cfq-iosched.c 77.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
L
Linus Torvalds 已提交
16 17 18 19

/*
 * tunables
 */
20 21
/* max queue in one round of service */
static const int cfq_quantum = 4;
22
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 24 25 26
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
27
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
28
static int cfq_slice_async = HZ / 25;
29
static const int cfq_slice_async_rq = 2;
30
static int cfq_slice_idle = HZ / 125;
31 32
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
33

34
/*
35
 * offset from end of service tree
36
 */
37
#define CFQ_IDLE_DELAY		(HZ / 5)
38 39 40 41 42 43

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

44 45 46 47 48 49
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

50
#define CFQ_SLICE_SCALE		(5)
51
#define CFQ_HW_QUEUE_MIN	(5)
52

53 54
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
55
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
56

57 58
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
59

60
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61
static struct completion *ioc_gone;
62
static DEFINE_SPINLOCK(ioc_gone_lock);
63

64 65 66 67
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

68 69
#define sample_valid(samples)	((samples) > 80)

70 71 72 73 74 75 76 77 78
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
79
	unsigned count;
80
};
81
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

125 126 127 128
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
129
	unsigned long seeky_start;
130

131
	pid_t pid;
J
Jeff Moyer 已提交
132

133
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
134
	struct cfq_queue *new_cfqq;
135 136
};

137
/*
138
 * First index in the service_trees.
139 140 141 142 143 144 145 146
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	IDLE_WORKLOAD = -1,
	BE_WORKLOAD = 0,
	RT_WORKLOAD = 1
};

147 148 149 150 151 152 153 154 155 156
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};


157 158 159
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
160
struct cfq_data {
161
	struct request_queue *queue;
162 163

	/*
164 165 166
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
167
	struct cfq_rb_root service_trees[2][3];
168 169 170
	struct cfq_rb_root service_tree_idle;
	/*
	 * The priority currently being served
171
	 */
172
	enum wl_prio_t serving_prio;
173 174
	enum wl_type_t serving_type;
	unsigned long workload_expires;
175
	bool noidle_tree_requires_idle;
176 177 178 179 180 181 182 183

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

184
	unsigned int busy_queues;
185
	unsigned int busy_queues_avg[2];
186

187
	int rq_in_driver[2];
188
	int sync_flight;
189 190 191 192 193

	/*
	 * queue-depth detection
	 */
	int rq_queued;
194
	int hw_tag;
195 196 197 198 199 200 201 202
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
203

204 205 206 207
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
208
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
209

210 211 212
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

213 214 215 216 217
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
218

J
Jens Axboe 已提交
219
	sector_t last_position;
L
Linus Torvalds 已提交
220 221 222 223 224

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
225
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
226 227
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
228 229 230
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
231
	unsigned int cfq_latency;
232 233

	struct list_head cic_list;
L
Linus Torvalds 已提交
234

235 236 237 238
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
239 240

	unsigned long last_end_sync_rq;
L
Linus Torvalds 已提交
241 242
};

243
static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
244
					    enum wl_type_t type,
245 246 247 248 249
					    struct cfq_data *cfqd)
{
	if (prio == IDLE_WORKLOAD)
		return &cfqd->service_tree_idle;

250
	return &cfqd->service_trees[prio][type];
251 252
}

J
Jens Axboe 已提交
253
enum cfqq_state_flags {
254 255
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
256
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
257 258 259 260
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
261
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
262
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
263
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
264
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
J
Jens Axboe 已提交
265 266 267 268 269
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
270
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
271 272 273
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
274
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
275 276 277
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
278
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
279 280 281 282
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
283
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
284 285 286 287
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
288
CFQ_CFQQ_FNS(slice_new);
289
CFQ_CFQQ_FNS(sync);
290
CFQ_CFQQ_FNS(coop);
291
CFQ_CFQQ_FNS(deep);
J
Jens Axboe 已提交
292 293
#undef CFQ_CFQQ_FNS

294 295 296 297 298
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

299 300 301 302 303 304 305 306 307
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

308 309 310 311 312 313 314 315 316 317

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

318 319 320 321 322
static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
{
	if (wl == IDLE_WORKLOAD)
		return cfqd->service_tree_idle.count;

323 324 325
	return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_WORKLOAD].count;
326 327
}

328
static void cfq_dispatch_insert(struct request_queue *, struct request *);
329
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
330
				       struct io_context *, gfp_t);
331
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
332 333
						struct io_context *);

334 335 336 337 338
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

339
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
340
					    bool is_sync)
341
{
342
	return cic->cfqq[is_sync];
343 344 345
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
346
				struct cfq_queue *cfqq, bool is_sync)
347
{
348
	cic->cfqq[is_sync] = cfqq;
349 350 351 352 353 354
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
355
static inline bool cfq_bio_sync(struct bio *bio)
356
{
357
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
358
}
L
Linus Torvalds 已提交
359

A
Andrew Morton 已提交
360 361 362 363
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
364
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
365
{
366 367
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
368
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
369
	}
A
Andrew Morton 已提交
370 371
}

372
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
373 374 375
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

376
	return !cfqd->busy_queues;
A
Andrew Morton 已提交
377 378
}

379 380 381 382 383
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
384
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
385
				 unsigned short prio)
386
{
387
	const int base_slice = cfqd->cfq_slice[sync];
388

389 390 391 392
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
393

394 395 396 397
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
398 399
}

400 401 402 403 404 405
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

406 407
static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
{
408 409 410
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
411
	unsigned busy = cfq_busy_queues_wl(rt, cfqd);
412 413 414 415 416 417 418 419

	min_q = min(cfqd->busy_queues_avg[rt], busy);
	max_q = max(cfqd->busy_queues_avg[rt], busy);
	cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
		cfq_hist_divisor;
	return cfqd->busy_queues_avg[rt];
}

420 421 422
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
		/* interested queues (we consider only the ones with the same
		 * priority class) */
		unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
		if (expect_latency > cfq_target_latency) {
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
			slice = max(slice * cfq_target_latency / expect_latency,
				    low_slice);
		}
	}
	cfqq->slice_end = jiffies + slice;
443
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
444 445 446 447 448 449 450
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
451
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
452 453 454 455 456 457 458 459 460
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
461
/*
J
Jens Axboe 已提交
462
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
463
 * We choose the request that is closest to the head right now. Distance
464
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
465
 */
J
Jens Axboe 已提交
466
static struct request *
467
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
468
{
469
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
470
	unsigned long back_max;
471 472 473
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
474

J
Jens Axboe 已提交
475 476 477 478
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
479

J
Jens Axboe 已提交
480 481 482 483
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
484 485 486 487
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
488

489 490
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
507
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
508 509 510 511 512 513

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
514
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
515 516

	/* Found required data */
517 518 519 520 521 522

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
523
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
524
		if (d1 < d2)
J
Jens Axboe 已提交
525
			return rq1;
526
		else if (d2 < d1)
J
Jens Axboe 已提交
527
			return rq2;
528 529
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
530
				return rq1;
531
			else
J
Jens Axboe 已提交
532
				return rq2;
533
		}
L
Linus Torvalds 已提交
534

535
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
536
		return rq1;
537
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
538 539
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
540 541 542 543 544 545 546 547
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
548
			return rq1;
L
Linus Torvalds 已提交
549
		else
J
Jens Axboe 已提交
550
			return rq2;
L
Linus Torvalds 已提交
551 552 553
	}
}

554 555 556
/*
 * The below is leftmost cache rbtree addon
 */
557
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
558 559 560 561
{
	if (!root->left)
		root->left = rb_first(&root->rb);

562 563 564 565
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
566 567
}

568 569 570 571 572 573
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

574 575 576 577
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
578
	rb_erase_init(n, &root->rb);
579
	--root->count;
580 581
}

L
Linus Torvalds 已提交
582 583 584
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
585 586 587
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
588
{
589 590
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
591
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
592

593
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
594 595

	if (rbprev)
J
Jens Axboe 已提交
596
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
597

598
	if (rbnext)
J
Jens Axboe 已提交
599
		next = rb_entry_rq(rbnext);
600 601 602
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
603
			next = rb_entry_rq(rbnext);
604
	}
L
Linus Torvalds 已提交
605

606
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
607 608
}

609 610
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
611
{
612 613 614 615
	struct cfq_rb_root *service_tree;

	service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);

616 617 618
	/*
	 * just an approximation, should be ok.
	 */
619 620
	return  service_tree->count * (cfq_prio_slice(cfqd, 1, 0) -
		   cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
621 622
}

623
/*
624
 * The cfqd->service_trees holds all pending cfq_queue's that have
625 626 627
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
628
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
629
				 bool add_front)
630
{
631 632
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
633
	unsigned long rb_key;
634
	struct cfq_rb_root *service_tree;
635
	int left;
636

637
	service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
638 639
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
640
		parent = rb_last(&service_tree->rb);
641 642 643 644 645 646
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
647 648 649 650 651 652
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
653
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
654
		rb_key -= cfqq->slice_resid;
655
		cfqq->slice_resid = 0;
656 657
	} else {
		rb_key = -HZ;
658
		__cfqq = cfq_rb_first(service_tree);
659 660
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
661

662
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
663
		/*
664
		 * same position, nothing more to do
665
		 */
666 667
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
668
			return;
L
Linus Torvalds 已提交
669

670 671
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
672
	}
673

674
	left = 1;
675
	parent = NULL;
676 677
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
678
	while (*p) {
679
		struct rb_node **n;
680

681 682 683
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

684
		/*
685
		 * sort by key, that represents service time.
686
		 */
687
		if (time_before(rb_key, __cfqq->rb_key))
688
			n = &(*p)->rb_left;
689
		else {
690
			n = &(*p)->rb_right;
691
			left = 0;
692
		}
693 694

		p = n;
695 696
	}

697
	if (left)
698
		service_tree->left = &cfqq->rb_node;
699

700 701
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
702 703
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
L
Linus Torvalds 已提交
704 705
}

706
static struct cfq_queue *
707 708 709
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
726
		if (sector > blk_rq_pos(cfqq->next_rq))
727
			n = &(*p)->rb_right;
728
		else if (sector < blk_rq_pos(cfqq->next_rq))
729 730 731 732
			n = &(*p)->rb_left;
		else
			break;
		p = n;
733
		cfqq = NULL;
734 735 736 737 738
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
739
	return cfqq;
740 741 742 743 744 745 746
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

747 748 749 750
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
751 752 753 754 755 756

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

757
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
758 759
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
760 761
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
762 763 764
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
765 766
}

767 768 769
/*
 * Update cfqq's position in the service tree.
 */
770
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
771 772 773 774
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
775
	if (cfq_cfqq_on_rr(cfqq)) {
776
		cfq_service_tree_add(cfqd, cfqq, 0);
777 778
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
779 780
}

L
Linus Torvalds 已提交
781 782
/*
 * add to busy list of queues for service, trying to be fair in ordering
783
 * the pending list according to last request service
L
Linus Torvalds 已提交
784
 */
J
Jens Axboe 已提交
785
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
786
{
787
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
788 789
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
790 791
	cfqd->busy_queues++;

792
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
793 794
}

795 796 797 798
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
799
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
800
{
801
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
802 803
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
804

805 806 807 808
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
809 810 811 812
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
813

L
Linus Torvalds 已提交
814 815 816 817 818 819 820
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
821
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
822
{
J
Jens Axboe 已提交
823
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
824
	struct cfq_data *cfqd = cfqq->cfqd;
J
Jens Axboe 已提交
825
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
826

827 828
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
829

J
Jens Axboe 已提交
830
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
831

832
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
833
		cfq_del_cfqq_rr(cfqd, cfqq);
L
Linus Torvalds 已提交
834 835
}

J
Jens Axboe 已提交
836
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
837
{
J
Jens Axboe 已提交
838
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
839
	struct cfq_data *cfqd = cfqq->cfqd;
840
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
841

842
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
843 844 845 846 847

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
848
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
849
		cfq_dispatch_insert(cfqd->queue, __alias);
850 851 852

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
853 854 855 856

	/*
	 * check if this request is a better next-serve candidate
	 */
857
	prev = cfqq->next_rq;
858
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
859 860 861 862 863 864 865

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

866
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
867 868
}

J
Jens Axboe 已提交
869
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
870
{
871 872
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
873
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
874 875
}

876 877
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
878
{
879
	struct task_struct *tsk = current;
880
	struct cfq_io_context *cic;
881
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
882

883
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
884 885 886 887
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
888 889 890
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

891
		return elv_rb_find(&cfqq->sort_list, sector);
892
	}
L
Linus Torvalds 已提交
893 894 895 896

	return NULL;
}

897
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
898
{
899
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
900

901
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
902
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
903
						rq_in_driver(cfqd));
904

905
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
906 907
}

908
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
909
{
910
	struct cfq_data *cfqd = q->elevator->elevator_data;
911
	const int sync = rq_is_sync(rq);
912

913 914
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
915
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
916
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
917 918
}

919
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
920
{
J
Jens Axboe 已提交
921
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
922

J
Jens Axboe 已提交
923 924
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
925

926
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
927
	cfq_del_rq_rb(rq);
928

929
	cfqq->cfqd->rq_queued--;
930 931 932 933
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
934 935
}

936 937
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
938 939 940 941
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

942
	__rq = cfq_find_rq_fmerge(cfqd, bio);
943
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
944 945
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
946 947 948 949 950
	}

	return ELEVATOR_NO_MERGE;
}

951
static void cfq_merged_request(struct request_queue *q, struct request *req,
952
			       int type)
L
Linus Torvalds 已提交
953
{
954
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
955
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
956

J
Jens Axboe 已提交
957
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
958 959 960 961
	}
}

static void
962
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
963 964
		    struct request *next)
{
965
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
966 967 968 969
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
970
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
971
		list_move(&rq->queuelist, &next->queuelist);
972 973
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
974

975 976
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
977
	cfq_remove_request(next);
978 979
}

980
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
981 982 983
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
984
	struct cfq_io_context *cic;
985 986 987
	struct cfq_queue *cfqq;

	/*
988
	 * Disallow merge of a sync bio into an async request.
989
	 */
990
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
991
		return false;
992 993

	/*
994 995
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
996
	 */
997
	cic = cfq_cic_lookup(cfqd, current->io_context);
998
	if (!cic)
999
		return false;
1000

1001
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1002
	return cfqq == RQ_CFQQ(rq);
1003 1004
}

J
Jens Axboe 已提交
1005 1006
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1007 1008
{
	if (cfqq) {
1009
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1010
		cfqq->slice_end = 0;
1011 1012 1013
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1014
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1015 1016
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1017
		cfq_mark_cfqq_slice_new(cfqq);
1018 1019

		del_timer(&cfqd->idle_slice_timer);
1020 1021 1022 1023 1024
	}

	cfqd->active_queue = cfqq;
}

1025 1026 1027 1028 1029
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1030
		    bool timed_out)
1031
{
1032 1033
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1034 1035 1036 1037 1038 1039
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1040
	 * store what was left of this slice, if the queue idled/timed out
1041
	 */
1042
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1043
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1044 1045
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1046

1047
	cfq_resort_rr_list(cfqd, cfqq);
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1058
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1059 1060 1061 1062
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1063
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1064 1065
}

1066 1067 1068 1069
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1070
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1071
{
1072
	struct cfq_rb_root *service_tree =
1073
		service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
1074

1075 1076 1077
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1078 1079
}

1080 1081 1082
/*
 * Get and set a new active queue for service.
 */
1083 1084
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1085
{
1086
	if (!cfqq)
1087
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1088

1089
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1090
	return cfqq;
1091 1092
}

1093 1094 1095
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1096 1097
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1098
	else
1099
		return cfqd->last_position - blk_rq_pos(rq);
1100 1101
}

1102 1103
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1104

1105 1106
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1107
{
1108
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1109

1110 1111
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1112

1113
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1114 1115
}

1116 1117 1118
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1119
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1131
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1132 1133 1134 1135 1136 1137 1138 1139
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1140
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1141 1142
		return __cfqq;

1143
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1144 1145 1146 1147 1148 1149 1150
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1151
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1168
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1169
{
1170 1171
	struct cfq_queue *cfqq;

1172 1173 1174 1175 1176
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1177
	/*
1178 1179 1180
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1181
	 */
1182 1183 1184 1185
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1186 1187 1188 1189 1190
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1191 1192
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1193

1194 1195 1196 1197 1198 1199
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1200
	return cfqq;
J
Jens Axboe 已提交
1201 1202
}

1203 1204 1205 1206 1207 1208 1209
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1210
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1224 1225 1226
	if (!service_tree)
		service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);

1227 1228 1229 1230 1231 1232
	if (service_tree->count == 0)
		return true;

	return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
}

J
Jens Axboe 已提交
1233
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1234
{
1235
	struct cfq_queue *cfqq = cfqd->active_queue;
1236
	struct cfq_io_context *cic;
1237 1238
	unsigned long sl;

1239
	/*
J
Jens Axboe 已提交
1240 1241 1242
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1243
	 */
J
Jens Axboe 已提交
1244
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1245 1246
		return;

1247
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1248
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1249 1250 1251 1252

	/*
	 * idle is disabled, either manually or by past process history
	 */
1253
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1254 1255
		return;

1256
	/*
1257
	 * still active requests from this queue, don't idle
1258
	 */
1259
	if (cfqq->dispatched)
1260 1261
		return;

1262 1263 1264
	/*
	 * task has exited, don't wait
	 */
1265
	cic = cfqd->active_cic;
1266
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1267 1268
		return;

1269 1270 1271 1272 1273 1274 1275 1276 1277
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1278
	cfq_mark_cfqq_wait_request(cfqq);
1279

J
Jens Axboe 已提交
1280
	sl = cfqd->cfq_slice_idle;
1281

1282
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1283
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1284 1285
}

1286 1287 1288
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1289
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1290
{
1291
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1292
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1293

1294 1295
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1296
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1297
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1298
	cfqq->dispatched++;
1299
	elv_dispatch_sort(q, rq);
1300 1301 1302

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1303 1304 1305 1306 1307
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1308
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1309
{
1310
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1311

J
Jens Axboe 已提交
1312
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1313
		return NULL;
1314 1315 1316

	cfq_mark_cfqq_fifo_expire(cfqq);

1317 1318
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1319

1320
	rq = rq_entry_fifo(cfqq->fifo.next);
1321
	if (time_before(jiffies, rq_fifo_time(rq)))
1322
		rq = NULL;
L
Linus Torvalds 已提交
1323

1324
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1325
	return rq;
L
Linus Torvalds 已提交
1326 1327
}

1328 1329 1330 1331
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1332

1333
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1334

1335
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1336 1337
}

J
Jeff Moyer 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1353
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1382 1383
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
				    bool prio_changed)
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;
		cur_best = SYNC_WORKLOAD;
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
		queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

static void choose_service_tree(struct cfq_data *cfqd)
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;

	/* Choose next priority. RT > BE > IDLE */
	if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
		cfqd->serving_prio = RT_WORKLOAD;
	else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
		cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
	slice = cfq_target_latency * count /
		max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
		      cfq_busy_queues_wl(cfqd->serving_prio, cfqd));

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
1482
	cfqd->noidle_tree_requires_idle = false;
1483 1484
}

1485
/*
1486 1487
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
1488
 */
1489
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
1490
{
1491
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
1492

1493 1494 1495
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
1496

1497
	/*
J
Jens Axboe 已提交
1498
	 * The active queue has run out of time, expire it and select new.
1499
	 */
1500
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
1501
		goto expire;
L
Linus Torvalds 已提交
1502

1503
	/*
J
Jens Axboe 已提交
1504 1505
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
1506
	 */
1507
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1508
		goto keep_queue;
J
Jens Axboe 已提交
1509

1510 1511 1512 1513
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
1514
	 * tree.  If possible, merge the expiring queue with the new cfqq.
1515
	 */
1516
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
1517 1518 1519
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
1520
		goto expire;
J
Jeff Moyer 已提交
1521
	}
1522

J
Jens Axboe 已提交
1523 1524 1525 1526 1527
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
1528
	if (timer_pending(&cfqd->idle_slice_timer) ||
1529
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1530 1531
		cfqq = NULL;
		goto keep_queue;
1532 1533
	}

J
Jens Axboe 已提交
1534
expire:
1535
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
1536
new_queue:
1537 1538 1539 1540 1541 1542 1543
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
		choose_service_tree(cfqd);

1544
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1545
keep_queue:
J
Jens Axboe 已提交
1546
	return cfqq;
1547 1548
}

J
Jens Axboe 已提交
1549
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
	return dispatched;
}

1562 1563 1564 1565
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
1566
static int cfq_forced_dispatch(struct cfq_data *cfqd)
1567
{
1568
	struct cfq_queue *cfqq;
1569
	int dispatched = 0;
1570
	int i, j;
1571
	for (i = 0; i < 2; ++i)
1572 1573 1574 1575
		for (j = 0; j < 3; ++j)
			while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
				!= NULL)
				dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1576

1577
	while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1578
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1579

1580
	cfq_slice_expired(cfqd, 0);
1581 1582 1583

	BUG_ON(cfqd->busy_queues);

1584
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1585 1586 1587
	return dispatched;
}

1588
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1589 1590
{
	unsigned int max_dispatch;
1591

1592 1593 1594
	/*
	 * Drain async requests before we start sync IO
	 */
1595
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1596
		return false;
1597

1598 1599 1600 1601
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1602
		return false;
1603 1604 1605 1606

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
1607

1608 1609 1610 1611 1612 1613 1614
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
1615
		if (cfq_class_idle(cfqq))
1616
			return false;
1617

1618 1619 1620 1621
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
1622
			return false;
1623

1624
		/*
1625
		 * Sole queue user, allow bigger slice
1626
		 */
1627 1628 1629 1630 1631 1632 1633 1634
		max_dispatch *= 4;
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
1635
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1636 1637
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
1638

1639
		depth = last_sync / cfqd->cfq_slice[1];
1640 1641
		if (!depth && !cfqq->dispatched)
			depth = 1;
1642 1643
		if (depth < max_dispatch)
			max_dispatch = depth;
1644
	}
1645

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
1704 1705
		return 0;

1706
	/*
1707
	 * Dispatch a request from this cfqq, if it is allowed
1708
	 */
1709 1710 1711
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

1712
	cfqq->slice_dispatch++;
1713
	cfq_clear_cfqq_must_dispatch(cfqq);
1714

1715 1716 1717 1718 1719 1720 1721 1722 1723
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
1724 1725
	}

1726
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1727
	return 1;
L
Linus Torvalds 已提交
1728 1729 1730
}

/*
J
Jens Axboe 已提交
1731 1732
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
1733 1734 1735 1736 1737
 *
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
1738 1739 1740
	struct cfq_data *cfqd = cfqq->cfqd;

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
1741 1742 1743 1744

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

1745
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
1746
	BUG_ON(rb_first(&cfqq->sort_list));
1747
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
J
Jens Axboe 已提交
1748
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
1749

1750
	if (unlikely(cfqd->active_queue == cfqq)) {
1751
		__cfq_slice_expired(cfqd, cfqq, 0);
1752
		cfq_schedule_dispatch(cfqd);
1753
	}
1754

L
Linus Torvalds 已提交
1755 1756 1757
	kmem_cache_free(cfq_pool, cfqq);
}

1758 1759 1760
/*
 * Must always be called with the rcu_read_lock() held
 */
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

1772
/*
1773
 * Call func for each cic attached to this ioc.
1774
 */
1775
static void
1776 1777
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
1778
{
1779
	rcu_read_lock();
1780
	__call_for_each_cic(ioc, func);
1781
	rcu_read_unlock();
1782 1783 1784 1785 1786 1787 1788 1789 1790
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
1791
	elv_ioc_count_dec(cfq_ioc_count);
1792

1793 1794 1795 1796 1797 1798 1799
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
1800
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1801 1802 1803 1804 1805
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
1806
}
1807

1808 1809 1810
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1821
	hlist_del_rcu(&cic->cic_list);
1822 1823
	spin_unlock_irqrestore(&ioc->lock, flags);

1824
	cfq_cic_free(cic);
1825 1826
}

1827 1828 1829 1830 1831
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
1832 1833 1834
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
1835 1836 1837 1838
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
1839
	 */
1840
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
1841 1842
}

1843
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1844
{
J
Jeff Moyer 已提交
1845 1846
	struct cfq_queue *__cfqq, *next;

1847
	if (unlikely(cfqq == cfqd->active_queue)) {
1848
		__cfq_slice_expired(cfqd, cfqq, 0);
1849
		cfq_schedule_dispatch(cfqd);
1850
	}
1851

J
Jeff Moyer 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

1868 1869
	cfq_put_queue(cfqq);
}
1870

1871 1872 1873
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
1874 1875
	struct io_context *ioc = cic->ioc;

1876
	list_del_init(&cic->queue_list);
1877 1878 1879 1880

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
1881
	smp_wmb();
1882
	cic->dead_key = (unsigned long) cic->key;
1883 1884
	cic->key = NULL;

1885 1886 1887
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

1888 1889 1890
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
1891 1892
	}

1893 1894 1895
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
1896
	}
1897 1898
}

1899 1900
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
1901 1902 1903 1904
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
1905
		struct request_queue *q = cfqd->queue;
1906
		unsigned long flags;
1907

1908
		spin_lock_irqsave(q->queue_lock, flags);
1909 1910 1911 1912 1913 1914 1915 1916 1917

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

1918
		spin_unlock_irqrestore(q->queue_lock, flags);
1919
	}
L
Linus Torvalds 已提交
1920 1921
}

1922 1923 1924 1925
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
1926
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
1927
{
1928
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
1929 1930
}

1931
static struct cfq_io_context *
A
Al Viro 已提交
1932
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1933
{
1934
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
1935

1936 1937
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
1938
	if (cic) {
1939
		cic->last_end_request = jiffies;
1940
		INIT_LIST_HEAD(&cic->queue_list);
1941
		INIT_HLIST_NODE(&cic->cic_list);
1942 1943
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
1944
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
1945 1946 1947 1948 1949
	}

	return cic;
}

1950
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1951 1952 1953 1954
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
1955
	if (!cfq_cfqq_prio_changed(cfqq))
1956 1957
		return;

1958
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1959
	switch (ioprio_class) {
1960 1961 1962 1963
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
1964
		 * no prio set, inherit CPU scheduling settings
1965 1966
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
1967
		cfqq->ioprio_class = task_nice_ioclass(tsk);
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
1982 1983 1984 1985 1986 1987 1988 1989
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
1990
	cfq_clear_cfqq_prio_changed(cfqq);
1991 1992
}

J
Jens Axboe 已提交
1993
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1994
{
1995 1996
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
1997
	unsigned long flags;
1998

1999 2000 2001
	if (unlikely(!cfqd))
		return;

2002
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2003

2004
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2005 2006
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2007 2008
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2009
		if (new_cfqq) {
2010
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2011 2012
			cfq_put_queue(cfqq);
		}
2013
	}
2014

2015
	cfqq = cic->cfqq[BLK_RW_SYNC];
2016 2017 2018
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2019
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2020 2021
}

2022
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2023
{
2024
	call_for_each_cic(ioc, changed_ioprio);
2025
	ioc->ioprio_changed = 0;
2026 2027
}

2028
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2029
			  pid_t pid, bool is_sync)
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2048
static struct cfq_queue *
2049
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2050
		     struct io_context *ioc, gfp_t gfp_mask)
2051 2052
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2053
	struct cfq_io_context *cic;
2054 2055

retry:
2056
	cic = cfq_cic_lookup(cfqd, ioc);
2057 2058
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2059

2060 2061 2062 2063 2064 2065
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2066 2067 2068 2069 2070
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2071
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2072
					gfp_mask | __GFP_ZERO,
2073
					cfqd->queue->node);
2074
			spin_lock_irq(cfqd->queue->queue_lock);
2075 2076
			if (new_cfqq)
				goto retry;
2077
		} else {
2078 2079 2080
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2081 2082
		}

2083 2084 2085 2086 2087 2088
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2089 2090 2091 2092 2093 2094 2095 2096
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2097 2098 2099
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2100
	switch (ioprio_class) {
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2112
static struct cfq_queue *
2113
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2114 2115
	      gfp_t gfp_mask)
{
2116 2117
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2118
	struct cfq_queue **async_cfqq = NULL;
2119 2120
	struct cfq_queue *cfqq = NULL;

2121 2122 2123 2124 2125
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2126
	if (!cfqq)
2127
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2128 2129 2130 2131

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2132
	if (!is_sync && !(*async_cfqq)) {
2133
		atomic_inc(&cfqq->ref);
2134
		*async_cfqq = cfqq;
2135 2136 2137 2138 2139 2140
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2141 2142 2143
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2144
static void
2145 2146
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2147
{
2148 2149
	unsigned long flags;

2150
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2151

2152 2153
	spin_lock_irqsave(&ioc->lock, flags);

2154
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2155

2156
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2157
	hlist_del_rcu(&cic->cic_list);
2158 2159 2160
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2161 2162
}

2163
static struct cfq_io_context *
2164
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2165 2166
{
	struct cfq_io_context *cic;
2167
	unsigned long flags;
2168
	void *k;
2169

2170 2171 2172
	if (unlikely(!ioc))
		return NULL;

2173 2174
	rcu_read_lock();

J
Jens Axboe 已提交
2175 2176 2177
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2178
	cic = rcu_dereference(ioc->ioc_data);
2179 2180
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2181
		return cic;
2182
	}
J
Jens Axboe 已提交
2183

2184 2185 2186 2187 2188
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2189 2190 2191
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2192
			cfq_drop_dead_cic(cfqd, ioc, cic);
2193
			rcu_read_lock();
2194
			continue;
2195
		}
2196

2197
		spin_lock_irqsave(&ioc->lock, flags);
2198
		rcu_assign_pointer(ioc->ioc_data, cic);
2199
		spin_unlock_irqrestore(&ioc->lock, flags);
2200 2201
		break;
	} while (1);
2202

2203
	return cic;
2204 2205
}

2206 2207 2208 2209 2210
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2211 2212
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2213
{
2214
	unsigned long flags;
2215
	int ret;
2216

2217 2218 2219 2220
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2221

2222 2223 2224
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2225 2226
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2227
		spin_unlock_irqrestore(&ioc->lock, flags);
2228

2229 2230 2231 2232 2233 2234 2235
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2236 2237
	}

2238 2239
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2240

2241
	return ret;
2242 2243
}

L
Linus Torvalds 已提交
2244 2245 2246
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2247
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2248 2249
 */
static struct cfq_io_context *
2250
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2251
{
2252
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2253 2254
	struct cfq_io_context *cic;

2255
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2256

2257
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2258 2259 2260
	if (!ioc)
		return NULL;

2261
	cic = cfq_cic_lookup(cfqd, ioc);
2262 2263
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2264

2265 2266 2267
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2268

2269 2270 2271
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2272
out:
2273 2274 2275 2276
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2277
	return cic;
2278 2279
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2280 2281 2282 2283 2284
err:
	put_io_context(ioc);
	return NULL;
}

2285 2286
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2287
{
2288 2289
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2290

2291 2292 2293 2294
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2295

2296
static void
2297
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2298
		       struct request *rq)
2299 2300 2301 2302
{
	sector_t sdist;
	u64 total;

2303
	if (!cfqq->last_request_pos)
2304
		sdist = 0;
2305 2306
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2307
	else
2308
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2309 2310 2311 2312 2313

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2314 2315
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2316
	else
2317
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2318

2319 2320 2321 2322 2323
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2337
}
L
Linus Torvalds 已提交
2338

2339 2340 2341 2342 2343 2344 2345 2346
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2347
	int old_idle, enable_idle;
2348

2349 2350 2351 2352
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2353 2354
		return;

2355
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2356

2357 2358 2359
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

2360
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2361 2362
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
2363 2364
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2365
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2366 2367 2368
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2369 2370
	}

2371 2372 2373 2374 2375 2376 2377
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2378
}
L
Linus Torvalds 已提交
2379

2380 2381 2382 2383
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2384
static bool
2385
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2386
		   struct request *rq)
2387
{
J
Jens Axboe 已提交
2388
	struct cfq_queue *cfqq;
2389

J
Jens Axboe 已提交
2390 2391
	cfqq = cfqd->active_queue;
	if (!cfqq)
2392
		return false;
2393

J
Jens Axboe 已提交
2394
	if (cfq_slice_used(cfqq))
2395
		return true;
J
Jens Axboe 已提交
2396 2397

	if (cfq_class_idle(new_cfqq))
2398
		return false;
2399 2400

	if (cfq_class_idle(cfqq))
2401
		return true;
2402

2403 2404 2405
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
	    new_cfqq->service_tree->count == 1)
2406 2407
		return true;

2408 2409 2410 2411
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2412
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2413
		return true;
2414

2415 2416 2417 2418 2419
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2420
		return true;
2421

2422 2423 2424 2425
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2426
		return true;
2427

2428
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2429
		return false;
2430 2431 2432 2433 2434

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2435
	if (cfq_rq_close(cfqd, cfqq, rq))
2436
		return true;
2437

2438
	return false;
2439 2440 2441 2442 2443 2444 2445 2446
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2447
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2448
	cfq_slice_expired(cfqd, 1);
2449

2450 2451 2452 2453 2454
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2455 2456

	cfq_service_tree_add(cfqd, cfqq, 1);
2457

2458 2459
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2460 2461 2462
}

/*
J
Jens Axboe 已提交
2463
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2464 2465 2466
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2467 2468
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
2469
{
J
Jens Axboe 已提交
2470
	struct cfq_io_context *cic = RQ_CIC(rq);
2471

2472
	cfqd->rq_queued++;
2473 2474 2475
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
2476
	cfq_update_io_thinktime(cfqd, cic);
2477
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
2478 2479
	cfq_update_idle_window(cfqd, cfqq, cic);

2480
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2481 2482 2483

	if (cfqq == cfqd->active_queue) {
		/*
2484 2485 2486
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
2487 2488
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
2489 2490 2491
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
2492
		 */
2493
		if (cfq_cfqq_wait_request(cfqq)) {
2494 2495
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
2496
				del_timer(&cfqd->idle_slice_timer);
T
Tejun Heo 已提交
2497
			__blk_run_queue(cfqd->queue);
2498
			}
2499
			cfq_mark_cfqq_must_dispatch(cfqq);
2500
		}
J
Jens Axboe 已提交
2501
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2502 2503 2504
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
2505 2506
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
2507 2508
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
2509
		__blk_run_queue(cfqd->queue);
2510
	}
L
Linus Torvalds 已提交
2511 2512
}

2513
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2514
{
2515
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2516
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2517

2518
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2519
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2520

2521
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2522
	list_add_tail(&rq->queuelist, &cfqq->fifo);
2523
	cfq_add_rq_rb(rq);
2524

J
Jens Axboe 已提交
2525
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
2526 2527
}

2528 2529 2530 2531 2532 2533
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
2534 2535
	struct cfq_queue *cfqq = cfqd->active_queue;

2536 2537 2538 2539 2540
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
2541 2542

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2543
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2544 2545
		return;

S
Shaohua Li 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

2556 2557 2558
	if (cfqd->hw_tag_samples++ < 50)
		return;

2559
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2560 2561 2562 2563 2564
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

2565
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2566
{
J
Jens Axboe 已提交
2567
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2568
	struct cfq_data *cfqd = cfqq->cfqd;
2569
	const int sync = rq_is_sync(rq);
2570
	unsigned long now;
L
Linus Torvalds 已提交
2571

2572
	now = jiffies;
2573
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
2574

2575 2576
	cfq_update_hw_tag(cfqd);

2577
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
2578
	WARN_ON(!cfqq->dispatched);
2579
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
2580
	cfqq->dispatched--;
L
Linus Torvalds 已提交
2581

2582 2583 2584
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

2585
	if (sync) {
J
Jens Axboe 已提交
2586
		RQ_CIC(rq)->last_end_request = now;
2587 2588
		cfqd->last_end_sync_rq = now;
	}
2589 2590 2591 2592 2593 2594

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
2595 2596
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

2597 2598 2599 2600
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
2601
		/*
2602 2603 2604 2605 2606 2607
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
2608
		 */
2609
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2610
			cfq_slice_expired(cfqd, 1);
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
			    || cfqd->noidle_tree_requires_idle)
				cfq_arm_slice_timer(cfqd);
		}
2623
	}
J
Jens Axboe 已提交
2624

2625
	if (!rq_in_driver(cfqd))
2626
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2627 2628
}

2629 2630 2631 2632 2633
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2634
{
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
2646
		 * unboost the queue (if needed)
2647
		 */
2648 2649
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
2650 2651
	}
}
L
Linus Torvalds 已提交
2652

2653
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2654
{
2655
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
2656
		cfq_mark_cfqq_must_alloc_slice(cfqq);
2657
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
2658
	}
L
Linus Torvalds 已提交
2659

2660 2661 2662
	return ELV_MQUEUE_MAY;
}

2663
static int cfq_may_queue(struct request_queue *q, int rw)
2664 2665 2666
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
2667
	struct cfq_io_context *cic;
2668 2669 2670 2671 2672 2673 2674 2675
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
2676
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2677 2678 2679
	if (!cic)
		return ELV_MQUEUE_MAY;

2680
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2681
	if (cfqq) {
2682
		cfq_init_prio_data(cfqq, cic->ioc);
2683 2684
		cfq_prio_boost(cfqq);

2685
		return __cfq_may_queue(cfqq);
2686 2687 2688
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693
}

/*
 * queue lock held here
 */
2694
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
2695
{
J
Jens Axboe 已提交
2696
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
2697

J
Jens Axboe 已提交
2698
	if (cfqq) {
2699
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
2700

2701 2702
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
2703

J
Jens Axboe 已提交
2704
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2705 2706

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
2707
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
2708 2709 2710 2711 2712

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
2713 2714 2715 2716 2717 2718
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2719
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
2720 2721 2722 2723
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
2750
/*
2751
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
2752
 */
2753
static int
2754
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2755 2756 2757 2758
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
2759
	const bool is_sync = rq_is_sync(rq);
2760
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
2761 2762 2763 2764
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

2765
	cic = cfq_get_io_context(cfqd, gfp_mask);
2766

L
Linus Torvalds 已提交
2767 2768
	spin_lock_irqsave(q->queue_lock, flags);

2769 2770 2771
	if (!cic)
		goto queue_fail;

2772
new_queue:
2773
	cfqq = cic_to_cfqq(cic, is_sync);
2774
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2775
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2776
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
2777
	} else {
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
2788 2789 2790 2791 2792 2793 2794 2795
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2796
	}
L
Linus Torvalds 已提交
2797 2798

	cfqq->allocated[rw]++;
2799
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
2800

J
Jens Axboe 已提交
2801
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
2802

J
Jens Axboe 已提交
2803 2804 2805
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
2806

2807 2808 2809
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
2810

2811
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2812
	spin_unlock_irqrestore(q->queue_lock, flags);
2813
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
2814 2815 2816
	return 1;
}

2817
static void cfq_kick_queue(struct work_struct *work)
2818
{
2819
	struct cfq_data *cfqd =
2820
		container_of(work, struct cfq_data, unplug_work);
2821
	struct request_queue *q = cfqd->queue;
2822

2823
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
2824
	__blk_run_queue(cfqd->queue);
2825
	spin_unlock_irq(q->queue_lock);
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
2836
	int timed_out = 1;
2837

2838 2839
	cfq_log(cfqd, "idle timer fired");

2840 2841
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

2842 2843
	cfqq = cfqd->active_queue;
	if (cfqq) {
2844 2845
		timed_out = 0;

2846 2847 2848 2849 2850 2851
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

2852 2853 2854
		/*
		 * expired
		 */
2855
		if (cfq_slice_used(cfqq))
2856 2857 2858 2859 2860 2861
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
2862
		if (!cfqd->busy_queues)
2863 2864 2865 2866 2867
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
2868
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2869
			goto out_kick;
2870 2871 2872 2873 2874

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
2875 2876
	}
expire:
2877
	cfq_slice_expired(cfqd, timed_out);
2878
out_kick:
2879
	cfq_schedule_dispatch(cfqd);
2880 2881 2882 2883
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
2884 2885 2886
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
2887
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
2888
}
2889

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
2900 2901 2902

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
2903 2904
}

J
Jens Axboe 已提交
2905
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
2906
{
2907
	struct cfq_data *cfqd = e->elevator_data;
2908
	struct request_queue *q = cfqd->queue;
2909

J
Jens Axboe 已提交
2910
	cfq_shutdown_timer_wq(cfqd);
2911

2912
	spin_lock_irq(q->queue_lock);
2913

2914
	if (cfqd->active_queue)
2915
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2916 2917

	while (!list_empty(&cfqd->cic_list)) {
2918 2919 2920
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
2921 2922

		__cfq_exit_single_io_context(cfqd, cic);
2923
	}
2924

2925
	cfq_put_async_queues(cfqd);
2926

2927
	spin_unlock_irq(q->queue_lock);
2928 2929 2930 2931

	cfq_shutdown_timer_wq(cfqd);

	kfree(cfqd);
L
Linus Torvalds 已提交
2932 2933
}

2934
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
2935 2936
{
	struct cfq_data *cfqd;
2937
	int i, j;
L
Linus Torvalds 已提交
2938

2939
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
2940
	if (!cfqd)
J
Jens Axboe 已提交
2941
		return NULL;
L
Linus Torvalds 已提交
2942

2943
	for (i = 0; i < 2; ++i)
2944 2945
		for (j = 0; j < 3; ++j)
			cfqd->service_trees[i][j] = CFQ_RB_ROOT;
2946
	cfqd->service_tree_idle = CFQ_RB_ROOT;
2947 2948 2949 2950 2951 2952 2953 2954 2955

	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

2956 2957 2958 2959 2960 2961 2962 2963
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);

2964
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
2965 2966 2967

	cfqd->queue = q;

2968 2969 2970 2971
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

2972
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2973

L
Linus Torvalds 已提交
2974
	cfqd->cfq_quantum = cfq_quantum;
2975 2976
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
2977 2978
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
2979 2980 2981 2982
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
2983
	cfqd->cfq_latency = 1;
2984
	cfqd->hw_tag = -1;
2985
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
2986
	return cfqd;
L
Linus Torvalds 已提交
2987 2988 2989 2990
}

static void cfq_slab_kill(void)
{
2991 2992 2993 2994
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
2995 2996 2997 2998 2999 3000 3001 3002
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3003
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3004 3005 3006
	if (!cfq_pool)
		goto fail;

3007
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3036
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3037
{									\
3038
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3039 3040 3041 3042 3043 3044
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3045 3046
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3047 3048
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3049 3050 3051 3052
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3053
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3054 3055 3056
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3057
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3058
{									\
3059
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3073 3074 3075 3076
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3077
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3078 3079
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3080 3081 3082
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3083 3084
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3085
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3086 3087
#undef STORE_FUNCTION

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3101
	CFQ_ATTR(low_latency),
3102
	__ATTR_NULL
L
Linus Torvalds 已提交
3103 3104 3105 3106 3107 3108 3109
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3110
		.elevator_allow_merge_fn =	cfq_allow_merge,
3111
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3112
		.elevator_add_req_fn =		cfq_insert_request,
3113
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3114 3115 3116
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3117 3118
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3119 3120 3121 3122 3123
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3124
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3125
	},
3126
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3127 3128 3129 3130 3131 3132
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3133 3134 3135 3136 3137 3138 3139 3140
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3141 3142 3143
	if (cfq_slab_setup())
		return -ENOMEM;

3144
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3145

3146
	return 0;
L
Linus Torvalds 已提交
3147 3148 3149 3150
}

static void __exit cfq_exit(void)
{
3151
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3152
	elv_unregister(&iosched_cfq);
3153
	ioc_gone = &all_gone;
3154 3155
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3156 3157 3158 3159 3160

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3161
	if (elv_ioc_count_read(cfq_ioc_count))
3162
		wait_for_completion(&all_gone);
3163
	cfq_slab_kill();
L
Linus Torvalds 已提交
3164 3165 3166 3167 3168 3169 3170 3171
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");