726 727 728 729 730 731 732 733 734
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

735 736 737 738 739 740
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

741 742 743 744
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
745
	rb_erase_init(n, &root->rb);
746
	--root->count;
747 748
}

L
Linus Torvalds 已提交
749 750 751
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
752 753 754
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
755
{
756 757
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
758
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
759

760
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
761 762

	if (rbprev)
J
Jens Axboe 已提交
763
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
764

765
	if (rbnext)
J
Jens Axboe 已提交
766
		next = rb_entry_rq(rbnext);
767 768 769
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
770
			next = rb_entry_rq(rbnext);
771
	}
L
Linus Torvalds 已提交
772

773
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
774 775
}

776 777
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
778
{
779 780 781
	/*
	 * just an approximation, should be ok.
	 */
782
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
783
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
784 785
}

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
845 846
	cfqd->nr_groups++;
	st->total_weight += cfqg->weight;
847 848 849 850 851 852 853
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

854 855 856
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

857 858
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
859

860 861 862 863
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

V
Vivek Goyal 已提交
864
	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
865
	cfqg->on_st = false;
866 867
	cfqd->nr_groups--;
	st->total_weight -= cfqg->weight;
868 869
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
870
	cfqg->saved_workload_slice = 0;
871
	blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
872 873 874 875
}

static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
{
876
	unsigned int slice_used;
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892

	/*
	 * Queue got expired before even a single request completed or
	 * got expired immediately after first request completion.
	 */
	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
		/*
		 * Also charge the seek time incurred to the group, otherwise
		 * if there are mutiple queues in the group, each can dispatch
		 * a single request on seeky media and cause lots of seek time
		 * and group will never know it.
		 */
		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
					1);
	} else {
		slice_used = jiffies - cfqq->slice_start;
893 894
		if (slice_used > cfqq->allocated_slice)
			slice_used = cfqq->allocated_slice;
895 896
	}

897 898
	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
				cfqq->nr_sectors);
899 900 901 902 903 904 905
	return slice_used;
}

static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
				struct cfq_queue *cfqq)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
906 907 908 909 910 911
	unsigned int used_sl, charge_sl;
	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
			- cfqg->service_tree_idle.count;

	BUG_ON(nr_sync < 0);
	used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
912

913 914
	if (!cfq_cfqq_sync(cfqq) && !nr_sync)
		charge_sl = cfqq->allocated_slice;
915 916 917

	/* Can't update vdisktime while group is on service tree */
	cfq_rb_erase(&cfqg->rb_node, st);
918
	cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
919 920 921 922 923 924 925 926 927 928
	__cfq_group_service_tree_add(st, cfqg);

	/* This group is being expired. Save the context */
	if (time_after(cfqd->workload_expires, jiffies)) {
		cfqg->saved_workload_slice = cfqd->workload_expires
						- jiffies;
		cfqg->saved_workload = cfqd->serving_type;
		cfqg->saved_serving_prio = cfqd->serving_prio;
	} else
		cfqg->saved_workload_slice = 0;
V
Vivek Goyal 已提交
929 930 931

	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
					st->min_vdisktime);
932 933
	blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
						cfqq->nr_sectors);
934 935
}

936 937 938 939 940 941 942 943
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct cfq_group, blkg);
	return NULL;
}

944 945 946 947 948 949
void
cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
{
	cfqg_of_blkg(blkg)->weight = weight;
}

950 951 952 953 954 955 956 957
static struct cfq_group *
cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
{
	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
	struct cfq_group *cfqg = NULL;
	void *key = cfqd;
	int i, j;
	struct cfq_rb_root *st;
958 959
	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
	unsigned int major, minor;
960 961

	/* Do we need to take this reference */
962
	if (!blkiocg_css_tryget(blkcg))
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
		return NULL;;

	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
	if (cfqg || !create)
		goto done;

	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
	if (!cfqg)
		goto done;

	cfqg->weight = blkcg->weight;
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
	RB_CLEAR_NODE(&cfqg->rb_node);

978 979 980 981 982 983 984 985
	/*
	 * Take the initial reference that will be released on destroy
	 * This can be thought of a joint reference by cgroup and
	 * elevator which will be dropped by either elevator exit
	 * or cgroup deletion path depending on who is exiting first.
	 */
	atomic_set(&cfqg->ref, 1);

986
	/* Add group onto cgroup list */
987 988 989
	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
					MKDEV(major, minor));
990 991 992 993 994

	/* Add group on cfqd list */
	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);

done:
995
	blkiocg_css_put(blkcg);
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	return cfqg;
}

/*
 * Search for the cfq group current task belongs to. If create = 1, then also
 * create the cfq group if it does not exist. request_queue lock must be held.
 */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	struct cgroup *cgroup;
	struct cfq_group *cfqg = NULL;

	rcu_read_lock();
	cgroup = task_cgroup(current, blkio_subsys_id);
	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
	if (!cfqg && create)
		cfqg = &cfqd->root_group;
	rcu_read_unlock();
	return cfqg;
}

static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	/* Currently, all async queues are mapped to root group */
	if (!cfq_cfqq_sync(cfqq))
		cfqg = &cfqq->cfqd->root_group;

	cfqq->cfqg = cfqg;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	/* cfqq reference on cfqg */
	atomic_inc(&cfqq->cfqg->ref);
}

static void cfq_put_cfqg(struct cfq_group *cfqg)
{
	struct cfq_rb_root *st;
	int i, j;

	BUG_ON(atomic_read(&cfqg->ref) <= 0);
	if (!atomic_dec_and_test(&cfqg->ref))
		return;
	for_each_cfqg_st(cfqg, i, j, st)
		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
	kfree(cfqg);
}

static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	/* Something wrong if we are trying to remove same group twice */
	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));

	hlist_del_init(&cfqg->cfqd_node);

	/*
	 * Put the reference taken at the time of creation so that when all
	 * queues are gone, group can be destroyed.
	 */
	cfq_put_cfqg(cfqg);
}

static void cfq_release_cfq_groups(struct cfq_data *cfqd)
{
	struct hlist_node *pos, *n;
	struct cfq_group *cfqg;

	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
		/*
		 * If cgroup removal path got to blk_group first and removed
		 * it from cgroup list, then it will take care of destroying
		 * cfqg also.
		 */
		if (!blkiocg_del_blkio_group(&cfqg->blkg))
			cfq_destroy_cfqg(cfqd, cfqg);
	}
1069
}
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

/*
 * Blk cgroup controller notification saying that blkio_group object is being
 * delinked as associated cgroup object is going away. That also means that
 * no new IO will come in this group. So get rid of this group as soon as
 * any pending IO in the group is finished.
 *
 * This function is called under rcu_read_lock(). key is the rcu protected
 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
 * read lock.
 *
 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
 * it should not be NULL as even if elevator was exiting, cgroup deltion
 * path got to it first.
 */
void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
{
	unsigned long  flags;
	struct cfq_data *cfqd = key;

	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
#else /* GROUP_IOSCHED */
static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}
static inline void
cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
	cfqq->cfqg = cfqg;
}

1105 1106 1107
static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}

1108 1109
#endif /* GROUP_IOSCHED */

1110
/*
1111
 * The cfqd->service_trees holds all pending cfq_queue's that have
1112 1113 1114
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
1115
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1116
				 bool add_front)
1117
{
1118 1119
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
1120
	unsigned long rb_key;
1121
	struct cfq_rb_root *service_tree;
1122
	int left;
1123
	int new_cfqq = 1;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	int group_changed = 0;

#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (!cfqd->cfq_group_isolation
	    && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
	    && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
		/* Move this cfq to root group */
		cfq_log_cfqq(cfqd, cfqq, "moving to root group");
		if (!RB_EMPTY_NODE(&cfqq->rb_node))
			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
		cfqq->orig_cfqg = cfqq->cfqg;
		cfqq->cfqg = &cfqd->root_group;
		atomic_inc(&cfqd->root_group.ref);
		group_changed = 1;
	} else if (!cfqd->cfq_group_isolation
		   && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
		/* cfqq is sequential now needs to go to its original group */
		BUG_ON(cfqq->cfqg != &cfqd->root_group);
		if (!RB_EMPTY_NODE(&cfqq->rb_node))
			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
		cfq_put_cfqg(cfqq->cfqg);
		cfqq->cfqg = cfqq->orig_cfqg;
		cfqq->orig_cfqg = NULL;
		group_changed = 1;
		cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
	}
#endif
1151

1152 1153
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
						cfqq_type(cfqq), cfqd);
1154 1155
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
1156
		parent = rb_last(&service_tree->rb);
1157 1158 1159 1160 1161 1162
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
1163 1164 1165 1166 1167 1168
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
1169
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1170
		rb_key -= cfqq->slice_resid;
1171
		cfqq->slice_resid = 0;
1172 1173
	} else {
		rb_key = -HZ;
1174
		__cfqq = cfq_rb_first(service_tree);
1175 1176
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
1177

1178
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1179
		new_cfqq = 0;
1180
		/*
1181
		 * same position, nothing more to do
1182
		 */
1183 1184
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
1185
			return;
L
Linus Torvalds 已提交
1186

1187 1188
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
1189
	}
1190

1191
	left = 1;
1192
	parent = NULL;
1193 1194
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
1195
	while (*p) {
1196
		struct rb_node **n;
1197

1198 1199 1200
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

1201
		/*
1202
		 * sort by key, that represents service time.
1203
		 */
1204
		if (time_before(rb_key, __cfqq->rb_key))
1205
			n = &(*p)->rb_left;
1206
		else {
1207
			n = &(*p)->rb_right;
1208
			left = 0;
1209
		}
1210 1211

		p = n;
1212 1213
	}

1214
	if (left)
1215
		service_tree->left = &cfqq->rb_node;
1216

1217 1218
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
1219 1220
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
1221
	if ((add_front || !new_cfqq) && !group_changed)
1222
		return;
1223
	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1224 1225
}

1226
static struct cfq_queue *
1227 1228 1229
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
1246
		if (sector > blk_rq_pos(cfqq->next_rq))
1247
			n = &(*p)->rb_right;
1248
		else if (sector < blk_rq_pos(cfqq->next_rq))
1249 1250 1251 1252
			n = &(*p)->rb_left;
		else
			break;
		p = n;
1253
		cfqq = NULL;
1254 1255 1256 1257 1258
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
1259
	return cfqq;
1260 1261 1262 1263 1264 1265 1266
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

1267 1268 1269 1270
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1271 1272 1273 1274 1275 1276

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

1277
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1278 1279
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1280 1281
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
1282 1283 1284
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
1285 1286
}

1287 1288 1289
/*
 * Update cfqq's position in the service tree.
 */
1290
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1291 1292 1293 1294
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
1295
	if (cfq_cfqq_on_rr(cfqq)) {
1296
		cfq_service_tree_add(cfqd, cfqq, 0);
1297 1298
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
1299 1300
}

L
Linus Torvalds 已提交
1301 1302
/*
 * add to busy list of queues for service, trying to be fair in ordering
1303
 * the pending list according to last request service
L
Linus Torvalds 已提交
1304
 */
J
Jens Axboe 已提交
1305
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1306
{
1307
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
1308 1309
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1310 1311
	cfqd->busy_queues++;

1312
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
1313 1314
}

1315 1316 1317 1318
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
1319
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1320
{
1321
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
1322 1323
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
1324

1325 1326 1327 1328
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
1329 1330 1331 1332
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
1333

1334
	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
1335 1336 1337 1338 1339 1340 1341
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
1342
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1343
{
J
Jens Axboe 已提交
1344 1345
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
1346

1347 1348
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
1349

J
Jens Axboe 已提交
1350
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
		/*
		 * Queue will be deleted from service tree when we actually
		 * expire it later. Right now just remove it from prio tree
		 * as it is empty.
		 */
		if (cfqq->p_root) {
			rb_erase(&cfqq->p_node, cfqq->p_root);
			cfqq->p_root = NULL;
		}
	}
L
Linus Torvalds 已提交
1363 1364
}

J
Jens Axboe 已提交
1365
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1366
{
J
Jens Axboe 已提交
1367
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
1368
	struct cfq_data *cfqd = cfqq->cfqd;
1369
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
1370

1371
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
1372 1373 1374 1375 1376

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
1377
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
1378
		cfq_dispatch_insert(cfqd->queue, __alias);
1379 1380 1381

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
1382 1383 1384 1385

	/*
	 * check if this request is a better next-serve candidate
	 */
1386
	prev = cfqq->next_rq;
1387
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1388 1389 1390 1391 1392 1393 1394

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

1395
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
1396 1397
}

J
Jens Axboe 已提交
1398
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
1399
{
1400 1401
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
1402
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
1403 1404
}

1405 1406
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
1407
{
1408
	struct task_struct *tsk = current;
1409
	struct cfq_io_context *cic;
1410
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
1411

1412
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1413 1414 1415 1416
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1417 1418 1419
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

1420
		return elv_rb_find(&cfqq->sort_list, sector);
1421
	}
L
Linus Torvalds 已提交
1422 1423 1424 1425

	return NULL;
}

1426
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1427
{
1428
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1429

1430
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
1431
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1432
						rq_in_driver(cfqd));
1433

1434
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1435 1436
}

1437
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1438
{
1439
	struct cfq_data *cfqd = q->elevator->elevator_data;
1440
	const int sync = rq_is_sync(rq);
1441

1442 1443
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
1444
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1445
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
1446 1447
}

1448
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
1449
{
J
Jens Axboe 已提交
1450
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1451

J
Jens Axboe 已提交
1452 1453
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
1454

1455
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1456
	cfq_del_rq_rb(rq);
1457

1458
	cfqq->cfqd->rq_queued--;
1459 1460 1461 1462
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
1463 1464
}

1465 1466
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
1467 1468 1469 1470
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

1471
	__rq = cfq_find_rq_fmerge(cfqd, bio);
1472
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1473 1474
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
1475 1476 1477 1478 1479
	}

	return ELEVATOR_NO_MERGE;
}

1480
static void cfq_merged_request(struct request_queue *q, struct request *req,
1481
			       int type)
L
Linus Torvalds 已提交
1482
{
1483
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
1484
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
1485

J
Jens Axboe 已提交
1486
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
1487 1488 1489 1490
	}
}

static void
1491
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
1492 1493
		    struct request *next)
{
1494
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1495 1496 1497 1498
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1499
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1500
		list_move(&rq->queuelist, &next->queuelist);
1501 1502
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
1503

1504 1505
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
1506
	cfq_remove_request(next);
1507 1508
}

1509
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1510 1511 1512
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1513
	struct cfq_io_context *cic;
1514 1515
	struct cfq_queue *cfqq;

1516 1517 1518
	/* Deny merge if bio and rq don't belong to same cfq group */
	if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
		return false;
1519
	/*
1520
	 * Disallow merge of a sync bio into an async request.
1521
	 */
1522
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1523
		return false;
1524 1525

	/*
1526 1527
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
1528
	 */
1529
	cic = cfq_cic_lookup(cfqd, current->io_context);
1530
	if (!cic)
1531
		return false;
1532

1533
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1534
	return cfqq == RQ_CFQQ(rq);
1535 1536
}

J
Jens Axboe 已提交
1537 1538
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1539 1540
{
	if (cfqq) {
1541
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1542 1543
		cfqq->slice_start = 0;
		cfqq->dispatch_start = jiffies;
1544
		cfqq->allocated_slice = 0;
1545
		cfqq->slice_end = 0;
1546
		cfqq->slice_dispatch = 0;
1547
		cfqq->nr_sectors = 0;
1548 1549

		cfq_clear_cfqq_wait_request(cfqq);
1550
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1551 1552
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1553
		cfq_mark_cfqq_slice_new(cfqq);
1554 1555

		del_timer(&cfqd->idle_slice_timer);
1556 1557 1558 1559 1560
	}

	cfqd->active_queue = cfqq;
}

1561 1562 1563 1564 1565
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1566
		    bool timed_out)
1567
{
1568 1569
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1570 1571 1572 1573
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);
1574
	cfq_clear_cfqq_wait_busy(cfqq);
1575 1576

	/*
1577
	 * store what was left of this slice, if the queue idled/timed out
1578
	 */
1579
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1580
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1581 1582
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1583

1584 1585
	cfq_group_served(cfqd, cfqq->cfqg, cfqq);

1586 1587 1588
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
		cfq_del_cfqq_rr(cfqd, cfqq);

1589
	cfq_resort_rr_list(cfqd, cfqq);
1590 1591 1592 1593

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

1594 1595 1596
	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
		cfqd->grp_service_tree.active = NULL;

1597 1598 1599 1600 1601 1602
	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1603
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1604 1605 1606 1607
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1608
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1609 1610
}

1611 1612 1613 1614
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1615
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1616
{
1617
	struct cfq_rb_root *service_tree =
1618 1619
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
					cfqd->serving_type, cfqd);
1620

1621 1622 1623
	if (!cfqd->rq_queued)
		return NULL;

1624 1625 1626
	/* There is nothing to dispatch */
	if (!service_tree)
		return NULL;
1627 1628 1629
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1630 1631
}

1632 1633
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
1634
	struct cfq_group *cfqg;
1635 1636 1637 1638 1639 1640 1641
	struct cfq_queue *cfqq;
	int i, j;
	struct cfq_rb_root *st;

	if (!cfqd->rq_queued)
		return NULL;

1642 1643 1644 1645
	cfqg = cfq_get_next_cfqg(cfqd);
	if (!cfqg)
		return NULL;

1646 1647 1648 1649 1650 1651
	for_each_cfqg_st(cfqg, i, j, st)
		if ((cfqq = cfq_rb_first(st)) != NULL)
			return cfqq;
	return NULL;
}

1652 1653 1654
/*
 * Get and set a new active queue for service.
 */
1655 1656
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1657
{
1658
	if (!cfqq)
1659
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1660

1661
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1662
	return cfqq;
1663 1664
}

1665 1666 1667
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1668 1669
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1670
	else
1671
		return cfqd->last_position - blk_rq_pos(rq);
1672 1673
}

1674 1675
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1676

1677 1678
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1679
{
1680
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1681

1682 1683
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1684

1685
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1686 1687
}

1688 1689 1690
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1691
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1703
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1704 1705 1706 1707 1708 1709 1710 1711
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1712
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1713 1714
		return __cfqq;

1715
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1716 1717 1718 1719 1720 1721 1722
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1723
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1740
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1741
{
1742 1743
	struct cfq_queue *cfqq;

1744 1745 1746 1747 1748
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

1749 1750 1751 1752 1753 1754
	/*
	 * Don't search priority tree if it's the only queue in the group.
	 */
	if (cur_cfqq->cfqg->nr_cfqq == 1)
		return NULL;

J
Jens Axboe 已提交
1755
	/*
1756 1757 1758
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1759
	 */
1760 1761 1762 1763
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

1764 1765 1766 1767
	/* If new queue belongs to different cfq_group, don't choose it */
	if (cur_cfqq->cfqg != cfqq->cfqg)
		return NULL;

J
Jeff Moyer 已提交
1768 1769 1770 1771 1772
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1773 1774
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1775

1776 1777 1778 1779 1780 1781
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1782
	return cfqq;
J
Jens Axboe 已提交
1783 1784
}

1785 1786 1787 1788 1789 1790 1791
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1792
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1793

1794 1795 1796
	BUG_ON(!service_tree);
	BUG_ON(!service_tree->count);

1797 1798 1799 1800 1801
	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
1802 1803
	if (cfq_cfqq_idle_window(cfqq) &&
	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1804 1805 1806 1807 1808 1809
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1810
	return service_tree->count == 1;
1811 1812
}

J
Jens Axboe 已提交
1813
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1814
{
1815
	struct cfq_queue *cfqq = cfqd->active_queue;
1816
	struct cfq_io_context *cic;
1817 1818
	unsigned long sl;

1819
	/*
J
Jens Axboe 已提交
1820 1821 1822
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1823
	 */
J
Jens Axboe 已提交
1824
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1825 1826
		return;

1827
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1828
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1829 1830 1831 1832

	/*
	 * idle is disabled, either manually or by past process history
	 */
1833
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1834 1835
		return;

1836
	/*
1837
	 * still active requests from this queue, don't idle
1838
	 */
1839
	if (cfqq->dispatched)
1840 1841
		return;

1842 1843 1844
	/*
	 * task has exited, don't wait
	 */
1845
	cic = cfqd->active_cic;
1846
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1847 1848
		return;

1849 1850 1851 1852 1853 1854 1855 1856 1857
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1858
	cfq_mark_cfqq_wait_request(cfqq);
1859

J
Jens Axboe 已提交
1860
	sl = cfqd->cfq_slice_idle;
1861

1862
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1863
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1864 1865
}

1866 1867 1868
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1869
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1870
{
1871
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1872
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1873

1874 1875
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1876
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1877
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1878
	cfqq->dispatched++;
1879
	elv_dispatch_sort(q, rq);
1880 1881 1882

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
1883
	cfqq->nr_sectors += blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1884 1885 1886 1887 1888
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1889
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1890
{
1891
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1892

J
Jens Axboe 已提交
1893
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1894
		return NULL;
1895 1896 1897

	cfq_mark_cfqq_fifo_expire(cfqq);

1898 1899
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1900

1901
	rq = rq_entry_fifo(cfqq->fifo.next);
1902
	if (time_before(jiffies, rq_fifo_time(rq)))
1903
		rq = NULL;
L
Linus Torvalds 已提交
1904

1905
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1906
	return rq;
L
Linus Torvalds 已提交
1907 1908
}

1909 1910 1911 1912
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1913

1914
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1915

1916
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1917 1918
}

J
Jeff Moyer 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1934
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1963 1964
}

1965 1966 1967
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
				struct cfq_group *cfqg, enum wl_prio_t prio,
				bool prio_changed)
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
1981
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1982 1983
			return cur_best;
		cur_best = SYNC_WORKLOAD;
1984
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1985 1986 1987 1988 1989 1990 1991
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
1992
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

2004
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2005 2006 2007 2008 2009
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;
2010
	struct cfq_rb_root *st;
2011
	unsigned group_slice;
2012

2013 2014 2015 2016 2017 2018
	if (!cfqg) {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

2019
	/* Choose next priority. RT > BE > IDLE */
2020
	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2021
		cfqd->serving_prio = RT_WORKLOAD;
2022
	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
2036 2037 2038
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
2050 2051 2052 2053
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
2054 2055 2056 2057 2058 2059

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
2060 2061 2062 2063 2064
	group_slice = cfq_group_slice(cfqd, cfqg);

	slice = group_slice * count /
		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2065

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	if (cfqd->serving_type == ASYNC_WORKLOAD) {
		unsigned int tmp;

		/*
		 * Async queues are currently system wide. Just taking
		 * proportion of queues with-in same group will lead to higher
		 * async ratio system wide as generally root group is going
		 * to have higher weight. A more accurate thing would be to
		 * calculate system wide asnc/sync ratio.
		 */
		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
		tmp = tmp/cfqd->busy_queues;
		slice = min_t(unsigned, slice, tmp);

2080 2081 2082
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2083
	} else
2084 2085 2086 2087 2088
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
2089
	cfqd->noidle_tree_requires_idle = false;
2090 2091
}

2092 2093 2094
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2095
	struct cfq_group *cfqg;
2096 2097 2098

	if (RB_EMPTY_ROOT(&st->rb))
		return NULL;
2099 2100 2101 2102
	cfqg = cfq_rb_first_group(st);
	st->active = &cfqg->rb_node;
	update_min_vdisktime(st);
	return cfqg;
2103 2104
}

2105 2106
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
2107 2108 2109
	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);

	cfqd->serving_group = cfqg;
2110 2111 2112 2113 2114 2115 2116

	/* Restore the workload type data */
	if (cfqg->saved_workload_slice) {
		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
		cfqd->serving_type = cfqg->saved_workload;
		cfqd->serving_prio = cfqg->saved_serving_prio;
	}
2117
	choose_service_tree(cfqd, cfqg);
2118 2119
}

2120
/*
2121 2122
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
2123
 */
2124
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
2125
{
2126
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
2127

2128 2129 2130
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
2131

2132 2133
	if (!cfqd->rq_queued)
		return NULL;
2134 2135 2136 2137 2138 2139 2140

	/*
	 * We were waiting for group to get backlogged. Expire the queue
	 */
	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
		goto expire;

2141
	/*
J
Jens Axboe 已提交
2142
	 * The active queue has run out of time, expire it and select new.
2143
	 */
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
		/*
		 * If slice had not expired at the completion of last request
		 * we might not have turned on wait_busy flag. Don't expire
		 * the queue yet. Allow the group to get backlogged.
		 *
		 * The very fact that we have used the slice, that means we
		 * have been idling all along on this queue and it should be
		 * ok to wait for this request to complete.
		 */
2154 2155 2156
		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
			cfqq = NULL;
2157
			goto keep_queue;
2158
		} else
2159 2160
			goto expire;
	}
L
Linus Torvalds 已提交
2161

2162
	/*
J
Jens Axboe 已提交
2163 2164
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
2165
	 */
2166
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2167
		goto keep_queue;
J
Jens Axboe 已提交
2168

2169 2170 2171 2172
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
2173
	 * tree.  If possible, merge the expiring queue with the new cfqq.
2174
	 */
2175
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
2176 2177 2178
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
2179
		goto expire;
J
Jeff Moyer 已提交
2180
	}
2181

J
Jens Axboe 已提交
2182 2183 2184 2185 2186
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
2187
	if (timer_pending(&cfqd->idle_slice_timer) ||
2188
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2189 2190
		cfqq = NULL;
		goto keep_queue;
2191 2192
	}

J
Jens Axboe 已提交
2193
expire:
2194
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
2195
new_queue:
2196 2197 2198 2199 2200
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
2201
		cfq_choose_cfqg(cfqd);
2202

2203
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2204
keep_queue:
J
Jens Axboe 已提交
2205
	return cfqq;
2206 2207
}

J
Jens Axboe 已提交
2208
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2209 2210 2211 2212 2213 2214 2215 2216 2217
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
2218 2219 2220

	/* By default cfqq is not expired if it is empty. Do it explicitly */
	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2221 2222 2223
	return dispatched;
}

2224 2225 2226 2227
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
2228
static int cfq_forced_dispatch(struct cfq_data *cfqd)
2229
{
2230
	struct cfq_queue *cfqq;
2231
	int dispatched = 0;
2232

2233 2234
	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2235

2236
	cfq_slice_expired(cfqd, 0);
2237 2238
	BUG_ON(cfqd->busy_queues);

2239
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2240 2241 2242
	return dispatched;
}

2243
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2244 2245
{
	unsigned int max_dispatch;
2246

2247 2248 2249
	/*
	 * Drain async requests before we start sync IO
	 */
2250
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2251
		return false;
2252

2253 2254 2255 2256
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2257
		return false;
2258 2259 2260 2261

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
2262

2263 2264 2265 2266 2267 2268 2269
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
2270
		if (cfq_class_idle(cfqq))
2271
			return false;
2272

2273 2274 2275 2276
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
2277
			return false;
2278

2279
		/*
2280
		 * Sole queue user, no limit
2281
		 */
2282
		max_dispatch = -1;
2283 2284 2285 2286 2287 2288 2289
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
2290
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2291
		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2292
		unsigned int depth;
2293

2294
		depth = last_sync / cfqd->cfq_slice[1];
2295 2296
		if (!depth && !cfqq->dispatched)
			depth = 1;
2297 2298
		if (depth < max_dispatch)
			max_dispatch = depth;
2299
	}
2300

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
2359 2360
		return 0;

2361
	/*
2362
	 * Dispatch a request from this cfqq, if it is allowed
2363
	 */
2364 2365 2366
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

2367
	cfqq->slice_dispatch++;
2368
	cfq_clear_cfqq_must_dispatch(cfqq);
2369

2370 2371 2372 2373 2374 2375 2376 2377 2378
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
2379 2380
	}

2381
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2382
	return 1;
L
Linus Torvalds 已提交
2383 2384 2385
}

/*
J
Jens Axboe 已提交
2386 2387
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
2388
 *
2389
 * Each cfq queue took a reference on the parent group. Drop it now.
L
Linus Torvalds 已提交
2390 2391 2392 2393
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
2394
	struct cfq_data *cfqd = cfqq->cfqd;
2395
	struct cfq_group *cfqg, *orig_cfqg;
2396 2397

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
2398 2399 2400 2401

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

2402
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
2403
	BUG_ON(rb_first(&cfqq->sort_list));
2404
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2405
	cfqg = cfqq->cfqg;
2406
	orig_cfqg = cfqq->orig_cfqg;
L
Linus Torvalds 已提交
2407

2408
	if (unlikely(cfqd->active_queue == cfqq)) {
2409
		__cfq_slice_expired(cfqd, cfqq, 0);
2410
		cfq_schedule_dispatch(cfqd);
2411
	}
2412

2413
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
2414
	kmem_cache_free(cfq_pool, cfqq);
2415
	cfq_put_cfqg(cfqg);
2416 2417
	if (orig_cfqg)
		cfq_put_cfqg(orig_cfqg);
L
Linus Torvalds 已提交
2418 2419
}

2420 2421 2422
/*
 * Must always be called with the rcu_read_lock() held
 */
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

2434
/*
2435
 * Call func for each cic attached to this ioc.
2436
 */
2437
static void
2438 2439
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
2440
{
2441
	rcu_read_lock();
2442
	__call_for_each_cic(ioc, func);
2443
	rcu_read_unlock();
2444 2445 2446 2447 2448 2449 2450 2451 2452
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
2453
	elv_ioc_count_dec(cfq_ioc_count);
2454

2455 2456 2457 2458 2459 2460 2461
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
2462
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2463 2464 2465 2466 2467
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
2468
}
2469

2470 2471 2472
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2483
	hlist_del_rcu(&cic->cic_list);
2484 2485
	spin_unlock_irqrestore(&ioc->lock, flags);

2486
	cfq_cic_free(cic);
2487 2488
}

2489 2490 2491 2492 2493
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
2494 2495 2496
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
2497 2498 2499 2500
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
2501
	 */
2502
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
2503 2504
}

2505
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2506
{
J
Jeff Moyer 已提交
2507 2508
	struct cfq_queue *__cfqq, *next;

2509
	if (unlikely(cfqq == cfqd->active_queue)) {
2510
		__cfq_slice_expired(cfqd, cfqq, 0);
2511
		cfq_schedule_dispatch(cfqd);
2512
	}
2513

J
Jeff Moyer 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

2530 2531
	cfq_put_queue(cfqq);
}
2532

2533 2534 2535
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
2536 2537
	struct io_context *ioc = cic->ioc;

2538
	list_del_init(&cic->queue_list);
2539 2540 2541 2542

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
2543
	smp_wmb();
2544
	cic->dead_key = (unsigned long) cic->key;
2545 2546
	cic->key = NULL;

2547 2548 2549
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

2550 2551 2552
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
2553 2554
	}

2555 2556 2557
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
2558
	}
2559 2560
}

2561 2562
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
2563 2564 2565 2566
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
2567
		struct request_queue *q = cfqd->queue;
2568
		unsigned long flags;
2569

2570
		spin_lock_irqsave(q->queue_lock, flags);
2571 2572 2573 2574 2575 2576 2577 2578 2579

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

2580
		spin_unlock_irqrestore(q->queue_lock, flags);
2581
	}
L
Linus Torvalds 已提交
2582 2583
}

2584 2585 2586 2587
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
2588
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
2589
{
2590
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
2591 2592
}

2593
static struct cfq_io_context *
A
Al Viro 已提交
2594
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2595
{
2596
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
2597

2598 2599
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
2600
	if (cic) {
2601
		cic->last_end_request = jiffies;
2602
		INIT_LIST_HEAD(&cic->queue_list);
2603
		INIT_HLIST_NODE(&cic->cic_list);
2604 2605
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
2606
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
2607 2608 2609 2610 2611
	}

	return cic;
}

2612
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2613 2614 2615 2616
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
2617
	if (!cfq_cfqq_prio_changed(cfqq))
2618 2619
		return;

2620
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2621
	switch (ioprio_class) {
2622 2623 2624 2625
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
2626
		 * no prio set, inherit CPU scheduling settings
2627 2628
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
2629
		cfqq->ioprio_class = task_nice_ioclass(tsk);
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
2644 2645 2646 2647 2648 2649 2650 2651
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
2652
	cfq_clear_cfqq_prio_changed(cfqq);
2653 2654
}

J
Jens Axboe 已提交
2655
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2656
{
2657 2658
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
2659
	unsigned long flags;
2660

2661 2662 2663
	if (unlikely(!cfqd))
		return;

2664
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2665

2666
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2667 2668
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2669 2670
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2671
		if (new_cfqq) {
2672
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2673 2674
			cfq_put_queue(cfqq);
		}
2675
	}
2676

2677
	cfqq = cic->cfqq[BLK_RW_SYNC];
2678 2679 2680
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2681
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2682 2683
}

2684
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2685
{
2686
	call_for_each_cic(ioc, changed_ioprio);
2687
	ioc->ioprio_changed = 0;
2688 2689
}

2690
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2691
			  pid_t pid, bool is_sync)
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
{
	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
	struct cfq_data *cfqd = cic->key;
	unsigned long flags;
	struct request_queue *q;

	if (unlikely(!cfqd))
		return;

	q = cfqd->queue;

	spin_lock_irqsave(q->queue_lock, flags);

	if (sync_cfqq) {
		/*
		 * Drop reference to sync queue. A new sync queue will be
		 * assigned in new group upon arrival of a fresh request.
		 */
		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
		cic_set_cfqq(cic, NULL, 1);
		cfq_put_queue(sync_cfqq);
	}

	spin_unlock_irqrestore(q->queue_lock, flags);
}

static void cfq_ioc_set_cgroup(struct io_context *ioc)
{
	call_for_each_cic(ioc, changed_cgroup);
	ioc->cgroup_changed = 0;
}
#endif  /* CONFIG_CFQ_GROUP_IOSCHED */

2745
static struct cfq_queue *
2746
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2747
		     struct io_context *ioc, gfp_t gfp_mask)
2748 2749
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2750
	struct cfq_io_context *cic;
2751
	struct cfq_group *cfqg;
2752 2753

retry:
2754
	cfqg = cfq_get_cfqg(cfqd, 1);
2755
	cic = cfq_cic_lookup(cfqd, ioc);
2756 2757
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2758

2759 2760 2761 2762 2763 2764
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2765 2766 2767 2768 2769
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2770
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2771
					gfp_mask | __GFP_ZERO,
2772
					cfqd->queue->node);
2773
			spin_lock_irq(cfqd->queue->queue_lock);
2774 2775
			if (new_cfqq)
				goto retry;
2776
		} else {
2777 2778 2779
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2780 2781
		}

2782 2783 2784
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
2785
			cfq_link_cfqq_cfqg(cfqq, cfqg);
2786 2787 2788
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2789 2790 2791 2792 2793 2794 2795 2796
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2797 2798 2799
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2800
	switch (ioprio_class) {
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2812
static struct cfq_queue *
2813
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2814 2815
	      gfp_t gfp_mask)
{
2816 2817
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2818
	struct cfq_queue **async_cfqq = NULL;
2819 2820
	struct cfq_queue *cfqq = NULL;

2821 2822 2823 2824 2825
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2826
	if (!cfqq)
2827
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2828 2829 2830 2831

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2832
	if (!is_sync && !(*async_cfqq)) {
2833
		atomic_inc(&cfqq->ref);
2834
		*async_cfqq = cfqq;
2835 2836 2837 2838 2839 2840
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2841 2842 2843
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2844
static void
2845 2846
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2847
{
2848 2849
	unsigned long flags;

2850
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2851

2852 2853
	spin_lock_irqsave(&ioc->lock, flags);

2854
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2855

2856
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2857
	hlist_del_rcu(&cic->cic_list);
2858 2859 2860
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2861 2862
}

2863
static struct cfq_io_context *
2864
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2865 2866
{
	struct cfq_io_context *cic;
2867
	unsigned long flags;
2868
	void *k;
2869

2870 2871 2872
	if (unlikely(!ioc))
		return NULL;

2873 2874
	rcu_read_lock();

J
Jens Axboe 已提交
2875 2876 2877
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2878
	cic = rcu_dereference(ioc->ioc_data);
2879 2880
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2881
		return cic;
2882
	}
J
Jens Axboe 已提交
2883

2884 2885 2886 2887 2888
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2889 2890 2891
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2892
			cfq_drop_dead_cic(cfqd, ioc, cic);
2893
			rcu_read_lock();
2894
			continue;
2895
		}
2896

2897
		spin_lock_irqsave(&ioc->lock, flags);
2898
		rcu_assign_pointer(ioc->ioc_data, cic);
2899
		spin_unlock_irqrestore(&ioc->lock, flags);
2900 2901
		break;
	} while (1);
2902

2903
	return cic;
2904 2905
}

2906 2907 2908 2909 2910
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2911 2912
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2913
{
2914
	unsigned long flags;
2915
	int ret;
2916

2917 2918 2919 2920
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2921

2922 2923 2924
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2925 2926
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2927
		spin_unlock_irqrestore(&ioc->lock, flags);
2928

2929 2930 2931 2932 2933 2934 2935
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2936 2937
	}

2938 2939
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2940

2941
	return ret;
2942 2943
}

L
Linus Torvalds 已提交
2944 2945 2946
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2947
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2948 2949
 */
static struct cfq_io_context *
2950
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2951
{
2952
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2953 2954
	struct cfq_io_context *cic;

2955
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2956

2957
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2958 2959 2960
	if (!ioc)
		return NULL;

2961
	cic = cfq_cic_lookup(cfqd, ioc);
2962 2963
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2964

2965 2966 2967
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2968

2969 2970 2971
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2972
out:
2973 2974 2975 2976
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

2977 2978 2979 2980
#ifdef CONFIG_CFQ_GROUP_IOSCHED
	if (unlikely(ioc->cgroup_changed))
		cfq_ioc_set_cgroup(ioc);
#endif
L
Linus Torvalds 已提交
2981
	return cic;
2982 2983
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2984 2985 2986 2987 2988
err:
	put_io_context(ioc);
	return NULL;
}

2989 2990
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2991
{
2992 2993
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2994

2995 2996 2997 2998
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2999

3000
static void
3001
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
3002
		       struct request *rq)
3003 3004 3005 3006
{
	sector_t sdist;
	u64 total;

3007
	if (!cfqq->last_request_pos)
3008
		sdist = 0;
3009 3010
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3011
	else
3012
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3013 3014 3015 3016 3017

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
3018 3019
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
3020
	else
3021
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
3022

3023 3024 3025 3026 3027
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
3041
}
L
Linus Torvalds 已提交
3042

3043 3044 3045 3046 3047 3048 3049 3050
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
3051
	int old_idle, enable_idle;
3052

3053 3054 3055 3056
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3057 3058
		return;

3059
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
3060

3061 3062 3063
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

3064
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3065 3066
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
3067 3068
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
3069
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
3070 3071 3072
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
3073 3074
	}

3075 3076 3077 3078 3079 3080 3081
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
3082
}
L
Linus Torvalds 已提交
3083

3084 3085 3086 3087
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
3088
static bool
3089
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
3090
		   struct request *rq)
3091
{
J
Jens Axboe 已提交
3092
	struct cfq_queue *cfqq;
3093

J
Jens Axboe 已提交
3094 3095
	cfqq = cfqd->active_queue;
	if (!cfqq)
3096
		return false;
3097

J
Jens Axboe 已提交
3098
	if (cfq_class_idle(new_cfqq))
3099
		return false;
3100 3101

	if (cfq_class_idle(cfqq))
3102
		return true;
3103

3104 3105 3106 3107
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
3108
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3109
		return true;
3110

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	if (new_cfqq->cfqg != cfqq->cfqg)
		return false;

	if (cfq_slice_used(cfqq))
		return true;

	/* Allow preemption only if we are idling on sync-noidle tree */
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
	    new_cfqq->service_tree->count == 2 &&
	    RB_EMPTY_ROOT(&cfqq->sort_list))
		return true;

3124 3125 3126 3127 3128
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
3129
		return true;
3130

3131 3132 3133 3134
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3135
		return true;
3136

3137
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3138
		return false;
3139 3140 3141 3142 3143

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
3144
	if (cfq_rq_close(cfqd, cfqq, rq))
3145
		return true;
3146

3147
	return false;
3148 3149 3150 3151 3152 3153 3154 3155
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
3156
	cfq_log_cfqq(cfqd, cfqq, "preempt");
3157
	cfq_slice_expired(cfqd, 1);
3158

3159 3160 3161 3162 3163
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3164 3165

	cfq_service_tree_add(cfqd, cfqq, 1);
3166

3167 3168
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
3169 3170 3171
}

/*
J
Jens Axboe 已提交
3172
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3173 3174 3175
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
3176 3177
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
3178
{
J
Jens Axboe 已提交
3179
	struct cfq_io_context *cic = RQ_CIC(rq);
3180

3181
	cfqd->rq_queued++;
3182 3183 3184
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
3185
	cfq_update_io_thinktime(cfqd, cic);
3186
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
3187 3188
	cfq_update_idle_window(cfqd, cfqq, cic);

3189
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3190 3191 3192

	if (cfqq == cfqd->active_queue) {
		/*
3193 3194 3195
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
3196 3197
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
3198 3199 3200
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
3201
		 */
3202
		if (cfq_cfqq_wait_request(cfqq)) {
3203 3204
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
3205
				del_timer(&cfqd->idle_slice_timer);
3206
				cfq_clear_cfqq_wait_request(cfqq);
3207 3208 3209
				__blk_run_queue(cfqd->queue);
			} else
				cfq_mark_cfqq_must_dispatch(cfqq);
3210
		}
J
Jens Axboe 已提交
3211
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3212 3213 3214
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
3215 3216
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
3217 3218
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
3219
		__blk_run_queue(cfqd->queue);
3220
	}
L
Linus Torvalds 已提交
3221 3222
}

3223
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3224
{
3225
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
3226
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3227

3228
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3229
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3230

3231
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3232
	list_add_tail(&rq->queuelist, &cfqq->fifo);
3233
	cfq_add_rq_rb(rq);
3234

J
Jens Axboe 已提交
3235
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
3236 3237
}

3238 3239 3240 3241 3242 3243
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
3244 3245
	struct cfq_queue *cfqq = cfqd->active_queue;

3246 3247 3248 3249 3250
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
3251 3252

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3253
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3254 3255
		return;

S
Shaohua Li 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

3266 3267 3268
	if (cfqd->hw_tag_samples++ < 50)
		return;

3269
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3270 3271 3272 3273 3274
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct cfq_io_context *cic = cfqd->active_cic;

	/* If there are other queues in the group, don't wait */
	if (cfqq->cfqg->nr_cfqq > 1)
		return false;

	if (cfq_slice_used(cfqq))
		return true;

	/* if slice left is less than think time, wait busy */
	if (cic && sample_valid(cic->ttime_samples)
	    && (cfqq->slice_end - jiffies < cic->ttime_mean))
		return true;

	/*
	 * If think times is less than a jiffy than ttime_mean=0 and above
	 * will not be true. It might happen that slice has not expired yet
	 * but will expire soon (4-5 ns) during select_queue(). To cover the
	 * case where think time is less than a jiffy, mark the queue wait
	 * busy if only 1 jiffy is left in the slice.
	 */
	if (cfqq->slice_end - jiffies == 1)
		return true;

	return false;
}

3304
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
3305
{
J
Jens Axboe 已提交
3306
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3307
	struct cfq_data *cfqd = cfqq->cfqd;
3308
	const int sync = rq_is_sync(rq);
3309
	unsigned long now;
L
Linus Torvalds 已提交
3310

3311
	now = jiffies;
V
Vivek Goyal 已提交
3312
	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
L
Linus Torvalds 已提交
3313

3314 3315
	cfq_update_hw_tag(cfqd);

3316
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
3317
	WARN_ON(!cfqq->dispatched);
3318
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
3319
	cfqq->dispatched--;
L
Linus Torvalds 已提交
3320

3321 3322 3323
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

3324
	if (sync) {
J
Jens Axboe 已提交
3325
		RQ_CIC(rq)->last_end_request = now;
3326 3327
		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
			cfqd->last_delayed_sync = now;
3328
	}
3329 3330 3331 3332 3333 3334

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
3335 3336
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

3337 3338 3339 3340
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
3341 3342

		/*
3343 3344
		 * Should we wait for next request to come in before we expire
		 * the queue.
3345
		 */
3346
		if (cfq_should_wait_busy(cfqd, cfqq)) {
3347 3348 3349 3350
			cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
			cfq_mark_cfqq_wait_busy(cfqq);
		}

3351
		/*
3352 3353 3354 3355 3356 3357
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
3358
		 */
3359
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3360
			cfq_slice_expired(cfqd, 1);
3361 3362 3363 3364 3365 3366 3367 3368 3369
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
3370 3371
			    || cfqd->noidle_tree_requires_idle
			    || cfqq->cfqg->nr_cfqq == 1)
3372 3373
				cfq_arm_slice_timer(cfqd);
		}
3374
	}
J
Jens Axboe 已提交
3375

3376
	if (!rq_in_driver(cfqd))
3377
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3378 3379
}

3380 3381 3382 3383 3384
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
3385
{
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
3397
		 * unboost the queue (if needed)
3398
		 */
3399 3400
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
3401 3402
	}
}
L
Linus Torvalds 已提交
3403

3404
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3405
{
3406
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
3407
		cfq_mark_cfqq_must_alloc_slice(cfqq);
3408
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
3409
	}
L
Linus Torvalds 已提交
3410

3411 3412 3413
	return ELV_MQUEUE_MAY;
}

3414
static int cfq_may_queue(struct request_queue *q, int rw)
3415 3416 3417
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
3418
	struct cfq_io_context *cic;
3419 3420 3421 3422 3423 3424 3425 3426
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
3427
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3428 3429 3430
	if (!cic)
		return ELV_MQUEUE_MAY;

3431
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3432
	if (cfqq) {
3433
		cfq_init_prio_data(cfqq, cic->ioc);
3434 3435
		cfq_prio_boost(cfqq);

3436
		return __cfq_may_queue(cfqq);
3437 3438 3439
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
3440 3441 3442 3443 3444
}

/*
 * queue lock held here
 */
3445
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
3446
{
J
Jens Axboe 已提交
3447
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
3448

J
Jens Axboe 已提交
3449
	if (cfqq) {
3450
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
3451

3452 3453
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
3454

J
Jens Axboe 已提交
3455
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
3456 3457

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
3458
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
3459 3460 3461 3462 3463

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
3464 3465 3466 3467 3468 3469
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3470
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
3471 3472 3473 3474
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
3501
/*
3502
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
3503
 */
3504
static int
3505
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
3506 3507 3508 3509
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
3510
	const bool is_sync = rq_is_sync(rq);
3511
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
3512 3513 3514 3515
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

3516
	cic = cfq_get_io_context(cfqd, gfp_mask);
3517

L
Linus Torvalds 已提交
3518 3519
	spin_lock_irqsave(q->queue_lock, flags);

3520 3521 3522
	if (!cic)
		goto queue_fail;

3523
new_queue:
3524
	cfqq = cic_to_cfqq(cic, is_sync);
3525
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3526
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3527
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
3528
	} else {
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
3539 3540 3541 3542 3543 3544 3545 3546
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3547
	}
L
Linus Torvalds 已提交
3548 3549

	cfqq->allocated[rw]++;
3550
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
3551

J
Jens Axboe 已提交
3552
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
3553

J
Jens Axboe 已提交
3554 3555 3556
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
3557

3558 3559 3560
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
3561

3562
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3563
	spin_unlock_irqrestore(q->queue_lock, flags);
3564
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
3565 3566 3567
	return 1;
}

3568
static void cfq_kick_queue(struct work_struct *work)
3569
{
3570
	struct cfq_data *cfqd =
3571
		container_of(work, struct cfq_data, unplug_work);
3572
	struct request_queue *q = cfqd->queue;
3573

3574
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
3575
	__blk_run_queue(cfqd->queue);
3576
	spin_unlock_irq(q->queue_lock);
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
3587
	int timed_out = 1;
3588

3589 3590
	cfq_log(cfqd, "idle timer fired");

3591 3592
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

3593 3594
	cfqq = cfqd->active_queue;
	if (cfqq) {
3595 3596
		timed_out = 0;

3597 3598 3599 3600 3601 3602
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

3603 3604 3605
		/*
		 * expired
		 */
3606
		if (cfq_slice_used(cfqq))
3607 3608 3609 3610 3611 3612
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
3613
		if (!cfqd->busy_queues)
3614 3615 3616 3617 3618
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
3619
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3620
			goto out_kick;
3621 3622 3623 3624 3625

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
3626 3627
	}
expire:
3628
	cfq_slice_expired(cfqd, timed_out);
3629
out_kick:
3630
	cfq_schedule_dispatch(cfqd);
3631 3632 3633 3634
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
3635 3636 3637
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
3638
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
3639
}
3640

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
3651 3652 3653

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
3654 3655
}

3656 3657 3658 3659 3660
static void cfq_cfqd_free(struct rcu_head *head)
{
	kfree(container_of(head, struct cfq_data, rcu));
}

J
Jens Axboe 已提交
3661
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
3662
{
3663
	struct cfq_data *cfqd = e->elevator_data;
3664
	struct request_queue *q = cfqd->queue;
3665

J
Jens Axboe 已提交
3666
	cfq_shutdown_timer_wq(cfqd);
3667

3668
	spin_lock_irq(q->queue_lock);
3669

3670
	if (cfqd->active_queue)
3671
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3672 3673

	while (!list_empty(&cfqd->cic_list)) {
3674 3675 3676
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
3677 3678

		__cfq_exit_single_io_context(cfqd, cic);
3679
	}
3680

3681
	cfq_put_async_queues(cfqd);
3682 3683
	cfq_release_cfq_groups(cfqd);
	blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3684

3685
	spin_unlock_irq(q->queue_lock);
3686 3687 3688

	cfq_shutdown_timer_wq(cfqd);

3689
	/* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3690
	call_rcu(&cfqd->rcu, cfq_cfqd_free);
L
Linus Torvalds 已提交
3691 3692
}

3693
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
3694 3695
{
	struct cfq_data *cfqd;
3696
	int i, j;
3697
	struct cfq_group *cfqg;
3698
	struct cfq_rb_root *st;
L
Linus Torvalds 已提交
3699

3700
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
3701
	if (!cfqd)
J
Jens Axboe 已提交
3702
		return NULL;
L
Linus Torvalds 已提交
3703

3704 3705 3706
	/* Init root service tree */
	cfqd->grp_service_tree = CFQ_RB_ROOT;

3707 3708
	/* Init root group */
	cfqg = &cfqd->root_group;
3709 3710
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
3711
	RB_CLEAR_NODE(&cfqg->rb_node);
3712

3713 3714 3715
	/* Give preference to root group over other groups */
	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;

3716
#ifdef CONFIG_CFQ_GROUP_IOSCHED
3717 3718 3719 3720 3721
	/*
	 * Take a reference to root group which we never drop. This is just
	 * to make sure that cfq_put_cfqg() does not try to kfree root group
	 */
	atomic_set(&cfqg->ref, 1);
3722 3723
	blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
					0);
3724
#endif
3725 3726 3727 3728 3729 3730 3731 3732
	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3733 3734 3735 3736 3737 3738 3739
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);
3740
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3741

3742
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
3743 3744 3745

	cfqd->queue = q;

3746 3747 3748 3749
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

3750
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3751

L
Linus Torvalds 已提交
3752
	cfqd->cfq_quantum = cfq_quantum;
3753 3754
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
3755 3756
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
3757 3758 3759 3760
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
3761
	cfqd->cfq_latency = 1;
3762
	cfqd->cfq_group_isolation = 0;
3763
	cfqd->hw_tag = -1;
3764 3765 3766 3767
	/*
	 * we optimistically start assuming sync ops weren't delayed in last
	 * second, in order to have larger depth for async operations.
	 */
3768
	cfqd->last_delayed_sync = jiffies - HZ;
3769
	INIT_RCU_HEAD(&cfqd->rcu);
J
Jens Axboe 已提交
3770
	return cfqd;
L
Linus Torvalds 已提交
3771 3772 3773 3774
}

static void cfq_slab_kill(void)
{
3775 3776 3777 3778
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
3779 3780 3781 3782 3783 3784 3785 3786
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3787
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3788 3789 3790
	if (!cfq_pool)
		goto fail;

3791
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3820
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3821
{									\
3822
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3823 3824 3825 3826 3827 3828
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3829 3830
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3831 3832
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3833 3834 3835 3836
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3837
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3838
SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
L
Linus Torvalds 已提交
3839 3840 3841
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3842
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3843
{									\
3844
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3858 3859 3860 3861
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3862
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3863 3864
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3865 3866 3867
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3868 3869
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3870
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3871
STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
L
Linus Torvalds 已提交
3872 3873
#undef STORE_FUNCTION

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3887
	CFQ_ATTR(low_latency),
3888
	CFQ_ATTR(group_isolation),
3889
	__ATTR_NULL
L
Linus Torvalds 已提交
3890 3891 3892 3893 3894 3895 3896
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3897
		.elevator_allow_merge_fn =	cfq_allow_merge,
3898
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3899
		.elevator_add_req_fn =		cfq_insert_request,
3900
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3901 3902 3903
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3904 3905
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3906 3907 3908 3909 3910
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3911
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3912
	},
3913
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3914 3915 3916 3917
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
#ifdef CONFIG_CFQ_GROUP_IOSCHED
static struct blkio_policy_type blkio_policy_cfq = {
	.ops = {
		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
	},
};
#else
static struct blkio_policy_type blkio_policy_cfq;
#endif

L
Linus Torvalds 已提交
3929 3930
static int __init cfq_init(void)
{
3931 3932 3933 3934 3935 3936 3937 3938
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3939 3940 3941
	if (cfq_slab_setup())
		return -ENOMEM;

3942
	elv_register(&iosched_cfq);
3943
	blkio_policy_register(&blkio_policy_cfq);
L
Linus Torvalds 已提交
3944

3945
	return 0;
L
Linus Torvalds 已提交
3946 3947 3948 3949
}

static void __exit cfq_exit(void)
{
3950
	DECLARE_COMPLETION_ONSTACK(all_gone);
3951
	blkio_policy_unregister(&blkio_policy_cfq);
L
Linus Torvalds 已提交
3952
	elv_unregister(&iosched_cfq);
3953
	ioc_gone = &all_gone;
3954 3955
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3956 3957 3958 3959 3960

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3961
	if (elv_ioc_count_read(cfq_ioc_count))
3962
		wait_for_completion(&all_gone);
3963
	cfq_slab_kill();
L
Linus Torvalds 已提交
3964 3965 3966 3967 3968 3969 3970 3971
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");