cfq-iosched.c 78.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
L
Linus Torvalds 已提交
16 17 18 19

/*
 * tunables
 */
20 21
/* max queue in one round of service */
static const int cfq_quantum = 4;
22
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 24 25 26
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
27
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
28
static int cfq_slice_async = HZ / 25;
29
static const int cfq_slice_async_rq = 2;
30
static int cfq_slice_idle = HZ / 125;
31 32
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
33

34
/*
35
 * offset from end of service tree
36
 */
37
#define CFQ_IDLE_DELAY		(HZ / 5)
38 39 40 41 42 43

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

44 45 46 47 48 49
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

50
#define CFQ_SLICE_SCALE		(5)
51
#define CFQ_HW_QUEUE_MIN	(5)
52

53 54
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
55
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
56

57 58
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
59

60
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61
static struct completion *ioc_gone;
62
static DEFINE_SPINLOCK(ioc_gone_lock);
63

64 65 66 67
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

68 69
#define sample_valid(samples)	((samples) > 80)

70 71 72 73 74 75 76 77 78
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
79
	unsigned count;
80
};
81
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

125 126 127 128
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
129
	unsigned long seeky_start;
130

131
	pid_t pid;
J
Jeff Moyer 已提交
132

133
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
134
	struct cfq_queue *new_cfqq;
135
	struct cfq_group *cfqg;
136 137
};

138
/*
139
 * First index in the service_trees.
140 141 142 143
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
144 145
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
146 147
};

148 149 150 151 152 153 154 155 156
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

157 158 159 160 161 162 163 164 165
/* This is per cgroup per device grouping structure */
struct cfq_group {
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
};
166

167 168 169
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
170
struct cfq_data {
171
	struct request_queue *queue;
172
	struct cfq_group root_group;
173

174 175
	/*
	 * The priority currently being served
176
	 */
177
	enum wl_prio_t serving_prio;
178 179
	enum wl_type_t serving_type;
	unsigned long workload_expires;
180
	struct cfq_group *serving_group;
181
	bool noidle_tree_requires_idle;
182 183 184 185 186 187 188 189

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

190
	unsigned int busy_queues;
191
	unsigned int busy_queues_avg[2];
192

193
	int rq_in_driver[2];
194
	int sync_flight;
195 196 197 198 199

	/*
	 * queue-depth detection
	 */
	int rq_queued;
200
	int hw_tag;
201 202 203 204 205 206 207 208
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
209

210 211 212 213
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
214
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
215

216 217 218
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

219 220 221 222 223
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
224

J
Jens Axboe 已提交
225
	sector_t last_position;
L
Linus Torvalds 已提交
226 227 228 229 230

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
231
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
232 233
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
234 235 236
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
237
	unsigned int cfq_latency;
238 239

	struct list_head cic_list;
L
Linus Torvalds 已提交
240

241 242 243 244
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
245 246

	unsigned long last_end_sync_rq;
L
Linus Torvalds 已提交
247 248
};

249 250
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
251
					    enum wl_type_t type,
252 253 254
					    struct cfq_data *cfqd)
{
	if (prio == IDLE_WORKLOAD)
255
		return &cfqg->service_tree_idle;
256

257
	return &cfqg->service_trees[prio][type];
258 259
}

J
Jens Axboe 已提交
260
enum cfqq_state_flags {
261 262
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
263
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
264 265 266 267
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
268
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
269
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
270
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
271
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
J
Jens Axboe 已提交
272 273 274 275 276
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
277
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
278 279 280
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
281
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
282 283 284
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
285
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
286 287 288 289
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
290
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
291 292 293 294
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
295
CFQ_CFQQ_FNS(slice_new);
296
CFQ_CFQQ_FNS(sync);
297
CFQ_CFQQ_FNS(coop);
298
CFQ_CFQQ_FNS(deep);
J
Jens Axboe 已提交
299 300
#undef CFQ_CFQQ_FNS

301 302 303 304 305
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

306 307 308 309 310 311 312 313 314 315 316
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


317 318 319 320 321 322 323 324 325
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

326 327 328 329 330 331 332 333 334 335

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

336 337
static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
{
338 339
	struct cfq_group *cfqg = &cfqd->root_group;

340
	if (wl == IDLE_WORKLOAD)
341
		return cfqg->service_tree_idle.count;
342

343 344 345
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
346 347
}

348
static void cfq_dispatch_insert(struct request_queue *, struct request *);
349
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
350
				       struct io_context *, gfp_t);
351
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
352 353
						struct io_context *);

354 355 356 357 358
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

359
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
360
					    bool is_sync)
361
{
362
	return cic->cfqq[is_sync];
363 364 365
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
366
				struct cfq_queue *cfqq, bool is_sync)
367
{
368
	cic->cfqq[is_sync] = cfqq;
369 370 371 372 373 374
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
375
static inline bool cfq_bio_sync(struct bio *bio)
376
{
377
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
378
}
L
Linus Torvalds 已提交
379

A
Andrew Morton 已提交
380 381 382 383
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
384
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
385
{
386 387
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
388
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
389
	}
A
Andrew Morton 已提交
390 391
}

392
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
393 394 395
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

396
	return !cfqd->rq_queued;
A
Andrew Morton 已提交
397 398
}

399 400 401 402 403
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
404
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
405
				 unsigned short prio)
406
{
407
	const int base_slice = cfqd->cfq_slice[sync];
408

409 410 411 412
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
413

414 415 416 417
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
418 419
}

420 421 422 423 424 425
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

426 427
static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
{
428 429 430
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
431
	unsigned busy = cfq_busy_queues_wl(rt, cfqd);
432 433 434 435 436 437 438 439

	min_q = min(cfqd->busy_queues_avg[rt], busy);
	max_q = max(cfqd->busy_queues_avg[rt], busy);
	cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
		cfq_hist_divisor;
	return cfqd->busy_queues_avg[rt];
}

440 441 442
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
		/* interested queues (we consider only the ones with the same
		 * priority class) */
		unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
		if (expect_latency > cfq_target_latency) {
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
			slice = max(slice * cfq_target_latency / expect_latency,
				    low_slice);
		}
	}
	cfqq->slice_end = jiffies + slice;
463
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
464 465 466 467 468 469 470
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
471
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
472 473 474 475 476 477 478 479 480
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
481
/*
J
Jens Axboe 已提交
482
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
483
 * We choose the request that is closest to the head right now. Distance
484
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
485
 */
J
Jens Axboe 已提交
486
static struct request *
487
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
488
{
489
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
490
	unsigned long back_max;
491 492 493
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
494

J
Jens Axboe 已提交
495 496 497 498
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
499

J
Jens Axboe 已提交
500 501 502 503
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
504 505 506 507
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
508

509 510
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
527
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
528 529 530 531 532 533

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
534
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
535 536

	/* Found required data */
537 538 539 540 541 542

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
543
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
544
		if (d1 < d2)
J
Jens Axboe 已提交
545
			return rq1;
546
		else if (d2 < d1)
J
Jens Axboe 已提交
547
			return rq2;
548 549
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
550
				return rq1;
551
			else
J
Jens Axboe 已提交
552
				return rq2;
553
		}
L
Linus Torvalds 已提交
554

555
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
556
		return rq1;
557
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
558 559
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
560 561 562 563 564 565 566 567
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
568
			return rq1;
L
Linus Torvalds 已提交
569
		else
J
Jens Axboe 已提交
570
			return rq2;
L
Linus Torvalds 已提交
571 572 573
	}
}

574 575 576
/*
 * The below is leftmost cache rbtree addon
 */
577
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
578
{
579 580 581 582
	/* Service tree is empty */
	if (!root->count)
		return NULL;

583 584 585
	if (!root->left)
		root->left = rb_first(&root->rb);

586 587 588 589
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
590 591
}

592 593 594 595 596 597
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

598 599 600 601
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
602
	rb_erase_init(n, &root->rb);
603
	--root->count;
604 605
}

L
Linus Torvalds 已提交
606 607 608
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
609 610 611
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
612
{
613 614
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
615
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
616

617
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
618 619

	if (rbprev)
J
Jens Axboe 已提交
620
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
621

622
	if (rbnext)
J
Jens Axboe 已提交
623
		next = rb_entry_rq(rbnext);
624 625 626
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
627
			next = rb_entry_rq(rbnext);
628
	}
L
Linus Torvalds 已提交
629

630
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
631 632
}

633 634
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
635
{
636 637 638
	/*
	 * just an approximation, should be ok.
	 */
639
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
640
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
641 642
}

643
/*
644
 * The cfqd->service_trees holds all pending cfq_queue's that have
645 646 647
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
648
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
649
				 bool add_front)
650
{
651 652
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
653
	unsigned long rb_key;
654
	struct cfq_rb_root *service_tree;
655
	int left;
656

657 658
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
						cfqq_type(cfqq), cfqd);
659 660
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
661
		parent = rb_last(&service_tree->rb);
662 663 664 665 666 667
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
668 669 670 671 672 673
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
674
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
675
		rb_key -= cfqq->slice_resid;
676
		cfqq->slice_resid = 0;
677 678
	} else {
		rb_key = -HZ;
679
		__cfqq = cfq_rb_first(service_tree);
680 681
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
682

683
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
684
		/*
685
		 * same position, nothing more to do
686
		 */
687 688
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
689
			return;
L
Linus Torvalds 已提交
690

691 692
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
693
	}
694

695
	left = 1;
696
	parent = NULL;
697 698
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
699
	while (*p) {
700
		struct rb_node **n;
701

702 703 704
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

705
		/*
706
		 * sort by key, that represents service time.
707
		 */
708
		if (time_before(rb_key, __cfqq->rb_key))
709
			n = &(*p)->rb_left;
710
		else {
711
			n = &(*p)->rb_right;
712
			left = 0;
713
		}
714 715

		p = n;
716 717
	}

718
	if (left)
719
		service_tree->left = &cfqq->rb_node;
720

721 722
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
723 724
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
L
Linus Torvalds 已提交
725 726
}

727
static struct cfq_queue *
728 729 730
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
747
		if (sector > blk_rq_pos(cfqq->next_rq))
748
			n = &(*p)->rb_right;
749
		else if (sector < blk_rq_pos(cfqq->next_rq))
750 751 752 753
			n = &(*p)->rb_left;
		else
			break;
		p = n;
754
		cfqq = NULL;
755 756 757 758 759
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
760
	return cfqq;
761 762 763 764 765 766 767
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

768 769 770 771
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
772 773 774 775 776 777

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

778
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
779 780
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
781 782
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
783 784 785
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
786 787
}

788 789 790
/*
 * Update cfqq's position in the service tree.
 */
791
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
792 793 794 795
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
796
	if (cfq_cfqq_on_rr(cfqq)) {
797
		cfq_service_tree_add(cfqd, cfqq, 0);
798 799
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
800 801
}

L
Linus Torvalds 已提交
802 803
/*
 * add to busy list of queues for service, trying to be fair in ordering
804
 * the pending list according to last request service
L
Linus Torvalds 已提交
805
 */
J
Jens Axboe 已提交
806
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
807
{
808
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
809 810
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
811 812
	cfqd->busy_queues++;

813
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
814 815
}

816 817 818 819
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
820
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
821
{
822
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
823 824
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
825

826 827 828 829
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
830 831 832 833
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
834

L
Linus Torvalds 已提交
835 836 837 838 839 840 841
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
842
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
843
{
J
Jens Axboe 已提交
844 845
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
846

847 848
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
849

J
Jens Axboe 已提交
850
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
851

852 853 854 855 856 857 858 859 860 861 862
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
		/*
		 * Queue will be deleted from service tree when we actually
		 * expire it later. Right now just remove it from prio tree
		 * as it is empty.
		 */
		if (cfqq->p_root) {
			rb_erase(&cfqq->p_node, cfqq->p_root);
			cfqq->p_root = NULL;
		}
	}
L
Linus Torvalds 已提交
863 864
}

J
Jens Axboe 已提交
865
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
866
{
J
Jens Axboe 已提交
867
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
868
	struct cfq_data *cfqd = cfqq->cfqd;
869
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
870

871
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
872 873 874 875 876

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
877
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
878
		cfq_dispatch_insert(cfqd->queue, __alias);
879 880 881

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
882 883 884 885

	/*
	 * check if this request is a better next-serve candidate
	 */
886
	prev = cfqq->next_rq;
887
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
888 889 890 891 892 893 894

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

895
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
896 897
}

J
Jens Axboe 已提交
898
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
899
{
900 901
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
902
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
903 904
}

905 906
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
907
{
908
	struct task_struct *tsk = current;
909
	struct cfq_io_context *cic;
910
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
911

912
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
913 914 915 916
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
917 918 919
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

920
		return elv_rb_find(&cfqq->sort_list, sector);
921
	}
L
Linus Torvalds 已提交
922 923 924 925

	return NULL;
}

926
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
927
{
928
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
929

930
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
931
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
932
						rq_in_driver(cfqd));
933

934
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
935 936
}

937
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
938
{
939
	struct cfq_data *cfqd = q->elevator->elevator_data;
940
	const int sync = rq_is_sync(rq);
941

942 943
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
944
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
945
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
946 947
}

948
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
949
{
J
Jens Axboe 已提交
950
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
951

J
Jens Axboe 已提交
952 953
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
954

955
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
956
	cfq_del_rq_rb(rq);
957

958
	cfqq->cfqd->rq_queued--;
959 960 961 962
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
963 964
}

965 966
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
967 968 969 970
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

971
	__rq = cfq_find_rq_fmerge(cfqd, bio);
972
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
973 974
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
975 976 977 978 979
	}

	return ELEVATOR_NO_MERGE;
}

980
static void cfq_merged_request(struct request_queue *q, struct request *req,
981
			       int type)
L
Linus Torvalds 已提交
982
{
983
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
984
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
985

J
Jens Axboe 已提交
986
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
987 988 989 990
	}
}

static void
991
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
992 993
		    struct request *next)
{
994
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
995 996 997 998
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
999
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1000
		list_move(&rq->queuelist, &next->queuelist);
1001 1002
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
1003

1004 1005
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
1006
	cfq_remove_request(next);
1007 1008
}

1009
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1010 1011 1012
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1013
	struct cfq_io_context *cic;
1014 1015 1016
	struct cfq_queue *cfqq;

	/*
1017
	 * Disallow merge of a sync bio into an async request.
1018
	 */
1019
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1020
		return false;
1021 1022

	/*
1023 1024
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
1025
	 */
1026
	cic = cfq_cic_lookup(cfqd, current->io_context);
1027
	if (!cic)
1028
		return false;
1029

1030
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1031
	return cfqq == RQ_CFQQ(rq);
1032 1033
}

J
Jens Axboe 已提交
1034 1035
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1036 1037
{
	if (cfqq) {
1038
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1039
		cfqq->slice_end = 0;
1040 1041 1042
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1043
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1044 1045
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1046
		cfq_mark_cfqq_slice_new(cfqq);
1047 1048

		del_timer(&cfqd->idle_slice_timer);
1049 1050 1051 1052 1053
	}

	cfqd->active_queue = cfqq;
}

1054 1055 1056 1057 1058
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1059
		    bool timed_out)
1060
{
1061 1062
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1063 1064 1065 1066 1067 1068
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1069
	 * store what was left of this slice, if the queue idled/timed out
1070
	 */
1071
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1072
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1073 1074
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1075

1076 1077 1078
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
		cfq_del_cfqq_rr(cfqd, cfqq);

1079
	cfq_resort_rr_list(cfqd, cfqq);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1090
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1091 1092 1093 1094
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1095
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1096 1097
}

1098 1099 1100 1101
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1102
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1103
{
1104
	struct cfq_rb_root *service_tree =
1105 1106
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
					cfqd->serving_type, cfqd);
1107

1108 1109 1110
	if (!cfqd->rq_queued)
		return NULL;

1111 1112 1113
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1114 1115
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
	struct cfq_group *cfqg = &cfqd->root_group;
	struct cfq_queue *cfqq;
	int i, j;
	struct cfq_rb_root *st;

	if (!cfqd->rq_queued)
		return NULL;

	for_each_cfqg_st(cfqg, i, j, st)
		if ((cfqq = cfq_rb_first(st)) != NULL)
			return cfqq;
	return NULL;
}

1132 1133 1134
/*
 * Get and set a new active queue for service.
 */
1135 1136
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1137
{
1138
	if (!cfqq)
1139
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1140

1141
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1142
	return cfqq;
1143 1144
}

1145 1146 1147
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1148 1149
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1150
	else
1151
		return cfqd->last_position - blk_rq_pos(rq);
1152 1153
}

1154 1155
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1156

1157 1158
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1159
{
1160
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1161

1162 1163
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1164

1165
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1166 1167
}

1168 1169 1170
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1171
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1183
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1184 1185 1186 1187 1188 1189 1190 1191
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1192
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1193 1194
		return __cfqq;

1195
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1196 1197 1198 1199 1200 1201 1202
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1203
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1220
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1221
{
1222 1223
	struct cfq_queue *cfqq;

1224 1225 1226 1227 1228
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1229
	/*
1230 1231 1232
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1233
	 */
1234 1235 1236 1237
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1238 1239 1240 1241 1242
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1243 1244
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1245

1246 1247 1248 1249 1250 1251
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1252
	return cfqq;
J
Jens Axboe 已提交
1253 1254
}

1255 1256 1257 1258 1259 1260 1261
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1262
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1263

1264 1265 1266
	BUG_ON(!service_tree);
	BUG_ON(!service_tree->count);

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1279
	return service_tree->count == 1;
1280 1281
}

J
Jens Axboe 已提交
1282
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1283
{
1284
	struct cfq_queue *cfqq = cfqd->active_queue;
1285
	struct cfq_io_context *cic;
1286 1287
	unsigned long sl;

1288
	/*
J
Jens Axboe 已提交
1289 1290 1291
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1292
	 */
J
Jens Axboe 已提交
1293
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1294 1295
		return;

1296
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1297
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1298 1299 1300 1301

	/*
	 * idle is disabled, either manually or by past process history
	 */
1302
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1303 1304
		return;

1305
	/*
1306
	 * still active requests from this queue, don't idle
1307
	 */
1308
	if (cfqq->dispatched)
1309 1310
		return;

1311 1312 1313
	/*
	 * task has exited, don't wait
	 */
1314
	cic = cfqd->active_cic;
1315
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1316 1317
		return;

1318 1319 1320 1321 1322 1323 1324 1325 1326
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1327
	cfq_mark_cfqq_wait_request(cfqq);
1328

J
Jens Axboe 已提交
1329
	sl = cfqd->cfq_slice_idle;
1330

1331
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1332
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1333 1334
}

1335 1336 1337
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1338
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1339
{
1340
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1341
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1342

1343 1344
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1345
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1346
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1347
	cfqq->dispatched++;
1348
	elv_dispatch_sort(q, rq);
1349 1350 1351

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1352 1353 1354 1355 1356
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1357
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1358
{
1359
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1360

J
Jens Axboe 已提交
1361
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1362
		return NULL;
1363 1364 1365

	cfq_mark_cfqq_fifo_expire(cfqq);

1366 1367
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1368

1369
	rq = rq_entry_fifo(cfqq->fifo.next);
1370
	if (time_before(jiffies, rq_fifo_time(rq)))
1371
		rq = NULL;
L
Linus Torvalds 已提交
1372

1373
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1374
	return rq;
L
Linus Torvalds 已提交
1375 1376
}

1377 1378 1379 1380
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1381

1382
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1383

1384
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1385 1386
}

J
Jeff Moyer 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1402
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1431 1432
}

1433 1434 1435
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
				struct cfq_group *cfqg, enum wl_prio_t prio,
				bool prio_changed)
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
1449
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1450 1451
			return cur_best;
		cur_best = SYNC_WORKLOAD;
1452
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1453 1454 1455 1456 1457 1458 1459
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
1460
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

1472
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1473 1474 1475 1476 1477
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;
1478
	struct cfq_rb_root *st;
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

	/* Choose next priority. RT > BE > IDLE */
	if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
		cfqd->serving_prio = RT_WORKLOAD;
	else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
1497 1498 1499
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
1511 1512 1513 1514
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
	slice = cfq_target_latency * count /
		max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
		      cfq_busy_queues_wl(cfqd->serving_prio, cfqd));

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
1535
	cfqd->noidle_tree_requires_idle = false;
1536 1537
}

1538 1539 1540 1541 1542 1543
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
	cfqd->serving_group = &cfqd->root_group;
	choose_service_tree(cfqd, &cfqd->root_group);
}

1544
/*
1545 1546
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
1547
 */
1548
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
1549
{
1550
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
1551

1552 1553 1554
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
1555

1556 1557
	if (!cfqd->rq_queued)
		return NULL;
1558
	/*
J
Jens Axboe 已提交
1559
	 * The active queue has run out of time, expire it and select new.
1560
	 */
1561
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
1562
		goto expire;
L
Linus Torvalds 已提交
1563

1564
	/*
J
Jens Axboe 已提交
1565 1566
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
1567
	 */
1568
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1569
		goto keep_queue;
J
Jens Axboe 已提交
1570

1571 1572 1573 1574
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
1575
	 * tree.  If possible, merge the expiring queue with the new cfqq.
1576
	 */
1577
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
1578 1579 1580
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
1581
		goto expire;
J
Jeff Moyer 已提交
1582
	}
1583

J
Jens Axboe 已提交
1584 1585 1586 1587 1588
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
1589
	if (timer_pending(&cfqd->idle_slice_timer) ||
1590
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1591 1592
		cfqq = NULL;
		goto keep_queue;
1593 1594
	}

J
Jens Axboe 已提交
1595
expire:
1596
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
1597
new_queue:
1598 1599 1600 1601 1602
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
1603
		cfq_choose_cfqg(cfqd);
1604

1605
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1606
keep_queue:
J
Jens Axboe 已提交
1607
	return cfqq;
1608 1609
}

J
Jens Axboe 已提交
1610
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1611 1612 1613 1614 1615 1616 1617 1618 1619
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
1620 1621 1622

	/* By default cfqq is not expired if it is empty. Do it explicitly */
	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
1623 1624 1625
	return dispatched;
}

1626 1627 1628 1629
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
1630
static int cfq_forced_dispatch(struct cfq_data *cfqd)
1631
{
1632
	struct cfq_queue *cfqq;
1633
	int dispatched = 0;
1634

1635 1636
	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1637

1638
	cfq_slice_expired(cfqd, 0);
1639 1640
	BUG_ON(cfqd->busy_queues);

1641
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1642 1643 1644
	return dispatched;
}

1645
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1646 1647
{
	unsigned int max_dispatch;
1648

1649 1650 1651
	/*
	 * Drain async requests before we start sync IO
	 */
1652
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1653
		return false;
1654

1655 1656 1657 1658
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1659
		return false;
1660 1661 1662 1663

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
1664

1665 1666 1667 1668 1669 1670 1671
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
1672
		if (cfq_class_idle(cfqq))
1673
			return false;
1674

1675 1676 1677 1678
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
1679
			return false;
1680

1681
		/*
1682
		 * Sole queue user, no limit
1683
		 */
1684
		max_dispatch = -1;
1685 1686 1687 1688 1689 1690 1691
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
1692
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1693 1694
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
1695

1696
		depth = last_sync / cfqd->cfq_slice[1];
1697 1698
		if (!depth && !cfqq->dispatched)
			depth = 1;
1699 1700
		if (depth < max_dispatch)
			max_dispatch = depth;
1701
	}
1702

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
1761 1762
		return 0;

1763
	/*
1764
	 * Dispatch a request from this cfqq, if it is allowed
1765
	 */
1766 1767 1768
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

1769
	cfqq->slice_dispatch++;
1770
	cfq_clear_cfqq_must_dispatch(cfqq);
1771

1772 1773 1774 1775 1776 1777 1778 1779 1780
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
1781 1782
	}

1783
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1784
	return 1;
L
Linus Torvalds 已提交
1785 1786 1787
}

/*
J
Jens Axboe 已提交
1788 1789
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
1790 1791 1792 1793 1794
 *
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
1795 1796 1797
	struct cfq_data *cfqd = cfqq->cfqd;

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
1798 1799 1800 1801

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

1802
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
1803
	BUG_ON(rb_first(&cfqq->sort_list));
1804
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
L
Linus Torvalds 已提交
1805

1806
	if (unlikely(cfqd->active_queue == cfqq)) {
1807
		__cfq_slice_expired(cfqd, cfqq, 0);
1808
		cfq_schedule_dispatch(cfqd);
1809
	}
1810

1811
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
1812 1813 1814
	kmem_cache_free(cfq_pool, cfqq);
}

1815 1816 1817
/*
 * Must always be called with the rcu_read_lock() held
 */
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

1829
/*
1830
 * Call func for each cic attached to this ioc.
1831
 */
1832
static void
1833 1834
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
1835
{
1836
	rcu_read_lock();
1837
	__call_for_each_cic(ioc, func);
1838
	rcu_read_unlock();
1839 1840 1841 1842 1843 1844 1845 1846 1847
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
1848
	elv_ioc_count_dec(cfq_ioc_count);
1849

1850 1851 1852 1853 1854 1855 1856
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
1857
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1858 1859 1860 1861 1862
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
1863
}
1864

1865 1866 1867
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1878
	hlist_del_rcu(&cic->cic_list);
1879 1880
	spin_unlock_irqrestore(&ioc->lock, flags);

1881
	cfq_cic_free(cic);
1882 1883
}

1884 1885 1886 1887 1888
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
1889 1890 1891
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
1892 1893 1894 1895
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
1896
	 */
1897
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
1898 1899
}

1900
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1901
{
J
Jeff Moyer 已提交
1902 1903
	struct cfq_queue *__cfqq, *next;

1904
	if (unlikely(cfqq == cfqd->active_queue)) {
1905
		__cfq_slice_expired(cfqd, cfqq, 0);
1906
		cfq_schedule_dispatch(cfqd);
1907
	}
1908

J
Jeff Moyer 已提交
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

1925 1926
	cfq_put_queue(cfqq);
}
1927

1928 1929 1930
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
1931 1932
	struct io_context *ioc = cic->ioc;

1933
	list_del_init(&cic->queue_list);
1934 1935 1936 1937

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
1938
	smp_wmb();
1939
	cic->dead_key = (unsigned long) cic->key;
1940 1941
	cic->key = NULL;

1942 1943 1944
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

1945 1946 1947
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
1948 1949
	}

1950 1951 1952
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
1953
	}
1954 1955
}

1956 1957
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
1958 1959 1960 1961
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
1962
		struct request_queue *q = cfqd->queue;
1963
		unsigned long flags;
1964

1965
		spin_lock_irqsave(q->queue_lock, flags);
1966 1967 1968 1969 1970 1971 1972 1973 1974

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

1975
		spin_unlock_irqrestore(q->queue_lock, flags);
1976
	}
L
Linus Torvalds 已提交
1977 1978
}

1979 1980 1981 1982
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
1983
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
1984
{
1985
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
1986 1987
}

1988
static struct cfq_io_context *
A
Al Viro 已提交
1989
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1990
{
1991
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
1992

1993 1994
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
1995
	if (cic) {
1996
		cic->last_end_request = jiffies;
1997
		INIT_LIST_HEAD(&cic->queue_list);
1998
		INIT_HLIST_NODE(&cic->cic_list);
1999 2000
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
2001
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
2002 2003 2004 2005 2006
	}

	return cic;
}

2007
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2008 2009 2010 2011
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
2012
	if (!cfq_cfqq_prio_changed(cfqq))
2013 2014
		return;

2015
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2016
	switch (ioprio_class) {
2017 2018 2019 2020
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
2021
		 * no prio set, inherit CPU scheduling settings
2022 2023
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
2024
		cfqq->ioprio_class = task_nice_ioclass(tsk);
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
2039 2040 2041 2042 2043 2044 2045 2046
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
2047
	cfq_clear_cfqq_prio_changed(cfqq);
2048 2049
}

J
Jens Axboe 已提交
2050
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2051
{
2052 2053
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
2054
	unsigned long flags;
2055

2056 2057 2058
	if (unlikely(!cfqd))
		return;

2059
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2060

2061
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2062 2063
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2064 2065
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2066
		if (new_cfqq) {
2067
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2068 2069
			cfq_put_queue(cfqq);
		}
2070
	}
2071

2072
	cfqq = cic->cfqq[BLK_RW_SYNC];
2073 2074 2075
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2076
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2077 2078
}

2079
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2080
{
2081
	call_for_each_cic(ioc, changed_ioprio);
2082
	ioc->ioprio_changed = 0;
2083 2084
}

2085
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2086
			  pid_t pid, bool is_sync)
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	cfqq->cfqg = cfqg;
}

static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}

2115
static struct cfq_queue *
2116
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2117
		     struct io_context *ioc, gfp_t gfp_mask)
2118 2119
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2120
	struct cfq_io_context *cic;
2121
	struct cfq_group *cfqg;
2122 2123

retry:
2124
	cfqg = cfq_get_cfqg(cfqd, 1);
2125
	cic = cfq_cic_lookup(cfqd, ioc);
2126 2127
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2128

2129 2130 2131 2132 2133 2134
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2135 2136 2137 2138 2139
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2140
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2141
					gfp_mask | __GFP_ZERO,
2142
					cfqd->queue->node);
2143
			spin_lock_irq(cfqd->queue->queue_lock);
2144 2145
			if (new_cfqq)
				goto retry;
2146
		} else {
2147 2148 2149
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2150 2151
		}

2152 2153 2154
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
2155
			cfq_link_cfqq_cfqg(cfqq, cfqg);
2156 2157 2158
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2159 2160 2161 2162 2163 2164 2165 2166
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2167 2168 2169
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2170
	switch (ioprio_class) {
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2182
static struct cfq_queue *
2183
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2184 2185
	      gfp_t gfp_mask)
{
2186 2187
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2188
	struct cfq_queue **async_cfqq = NULL;
2189 2190
	struct cfq_queue *cfqq = NULL;

2191 2192 2193 2194 2195
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2196
	if (!cfqq)
2197
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2198 2199 2200 2201

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2202
	if (!is_sync && !(*async_cfqq)) {
2203
		atomic_inc(&cfqq->ref);
2204
		*async_cfqq = cfqq;
2205 2206 2207 2208 2209 2210
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2211 2212 2213
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2214
static void
2215 2216
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2217
{
2218 2219
	unsigned long flags;

2220
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2221

2222 2223
	spin_lock_irqsave(&ioc->lock, flags);

2224
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2225

2226
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2227
	hlist_del_rcu(&cic->cic_list);
2228 2229 2230
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2231 2232
}

2233
static struct cfq_io_context *
2234
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2235 2236
{
	struct cfq_io_context *cic;
2237
	unsigned long flags;
2238
	void *k;
2239

2240 2241 2242
	if (unlikely(!ioc))
		return NULL;

2243 2244
	rcu_read_lock();

J
Jens Axboe 已提交
2245 2246 2247
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2248
	cic = rcu_dereference(ioc->ioc_data);
2249 2250
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2251
		return cic;
2252
	}
J
Jens Axboe 已提交
2253

2254 2255 2256 2257 2258
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2259 2260 2261
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2262
			cfq_drop_dead_cic(cfqd, ioc, cic);
2263
			rcu_read_lock();
2264
			continue;
2265
		}
2266

2267
		spin_lock_irqsave(&ioc->lock, flags);
2268
		rcu_assign_pointer(ioc->ioc_data, cic);
2269
		spin_unlock_irqrestore(&ioc->lock, flags);
2270 2271
		break;
	} while (1);
2272

2273
	return cic;
2274 2275
}

2276 2277 2278 2279 2280
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2281 2282
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2283
{
2284
	unsigned long flags;
2285
	int ret;
2286

2287 2288 2289 2290
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2291

2292 2293 2294
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2295 2296
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2297
		spin_unlock_irqrestore(&ioc->lock, flags);
2298

2299 2300 2301 2302 2303 2304 2305
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2306 2307
	}

2308 2309
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2310

2311
	return ret;
2312 2313
}

L
Linus Torvalds 已提交
2314 2315 2316
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2317
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2318 2319
 */
static struct cfq_io_context *
2320
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2321
{
2322
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2323 2324
	struct cfq_io_context *cic;

2325
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2326

2327
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2328 2329 2330
	if (!ioc)
		return NULL;

2331
	cic = cfq_cic_lookup(cfqd, ioc);
2332 2333
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2334

2335 2336 2337
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2338

2339 2340 2341
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2342
out:
2343 2344 2345 2346
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2347
	return cic;
2348 2349
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2350 2351 2352 2353 2354
err:
	put_io_context(ioc);
	return NULL;
}

2355 2356
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2357
{
2358 2359
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2360

2361 2362 2363 2364
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2365

2366
static void
2367
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2368
		       struct request *rq)
2369 2370 2371 2372
{
	sector_t sdist;
	u64 total;

2373
	if (!cfqq->last_request_pos)
2374
		sdist = 0;
2375 2376
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2377
	else
2378
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2379 2380 2381 2382 2383

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2384 2385
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2386
	else
2387
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2388

2389 2390 2391 2392 2393
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2407
}
L
Linus Torvalds 已提交
2408

2409 2410 2411 2412 2413 2414 2415 2416
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2417
	int old_idle, enable_idle;
2418

2419 2420 2421 2422
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2423 2424
		return;

2425
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2426

2427 2428 2429
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

2430
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2431 2432
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
2433 2434
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2435
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2436 2437 2438
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2439 2440
	}

2441 2442 2443 2444 2445 2446 2447
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2448
}
L
Linus Torvalds 已提交
2449

2450 2451 2452 2453
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2454
static bool
2455
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2456
		   struct request *rq)
2457
{
J
Jens Axboe 已提交
2458
	struct cfq_queue *cfqq;
2459

J
Jens Axboe 已提交
2460 2461
	cfqq = cfqd->active_queue;
	if (!cfqq)
2462
		return false;
2463

J
Jens Axboe 已提交
2464
	if (cfq_slice_used(cfqq))
2465
		return true;
J
Jens Axboe 已提交
2466 2467

	if (cfq_class_idle(new_cfqq))
2468
		return false;
2469 2470

	if (cfq_class_idle(cfqq))
2471
		return true;
2472

2473
	/* Allow preemption only if we are idling on sync-noidle tree */
2474 2475
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2476 2477
	    new_cfqq->service_tree->count == 2 &&
	    RB_EMPTY_ROOT(&cfqq->sort_list))
2478 2479
		return true;

2480 2481 2482 2483
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2484
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2485
		return true;
2486

2487 2488 2489 2490 2491
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2492
		return true;
2493

2494 2495 2496 2497
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2498
		return true;
2499

2500
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2501
		return false;
2502 2503 2504 2505 2506

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2507
	if (cfq_rq_close(cfqd, cfqq, rq))
2508
		return true;
2509

2510
	return false;
2511 2512 2513 2514 2515 2516 2517 2518
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2519
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2520
	cfq_slice_expired(cfqd, 1);
2521

2522 2523 2524 2525 2526
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2527 2528

	cfq_service_tree_add(cfqd, cfqq, 1);
2529

2530 2531
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2532 2533 2534
}

/*
J
Jens Axboe 已提交
2535
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2536 2537 2538
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2539 2540
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
2541
{
J
Jens Axboe 已提交
2542
	struct cfq_io_context *cic = RQ_CIC(rq);
2543

2544
	cfqd->rq_queued++;
2545 2546 2547
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
2548
	cfq_update_io_thinktime(cfqd, cic);
2549
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
2550 2551
	cfq_update_idle_window(cfqd, cfqq, cic);

2552
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2553 2554 2555

	if (cfqq == cfqd->active_queue) {
		/*
2556 2557 2558
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
2559 2560
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
2561 2562 2563
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
2564
		 */
2565
		if (cfq_cfqq_wait_request(cfqq)) {
2566 2567
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
2568
				del_timer(&cfqd->idle_slice_timer);
2569 2570 2571
				__blk_run_queue(cfqd->queue);
			} else
				cfq_mark_cfqq_must_dispatch(cfqq);
2572
		}
J
Jens Axboe 已提交
2573
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2574 2575 2576
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
2577 2578
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
2579 2580
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
2581
		__blk_run_queue(cfqd->queue);
2582
	}
L
Linus Torvalds 已提交
2583 2584
}

2585
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2586
{
2587
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2588
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2589

2590
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2591
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2592

2593
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2594
	list_add_tail(&rq->queuelist, &cfqq->fifo);
2595
	cfq_add_rq_rb(rq);
2596

J
Jens Axboe 已提交
2597
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
2598 2599
}

2600 2601 2602 2603 2604 2605
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
2606 2607
	struct cfq_queue *cfqq = cfqd->active_queue;

2608 2609 2610 2611 2612
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
2613 2614

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2615
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2616 2617
		return;

S
Shaohua Li 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

2628 2629 2630
	if (cfqd->hw_tag_samples++ < 50)
		return;

2631
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2632 2633 2634 2635 2636
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

2637
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2638
{
J
Jens Axboe 已提交
2639
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2640
	struct cfq_data *cfqd = cfqq->cfqd;
2641
	const int sync = rq_is_sync(rq);
2642
	unsigned long now;
L
Linus Torvalds 已提交
2643

2644
	now = jiffies;
2645
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
2646

2647 2648
	cfq_update_hw_tag(cfqd);

2649
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
2650
	WARN_ON(!cfqq->dispatched);
2651
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
2652
	cfqq->dispatched--;
L
Linus Torvalds 已提交
2653

2654 2655 2656
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

2657
	if (sync) {
J
Jens Axboe 已提交
2658
		RQ_CIC(rq)->last_end_request = now;
2659 2660
		cfqd->last_end_sync_rq = now;
	}
2661 2662 2663 2664 2665 2666

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
2667 2668
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

2669 2670 2671 2672
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
2673
		/*
2674 2675 2676 2677 2678 2679
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
2680
		 */
2681
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2682
			cfq_slice_expired(cfqd, 1);
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
			    || cfqd->noidle_tree_requires_idle)
				cfq_arm_slice_timer(cfqd);
		}
2695
	}
J
Jens Axboe 已提交
2696

2697
	if (!rq_in_driver(cfqd))
2698
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2699 2700
}

2701 2702 2703 2704 2705
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2706
{
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
2718
		 * unboost the queue (if needed)
2719
		 */
2720 2721
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
2722 2723
	}
}
L
Linus Torvalds 已提交
2724

2725
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2726
{
2727
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
2728
		cfq_mark_cfqq_must_alloc_slice(cfqq);
2729
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
2730
	}
L
Linus Torvalds 已提交
2731

2732 2733 2734
	return ELV_MQUEUE_MAY;
}

2735
static int cfq_may_queue(struct request_queue *q, int rw)
2736 2737 2738
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
2739
	struct cfq_io_context *cic;
2740 2741 2742 2743 2744 2745 2746 2747
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
2748
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2749 2750 2751
	if (!cic)
		return ELV_MQUEUE_MAY;

2752
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2753
	if (cfqq) {
2754
		cfq_init_prio_data(cfqq, cic->ioc);
2755 2756
		cfq_prio_boost(cfqq);

2757
		return __cfq_may_queue(cfqq);
2758 2759 2760
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
2761 2762 2763 2764 2765
}

/*
 * queue lock held here
 */
2766
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
2767
{
J
Jens Axboe 已提交
2768
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
2769

J
Jens Axboe 已提交
2770
	if (cfqq) {
2771
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
2772

2773 2774
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
2775

J
Jens Axboe 已提交
2776
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2777 2778

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
2779
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
2780 2781 2782 2783 2784

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
2785 2786 2787 2788 2789 2790
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2791
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
2792 2793 2794 2795
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
2822
/*
2823
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
2824
 */
2825
static int
2826
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2827 2828 2829 2830
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
2831
	const bool is_sync = rq_is_sync(rq);
2832
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
2833 2834 2835 2836
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

2837
	cic = cfq_get_io_context(cfqd, gfp_mask);
2838

L
Linus Torvalds 已提交
2839 2840
	spin_lock_irqsave(q->queue_lock, flags);

2841 2842 2843
	if (!cic)
		goto queue_fail;

2844
new_queue:
2845
	cfqq = cic_to_cfqq(cic, is_sync);
2846
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2847
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2848
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
2849
	} else {
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
2860 2861 2862 2863 2864 2865 2866 2867
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2868
	}
L
Linus Torvalds 已提交
2869 2870

	cfqq->allocated[rw]++;
2871
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
2872

J
Jens Axboe 已提交
2873
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
2874

J
Jens Axboe 已提交
2875 2876 2877
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
2878

2879 2880 2881
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
2882

2883
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2884
	spin_unlock_irqrestore(q->queue_lock, flags);
2885
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
2886 2887 2888
	return 1;
}

2889
static void cfq_kick_queue(struct work_struct *work)
2890
{
2891
	struct cfq_data *cfqd =
2892
		container_of(work, struct cfq_data, unplug_work);
2893
	struct request_queue *q = cfqd->queue;
2894

2895
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
2896
	__blk_run_queue(cfqd->queue);
2897
	spin_unlock_irq(q->queue_lock);
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
2908
	int timed_out = 1;
2909

2910 2911
	cfq_log(cfqd, "idle timer fired");

2912 2913
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

2914 2915
	cfqq = cfqd->active_queue;
	if (cfqq) {
2916 2917
		timed_out = 0;

2918 2919 2920 2921 2922 2923
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

2924 2925 2926
		/*
		 * expired
		 */
2927
		if (cfq_slice_used(cfqq))
2928 2929 2930 2931 2932 2933
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
2934
		if (!cfqd->busy_queues)
2935 2936 2937 2938 2939
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
2940
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2941
			goto out_kick;
2942 2943 2944 2945 2946

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
2947 2948
	}
expire:
2949
	cfq_slice_expired(cfqd, timed_out);
2950
out_kick:
2951
	cfq_schedule_dispatch(cfqd);
2952 2953 2954 2955
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
2956 2957 2958
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
2959
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
2960
}
2961

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
2972 2973 2974

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
2975 2976
}

J
Jens Axboe 已提交
2977
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
2978
{
2979
	struct cfq_data *cfqd = e->elevator_data;
2980
	struct request_queue *q = cfqd->queue;
2981

J
Jens Axboe 已提交
2982
	cfq_shutdown_timer_wq(cfqd);
2983

2984
	spin_lock_irq(q->queue_lock);
2985

2986
	if (cfqd->active_queue)
2987
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2988 2989

	while (!list_empty(&cfqd->cic_list)) {
2990 2991 2992
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
2993 2994

		__cfq_exit_single_io_context(cfqd, cic);
2995
	}
2996

2997
	cfq_put_async_queues(cfqd);
2998

2999
	spin_unlock_irq(q->queue_lock);
3000 3001 3002 3003

	cfq_shutdown_timer_wq(cfqd);

	kfree(cfqd);
L
Linus Torvalds 已提交
3004 3005
}

3006
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
3007 3008
{
	struct cfq_data *cfqd;
3009
	int i, j;
3010
	struct cfq_group *cfqg;
3011
	struct cfq_rb_root *st;
L
Linus Torvalds 已提交
3012

3013
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
3014
	if (!cfqd)
J
Jens Axboe 已提交
3015
		return NULL;
L
Linus Torvalds 已提交
3016

3017 3018
	/* Init root group */
	cfqg = &cfqd->root_group;
3019 3020
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
3021 3022 3023 3024 3025 3026 3027 3028 3029

	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3030 3031 3032 3033 3034 3035 3036
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);
3037
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3038

3039
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
3040 3041 3042

	cfqd->queue = q;

3043 3044 3045 3046
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

3047
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3048

L
Linus Torvalds 已提交
3049
	cfqd->cfq_quantum = cfq_quantum;
3050 3051
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
3052 3053
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
3054 3055 3056 3057
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
3058
	cfqd->cfq_latency = 1;
3059
	cfqd->hw_tag = -1;
3060
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
3061
	return cfqd;
L
Linus Torvalds 已提交
3062 3063 3064 3065
}

static void cfq_slab_kill(void)
{
3066 3067 3068 3069
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
3070 3071 3072 3073 3074 3075 3076 3077
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3078
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3079 3080 3081
	if (!cfq_pool)
		goto fail;

3082
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3111
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3112
{									\
3113
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3114 3115 3116 3117 3118 3119
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3120 3121
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3122 3123
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3124 3125 3126 3127
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3128
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3129 3130 3131
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3132
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3133
{									\
3134
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3148 3149 3150 3151
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3152
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3153 3154
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3155 3156 3157
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3158 3159
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3160
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3161 3162
#undef STORE_FUNCTION

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3176
	CFQ_ATTR(low_latency),
3177
	__ATTR_NULL
L
Linus Torvalds 已提交
3178 3179 3180 3181 3182 3183 3184
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3185
		.elevator_allow_merge_fn =	cfq_allow_merge,
3186
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3187
		.elevator_add_req_fn =		cfq_insert_request,
3188
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3189 3190 3191
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3192 3193
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3194 3195 3196 3197 3198
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3199
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3200
	},
3201
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3202 3203 3204 3205 3206 3207
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3208 3209 3210 3211 3212 3213 3214 3215
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3216 3217 3218
	if (cfq_slab_setup())
		return -ENOMEM;

3219
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3220

3221
	return 0;
L
Linus Torvalds 已提交
3222 3223 3224 3225
}

static void __exit cfq_exit(void)
{
3226
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3227
	elv_unregister(&iosched_cfq);
3228
	ioc_gone = &all_gone;
3229 3230
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3231 3232 3233 3234 3235

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3236
	if (elv_ioc_count_read(cfq_ioc_count))
3237
		wait_for_completion(&all_gone);
3238
	cfq_slab_kill();
L
Linus Torvalds 已提交
3239 3240 3241 3242 3243 3244 3245 3246
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");