cfq-iosched.c 76.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
L
Linus Torvalds 已提交
16 17 18 19

/*
 * tunables
 */
20 21
/* max queue in one round of service */
static const int cfq_quantum = 4;
22
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 24 25 26
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
27
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
28
static int cfq_slice_async = HZ / 25;
29
static const int cfq_slice_async_rq = 2;
30
static int cfq_slice_idle = HZ / 125;
31 32
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
33

34
/*
35
 * offset from end of service tree
36
 */
37
#define CFQ_IDLE_DELAY		(HZ / 5)
38 39 40 41 42 43

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

44 45 46 47 48 49
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

50
#define CFQ_SLICE_SCALE		(5)
51
#define CFQ_HW_QUEUE_MIN	(5)
52

53 54
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
55
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
56

57 58
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
59

60
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61
static struct completion *ioc_gone;
62
static DEFINE_SPINLOCK(ioc_gone_lock);
63

64 65 66 67
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

68 69
#define sample_valid(samples)	((samples) > 80)

70 71 72 73 74 75 76 77 78
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
79
	unsigned count;
80
};
81
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

125 126 127 128
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
129
	unsigned long seeky_start;
130

131
	pid_t pid;
J
Jeff Moyer 已提交
132

133
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
134
	struct cfq_queue *new_cfqq;
135 136
};

137
/*
138
 * First index in the service_trees.
139 140 141 142 143 144 145 146
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	IDLE_WORKLOAD = -1,
	BE_WORKLOAD = 0,
	RT_WORKLOAD = 1
};

147 148 149 150 151 152 153 154 155 156
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};


157 158 159
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
160
struct cfq_data {
161
	struct request_queue *queue;
162 163

	/*
164 165 166
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
167
	struct cfq_rb_root service_trees[2][3];
168 169 170
	struct cfq_rb_root service_tree_idle;
	/*
	 * The priority currently being served
171
	 */
172
	enum wl_prio_t serving_prio;
173 174
	enum wl_type_t serving_type;
	unsigned long workload_expires;
175
	bool noidle_tree_requires_idle;
176 177 178 179 180 181 182 183

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

184
	unsigned int busy_queues;
185
	unsigned int busy_queues_avg[2];
186

187
	int rq_in_driver[2];
188
	int sync_flight;
189 190 191 192 193

	/*
	 * queue-depth detection
	 */
	int rq_queued;
194
	int hw_tag;
195 196 197 198 199 200 201 202
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
203

204 205 206 207
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
208
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
209

210 211 212
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

213 214 215 216 217
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
218

J
Jens Axboe 已提交
219
	sector_t last_position;
L
Linus Torvalds 已提交
220 221 222 223 224

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
225
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
226 227
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
228 229 230
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
231
	unsigned int cfq_latency;
232 233

	struct list_head cic_list;
L
Linus Torvalds 已提交
234

235 236 237 238
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
239 240

	unsigned long last_end_sync_rq;
L
Linus Torvalds 已提交
241 242
};

243
static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
244
					    enum wl_type_t type,
245 246 247 248 249
					    struct cfq_data *cfqd)
{
	if (prio == IDLE_WORKLOAD)
		return &cfqd->service_tree_idle;

250
	return &cfqd->service_trees[prio][type];
251 252
}

J
Jens Axboe 已提交
253
enum cfqq_state_flags {
254 255
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
256
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
257 258 259 260
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
261
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
262
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
263
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
264
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
J
Jens Axboe 已提交
265 266 267 268 269
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
270
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
271 272 273
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
274
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
275 276 277
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
278
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
279 280 281 282
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
283
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
284 285 286 287
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
288
CFQ_CFQQ_FNS(slice_new);
289
CFQ_CFQQ_FNS(sync);
290
CFQ_CFQQ_FNS(coop);
291
CFQ_CFQQ_FNS(deep);
J
Jens Axboe 已提交
292 293
#undef CFQ_CFQQ_FNS

294 295 296 297 298
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

299 300 301 302 303 304 305 306 307
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

308 309 310 311 312 313 314 315 316 317

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

318 319 320 321 322
static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
{
	if (wl == IDLE_WORKLOAD)
		return cfqd->service_tree_idle.count;

323 324 325
	return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_WORKLOAD].count;
326 327
}

328
static void cfq_dispatch_insert(struct request_queue *, struct request *);
329
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
330
				       struct io_context *, gfp_t);
331
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
332 333
						struct io_context *);

334 335 336 337 338
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

339
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
340
					    bool is_sync)
341
{
342
	return cic->cfqq[is_sync];
343 344 345
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
346
				struct cfq_queue *cfqq, bool is_sync)
347
{
348
	cic->cfqq[is_sync] = cfqq;
349 350 351 352 353 354
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
355
static inline bool cfq_bio_sync(struct bio *bio)
356
{
357
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
358
}
L
Linus Torvalds 已提交
359

A
Andrew Morton 已提交
360 361 362 363
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
364
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
365
{
366 367
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
368
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
369
	}
A
Andrew Morton 已提交
370 371
}

372
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
373 374 375
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

376
	return !cfqd->busy_queues;
A
Andrew Morton 已提交
377 378
}

379 380 381 382 383
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
384
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
385
				 unsigned short prio)
386
{
387
	const int base_slice = cfqd->cfq_slice[sync];
388

389 390 391 392
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
393

394 395 396 397
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
398 399
}

400 401 402 403 404 405
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

406 407
static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
{
408 409 410
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
411
	unsigned busy = cfq_busy_queues_wl(rt, cfqd);
412 413 414 415 416 417 418 419

	min_q = min(cfqd->busy_queues_avg[rt], busy);
	max_q = max(cfqd->busy_queues_avg[rt], busy);
	cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
		cfq_hist_divisor;
	return cfqd->busy_queues_avg[rt];
}

420 421 422
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
		/* interested queues (we consider only the ones with the same
		 * priority class) */
		unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
		if (expect_latency > cfq_target_latency) {
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
			slice = max(slice * cfq_target_latency / expect_latency,
				    low_slice);
		}
	}
	cfqq->slice_end = jiffies + slice;
443
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
444 445 446 447 448 449 450
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
451
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
452 453 454 455 456 457 458 459 460
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
461
/*
J
Jens Axboe 已提交
462
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
463
 * We choose the request that is closest to the head right now. Distance
464
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
465
 */
J
Jens Axboe 已提交
466
static struct request *
467
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
468
{
469
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
470
	unsigned long back_max;
471 472 473
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
474

J
Jens Axboe 已提交
475 476 477 478
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
479

J
Jens Axboe 已提交
480 481 482 483
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
484 485 486 487
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
488

489 490
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
507
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
508 509 510 511 512 513

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
514
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
515 516

	/* Found required data */
517 518 519 520 521 522

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
523
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
524
		if (d1 < d2)
J
Jens Axboe 已提交
525
			return rq1;
526
		else if (d2 < d1)
J
Jens Axboe 已提交
527
			return rq2;
528 529
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
530
				return rq1;
531
			else
J
Jens Axboe 已提交
532
				return rq2;
533
		}
L
Linus Torvalds 已提交
534

535
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
536
		return rq1;
537
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
538 539
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
540 541 542 543 544 545 546 547
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
548
			return rq1;
L
Linus Torvalds 已提交
549
		else
J
Jens Axboe 已提交
550
			return rq2;
L
Linus Torvalds 已提交
551 552 553
	}
}

554 555 556
/*
 * The below is leftmost cache rbtree addon
 */
557
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
558 559 560 561
{
	if (!root->left)
		root->left = rb_first(&root->rb);

562 563 564 565
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
566 567
}

568 569 570 571 572 573
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

574 575 576 577
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
578
	rb_erase_init(n, &root->rb);
579
	--root->count;
580 581
}

L
Linus Torvalds 已提交
582 583 584
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
585 586 587
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
588
{
589 590
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
591
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
592

593
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
594 595

	if (rbprev)
J
Jens Axboe 已提交
596
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
597

598
	if (rbnext)
J
Jens Axboe 已提交
599
		next = rb_entry_rq(rbnext);
600 601 602
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
603
			next = rb_entry_rq(rbnext);
604
	}
L
Linus Torvalds 已提交
605

606
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
607 608
}

609 610
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
611
{
612 613 614
	/*
	 * just an approximation, should be ok.
	 */
615 616
	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
617 618
}

619
/*
620
 * The cfqd->service_trees holds all pending cfq_queue's that have
621 622 623
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
624
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
625
				 bool add_front)
626
{
627 628
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
629
	unsigned long rb_key;
630
	struct cfq_rb_root *service_tree;
631
	int left;
632

633
	service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
634 635
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
636
		parent = rb_last(&service_tree->rb);
637 638 639 640 641 642
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
643 644 645 646 647 648
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
649
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
650
		rb_key -= cfqq->slice_resid;
651
		cfqq->slice_resid = 0;
652 653
	} else {
		rb_key = -HZ;
654
		__cfqq = cfq_rb_first(service_tree);
655 656
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
657

658
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
659
		/*
660
		 * same position, nothing more to do
661
		 */
662 663
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
664
			return;
L
Linus Torvalds 已提交
665

666 667
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
668
	}
669

670
	left = 1;
671
	parent = NULL;
672 673
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
674
	while (*p) {
675
		struct rb_node **n;
676

677 678 679
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

680
		/*
681
		 * sort by key, that represents service time.
682
		 */
683
		if (time_before(rb_key, __cfqq->rb_key))
684
			n = &(*p)->rb_left;
685
		else {
686
			n = &(*p)->rb_right;
687
			left = 0;
688
		}
689 690

		p = n;
691 692
	}

693
	if (left)
694
		service_tree->left = &cfqq->rb_node;
695

696 697
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
698 699
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
L
Linus Torvalds 已提交
700 701
}

702
static struct cfq_queue *
703 704 705
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
722
		if (sector > blk_rq_pos(cfqq->next_rq))
723
			n = &(*p)->rb_right;
724
		else if (sector < blk_rq_pos(cfqq->next_rq))
725 726 727 728
			n = &(*p)->rb_left;
		else
			break;
		p = n;
729
		cfqq = NULL;
730 731 732 733 734
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
735
	return cfqq;
736 737 738 739 740 741 742
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

743 744 745 746
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
747 748 749 750 751 752

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

753
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
754 755
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
756 757
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
758 759 760
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
761 762
}

763 764 765
/*
 * Update cfqq's position in the service tree.
 */
766
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
767 768 769 770
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
771
	if (cfq_cfqq_on_rr(cfqq)) {
772
		cfq_service_tree_add(cfqd, cfqq, 0);
773 774
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
775 776
}

L
Linus Torvalds 已提交
777 778
/*
 * add to busy list of queues for service, trying to be fair in ordering
779
 * the pending list according to last request service
L
Linus Torvalds 已提交
780
 */
J
Jens Axboe 已提交
781
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
782
{
783
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
784 785
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
786 787
	cfqd->busy_queues++;

788
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
789 790
}

791 792 793 794
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
795
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
796
{
797
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
798 799
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
800

801 802 803 804
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
805 806 807 808
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
809

L
Linus Torvalds 已提交
810 811 812 813 814 815 816
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
817
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
818
{
J
Jens Axboe 已提交
819
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
820
	struct cfq_data *cfqd = cfqq->cfqd;
J
Jens Axboe 已提交
821
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
822

823 824
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
825

J
Jens Axboe 已提交
826
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
827

828
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
829
		cfq_del_cfqq_rr(cfqd, cfqq);
L
Linus Torvalds 已提交
830 831
}

J
Jens Axboe 已提交
832
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
833
{
J
Jens Axboe 已提交
834
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
835
	struct cfq_data *cfqd = cfqq->cfqd;
836
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
837

838
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
839 840 841 842 843

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
844
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
845
		cfq_dispatch_insert(cfqd->queue, __alias);
846 847 848

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
849 850 851 852

	/*
	 * check if this request is a better next-serve candidate
	 */
853
	prev = cfqq->next_rq;
854
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
855 856 857 858 859 860 861

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

862
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
863 864
}

J
Jens Axboe 已提交
865
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
866
{
867 868
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
869
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
870 871
}

872 873
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
874
{
875
	struct task_struct *tsk = current;
876
	struct cfq_io_context *cic;
877
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
878

879
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
880 881 882 883
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
884 885 886
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

887
		return elv_rb_find(&cfqq->sort_list, sector);
888
	}
L
Linus Torvalds 已提交
889 890 891 892

	return NULL;
}

893
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
894
{
895
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
896

897
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
898
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
899
						rq_in_driver(cfqd));
900

901
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
902 903
}

904
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
905
{
906
	struct cfq_data *cfqd = q->elevator->elevator_data;
907
	const int sync = rq_is_sync(rq);
908

909 910
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
911
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
912
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
913 914
}

915
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
916
{
J
Jens Axboe 已提交
917
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
918

J
Jens Axboe 已提交
919 920
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
921

922
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
923
	cfq_del_rq_rb(rq);
924

925
	cfqq->cfqd->rq_queued--;
926 927 928 929
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
930 931
}

932 933
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
934 935 936 937
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

938
	__rq = cfq_find_rq_fmerge(cfqd, bio);
939
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
940 941
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
942 943 944 945 946
	}

	return ELEVATOR_NO_MERGE;
}

947
static void cfq_merged_request(struct request_queue *q, struct request *req,
948
			       int type)
L
Linus Torvalds 已提交
949
{
950
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
951
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
952

J
Jens Axboe 已提交
953
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
954 955 956 957
	}
}

static void
958
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
959 960
		    struct request *next)
{
961
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
962 963 964 965
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
966
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
967
		list_move(&rq->queuelist, &next->queuelist);
968 969
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
970

971 972
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
973
	cfq_remove_request(next);
974 975
}

976
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
977 978 979
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
980
	struct cfq_io_context *cic;
981 982 983
	struct cfq_queue *cfqq;

	/*
984
	 * Disallow merge of a sync bio into an async request.
985
	 */
986
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
987
		return false;
988 989

	/*
990 991
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
992
	 */
993
	cic = cfq_cic_lookup(cfqd, current->io_context);
994
	if (!cic)
995
		return false;
996

997
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
998
	return cfqq == RQ_CFQQ(rq);
999 1000
}

J
Jens Axboe 已提交
1001 1002
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1003 1004
{
	if (cfqq) {
1005
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1006
		cfqq->slice_end = 0;
1007 1008 1009
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1010
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1011 1012
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1013
		cfq_mark_cfqq_slice_new(cfqq);
1014 1015

		del_timer(&cfqd->idle_slice_timer);
1016 1017 1018 1019 1020
	}

	cfqd->active_queue = cfqq;
}

1021 1022 1023 1024 1025
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1026
		    bool timed_out)
1027
{
1028 1029
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1030 1031 1032 1033 1034 1035
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1036
	 * store what was left of this slice, if the queue idled/timed out
1037
	 */
1038
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1039
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1040 1041
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1042

1043
	cfq_resort_rr_list(cfqd, cfqq);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1054
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1055 1056 1057 1058
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1059
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1060 1061
}

1062 1063 1064 1065
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1066
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1067
{
1068
	struct cfq_rb_root *service_tree =
1069
		service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
1070

1071 1072 1073
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1074 1075
}

1076 1077 1078
/*
 * Get and set a new active queue for service.
 */
1079 1080
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1081
{
1082
	if (!cfqq)
1083
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1084

1085
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1086
	return cfqq;
1087 1088
}

1089 1090 1091
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1092 1093
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1094
	else
1095
		return cfqd->last_position - blk_rq_pos(rq);
1096 1097
}

1098 1099
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1100

1101 1102
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1103
{
1104
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1105

1106 1107
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1108

1109
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1110 1111
}

1112 1113 1114
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1115
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1127
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1128 1129 1130 1131 1132 1133 1134 1135
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1136
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1137 1138
		return __cfqq;

1139
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1140 1141 1142 1143 1144 1145 1146
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1147
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1164
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1165
{
1166 1167
	struct cfq_queue *cfqq;

1168 1169 1170 1171 1172
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1173
	/*
1174 1175 1176
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1177
	 */
1178 1179 1180 1181
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1182 1183 1184 1185 1186
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1187 1188
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1189

1190 1191 1192 1193 1194 1195
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1196
	return cfqq;
J
Jens Axboe 已提交
1197 1198
}

1199 1200 1201 1202 1203 1204 1205
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1206
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1220 1221 1222
	if (!service_tree)
		service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);

1223 1224 1225 1226 1227 1228
	if (service_tree->count == 0)
		return true;

	return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
}

J
Jens Axboe 已提交
1229
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1230
{
1231
	struct cfq_queue *cfqq = cfqd->active_queue;
1232
	struct cfq_io_context *cic;
1233 1234
	unsigned long sl;

1235
	/*
J
Jens Axboe 已提交
1236 1237 1238
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1239
	 */
J
Jens Axboe 已提交
1240
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1241 1242
		return;

1243
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1244
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1245 1246 1247 1248

	/*
	 * idle is disabled, either manually or by past process history
	 */
1249
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1250 1251
		return;

1252
	/*
1253
	 * still active requests from this queue, don't idle
1254
	 */
1255
	if (cfqq->dispatched)
1256 1257
		return;

1258 1259 1260
	/*
	 * task has exited, don't wait
	 */
1261
	cic = cfqd->active_cic;
1262
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1263 1264
		return;

1265 1266 1267 1268 1269 1270 1271 1272 1273
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1274
	cfq_mark_cfqq_wait_request(cfqq);
1275

J
Jens Axboe 已提交
1276
	sl = cfqd->cfq_slice_idle;
1277

1278
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1279
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1280 1281
}

1282 1283 1284
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1285
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1286
{
1287
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1288
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1289

1290 1291
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1292
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1293
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1294
	cfqq->dispatched++;
1295
	elv_dispatch_sort(q, rq);
1296 1297 1298

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1299 1300 1301 1302 1303
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1304
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1305
{
1306
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1307

J
Jens Axboe 已提交
1308
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1309
		return NULL;
1310 1311 1312

	cfq_mark_cfqq_fifo_expire(cfqq);

1313 1314
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1315

1316
	rq = rq_entry_fifo(cfqq->fifo.next);
1317
	if (time_before(jiffies, rq_fifo_time(rq)))
1318
		rq = NULL;
L
Linus Torvalds 已提交
1319

1320
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1321
	return rq;
L
Linus Torvalds 已提交
1322 1323
}

1324 1325 1326 1327
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1328

1329
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1330

1331
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1332 1333
}

J
Jeff Moyer 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1349
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1378 1379
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
				    bool prio_changed)
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;
		cur_best = SYNC_WORKLOAD;
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
		queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

static void choose_service_tree(struct cfq_data *cfqd)
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;

	/* Choose next priority. RT > BE > IDLE */
	if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
		cfqd->serving_prio = RT_WORKLOAD;
	else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
		cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
	slice = cfq_target_latency * count /
		max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
		      cfq_busy_queues_wl(cfqd->serving_prio, cfqd));

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
1478
	cfqd->noidle_tree_requires_idle = false;
1479 1480
}

1481
/*
1482 1483
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
1484
 */
1485
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
1486
{
1487
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
1488

1489 1490 1491
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
1492

1493
	/*
J
Jens Axboe 已提交
1494
	 * The active queue has run out of time, expire it and select new.
1495
	 */
1496
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
1497
		goto expire;
L
Linus Torvalds 已提交
1498

1499
	/*
J
Jens Axboe 已提交
1500 1501
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
1502
	 */
1503
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1504
		goto keep_queue;
J
Jens Axboe 已提交
1505

1506 1507 1508 1509
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
1510
	 * tree.  If possible, merge the expiring queue with the new cfqq.
1511
	 */
1512
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
1513 1514 1515
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
1516
		goto expire;
J
Jeff Moyer 已提交
1517
	}
1518

J
Jens Axboe 已提交
1519 1520 1521 1522 1523
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
1524
	if (timer_pending(&cfqd->idle_slice_timer) ||
1525
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1526 1527
		cfqq = NULL;
		goto keep_queue;
1528 1529
	}

J
Jens Axboe 已提交
1530
expire:
1531
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
1532
new_queue:
1533 1534 1535 1536 1537 1538 1539
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
		choose_service_tree(cfqd);

1540
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1541
keep_queue:
J
Jens Axboe 已提交
1542
	return cfqq;
1543 1544
}

J
Jens Axboe 已提交
1545
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
	return dispatched;
}

1558 1559 1560 1561
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
1562
static int cfq_forced_dispatch(struct cfq_data *cfqd)
1563
{
1564
	struct cfq_queue *cfqq;
1565
	int dispatched = 0;
1566
	int i, j;
1567
	for (i = 0; i < 2; ++i)
1568 1569 1570 1571
		for (j = 0; j < 3; ++j)
			while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
				!= NULL)
				dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1572

1573
	while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1574
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1575

1576
	cfq_slice_expired(cfqd, 0);
1577 1578 1579

	BUG_ON(cfqd->busy_queues);

1580
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1581 1582 1583
	return dispatched;
}

1584
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1585 1586
{
	unsigned int max_dispatch;
1587

1588 1589 1590
	/*
	 * Drain async requests before we start sync IO
	 */
1591
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1592
		return false;
1593

1594 1595 1596 1597
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1598
		return false;
1599 1600 1601 1602

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
1603

1604 1605 1606 1607 1608 1609 1610
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
1611
		if (cfq_class_idle(cfqq))
1612
			return false;
1613

1614 1615 1616 1617
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
1618
			return false;
1619

1620
		/*
1621
		 * Sole queue user, allow bigger slice
1622
		 */
1623 1624 1625 1626 1627 1628 1629 1630
		max_dispatch *= 4;
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
1631
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1632 1633
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
1634

1635
		depth = last_sync / cfqd->cfq_slice[1];
1636 1637
		if (!depth && !cfqq->dispatched)
			depth = 1;
1638 1639
		if (depth < max_dispatch)
			max_dispatch = depth;
1640
	}
1641

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
1700 1701
		return 0;

1702
	/*
1703
	 * Dispatch a request from this cfqq, if it is allowed
1704
	 */
1705 1706 1707
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

1708
	cfqq->slice_dispatch++;
1709
	cfq_clear_cfqq_must_dispatch(cfqq);
1710

1711 1712 1713 1714 1715 1716 1717 1718 1719
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
1720 1721
	}

1722
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1723
	return 1;
L
Linus Torvalds 已提交
1724 1725 1726
}

/*
J
Jens Axboe 已提交
1727 1728
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
1729 1730 1731 1732 1733
 *
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
1734 1735 1736
	struct cfq_data *cfqd = cfqq->cfqd;

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
1737 1738 1739 1740

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

1741
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
1742
	BUG_ON(rb_first(&cfqq->sort_list));
1743
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
J
Jens Axboe 已提交
1744
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
1745

1746
	if (unlikely(cfqd->active_queue == cfqq)) {
1747
		__cfq_slice_expired(cfqd, cfqq, 0);
1748
		cfq_schedule_dispatch(cfqd);
1749
	}
1750

L
Linus Torvalds 已提交
1751 1752 1753
	kmem_cache_free(cfq_pool, cfqq);
}

1754 1755 1756
/*
 * Must always be called with the rcu_read_lock() held
 */
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

1768
/*
1769
 * Call func for each cic attached to this ioc.
1770
 */
1771
static void
1772 1773
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
1774
{
1775
	rcu_read_lock();
1776
	__call_for_each_cic(ioc, func);
1777
	rcu_read_unlock();
1778 1779 1780 1781 1782 1783 1784 1785 1786
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
1787
	elv_ioc_count_dec(cfq_ioc_count);
1788

1789 1790 1791 1792 1793 1794 1795
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
1796
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1797 1798 1799 1800 1801
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
1802
}
1803

1804 1805 1806
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1817
	hlist_del_rcu(&cic->cic_list);
1818 1819
	spin_unlock_irqrestore(&ioc->lock, flags);

1820
	cfq_cic_free(cic);
1821 1822
}

1823 1824 1825 1826 1827
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
1828 1829 1830
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
1831 1832 1833 1834
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
1835
	 */
1836
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
1837 1838
}

1839
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1840
{
J
Jeff Moyer 已提交
1841 1842
	struct cfq_queue *__cfqq, *next;

1843
	if (unlikely(cfqq == cfqd->active_queue)) {
1844
		__cfq_slice_expired(cfqd, cfqq, 0);
1845
		cfq_schedule_dispatch(cfqd);
1846
	}
1847

J
Jeff Moyer 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

1864 1865
	cfq_put_queue(cfqq);
}
1866

1867 1868 1869
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
1870 1871
	struct io_context *ioc = cic->ioc;

1872
	list_del_init(&cic->queue_list);
1873 1874 1875 1876

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
1877
	smp_wmb();
1878
	cic->dead_key = (unsigned long) cic->key;
1879 1880
	cic->key = NULL;

1881 1882 1883
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

1884 1885 1886
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
1887 1888
	}

1889 1890 1891
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
1892
	}
1893 1894
}

1895 1896
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
1897 1898 1899 1900
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
1901
		struct request_queue *q = cfqd->queue;
1902
		unsigned long flags;
1903

1904
		spin_lock_irqsave(q->queue_lock, flags);
1905 1906 1907 1908 1909 1910 1911 1912 1913

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

1914
		spin_unlock_irqrestore(q->queue_lock, flags);
1915
	}
L
Linus Torvalds 已提交
1916 1917
}

1918 1919 1920 1921
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
1922
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
1923
{
1924
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
1925 1926
}

1927
static struct cfq_io_context *
A
Al Viro 已提交
1928
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1929
{
1930
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
1931

1932 1933
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
1934
	if (cic) {
1935
		cic->last_end_request = jiffies;
1936
		INIT_LIST_HEAD(&cic->queue_list);
1937
		INIT_HLIST_NODE(&cic->cic_list);
1938 1939
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
1940
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945
	}

	return cic;
}

1946
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1947 1948 1949 1950
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
1951
	if (!cfq_cfqq_prio_changed(cfqq))
1952 1953
		return;

1954
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1955
	switch (ioprio_class) {
1956 1957 1958 1959
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
1960
		 * no prio set, inherit CPU scheduling settings
1961 1962
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
1963
		cfqq->ioprio_class = task_nice_ioclass(tsk);
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
1978 1979 1980 1981 1982 1983 1984 1985
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
1986
	cfq_clear_cfqq_prio_changed(cfqq);
1987 1988
}

J
Jens Axboe 已提交
1989
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1990
{
1991 1992
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
1993
	unsigned long flags;
1994

1995 1996 1997
	if (unlikely(!cfqd))
		return;

1998
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1999

2000
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2001 2002
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2003 2004
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2005
		if (new_cfqq) {
2006
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2007 2008
			cfq_put_queue(cfqq);
		}
2009
	}
2010

2011
	cfqq = cic->cfqq[BLK_RW_SYNC];
2012 2013 2014
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2015
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2016 2017
}

2018
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2019
{
2020
	call_for_each_cic(ioc, changed_ioprio);
2021
	ioc->ioprio_changed = 0;
2022 2023
}

2024
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2025
			  pid_t pid, bool is_sync)
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2044
static struct cfq_queue *
2045
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2046
		     struct io_context *ioc, gfp_t gfp_mask)
2047 2048
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2049
	struct cfq_io_context *cic;
2050 2051

retry:
2052
	cic = cfq_cic_lookup(cfqd, ioc);
2053 2054
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2055

2056 2057 2058 2059 2060 2061
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2062 2063 2064 2065 2066
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2067
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2068
					gfp_mask | __GFP_ZERO,
2069
					cfqd->queue->node);
2070
			spin_lock_irq(cfqd->queue->queue_lock);
2071 2072
			if (new_cfqq)
				goto retry;
2073
		} else {
2074 2075 2076
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2077 2078
		}

2079 2080 2081 2082 2083 2084
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2085 2086 2087 2088 2089 2090 2091 2092
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2093 2094 2095
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2096
	switch (ioprio_class) {
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2108
static struct cfq_queue *
2109
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2110 2111
	      gfp_t gfp_mask)
{
2112 2113
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2114
	struct cfq_queue **async_cfqq = NULL;
2115 2116
	struct cfq_queue *cfqq = NULL;

2117 2118 2119 2120 2121
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2122
	if (!cfqq)
2123
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2124 2125 2126 2127

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2128
	if (!is_sync && !(*async_cfqq)) {
2129
		atomic_inc(&cfqq->ref);
2130
		*async_cfqq = cfqq;
2131 2132 2133 2134 2135 2136
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2137 2138 2139
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2140
static void
2141 2142
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2143
{
2144 2145
	unsigned long flags;

2146
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2147

2148 2149
	spin_lock_irqsave(&ioc->lock, flags);

2150
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2151

2152
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2153
	hlist_del_rcu(&cic->cic_list);
2154 2155 2156
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2157 2158
}

2159
static struct cfq_io_context *
2160
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2161 2162
{
	struct cfq_io_context *cic;
2163
	unsigned long flags;
2164
	void *k;
2165

2166 2167 2168
	if (unlikely(!ioc))
		return NULL;

2169 2170
	rcu_read_lock();

J
Jens Axboe 已提交
2171 2172 2173
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2174
	cic = rcu_dereference(ioc->ioc_data);
2175 2176
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2177
		return cic;
2178
	}
J
Jens Axboe 已提交
2179

2180 2181 2182 2183 2184
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2185 2186 2187
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2188
			cfq_drop_dead_cic(cfqd, ioc, cic);
2189
			rcu_read_lock();
2190
			continue;
2191
		}
2192

2193
		spin_lock_irqsave(&ioc->lock, flags);
2194
		rcu_assign_pointer(ioc->ioc_data, cic);
2195
		spin_unlock_irqrestore(&ioc->lock, flags);
2196 2197
		break;
	} while (1);
2198

2199
	return cic;
2200 2201
}

2202 2203 2204 2205 2206
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2207 2208
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2209
{
2210
	unsigned long flags;
2211
	int ret;
2212

2213 2214 2215 2216
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2217

2218 2219 2220
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2221 2222
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2223
		spin_unlock_irqrestore(&ioc->lock, flags);
2224

2225 2226 2227 2228 2229 2230 2231
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2232 2233
	}

2234 2235
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2236

2237
	return ret;
2238 2239
}

L
Linus Torvalds 已提交
2240 2241 2242
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2243
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2244 2245
 */
static struct cfq_io_context *
2246
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2247
{
2248
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2249 2250
	struct cfq_io_context *cic;

2251
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2252

2253
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2254 2255 2256
	if (!ioc)
		return NULL;

2257
	cic = cfq_cic_lookup(cfqd, ioc);
2258 2259
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2260

2261 2262 2263
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2264

2265 2266 2267
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2268
out:
2269 2270 2271 2272
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2273
	return cic;
2274 2275
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2276 2277 2278 2279 2280
err:
	put_io_context(ioc);
	return NULL;
}

2281 2282
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2283
{
2284 2285
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2286

2287 2288 2289 2290
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2291

2292
static void
2293
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2294
		       struct request *rq)
2295 2296 2297 2298
{
	sector_t sdist;
	u64 total;

2299
	if (!cfqq->last_request_pos)
2300
		sdist = 0;
2301 2302
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2303
	else
2304
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2305 2306 2307 2308 2309

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2310 2311
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2312
	else
2313
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2314

2315 2316 2317 2318 2319
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2333
}
L
Linus Torvalds 已提交
2334

2335 2336 2337 2338 2339 2340 2341 2342
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2343
	int old_idle, enable_idle;
2344

2345 2346 2347 2348
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2349 2350
		return;

2351
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2352

2353 2354 2355
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

2356
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2357 2358
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
2359 2360
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2361
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2362 2363 2364
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2365 2366
	}

2367 2368 2369 2370 2371 2372 2373
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2374
}
L
Linus Torvalds 已提交
2375

2376 2377 2378 2379
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2380
static bool
2381
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2382
		   struct request *rq)
2383
{
J
Jens Axboe 已提交
2384
	struct cfq_queue *cfqq;
2385

J
Jens Axboe 已提交
2386 2387
	cfqq = cfqd->active_queue;
	if (!cfqq)
2388
		return false;
2389

J
Jens Axboe 已提交
2390
	if (cfq_slice_used(cfqq))
2391
		return true;
J
Jens Axboe 已提交
2392 2393

	if (cfq_class_idle(new_cfqq))
2394
		return false;
2395 2396

	if (cfq_class_idle(cfqq))
2397
		return true;
2398

2399 2400 2401
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
	    new_cfqq->service_tree->count == 1)
2402 2403
		return true;

2404 2405 2406 2407
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2408
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2409
		return true;
2410

2411 2412 2413 2414 2415
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2416
		return true;
2417

2418 2419 2420 2421
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2422
		return true;
2423

2424
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2425
		return false;
2426 2427 2428 2429 2430

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2431
	if (cfq_rq_close(cfqd, cfqq, rq))
2432
		return true;
2433

2434
	return false;
2435 2436 2437 2438 2439 2440 2441 2442
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2443
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2444
	cfq_slice_expired(cfqd, 1);
2445

2446 2447 2448 2449 2450
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2451 2452

	cfq_service_tree_add(cfqd, cfqq, 1);
2453

2454 2455
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2456 2457 2458
}

/*
J
Jens Axboe 已提交
2459
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2460 2461 2462
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2463 2464
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
2465
{
J
Jens Axboe 已提交
2466
	struct cfq_io_context *cic = RQ_CIC(rq);
2467

2468
	cfqd->rq_queued++;
2469 2470 2471
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
2472
	cfq_update_io_thinktime(cfqd, cic);
2473
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
2474 2475
	cfq_update_idle_window(cfqd, cfqq, cic);

2476
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2477 2478 2479

	if (cfqq == cfqd->active_queue) {
		/*
2480 2481 2482
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
2483 2484
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
2485 2486 2487
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
2488
		 */
2489
		if (cfq_cfqq_wait_request(cfqq)) {
2490 2491
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
2492
				del_timer(&cfqd->idle_slice_timer);
T
Tejun Heo 已提交
2493
			__blk_run_queue(cfqd->queue);
2494
			}
2495
			cfq_mark_cfqq_must_dispatch(cfqq);
2496
		}
J
Jens Axboe 已提交
2497
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2498 2499 2500
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
2501 2502
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
2503 2504
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
2505
		__blk_run_queue(cfqd->queue);
2506
	}
L
Linus Torvalds 已提交
2507 2508
}

2509
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2510
{
2511
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2512
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2513

2514
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2515
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2516

2517
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2518
	list_add_tail(&rq->queuelist, &cfqq->fifo);
2519
	cfq_add_rq_rb(rq);
2520

J
Jens Axboe 已提交
2521
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
2522 2523
}

2524 2525 2526 2527 2528 2529
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
2530 2531
	struct cfq_queue *cfqq = cfqd->active_queue;

2532 2533 2534 2535 2536
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
2537 2538

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2539
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2540 2541
		return;

S
Shaohua Li 已提交
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

2552 2553 2554
	if (cfqd->hw_tag_samples++ < 50)
		return;

2555
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2556 2557 2558 2559 2560
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

2561
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2562
{
J
Jens Axboe 已提交
2563
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2564
	struct cfq_data *cfqd = cfqq->cfqd;
2565
	const int sync = rq_is_sync(rq);
2566
	unsigned long now;
L
Linus Torvalds 已提交
2567

2568
	now = jiffies;
2569
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
2570

2571 2572
	cfq_update_hw_tag(cfqd);

2573
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
2574
	WARN_ON(!cfqq->dispatched);
2575
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
2576
	cfqq->dispatched--;
L
Linus Torvalds 已提交
2577

2578 2579 2580
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

2581
	if (sync) {
J
Jens Axboe 已提交
2582
		RQ_CIC(rq)->last_end_request = now;
2583 2584
		cfqd->last_end_sync_rq = now;
	}
2585 2586 2587 2588 2589 2590

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
2591 2592
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

2593 2594 2595 2596
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
2597
		/*
2598 2599 2600 2601 2602 2603
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
2604
		 */
2605
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2606
			cfq_slice_expired(cfqd, 1);
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
			    || cfqd->noidle_tree_requires_idle)
				cfq_arm_slice_timer(cfqd);
		}
2619
	}
J
Jens Axboe 已提交
2620

2621
	if (!rq_in_driver(cfqd))
2622
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2623 2624
}

2625 2626 2627 2628 2629
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2630
{
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
2642
		 * unboost the queue (if needed)
2643
		 */
2644 2645
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
2646 2647
	}
}
L
Linus Torvalds 已提交
2648

2649
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2650
{
2651
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
2652
		cfq_mark_cfqq_must_alloc_slice(cfqq);
2653
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
2654
	}
L
Linus Torvalds 已提交
2655

2656 2657 2658
	return ELV_MQUEUE_MAY;
}

2659
static int cfq_may_queue(struct request_queue *q, int rw)
2660 2661 2662
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
2663
	struct cfq_io_context *cic;
2664 2665 2666 2667 2668 2669 2670 2671
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
2672
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2673 2674 2675
	if (!cic)
		return ELV_MQUEUE_MAY;

2676
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2677
	if (cfqq) {
2678
		cfq_init_prio_data(cfqq, cic->ioc);
2679 2680
		cfq_prio_boost(cfqq);

2681
		return __cfq_may_queue(cfqq);
2682 2683 2684
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
2685 2686 2687 2688 2689
}

/*
 * queue lock held here
 */
2690
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
2691
{
J
Jens Axboe 已提交
2692
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
2693

J
Jens Axboe 已提交
2694
	if (cfqq) {
2695
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
2696

2697 2698
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
2699

J
Jens Axboe 已提交
2700
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2701 2702

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
2703
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
2704 2705 2706 2707 2708

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
2709 2710 2711 2712 2713 2714
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2715
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
2716 2717 2718 2719
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
2746
/*
2747
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
2748
 */
2749
static int
2750
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2751 2752 2753 2754
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
2755
	const bool is_sync = rq_is_sync(rq);
2756
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
2757 2758 2759 2760
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

2761
	cic = cfq_get_io_context(cfqd, gfp_mask);
2762

L
Linus Torvalds 已提交
2763 2764
	spin_lock_irqsave(q->queue_lock, flags);

2765 2766 2767
	if (!cic)
		goto queue_fail;

2768
new_queue:
2769
	cfqq = cic_to_cfqq(cic, is_sync);
2770
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2771
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2772
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
2773
	} else {
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
2784 2785 2786 2787 2788 2789 2790 2791
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2792
	}
L
Linus Torvalds 已提交
2793 2794

	cfqq->allocated[rw]++;
2795
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
2796

J
Jens Axboe 已提交
2797
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
2798

J
Jens Axboe 已提交
2799 2800 2801
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
2802

2803 2804 2805
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
2806

2807
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2808
	spin_unlock_irqrestore(q->queue_lock, flags);
2809
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
2810 2811 2812
	return 1;
}

2813
static void cfq_kick_queue(struct work_struct *work)
2814
{
2815
	struct cfq_data *cfqd =
2816
		container_of(work, struct cfq_data, unplug_work);
2817
	struct request_queue *q = cfqd->queue;
2818

2819
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
2820
	__blk_run_queue(cfqd->queue);
2821
	spin_unlock_irq(q->queue_lock);
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
2832
	int timed_out = 1;
2833

2834 2835
	cfq_log(cfqd, "idle timer fired");

2836 2837
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

2838 2839
	cfqq = cfqd->active_queue;
	if (cfqq) {
2840 2841
		timed_out = 0;

2842 2843 2844 2845 2846 2847
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

2848 2849 2850
		/*
		 * expired
		 */
2851
		if (cfq_slice_used(cfqq))
2852 2853 2854 2855 2856 2857
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
2858
		if (!cfqd->busy_queues)
2859 2860 2861 2862 2863
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
2864
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2865
			goto out_kick;
2866 2867 2868 2869 2870

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
2871 2872
	}
expire:
2873
	cfq_slice_expired(cfqd, timed_out);
2874
out_kick:
2875
	cfq_schedule_dispatch(cfqd);
2876 2877 2878 2879
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
2880 2881 2882
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
2883
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
2884
}
2885

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
2896 2897 2898

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
2899 2900
}

J
Jens Axboe 已提交
2901
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
2902
{
2903
	struct cfq_data *cfqd = e->elevator_data;
2904
	struct request_queue *q = cfqd->queue;
2905

J
Jens Axboe 已提交
2906
	cfq_shutdown_timer_wq(cfqd);
2907

2908
	spin_lock_irq(q->queue_lock);
2909

2910
	if (cfqd->active_queue)
2911
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2912 2913

	while (!list_empty(&cfqd->cic_list)) {
2914 2915 2916
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
2917 2918

		__cfq_exit_single_io_context(cfqd, cic);
2919
	}
2920

2921
	cfq_put_async_queues(cfqd);
2922

2923
	spin_unlock_irq(q->queue_lock);
2924 2925 2926 2927

	cfq_shutdown_timer_wq(cfqd);

	kfree(cfqd);
L
Linus Torvalds 已提交
2928 2929
}

2930
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
2931 2932
{
	struct cfq_data *cfqd;
2933
	int i, j;
L
Linus Torvalds 已提交
2934

2935
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
2936
	if (!cfqd)
J
Jens Axboe 已提交
2937
		return NULL;
L
Linus Torvalds 已提交
2938

2939
	for (i = 0; i < 2; ++i)
2940 2941
		for (j = 0; j < 3; ++j)
			cfqd->service_trees[i][j] = CFQ_RB_ROOT;
2942
	cfqd->service_tree_idle = CFQ_RB_ROOT;
2943 2944 2945 2946 2947 2948 2949 2950 2951

	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

2952 2953 2954 2955 2956 2957 2958 2959
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);

2960
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
2961 2962 2963

	cfqd->queue = q;

2964 2965 2966 2967
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

2968
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2969

L
Linus Torvalds 已提交
2970
	cfqd->cfq_quantum = cfq_quantum;
2971 2972
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
2973 2974
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
2975 2976 2977 2978
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
2979
	cfqd->cfq_latency = 1;
2980
	cfqd->hw_tag = -1;
2981
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
2982
	return cfqd;
L
Linus Torvalds 已提交
2983 2984 2985 2986
}

static void cfq_slab_kill(void)
{
2987 2988 2989 2990
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
2991 2992 2993 2994 2995 2996 2997 2998
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
2999
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3000 3001 3002
	if (!cfq_pool)
		goto fail;

3003
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3032
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3033
{									\
3034
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3035 3036 3037 3038 3039 3040
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3041 3042
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3043 3044
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3045 3046 3047 3048
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3049
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3050 3051 3052
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3053
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3054
{									\
3055
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3069 3070 3071 3072
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3073
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3074 3075
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3076 3077 3078
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3079 3080
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3081
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3082 3083
#undef STORE_FUNCTION

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3097
	CFQ_ATTR(low_latency),
3098
	__ATTR_NULL
L
Linus Torvalds 已提交
3099 3100 3101 3102 3103 3104 3105
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3106
		.elevator_allow_merge_fn =	cfq_allow_merge,
3107
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3108
		.elevator_add_req_fn =		cfq_insert_request,
3109
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3110 3111 3112
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3113 3114
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3115 3116 3117 3118 3119
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3120
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3121
	},
3122
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3123 3124 3125 3126 3127 3128
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3129 3130 3131 3132 3133 3134 3135 3136
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3137 3138 3139
	if (cfq_slab_setup())
		return -ENOMEM;

3140
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3141

3142
	return 0;
L
Linus Torvalds 已提交
3143 3144 3145 3146
}

static void __exit cfq_exit(void)
{
3147
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3148
	elv_unregister(&iosched_cfq);
3149
	ioc_gone = &all_gone;
3150 3151
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3152 3153 3154 3155 3156

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3157
	if (elv_ioc_count_read(cfq_ioc_count))
3158
		wait_for_completion(&all_gone);
3159
	cfq_slab_kill();
L
Linus Torvalds 已提交
3160 3161 3162 3163 3164 3165 3166 3167
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");