cfq-iosched.c 83.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
16
#include "blk-cgroup.h"
L
Linus Torvalds 已提交
17 18 19 20

/*
 * tunables
 */
21 22
/* max queue in one round of service */
static const int cfq_quantum = 4;
23
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 25 26 27
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
28
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
29
static int cfq_slice_async = HZ / 25;
30
static const int cfq_slice_async_rq = 2;
31
static int cfq_slice_idle = HZ / 125;
32 33
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
34

35
/*
36
 * offset from end of service tree
37
 */
38
#define CFQ_IDLE_DELAY		(HZ / 5)
39 40 41 42 43 44

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

45 46 47 48 49 50
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

51
#define CFQ_SLICE_SCALE		(5)
52
#define CFQ_HW_QUEUE_MIN	(5)
53
#define CFQ_SERVICE_SHIFT       12
54

55 56
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
57
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
58

59 60
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
61

62
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63
static struct completion *ioc_gone;
64
static DEFINE_SPINLOCK(ioc_gone_lock);
65

66 67 68 69
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

70
#define sample_valid(samples)	((samples) > 80)
71
#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
72

73 74 75 76 77 78 79 80 81
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
82
	unsigned count;
83
	u64 min_vdisktime;
84
	struct rb_node *active;
85
};
86
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

130 131 132 133
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
134
	unsigned long seeky_start;
135

136
	pid_t pid;
J
Jeff Moyer 已提交
137

138
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
139
	struct cfq_queue *new_cfqq;
140
	struct cfq_group *cfqg;
141 142
};

143
/*
144
 * First index in the service_trees.
145 146 147 148
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
149 150
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
151 152
};

153 154 155 156 157 158 159 160 161
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

162 163
/* This is per cgroup per device grouping structure */
struct cfq_group {
164 165 166 167 168
	/* group service_tree member */
	struct rb_node rb_node;

	/* group service_tree key */
	u64 vdisktime;
169
	unsigned int weight;
170 171 172 173 174
	bool on_st;

	/* number of cfqq currently on this group */
	int nr_cfqq;

175 176 177 178 179 180 181
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
};
182

183 184 185
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
186
struct cfq_data {
187
	struct request_queue *queue;
188 189
	/* Root service tree for cfq_groups */
	struct cfq_rb_root grp_service_tree;
190
	struct cfq_group root_group;
191

192 193
	/*
	 * The priority currently being served
194
	 */
195
	enum wl_prio_t serving_prio;
196 197
	enum wl_type_t serving_type;
	unsigned long workload_expires;
198
	struct cfq_group *serving_group;
199
	bool noidle_tree_requires_idle;
200 201 202 203 204 205 206 207

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

208
	unsigned int busy_queues;
209
	unsigned int busy_queues_avg[2];
210

211
	int rq_in_driver[2];
212
	int sync_flight;
213 214 215 216 217

	/*
	 * queue-depth detection
	 */
	int rq_queued;
218
	int hw_tag;
219 220 221 222 223 224 225 226
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
227

228 229 230 231
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
232
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
233

234 235 236
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

237 238 239 240 241
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
242

J
Jens Axboe 已提交
243
	sector_t last_position;
L
Linus Torvalds 已提交
244 245 246 247 248

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
249
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
250 251
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
252 253 254
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
255
	unsigned int cfq_latency;
256 257

	struct list_head cic_list;
L
Linus Torvalds 已提交
258

259 260 261 262
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
263 264

	unsigned long last_end_sync_rq;
L
Linus Torvalds 已提交
265 266
};

267 268
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
269
					    enum wl_type_t type,
270 271
					    struct cfq_data *cfqd)
{
272 273 274
	if (!cfqg)
		return NULL;

275
	if (prio == IDLE_WORKLOAD)
276
		return &cfqg->service_tree_idle;
277

278
	return &cfqg->service_trees[prio][type];
279 280
}

J
Jens Axboe 已提交
281
enum cfqq_state_flags {
282 283
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
284
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
285 286 287 288
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
289
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
290
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
291
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
292
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
J
Jens Axboe 已提交
293 294 295 296 297
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
298
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
299 300 301
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
302
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
303 304 305
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
306
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
307 308 309 310
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
311
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
312 313 314 315
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
316
CFQ_CFQQ_FNS(slice_new);
317
CFQ_CFQQ_FNS(sync);
318
CFQ_CFQQ_FNS(coop);
319
CFQ_CFQQ_FNS(deep);
J
Jens Axboe 已提交
320 321
#undef CFQ_CFQQ_FNS

322 323 324 325 326
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

327 328 329 330 331 332 333 334 335 336 337
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


338 339 340 341 342 343 344 345 346
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

347 348 349 350 351 352 353 354 355 356

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

357 358
static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
{
359 360
	struct cfq_group *cfqg = &cfqd->root_group;

361
	if (wl == IDLE_WORKLOAD)
362
		return cfqg->service_tree_idle.count;
363

364 365 366
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
367 368
}

369
static void cfq_dispatch_insert(struct request_queue *, struct request *);
370
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
371
				       struct io_context *, gfp_t);
372
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
373 374
						struct io_context *);

375 376 377 378 379
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

380
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
381
					    bool is_sync)
382
{
383
	return cic->cfqq[is_sync];
384 385 386
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
387
				struct cfq_queue *cfqq, bool is_sync)
388
{
389
	cic->cfqq[is_sync] = cfqq;
390 391 392 393 394 395
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
396
static inline bool cfq_bio_sync(struct bio *bio)
397
{
398
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
399
}
L
Linus Torvalds 已提交
400

A
Andrew Morton 已提交
401 402 403 404
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
405
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
406
{
407 408
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
409
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
410
	}
A
Andrew Morton 已提交
411 412
}

413
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
414 415 416
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

417
	return !cfqd->rq_queued;
A
Andrew Morton 已提交
418 419
}

420 421 422 423 424
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
425
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
426
				 unsigned short prio)
427
{
428
	const int base_slice = cfqd->cfq_slice[sync];
429

430 431 432 433
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
434

435 436 437 438
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
439 440
}

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
{
	u64 d = delta << CFQ_SERVICE_SHIFT;

	d = d * BLKIO_WEIGHT_DEFAULT;
	do_div(d, cfqg->weight);
	return d;
}

static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta > 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
{
	s64 delta = (s64)(vdisktime - min_vdisktime);
	if (delta < 0)
		min_vdisktime = vdisktime;

	return min_vdisktime;
}

static void update_min_vdisktime(struct cfq_rb_root *st)
{
	u64 vdisktime = st->min_vdisktime;
	struct cfq_group *cfqg;

	if (st->active) {
		cfqg = rb_entry_cfqg(st->active);
		vdisktime = cfqg->vdisktime;
	}

	if (st->left) {
		cfqg = rb_entry_cfqg(st->left);
		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
	}

	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
}

486 487 488 489 490 491
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

492 493
static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
{
494 495 496
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
497
	unsigned busy = cfq_busy_queues_wl(rt, cfqd);
498 499 500 501 502 503 504 505

	min_q = min(cfqd->busy_queues_avg[rt], busy);
	max_q = max(cfqd->busy_queues_avg[rt], busy);
	cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
		cfq_hist_divisor;
	return cfqd->busy_queues_avg[rt];
}

506 507 508
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
		/* interested queues (we consider only the ones with the same
		 * priority class) */
		unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
		if (expect_latency > cfq_target_latency) {
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
			slice = max(slice * cfq_target_latency / expect_latency,
				    low_slice);
		}
	}
	cfqq->slice_end = jiffies + slice;
529
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
530 531 532 533 534 535 536
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
537
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
538 539 540 541 542 543 544 545 546
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
547
/*
J
Jens Axboe 已提交
548
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
549
 * We choose the request that is closest to the head right now. Distance
550
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
551
 */
J
Jens Axboe 已提交
552
static struct request *
553
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
554
{
555
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
556
	unsigned long back_max;
557 558 559
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
560

J
Jens Axboe 已提交
561 562 563 564
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
565

J
Jens Axboe 已提交
566 567 568 569
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
570 571 572 573
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
574

575 576
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
593
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
594 595 596 597 598 599

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
600
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
601 602

	/* Found required data */
603 604 605 606 607 608

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
609
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
610
		if (d1 < d2)
J
Jens Axboe 已提交
611
			return rq1;
612
		else if (d2 < d1)
J
Jens Axboe 已提交
613
			return rq2;
614 615
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
616
				return rq1;
617
			else
J
Jens Axboe 已提交
618
				return rq2;
619
		}
L
Linus Torvalds 已提交
620

621
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
622
		return rq1;
623
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
624 625
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
626 627 628 629 630 631 632 633
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
634
			return rq1;
L
Linus Torvalds 已提交
635
		else
J
Jens Axboe 已提交
636
			return rq2;
L
Linus Torvalds 已提交
637 638 639
	}
}

640 641 642
/*
 * The below is leftmost cache rbtree addon
 */
643
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
644
{
645 646 647 648
	/* Service tree is empty */
	if (!root->count)
		return NULL;

649 650 651
	if (!root->left)
		root->left = rb_first(&root->rb);

652 653 654 655
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
656 657
}

658 659 660 661 662 663 664 665 666 667 668
static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
{
	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_cfqg(root->left);

	return NULL;
}

669 670 671 672 673 674
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

675 676 677 678
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
679
	rb_erase_init(n, &root->rb);
680
	--root->count;
681 682
}

L
Linus Torvalds 已提交
683 684 685
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
686 687 688
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
689
{
690 691
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
692
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
693

694
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
695 696

	if (rbprev)
J
Jens Axboe 已提交
697
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
698

699
	if (rbnext)
J
Jens Axboe 已提交
700
		next = rb_entry_rq(rbnext);
701 702 703
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
704
			next = rb_entry_rq(rbnext);
705
	}
L
Linus Torvalds 已提交
706

707
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
708 709
}

710 711
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
712
{
713 714 715
	/*
	 * just an approximation, should be ok.
	 */
716
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
717
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
718 719
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
static inline s64
cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	return cfqg->vdisktime - st->min_vdisktime;
}

static void
__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct cfq_group *__cfqg;
	s64 key = cfqg_key(st, cfqg);
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__cfqg = rb_entry_cfqg(parent);

		if (key < cfqg_key(st, __cfqg))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &cfqg->rb_node;

	rb_link_node(&cfqg->rb_node, parent, node);
	rb_insert_color(&cfqg->rb_node, &st->rb);
}

static void
cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
	struct cfq_group *__cfqg;
	struct rb_node *n;

	cfqg->nr_cfqq++;
	if (cfqg->on_st)
		return;

	/*
	 * Currently put the group at the end. Later implement something
	 * so that groups get lesser vtime based on their weights, so that
	 * if group does not loose all if it was not continously backlogged.
	 */
	n = rb_last(&st->rb);
	if (n) {
		__cfqg = rb_entry_cfqg(n);
		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
	} else
		cfqg->vdisktime = st->min_vdisktime;

	__cfq_group_service_tree_add(st, cfqg);
	cfqg->on_st = true;
}

static void
cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;

786 787 788
	if (st->active == &cfqg->rb_node)
		st->active = NULL;

789 790
	BUG_ON(cfqg->nr_cfqq < 1);
	cfqg->nr_cfqq--;
791

792 793 794 795 796 797 798 799 800
	/* If there are other cfq queues under this group, don't delete it */
	if (cfqg->nr_cfqq)
		return;

	cfqg->on_st = false;
	if (!RB_EMPTY_NODE(&cfqg->rb_node))
		cfq_rb_erase(&cfqg->rb_node, st);
}

801
/*
802
 * The cfqd->service_trees holds all pending cfq_queue's that have
803 804 805
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
806
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
807
				 bool add_front)
808
{
809 810
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
811
	unsigned long rb_key;
812
	struct cfq_rb_root *service_tree;
813
	int left;
814

815 816
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
						cfqq_type(cfqq), cfqd);
817 818
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
819
		parent = rb_last(&service_tree->rb);
820 821 822 823 824 825
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
826 827 828 829 830 831
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
832
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
833
		rb_key -= cfqq->slice_resid;
834
		cfqq->slice_resid = 0;
835 836
	} else {
		rb_key = -HZ;
837
		__cfqq = cfq_rb_first(service_tree);
838 839
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
840

841
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
842
		/*
843
		 * same position, nothing more to do
844
		 */
845 846
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
847
			return;
L
Linus Torvalds 已提交
848

849 850
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
851
	}
852

853
	left = 1;
854
	parent = NULL;
855 856
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
857
	while (*p) {
858
		struct rb_node **n;
859

860 861 862
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

863
		/*
864
		 * sort by key, that represents service time.
865
		 */
866
		if (time_before(rb_key, __cfqq->rb_key))
867
			n = &(*p)->rb_left;
868
		else {
869
			n = &(*p)->rb_right;
870
			left = 0;
871
		}
872 873

		p = n;
874 875
	}

876
	if (left)
877
		service_tree->left = &cfqq->rb_node;
878

879 880
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
881 882
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
883
	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
884 885
}

886
static struct cfq_queue *
887 888 889
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
906
		if (sector > blk_rq_pos(cfqq->next_rq))
907
			n = &(*p)->rb_right;
908
		else if (sector < blk_rq_pos(cfqq->next_rq))
909 910 911 912
			n = &(*p)->rb_left;
		else
			break;
		p = n;
913
		cfqq = NULL;
914 915 916 917 918
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
919
	return cfqq;
920 921 922 923 924 925 926
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

927 928 929 930
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
931 932 933 934 935 936

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

937
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
938 939
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
940 941
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
942 943 944
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
945 946
}

947 948 949
/*
 * Update cfqq's position in the service tree.
 */
950
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
951 952 953 954
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
955
	if (cfq_cfqq_on_rr(cfqq)) {
956
		cfq_service_tree_add(cfqd, cfqq, 0);
957 958
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
959 960
}

L
Linus Torvalds 已提交
961 962
/*
 * add to busy list of queues for service, trying to be fair in ordering
963
 * the pending list according to last request service
L
Linus Torvalds 已提交
964
 */
J
Jens Axboe 已提交
965
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
966
{
967
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
968 969
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
970 971
	cfqd->busy_queues++;

972
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
973 974
}

975 976 977 978
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
979
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
980
{
981
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
982 983
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
984

985 986 987 988
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
989 990 991 992
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
993

994
	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
L
Linus Torvalds 已提交
995 996 997 998 999 1000 1001
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
1002
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1003
{
J
Jens Axboe 已提交
1004 1005
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
1006

1007 1008
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
1009

J
Jens Axboe 已提交
1010
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
		/*
		 * Queue will be deleted from service tree when we actually
		 * expire it later. Right now just remove it from prio tree
		 * as it is empty.
		 */
		if (cfqq->p_root) {
			rb_erase(&cfqq->p_node, cfqq->p_root);
			cfqq->p_root = NULL;
		}
	}
L
Linus Torvalds 已提交
1023 1024
}

J
Jens Axboe 已提交
1025
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
1026
{
J
Jens Axboe 已提交
1027
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
1028
	struct cfq_data *cfqd = cfqq->cfqd;
1029
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
1030

1031
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
1032 1033 1034 1035 1036

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
1037
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
1038
		cfq_dispatch_insert(cfqd->queue, __alias);
1039 1040 1041

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
1042 1043 1044 1045

	/*
	 * check if this request is a better next-serve candidate
	 */
1046
	prev = cfqq->next_rq;
1047
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1048 1049 1050 1051 1052 1053 1054

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

1055
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
1056 1057
}

J
Jens Axboe 已提交
1058
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
1059
{
1060 1061
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
1062
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
1063 1064
}

1065 1066
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
1067
{
1068
	struct task_struct *tsk = current;
1069
	struct cfq_io_context *cic;
1070
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
1071

1072
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1073 1074 1075 1076
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1077 1078 1079
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

1080
		return elv_rb_find(&cfqq->sort_list, sector);
1081
	}
L
Linus Torvalds 已提交
1082 1083 1084 1085

	return NULL;
}

1086
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1087
{
1088
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1089

1090
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
1091
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1092
						rq_in_driver(cfqd));
1093

1094
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
1095 1096
}

1097
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1098
{
1099
	struct cfq_data *cfqd = q->elevator->elevator_data;
1100
	const int sync = rq_is_sync(rq);
1101

1102 1103
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
1104
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1105
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
1106 1107
}

1108
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
1109
{
J
Jens Axboe 已提交
1110
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1111

J
Jens Axboe 已提交
1112 1113
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
1114

1115
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1116
	cfq_del_rq_rb(rq);
1117

1118
	cfqq->cfqd->rq_queued--;
1119 1120 1121 1122
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
1123 1124
}

1125 1126
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
1127 1128 1129 1130
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

1131
	__rq = cfq_find_rq_fmerge(cfqd, bio);
1132
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1133 1134
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
1135 1136 1137 1138 1139
	}

	return ELEVATOR_NO_MERGE;
}

1140
static void cfq_merged_request(struct request_queue *q, struct request *req,
1141
			       int type)
L
Linus Torvalds 已提交
1142
{
1143
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
1144
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
1145

J
Jens Axboe 已提交
1146
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
1147 1148 1149 1150
	}
}

static void
1151
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
1152 1153
		    struct request *next)
{
1154
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1155 1156 1157 1158
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1159
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1160
		list_move(&rq->queuelist, &next->queuelist);
1161 1162
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
1163

1164 1165
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
1166
	cfq_remove_request(next);
1167 1168
}

1169
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1170 1171 1172
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1173
	struct cfq_io_context *cic;
1174 1175 1176
	struct cfq_queue *cfqq;

	/*
1177
	 * Disallow merge of a sync bio into an async request.
1178
	 */
1179
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1180
		return false;
1181 1182

	/*
1183 1184
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
1185
	 */
1186
	cic = cfq_cic_lookup(cfqd, current->io_context);
1187
	if (!cic)
1188
		return false;
1189

1190
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1191
	return cfqq == RQ_CFQQ(rq);
1192 1193
}

J
Jens Axboe 已提交
1194 1195
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1196 1197
{
	if (cfqq) {
1198
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1199
		cfqq->slice_end = 0;
1200 1201 1202
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1203
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1204 1205
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1206
		cfq_mark_cfqq_slice_new(cfqq);
1207 1208

		del_timer(&cfqd->idle_slice_timer);
1209 1210 1211 1212 1213
	}

	cfqd->active_queue = cfqq;
}

1214 1215 1216 1217 1218
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1219
		    bool timed_out)
1220
{
1221 1222
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1223 1224 1225 1226 1227 1228
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1229
	 * store what was left of this slice, if the queue idled/timed out
1230
	 */
1231
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1232
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1233 1234
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1235

1236 1237 1238
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
		cfq_del_cfqq_rr(cfqd, cfqq);

1239
	cfq_resort_rr_list(cfqd, cfqq);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1250
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1251 1252 1253 1254
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1255
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1256 1257
}

1258 1259 1260 1261
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1262
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1263
{
1264
	struct cfq_rb_root *service_tree =
1265 1266
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
					cfqd->serving_type, cfqd);
1267

1268 1269 1270
	if (!cfqd->rq_queued)
		return NULL;

1271 1272 1273
	/* There is nothing to dispatch */
	if (!service_tree)
		return NULL;
1274 1275 1276
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1277 1278
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
{
	struct cfq_group *cfqg = &cfqd->root_group;
	struct cfq_queue *cfqq;
	int i, j;
	struct cfq_rb_root *st;

	if (!cfqd->rq_queued)
		return NULL;

	for_each_cfqg_st(cfqg, i, j, st)
		if ((cfqq = cfq_rb_first(st)) != NULL)
			return cfqq;
	return NULL;
}

1295 1296 1297
/*
 * Get and set a new active queue for service.
 */
1298 1299
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1300
{
1301
	if (!cfqq)
1302
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1303

1304
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1305
	return cfqq;
1306 1307
}

1308 1309 1310
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1311 1312
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1313
	else
1314
		return cfqd->last_position - blk_rq_pos(rq);
1315 1316
}

1317 1318
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1319

1320 1321
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1322
{
1323
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1324

1325 1326
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1327

1328
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1329 1330
}

1331 1332 1333
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1334
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1346
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1347 1348 1349 1350 1351 1352 1353 1354
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1355
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1356 1357
		return __cfqq;

1358
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1359 1360 1361 1362 1363 1364 1365
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1366
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1383
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1384
{
1385 1386
	struct cfq_queue *cfqq;

1387 1388 1389 1390 1391
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1392
	/*
1393 1394 1395
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1396
	 */
1397 1398 1399 1400
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1401 1402 1403 1404 1405
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1406 1407
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1408

1409 1410 1411 1412 1413 1414
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1415
	return cfqq;
J
Jens Axboe 已提交
1416 1417
}

1418 1419 1420 1421 1422 1423 1424
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1425
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1426

1427 1428 1429
	BUG_ON(!service_tree);
	BUG_ON(!service_tree->count);

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1442
	return service_tree->count == 1;
1443 1444
}

J
Jens Axboe 已提交
1445
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1446
{
1447
	struct cfq_queue *cfqq = cfqd->active_queue;
1448
	struct cfq_io_context *cic;
1449 1450
	unsigned long sl;

1451
	/*
J
Jens Axboe 已提交
1452 1453 1454
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1455
	 */
J
Jens Axboe 已提交
1456
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1457 1458
		return;

1459
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1460
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1461 1462 1463 1464

	/*
	 * idle is disabled, either manually or by past process history
	 */
1465
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1466 1467
		return;

1468
	/*
1469
	 * still active requests from this queue, don't idle
1470
	 */
1471
	if (cfqq->dispatched)
1472 1473
		return;

1474 1475 1476
	/*
	 * task has exited, don't wait
	 */
1477
	cic = cfqd->active_cic;
1478
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1479 1480
		return;

1481 1482 1483 1484 1485 1486 1487 1488 1489
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1490
	cfq_mark_cfqq_wait_request(cfqq);
1491

J
Jens Axboe 已提交
1492
	sl = cfqd->cfq_slice_idle;
1493

1494
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1495
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1496 1497
}

1498 1499 1500
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1501
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1502
{
1503
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1504
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1505

1506 1507
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1508
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1509
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1510
	cfqq->dispatched++;
1511
	elv_dispatch_sort(q, rq);
1512 1513 1514

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1515 1516 1517 1518 1519
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1520
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1521
{
1522
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1523

J
Jens Axboe 已提交
1524
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1525
		return NULL;
1526 1527 1528

	cfq_mark_cfqq_fifo_expire(cfqq);

1529 1530
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1531

1532
	rq = rq_entry_fifo(cfqq->fifo.next);
1533
	if (time_before(jiffies, rq_fifo_time(rq)))
1534
		rq = NULL;
L
Linus Torvalds 已提交
1535

1536
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1537
	return rq;
L
Linus Torvalds 已提交
1538 1539
}

1540 1541 1542 1543
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1544

1545
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1546

1547
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1548 1549
}

J
Jeff Moyer 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1565
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1594 1595
}

1596 1597 1598
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
				struct cfq_group *cfqg, enum wl_prio_t prio,
				bool prio_changed)
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
1612
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1613 1614
			return cur_best;
		cur_best = SYNC_WORKLOAD;
1615
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1616 1617 1618 1619 1620 1621 1622
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
1623
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

1635
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1636 1637 1638 1639 1640
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;
1641
	struct cfq_rb_root *st;
1642

1643 1644 1645 1646 1647 1648
	if (!cfqg) {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	/* Choose next priority. RT > BE > IDLE */
	if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
		cfqd->serving_prio = RT_WORKLOAD;
	else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
1666 1667 1668
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
1680 1681 1682 1683
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
	slice = cfq_target_latency * count /
		max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
		      cfq_busy_queues_wl(cfqd->serving_prio, cfqd));

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
1704
	cfqd->noidle_tree_requires_idle = false;
1705 1706
}

1707 1708 1709
static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
{
	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1710
	struct cfq_group *cfqg;
1711 1712 1713

	if (RB_EMPTY_ROOT(&st->rb))
		return NULL;
1714 1715 1716 1717
	cfqg = cfq_rb_first_group(st);
	st->active = &cfqg->rb_node;
	update_min_vdisktime(st);
	return cfqg;
1718 1719
}

1720 1721
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
1722 1723 1724 1725
	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);

	cfqd->serving_group = cfqg;
	choose_service_tree(cfqd, cfqg);
1726 1727
}

1728
/*
1729 1730
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
1731
 */
1732
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
1733
{
1734
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
1735

1736 1737 1738
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
1739

1740 1741
	if (!cfqd->rq_queued)
		return NULL;
1742
	/*
J
Jens Axboe 已提交
1743
	 * The active queue has run out of time, expire it and select new.
1744
	 */
1745
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
1746
		goto expire;
L
Linus Torvalds 已提交
1747

1748
	/*
J
Jens Axboe 已提交
1749 1750
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
1751
	 */
1752
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1753
		goto keep_queue;
J
Jens Axboe 已提交
1754

1755 1756 1757 1758
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
1759
	 * tree.  If possible, merge the expiring queue with the new cfqq.
1760
	 */
1761
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
1762 1763 1764
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
1765
		goto expire;
J
Jeff Moyer 已提交
1766
	}
1767

J
Jens Axboe 已提交
1768 1769 1770 1771 1772
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
1773
	if (timer_pending(&cfqd->idle_slice_timer) ||
1774
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1775 1776
		cfqq = NULL;
		goto keep_queue;
1777 1778
	}

J
Jens Axboe 已提交
1779
expire:
1780
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
1781
new_queue:
1782 1783 1784 1785 1786
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
1787
		cfq_choose_cfqg(cfqd);
1788

1789
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1790
keep_queue:
J
Jens Axboe 已提交
1791
	return cfqq;
1792 1793
}

J
Jens Axboe 已提交
1794
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1795 1796 1797 1798 1799 1800 1801 1802 1803
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
1804 1805 1806

	/* By default cfqq is not expired if it is empty. Do it explicitly */
	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
1807 1808 1809
	return dispatched;
}

1810 1811 1812 1813
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
1814
static int cfq_forced_dispatch(struct cfq_data *cfqd)
1815
{
1816
	struct cfq_queue *cfqq;
1817
	int dispatched = 0;
1818

1819 1820
	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1821

1822
	cfq_slice_expired(cfqd, 0);
1823 1824
	BUG_ON(cfqd->busy_queues);

1825
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1826 1827 1828
	return dispatched;
}

1829
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1830 1831
{
	unsigned int max_dispatch;
1832

1833 1834 1835
	/*
	 * Drain async requests before we start sync IO
	 */
1836
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1837
		return false;
1838

1839 1840 1841 1842
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1843
		return false;
1844 1845 1846 1847

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
1848

1849 1850 1851 1852 1853 1854 1855
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
1856
		if (cfq_class_idle(cfqq))
1857
			return false;
1858

1859 1860 1861 1862
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
1863
			return false;
1864

1865
		/*
1866
		 * Sole queue user, no limit
1867
		 */
1868
		max_dispatch = -1;
1869 1870 1871 1872 1873 1874 1875
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
1876
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1877 1878
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
1879

1880
		depth = last_sync / cfqd->cfq_slice[1];
1881 1882
		if (!depth && !cfqq->dispatched)
			depth = 1;
1883 1884
		if (depth < max_dispatch)
			max_dispatch = depth;
1885
	}
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
1945 1946
		return 0;

1947
	/*
1948
	 * Dispatch a request from this cfqq, if it is allowed
1949
	 */
1950 1951 1952
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

1953
	cfqq->slice_dispatch++;
1954
	cfq_clear_cfqq_must_dispatch(cfqq);
1955

1956 1957 1958 1959 1960 1961 1962 1963 1964
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
1965 1966
	}

1967
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1968
	return 1;
L
Linus Torvalds 已提交
1969 1970 1971
}

/*
J
Jens Axboe 已提交
1972 1973
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
1974 1975 1976 1977 1978
 *
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
1979 1980 1981
	struct cfq_data *cfqd = cfqq->cfqd;

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
1982 1983 1984 1985

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

1986
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
1987
	BUG_ON(rb_first(&cfqq->sort_list));
1988
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
L
Linus Torvalds 已提交
1989

1990
	if (unlikely(cfqd->active_queue == cfqq)) {
1991
		__cfq_slice_expired(cfqd, cfqq, 0);
1992
		cfq_schedule_dispatch(cfqd);
1993
	}
1994

1995
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
1996 1997 1998
	kmem_cache_free(cfq_pool, cfqq);
}

1999 2000 2001
/*
 * Must always be called with the rcu_read_lock() held
 */
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

2013
/*
2014
 * Call func for each cic attached to this ioc.
2015
 */
2016
static void
2017 2018
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
2019
{
2020
	rcu_read_lock();
2021
	__call_for_each_cic(ioc, func);
2022
	rcu_read_unlock();
2023 2024 2025 2026 2027 2028 2029 2030 2031
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
2032
	elv_ioc_count_dec(cfq_ioc_count);
2033

2034 2035 2036 2037 2038 2039 2040
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
2041
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2042 2043 2044 2045 2046
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
2047
}
2048

2049 2050 2051
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2062
	hlist_del_rcu(&cic->cic_list);
2063 2064
	spin_unlock_irqrestore(&ioc->lock, flags);

2065
	cfq_cic_free(cic);
2066 2067
}

2068 2069 2070 2071 2072
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
2073 2074 2075
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
2076 2077 2078 2079
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
2080
	 */
2081
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
2082 2083
}

2084
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2085
{
J
Jeff Moyer 已提交
2086 2087
	struct cfq_queue *__cfqq, *next;

2088
	if (unlikely(cfqq == cfqd->active_queue)) {
2089
		__cfq_slice_expired(cfqd, cfqq, 0);
2090
		cfq_schedule_dispatch(cfqd);
2091
	}
2092

J
Jeff Moyer 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

2109 2110
	cfq_put_queue(cfqq);
}
2111

2112 2113 2114
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
2115 2116
	struct io_context *ioc = cic->ioc;

2117
	list_del_init(&cic->queue_list);
2118 2119 2120 2121

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
2122
	smp_wmb();
2123
	cic->dead_key = (unsigned long) cic->key;
2124 2125
	cic->key = NULL;

2126 2127 2128
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

2129 2130 2131
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
2132 2133
	}

2134 2135 2136
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
2137
	}
2138 2139
}

2140 2141
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
2142 2143 2144 2145
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
2146
		struct request_queue *q = cfqd->queue;
2147
		unsigned long flags;
2148

2149
		spin_lock_irqsave(q->queue_lock, flags);
2150 2151 2152 2153 2154 2155 2156 2157 2158

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

2159
		spin_unlock_irqrestore(q->queue_lock, flags);
2160
	}
L
Linus Torvalds 已提交
2161 2162
}

2163 2164 2165 2166
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
2167
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
2168
{
2169
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
2170 2171
}

2172
static struct cfq_io_context *
A
Al Viro 已提交
2173
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2174
{
2175
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
2176

2177 2178
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
2179
	if (cic) {
2180
		cic->last_end_request = jiffies;
2181
		INIT_LIST_HEAD(&cic->queue_list);
2182
		INIT_HLIST_NODE(&cic->cic_list);
2183 2184
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
2185
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
2186 2187 2188 2189 2190
	}

	return cic;
}

2191
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2192 2193 2194 2195
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
2196
	if (!cfq_cfqq_prio_changed(cfqq))
2197 2198
		return;

2199
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2200
	switch (ioprio_class) {
2201 2202 2203 2204
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
2205
		 * no prio set, inherit CPU scheduling settings
2206 2207
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
2208
		cfqq->ioprio_class = task_nice_ioclass(tsk);
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
2223 2224 2225 2226 2227 2228 2229 2230
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
2231
	cfq_clear_cfqq_prio_changed(cfqq);
2232 2233
}

J
Jens Axboe 已提交
2234
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2235
{
2236 2237
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
2238
	unsigned long flags;
2239

2240 2241 2242
	if (unlikely(!cfqd))
		return;

2243
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2244

2245
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2246 2247
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2248 2249
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2250
		if (new_cfqq) {
2251
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2252 2253
			cfq_put_queue(cfqq);
		}
2254
	}
2255

2256
	cfqq = cic->cfqq[BLK_RW_SYNC];
2257 2258 2259
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2260
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2261 2262
}

2263
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2264
{
2265
	call_for_each_cic(ioc, changed_ioprio);
2266
	ioc->ioprio_changed = 0;
2267 2268
}

2269
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2270
			  pid_t pid, bool is_sync)
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	cfqq->cfqg = cfqg;
}

static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}

2299
static struct cfq_queue *
2300
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2301
		     struct io_context *ioc, gfp_t gfp_mask)
2302 2303
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2304
	struct cfq_io_context *cic;
2305
	struct cfq_group *cfqg;
2306 2307

retry:
2308
	cfqg = cfq_get_cfqg(cfqd, 1);
2309
	cic = cfq_cic_lookup(cfqd, ioc);
2310 2311
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2312

2313 2314 2315 2316 2317 2318
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2319 2320 2321 2322 2323
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2324
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2325
					gfp_mask | __GFP_ZERO,
2326
					cfqd->queue->node);
2327
			spin_lock_irq(cfqd->queue->queue_lock);
2328 2329
			if (new_cfqq)
				goto retry;
2330
		} else {
2331 2332 2333
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2334 2335
		}

2336 2337 2338
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
2339
			cfq_link_cfqq_cfqg(cfqq, cfqg);
2340 2341 2342
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2343 2344 2345 2346 2347 2348 2349 2350
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2351 2352 2353
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2354
	switch (ioprio_class) {
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2366
static struct cfq_queue *
2367
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2368 2369
	      gfp_t gfp_mask)
{
2370 2371
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2372
	struct cfq_queue **async_cfqq = NULL;
2373 2374
	struct cfq_queue *cfqq = NULL;

2375 2376 2377 2378 2379
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2380
	if (!cfqq)
2381
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2382 2383 2384 2385

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2386
	if (!is_sync && !(*async_cfqq)) {
2387
		atomic_inc(&cfqq->ref);
2388
		*async_cfqq = cfqq;
2389 2390 2391 2392 2393 2394
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2395 2396 2397
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2398
static void
2399 2400
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2401
{
2402 2403
	unsigned long flags;

2404
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2405

2406 2407
	spin_lock_irqsave(&ioc->lock, flags);

2408
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2409

2410
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2411
	hlist_del_rcu(&cic->cic_list);
2412 2413 2414
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2415 2416
}

2417
static struct cfq_io_context *
2418
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2419 2420
{
	struct cfq_io_context *cic;
2421
	unsigned long flags;
2422
	void *k;
2423

2424 2425 2426
	if (unlikely(!ioc))
		return NULL;

2427 2428
	rcu_read_lock();

J
Jens Axboe 已提交
2429 2430 2431
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2432
	cic = rcu_dereference(ioc->ioc_data);
2433 2434
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2435
		return cic;
2436
	}
J
Jens Axboe 已提交
2437

2438 2439 2440 2441 2442
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2443 2444 2445
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2446
			cfq_drop_dead_cic(cfqd, ioc, cic);
2447
			rcu_read_lock();
2448
			continue;
2449
		}
2450

2451
		spin_lock_irqsave(&ioc->lock, flags);
2452
		rcu_assign_pointer(ioc->ioc_data, cic);
2453
		spin_unlock_irqrestore(&ioc->lock, flags);
2454 2455
		break;
	} while (1);
2456

2457
	return cic;
2458 2459
}

2460 2461 2462 2463 2464
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2465 2466
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2467
{
2468
	unsigned long flags;
2469
	int ret;
2470

2471 2472 2473 2474
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2475

2476 2477 2478
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2479 2480
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2481
		spin_unlock_irqrestore(&ioc->lock, flags);
2482

2483 2484 2485 2486 2487 2488 2489
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2490 2491
	}

2492 2493
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2494

2495
	return ret;
2496 2497
}

L
Linus Torvalds 已提交
2498 2499 2500
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2501
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2502 2503
 */
static struct cfq_io_context *
2504
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2505
{
2506
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2507 2508
	struct cfq_io_context *cic;

2509
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2510

2511
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2512 2513 2514
	if (!ioc)
		return NULL;

2515
	cic = cfq_cic_lookup(cfqd, ioc);
2516 2517
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2518

2519 2520 2521
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2522

2523 2524 2525
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2526
out:
2527 2528 2529 2530
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2531
	return cic;
2532 2533
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2534 2535 2536 2537 2538
err:
	put_io_context(ioc);
	return NULL;
}

2539 2540
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2541
{
2542 2543
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2544

2545 2546 2547 2548
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2549

2550
static void
2551
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2552
		       struct request *rq)
2553 2554 2555 2556
{
	sector_t sdist;
	u64 total;

2557
	if (!cfqq->last_request_pos)
2558
		sdist = 0;
2559 2560
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2561
	else
2562
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2563 2564 2565 2566 2567

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2568 2569
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2570
	else
2571
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2572

2573 2574 2575 2576 2577
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2591
}
L
Linus Torvalds 已提交
2592

2593 2594 2595 2596 2597 2598 2599 2600
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2601
	int old_idle, enable_idle;
2602

2603 2604 2605 2606
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2607 2608
		return;

2609
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2610

2611 2612 2613
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

2614
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2615 2616
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
2617 2618
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2619
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2620 2621 2622
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2623 2624
	}

2625 2626 2627 2628 2629 2630 2631
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2632
}
L
Linus Torvalds 已提交
2633

2634 2635 2636 2637
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2638
static bool
2639
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2640
		   struct request *rq)
2641
{
J
Jens Axboe 已提交
2642
	struct cfq_queue *cfqq;
2643

J
Jens Axboe 已提交
2644 2645
	cfqq = cfqd->active_queue;
	if (!cfqq)
2646
		return false;
2647

J
Jens Axboe 已提交
2648
	if (cfq_slice_used(cfqq))
2649
		return true;
J
Jens Axboe 已提交
2650 2651

	if (cfq_class_idle(new_cfqq))
2652
		return false;
2653 2654

	if (cfq_class_idle(cfqq))
2655
		return true;
2656

2657
	/* Allow preemption only if we are idling on sync-noidle tree */
2658 2659
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2660 2661
	    new_cfqq->service_tree->count == 2 &&
	    RB_EMPTY_ROOT(&cfqq->sort_list))
2662 2663
		return true;

2664 2665 2666 2667
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2668
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2669
		return true;
2670

2671 2672 2673 2674 2675
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2676
		return true;
2677

2678 2679 2680 2681
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2682
		return true;
2683

2684
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2685
		return false;
2686 2687 2688 2689 2690

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2691
	if (cfq_rq_close(cfqd, cfqq, rq))
2692
		return true;
2693

2694
	return false;
2695 2696 2697 2698 2699 2700 2701 2702
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2703
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2704
	cfq_slice_expired(cfqd, 1);
2705

2706 2707 2708 2709 2710
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2711 2712

	cfq_service_tree_add(cfqd, cfqq, 1);
2713

2714 2715
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2716 2717 2718
}

/*
J
Jens Axboe 已提交
2719
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2720 2721 2722
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2723 2724
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
2725
{
J
Jens Axboe 已提交
2726
	struct cfq_io_context *cic = RQ_CIC(rq);
2727

2728
	cfqd->rq_queued++;
2729 2730 2731
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
2732
	cfq_update_io_thinktime(cfqd, cic);
2733
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
2734 2735
	cfq_update_idle_window(cfqd, cfqq, cic);

2736
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2737 2738 2739

	if (cfqq == cfqd->active_queue) {
		/*
2740 2741 2742
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
2743 2744
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
2745 2746 2747
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
2748
		 */
2749
		if (cfq_cfqq_wait_request(cfqq)) {
2750 2751
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
2752
				del_timer(&cfqd->idle_slice_timer);
2753 2754 2755
				__blk_run_queue(cfqd->queue);
			} else
				cfq_mark_cfqq_must_dispatch(cfqq);
2756
		}
J
Jens Axboe 已提交
2757
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2758 2759 2760
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
2761 2762
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
2763 2764
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
2765
		__blk_run_queue(cfqd->queue);
2766
	}
L
Linus Torvalds 已提交
2767 2768
}

2769
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2770
{
2771
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2772
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2773

2774
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2775
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2776

2777
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2778
	list_add_tail(&rq->queuelist, &cfqq->fifo);
2779
	cfq_add_rq_rb(rq);
2780

J
Jens Axboe 已提交
2781
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
2782 2783
}

2784 2785 2786 2787 2788 2789
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
2790 2791
	struct cfq_queue *cfqq = cfqd->active_queue;

2792 2793 2794 2795 2796
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
2797 2798

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2799
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2800 2801
		return;

S
Shaohua Li 已提交
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

2812 2813 2814
	if (cfqd->hw_tag_samples++ < 50)
		return;

2815
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2816 2817 2818 2819 2820
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

2821
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2822
{
J
Jens Axboe 已提交
2823
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2824
	struct cfq_data *cfqd = cfqq->cfqd;
2825
	const int sync = rq_is_sync(rq);
2826
	unsigned long now;
L
Linus Torvalds 已提交
2827

2828
	now = jiffies;
2829
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
2830

2831 2832
	cfq_update_hw_tag(cfqd);

2833
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
2834
	WARN_ON(!cfqq->dispatched);
2835
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
2836
	cfqq->dispatched--;
L
Linus Torvalds 已提交
2837

2838 2839 2840
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

2841
	if (sync) {
J
Jens Axboe 已提交
2842
		RQ_CIC(rq)->last_end_request = now;
2843 2844
		cfqd->last_end_sync_rq = now;
	}
2845 2846 2847 2848 2849 2850

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
2851 2852
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

2853 2854 2855 2856
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
2857
		/*
2858 2859 2860 2861 2862 2863
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
2864
		 */
2865
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2866
			cfq_slice_expired(cfqd, 1);
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
			    || cfqd->noidle_tree_requires_idle)
				cfq_arm_slice_timer(cfqd);
		}
2879
	}
J
Jens Axboe 已提交
2880

2881
	if (!rq_in_driver(cfqd))
2882
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2883 2884
}

2885 2886 2887 2888 2889
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2890
{
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
2902
		 * unboost the queue (if needed)
2903
		 */
2904 2905
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
2906 2907
	}
}
L
Linus Torvalds 已提交
2908

2909
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2910
{
2911
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
2912
		cfq_mark_cfqq_must_alloc_slice(cfqq);
2913
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
2914
	}
L
Linus Torvalds 已提交
2915

2916 2917 2918
	return ELV_MQUEUE_MAY;
}

2919
static int cfq_may_queue(struct request_queue *q, int rw)
2920 2921 2922
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
2923
	struct cfq_io_context *cic;
2924 2925 2926 2927 2928 2929 2930 2931
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
2932
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2933 2934 2935
	if (!cic)
		return ELV_MQUEUE_MAY;

2936
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2937
	if (cfqq) {
2938
		cfq_init_prio_data(cfqq, cic->ioc);
2939 2940
		cfq_prio_boost(cfqq);

2941
		return __cfq_may_queue(cfqq);
2942 2943 2944
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
2945 2946 2947 2948 2949
}

/*
 * queue lock held here
 */
2950
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
2951
{
J
Jens Axboe 已提交
2952
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
2953

J
Jens Axboe 已提交
2954
	if (cfqq) {
2955
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
2956

2957 2958
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
2959

J
Jens Axboe 已提交
2960
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2961 2962

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
2963
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
2964 2965 2966 2967 2968

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
2969 2970 2971 2972 2973 2974
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2975
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
2976 2977 2978 2979
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
3006
/*
3007
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
3008
 */
3009
static int
3010
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
3011 3012 3013 3014
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
3015
	const bool is_sync = rq_is_sync(rq);
3016
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
3017 3018 3019 3020
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

3021
	cic = cfq_get_io_context(cfqd, gfp_mask);
3022

L
Linus Torvalds 已提交
3023 3024
	spin_lock_irqsave(q->queue_lock, flags);

3025 3026 3027
	if (!cic)
		goto queue_fail;

3028
new_queue:
3029
	cfqq = cic_to_cfqq(cic, is_sync);
3030
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3031
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3032
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
3033
	} else {
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
3044 3045 3046 3047 3048 3049 3050 3051
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3052
	}
L
Linus Torvalds 已提交
3053 3054

	cfqq->allocated[rw]++;
3055
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
3056

J
Jens Axboe 已提交
3057
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
3058

J
Jens Axboe 已提交
3059 3060 3061
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
3062

3063 3064 3065
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
3066

3067
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
3068
	spin_unlock_irqrestore(q->queue_lock, flags);
3069
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
3070 3071 3072
	return 1;
}

3073
static void cfq_kick_queue(struct work_struct *work)
3074
{
3075
	struct cfq_data *cfqd =
3076
		container_of(work, struct cfq_data, unplug_work);
3077
	struct request_queue *q = cfqd->queue;
3078

3079
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
3080
	__blk_run_queue(cfqd->queue);
3081
	spin_unlock_irq(q->queue_lock);
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
3092
	int timed_out = 1;
3093

3094 3095
	cfq_log(cfqd, "idle timer fired");

3096 3097
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

3098 3099
	cfqq = cfqd->active_queue;
	if (cfqq) {
3100 3101
		timed_out = 0;

3102 3103 3104 3105 3106 3107
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

3108 3109 3110
		/*
		 * expired
		 */
3111
		if (cfq_slice_used(cfqq))
3112 3113 3114 3115 3116 3117
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
3118
		if (!cfqd->busy_queues)
3119 3120 3121 3122 3123
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
3124
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3125
			goto out_kick;
3126 3127 3128 3129 3130

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
3131 3132
	}
expire:
3133
	cfq_slice_expired(cfqd, timed_out);
3134
out_kick:
3135
	cfq_schedule_dispatch(cfqd);
3136 3137 3138 3139
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
3140 3141 3142
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
3143
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
3144
}
3145

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
3156 3157 3158

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
3159 3160
}

J
Jens Axboe 已提交
3161
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
3162
{
3163
	struct cfq_data *cfqd = e->elevator_data;
3164
	struct request_queue *q = cfqd->queue;
3165

J
Jens Axboe 已提交
3166
	cfq_shutdown_timer_wq(cfqd);
3167

3168
	spin_lock_irq(q->queue_lock);
3169

3170
	if (cfqd->active_queue)
3171
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3172 3173

	while (!list_empty(&cfqd->cic_list)) {
3174 3175 3176
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
3177 3178

		__cfq_exit_single_io_context(cfqd, cic);
3179
	}
3180

3181
	cfq_put_async_queues(cfqd);
3182

3183
	spin_unlock_irq(q->queue_lock);
3184 3185 3186 3187

	cfq_shutdown_timer_wq(cfqd);

	kfree(cfqd);
L
Linus Torvalds 已提交
3188 3189
}

3190
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
3191 3192
{
	struct cfq_data *cfqd;
3193
	int i, j;
3194
	struct cfq_group *cfqg;
3195
	struct cfq_rb_root *st;
L
Linus Torvalds 已提交
3196

3197
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
3198
	if (!cfqd)
J
Jens Axboe 已提交
3199
		return NULL;
L
Linus Torvalds 已提交
3200

3201 3202 3203
	/* Init root service tree */
	cfqd->grp_service_tree = CFQ_RB_ROOT;

3204 3205
	/* Init root group */
	cfqg = &cfqd->root_group;
3206 3207
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
3208
	RB_CLEAR_NODE(&cfqg->rb_node);
3209

3210 3211 3212
	/* Give preference to root group over other groups */
	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;

3213 3214 3215 3216 3217 3218 3219 3220
	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3221 3222 3223 3224 3225 3226 3227
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);
3228
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3229

3230
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
3231 3232 3233

	cfqd->queue = q;

3234 3235 3236 3237
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

3238
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3239

L
Linus Torvalds 已提交
3240
	cfqd->cfq_quantum = cfq_quantum;
3241 3242
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
3243 3244
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
3245 3246 3247 3248
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
3249
	cfqd->cfq_latency = 1;
3250
	cfqd->hw_tag = -1;
3251
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
3252
	return cfqd;
L
Linus Torvalds 已提交
3253 3254 3255 3256
}

static void cfq_slab_kill(void)
{
3257 3258 3259 3260
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
3261 3262 3263 3264 3265 3266 3267 3268
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3269
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3270 3271 3272
	if (!cfq_pool)
		goto fail;

3273
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3302
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3303
{									\
3304
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3305 3306 3307 3308 3309 3310
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3311 3312
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3313 3314
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3315 3316 3317 3318
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3319
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3320 3321 3322
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3323
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3324
{									\
3325
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3339 3340 3341 3342
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3343
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3344 3345
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3346 3347 3348
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3349 3350
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3351
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3352 3353
#undef STORE_FUNCTION

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3367
	CFQ_ATTR(low_latency),
3368
	__ATTR_NULL
L
Linus Torvalds 已提交
3369 3370 3371 3372 3373 3374 3375
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3376
		.elevator_allow_merge_fn =	cfq_allow_merge,
3377
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3378
		.elevator_add_req_fn =		cfq_insert_request,
3379
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3380 3381 3382
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3383 3384
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3385 3386 3387 3388 3389
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3390
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3391
	},
3392
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3393 3394 3395 3396 3397 3398
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3399 3400 3401 3402 3403 3404 3405 3406
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3407 3408 3409
	if (cfq_slab_setup())
		return -ENOMEM;

3410
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3411

3412
	return 0;
L
Linus Torvalds 已提交
3413 3414 3415 3416
}

static void __exit cfq_exit(void)
{
3417
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3418
	elv_unregister(&iosched_cfq);
3419
	ioc_gone = &all_gone;
3420 3421
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3422 3423 3424 3425 3426

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3427
	if (elv_ioc_count_read(cfq_ioc_count))
3428
		wait_for_completion(&all_gone);
3429
	cfq_slab_kill();
L
Linus Torvalds 已提交
3430 3431 3432 3433 3434 3435 3436 3437
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");