cfq-iosched.c 78.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
L
Linus Torvalds 已提交
16 17 18 19

/*
 * tunables
 */
20 21
/* max queue in one round of service */
static const int cfq_quantum = 4;
22
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 24 25 26
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
27
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
28
static int cfq_slice_async = HZ / 25;
29
static const int cfq_slice_async_rq = 2;
30
static int cfq_slice_idle = HZ / 125;
31 32
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
33

34
/*
35
 * offset from end of service tree
36
 */
37
#define CFQ_IDLE_DELAY		(HZ / 5)
38 39 40 41 42 43

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

44 45 46 47 48 49
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

50
#define CFQ_SLICE_SCALE		(5)
51
#define CFQ_HW_QUEUE_MIN	(5)
52

53 54
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
55
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
56

57 58
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
59

60
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61
static struct completion *ioc_gone;
62
static DEFINE_SPINLOCK(ioc_gone_lock);
63

64 65 66 67
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

68 69
#define sample_valid(samples)	((samples) > 80)

70 71 72 73 74 75 76 77 78
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
79
	unsigned count;
80
};
81
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

125 126 127 128
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
129
	unsigned long seeky_start;
130

131
	pid_t pid;
J
Jeff Moyer 已提交
132

133
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
134
	struct cfq_queue *new_cfqq;
135
	struct cfq_group *cfqg;
136 137
};

138
/*
139
 * First index in the service_trees.
140 141 142 143
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	BE_WORKLOAD = 0,
144 145
	RT_WORKLOAD = 1,
	IDLE_WORKLOAD = 2,
146 147
};

148 149 150 151 152 153 154 155 156
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};

157 158 159 160 161 162 163 164 165
/* This is per cgroup per device grouping structure */
struct cfq_group {
	/*
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
	struct cfq_rb_root service_trees[2][3];
	struct cfq_rb_root service_tree_idle;
};
166

167 168 169
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
170
struct cfq_data {
171
	struct request_queue *queue;
172
	struct cfq_group root_group;
173

174 175
	/*
	 * The priority currently being served
176
	 */
177
	enum wl_prio_t serving_prio;
178 179
	enum wl_type_t serving_type;
	unsigned long workload_expires;
180
	struct cfq_group *serving_group;
181
	bool noidle_tree_requires_idle;
182 183 184 185 186 187 188 189

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

190
	unsigned int busy_queues;
191
	unsigned int busy_queues_avg[2];
192

193
	int rq_in_driver[2];
194
	int sync_flight;
195 196 197 198 199

	/*
	 * queue-depth detection
	 */
	int rq_queued;
200
	int hw_tag;
201 202 203 204 205 206 207 208
	/*
	 * hw_tag can be
	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
	 *  0 => no NCQ
	 */
	int hw_tag_est_depth;
	unsigned int hw_tag_samples;
L
Linus Torvalds 已提交
209

210 211 212 213
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
214
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
215

216 217 218
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

219 220 221 222 223
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
224

J
Jens Axboe 已提交
225
	sector_t last_position;
L
Linus Torvalds 已提交
226 227 228 229 230

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
231
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
232 233
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
234 235 236
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
237
	unsigned int cfq_latency;
238 239

	struct list_head cic_list;
L
Linus Torvalds 已提交
240

241 242 243 244
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
245 246

	unsigned long last_end_sync_rq;
L
Linus Torvalds 已提交
247 248
};

249 250
static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
					    enum wl_prio_t prio,
251
					    enum wl_type_t type,
252 253 254
					    struct cfq_data *cfqd)
{
	if (prio == IDLE_WORKLOAD)
255
		return &cfqg->service_tree_idle;
256

257
	return &cfqg->service_trees[prio][type];
258 259
}

J
Jens Axboe 已提交
260
enum cfqq_state_flags {
261 262
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
263
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
264 265 266 267
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
268
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
269
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
270
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
271
	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
J
Jens Axboe 已提交
272 273 274 275 276
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
277
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
278 279 280
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
281
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
282 283 284
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
285
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
286 287 288 289
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
290
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
291 292 293 294
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
295
CFQ_CFQQ_FNS(slice_new);
296
CFQ_CFQQ_FNS(sync);
297
CFQ_CFQQ_FNS(coop);
298
CFQ_CFQQ_FNS(deep);
J
Jens Axboe 已提交
299 300
#undef CFQ_CFQQ_FNS

301 302 303 304 305
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

306 307 308 309 310 311 312 313 314 315 316
/* Traverses through cfq group service trees */
#define for_each_cfqg_st(cfqg, i, j, st) \
	for (i = 0; i <= IDLE_WORKLOAD; i++) \
		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
			: &cfqg->service_tree_idle; \
			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
			(i == IDLE_WORKLOAD && j == 0); \
			j++, st = i < IDLE_WORKLOAD ? \
			&cfqg->service_trees[i][j]: NULL) \


317 318 319 320 321 322 323 324 325
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

326 327 328 329 330 331 332 333 334 335

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

336 337
static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
{
338 339
	struct cfq_group *cfqg = &cfqd->root_group;

340
	if (wl == IDLE_WORKLOAD)
341
		return cfqg->service_tree_idle.count;
342

343 344 345
	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
346 347
}

348
static void cfq_dispatch_insert(struct request_queue *, struct request *);
349
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
350
				       struct io_context *, gfp_t);
351
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
352 353
						struct io_context *);

354 355 356 357 358
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

359
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
360
					    bool is_sync)
361
{
362
	return cic->cfqq[is_sync];
363 364 365
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
366
				struct cfq_queue *cfqq, bool is_sync)
367
{
368
	cic->cfqq[is_sync] = cfqq;
369 370 371 372 373 374
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
375
static inline bool cfq_bio_sync(struct bio *bio)
376
{
377
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
378
}
L
Linus Torvalds 已提交
379

A
Andrew Morton 已提交
380 381 382 383
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
384
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
385
{
386 387
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
388
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
389
	}
A
Andrew Morton 已提交
390 391
}

392
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
393 394 395
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

396
	return !cfqd->busy_queues;
A
Andrew Morton 已提交
397 398
}

399 400 401 402 403
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
404
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
405
				 unsigned short prio)
406
{
407
	const int base_slice = cfqd->cfq_slice[sync];
408

409 410 411 412
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
413

414 415 416 417
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
418 419
}

420 421 422 423 424 425
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

426 427
static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
{
428 429 430
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
431
	unsigned busy = cfq_busy_queues_wl(rt, cfqd);
432 433 434 435 436 437 438 439

	min_q = min(cfqd->busy_queues_avg[rt], busy);
	max_q = max(cfqd->busy_queues_avg[rt], busy);
	cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
		cfq_hist_divisor;
	return cfqd->busy_queues_avg[rt];
}

440 441 442
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
		/* interested queues (we consider only the ones with the same
		 * priority class) */
		unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
		if (expect_latency > cfq_target_latency) {
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
			slice = max(slice * cfq_target_latency / expect_latency,
				    low_slice);
		}
	}
	cfqq->slice_end = jiffies + slice;
463
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
464 465 466 467 468 469 470
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
471
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
472 473 474 475 476 477 478 479 480
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
481
/*
J
Jens Axboe 已提交
482
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
483
 * We choose the request that is closest to the head right now. Distance
484
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
485
 */
J
Jens Axboe 已提交
486
static struct request *
487
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
488
{
489
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
490
	unsigned long back_max;
491 492 493
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
494

J
Jens Axboe 已提交
495 496 497 498
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
499

J
Jens Axboe 已提交
500 501 502 503
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
504 505 506 507
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
508

509 510
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
527
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
528 529 530 531 532 533

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
534
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
535 536

	/* Found required data */
537 538 539 540 541 542

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
543
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
544
		if (d1 < d2)
J
Jens Axboe 已提交
545
			return rq1;
546
		else if (d2 < d1)
J
Jens Axboe 已提交
547
			return rq2;
548 549
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
550
				return rq1;
551
			else
J
Jens Axboe 已提交
552
				return rq2;
553
		}
L
Linus Torvalds 已提交
554

555
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
556
		return rq1;
557
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
558 559
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
560 561 562 563 564 565 566 567
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
568
			return rq1;
L
Linus Torvalds 已提交
569
		else
J
Jens Axboe 已提交
570
			return rq2;
L
Linus Torvalds 已提交
571 572 573
	}
}

574 575 576
/*
 * The below is leftmost cache rbtree addon
 */
577
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
578
{
579 580 581 582
	/* Service tree is empty */
	if (!root->count)
		return NULL;

583 584 585
	if (!root->left)
		root->left = rb_first(&root->rb);

586 587 588 589
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
590 591
}

592 593 594 595 596 597
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

598 599 600 601
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
602
	rb_erase_init(n, &root->rb);
603
	--root->count;
604 605
}

L
Linus Torvalds 已提交
606 607 608
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
609 610 611
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
612
{
613 614
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
615
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
616

617
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
618 619

	if (rbprev)
J
Jens Axboe 已提交
620
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
621

622
	if (rbnext)
J
Jens Axboe 已提交
623
		next = rb_entry_rq(rbnext);
624 625 626
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
627
			next = rb_entry_rq(rbnext);
628
	}
L
Linus Torvalds 已提交
629

630
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
631 632
}

633 634
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
635
{
636 637 638
	/*
	 * just an approximation, should be ok.
	 */
639
	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
640
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
641 642
}

643
/*
644
 * The cfqd->service_trees holds all pending cfq_queue's that have
645 646 647
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
648
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
649
				 bool add_front)
650
{
651 652
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
653
	unsigned long rb_key;
654
	struct cfq_rb_root *service_tree;
655
	int left;
656

657 658
	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
						cfqq_type(cfqq), cfqd);
659 660
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
661
		parent = rb_last(&service_tree->rb);
662 663 664 665 666 667
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
668 669 670 671 672 673
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
674
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
675
		rb_key -= cfqq->slice_resid;
676
		cfqq->slice_resid = 0;
677 678
	} else {
		rb_key = -HZ;
679
		__cfqq = cfq_rb_first(service_tree);
680 681
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
682

683
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
684
		/*
685
		 * same position, nothing more to do
686
		 */
687 688
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
689
			return;
L
Linus Torvalds 已提交
690

691 692
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
693
	}
694

695
	left = 1;
696
	parent = NULL;
697 698
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
699
	while (*p) {
700
		struct rb_node **n;
701

702 703 704
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

705
		/*
706
		 * sort by key, that represents service time.
707
		 */
708
		if (time_before(rb_key, __cfqq->rb_key))
709
			n = &(*p)->rb_left;
710
		else {
711
			n = &(*p)->rb_right;
712
			left = 0;
713
		}
714 715

		p = n;
716 717
	}

718
	if (left)
719
		service_tree->left = &cfqq->rb_node;
720

721 722
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
723 724
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
L
Linus Torvalds 已提交
725 726
}

727
static struct cfq_queue *
728 729 730
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
747
		if (sector > blk_rq_pos(cfqq->next_rq))
748
			n = &(*p)->rb_right;
749
		else if (sector < blk_rq_pos(cfqq->next_rq))
750 751 752 753
			n = &(*p)->rb_left;
		else
			break;
		p = n;
754
		cfqq = NULL;
755 756 757 758 759
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
760
	return cfqq;
761 762 763 764 765 766 767
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

768 769 770 771
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
772 773 774 775 776 777

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

778
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
779 780
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
781 782
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
783 784 785
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
786 787
}

788 789 790
/*
 * Update cfqq's position in the service tree.
 */
791
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
792 793 794 795
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
796
	if (cfq_cfqq_on_rr(cfqq)) {
797
		cfq_service_tree_add(cfqd, cfqq, 0);
798 799
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
800 801
}

L
Linus Torvalds 已提交
802 803
/*
 * add to busy list of queues for service, trying to be fair in ordering
804
 * the pending list according to last request service
L
Linus Torvalds 已提交
805
 */
J
Jens Axboe 已提交
806
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
807
{
808
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
809 810
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
811 812
	cfqd->busy_queues++;

813
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
814 815
}

816 817 818 819
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
820
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
821
{
822
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
823 824
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
825

826 827 828 829
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
830 831 832 833
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
834

L
Linus Torvalds 已提交
835 836 837 838 839 840 841
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
842
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
843
{
J
Jens Axboe 已提交
844
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
845
	struct cfq_data *cfqd = cfqq->cfqd;
J
Jens Axboe 已提交
846
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
847

848 849
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
850

J
Jens Axboe 已提交
851
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
852

853
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
854
		cfq_del_cfqq_rr(cfqd, cfqq);
L
Linus Torvalds 已提交
855 856
}

J
Jens Axboe 已提交
857
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
858
{
J
Jens Axboe 已提交
859
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
860
	struct cfq_data *cfqd = cfqq->cfqd;
861
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
862

863
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
864 865 866 867 868

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
869
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
870
		cfq_dispatch_insert(cfqd->queue, __alias);
871 872 873

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
874 875 876 877

	/*
	 * check if this request is a better next-serve candidate
	 */
878
	prev = cfqq->next_rq;
879
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
880 881 882 883 884 885 886

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

887
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
888 889
}

J
Jens Axboe 已提交
890
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
891
{
892 893
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
894
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
895 896
}

897 898
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
899
{
900
	struct task_struct *tsk = current;
901
	struct cfq_io_context *cic;
902
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
903

904
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
905 906 907 908
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
909 910 911
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

912
		return elv_rb_find(&cfqq->sort_list, sector);
913
	}
L
Linus Torvalds 已提交
914 915 916 917

	return NULL;
}

918
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
919
{
920
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
921

922
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
923
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
924
						rq_in_driver(cfqd));
925

926
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
927 928
}

929
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
930
{
931
	struct cfq_data *cfqd = q->elevator->elevator_data;
932
	const int sync = rq_is_sync(rq);
933

934 935
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
936
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
937
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
938 939
}

940
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
941
{
J
Jens Axboe 已提交
942
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
943

J
Jens Axboe 已提交
944 945
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
946

947
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
948
	cfq_del_rq_rb(rq);
949

950
	cfqq->cfqd->rq_queued--;
951 952 953 954
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
955 956
}

957 958
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
959 960 961 962
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

963
	__rq = cfq_find_rq_fmerge(cfqd, bio);
964
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
965 966
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
967 968 969 970 971
	}

	return ELEVATOR_NO_MERGE;
}

972
static void cfq_merged_request(struct request_queue *q, struct request *req,
973
			       int type)
L
Linus Torvalds 已提交
974
{
975
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
976
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
977

J
Jens Axboe 已提交
978
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
979 980 981 982
	}
}

static void
983
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
984 985
		    struct request *next)
{
986
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
987 988 989 990
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
991
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
992
		list_move(&rq->queuelist, &next->queuelist);
993 994
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
995

996 997
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
998
	cfq_remove_request(next);
999 1000
}

1001
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1002 1003 1004
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
1005
	struct cfq_io_context *cic;
1006 1007 1008
	struct cfq_queue *cfqq;

	/*
1009
	 * Disallow merge of a sync bio into an async request.
1010
	 */
1011
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1012
		return false;
1013 1014

	/*
1015 1016
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
1017
	 */
1018
	cic = cfq_cic_lookup(cfqd, current->io_context);
1019
	if (!cic)
1020
		return false;
1021

1022
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1023
	return cfqq == RQ_CFQQ(rq);
1024 1025
}

J
Jens Axboe 已提交
1026 1027
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
1028 1029
{
	if (cfqq) {
1030
		cfq_log_cfqq(cfqd, cfqq, "set_active");
1031
		cfqq->slice_end = 0;
1032 1033 1034
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1035
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1036 1037
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1038
		cfq_mark_cfqq_slice_new(cfqq);
1039 1040

		del_timer(&cfqd->idle_slice_timer);
1041 1042 1043 1044 1045
	}

	cfqd->active_queue = cfqq;
}

1046 1047 1048 1049 1050
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1051
		    bool timed_out)
1052
{
1053 1054
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1055 1056 1057 1058 1059 1060
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1061
	 * store what was left of this slice, if the queue idled/timed out
1062
	 */
1063
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1064
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1065 1066
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1067

1068
	cfq_resort_rr_list(cfqd, cfqq);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1079
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1080 1081 1082 1083
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1084
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1085 1086
}

1087 1088 1089 1090
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1091
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1092
{
1093
	struct cfq_rb_root *service_tree =
1094 1095
		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
					cfqd->serving_type, cfqd);
1096

1097 1098 1099
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1100 1101
}

1102 1103 1104
/*
 * Get and set a new active queue for service.
 */
1105 1106
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1107
{
1108
	if (!cfqq)
1109
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1110

1111
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1112
	return cfqq;
1113 1114
}

1115 1116 1117
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1118 1119
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1120
	else
1121
		return cfqd->last_position - blk_rq_pos(rq);
1122 1123
}

1124 1125
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1126

1127 1128
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1129
{
1130
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1131

1132 1133
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1134

1135
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1136 1137
}

1138 1139 1140
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1141
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1153
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1154 1155 1156 1157 1158 1159 1160 1161
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1162
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1163 1164
		return __cfqq;

1165
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1166 1167 1168 1169 1170 1171 1172
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1173
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1190
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1191
{
1192 1193
	struct cfq_queue *cfqq;

1194 1195 1196 1197 1198
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1199
	/*
1200 1201 1202
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1203
	 */
1204 1205 1206 1207
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1208 1209 1210 1211 1212
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1213 1214
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1215

1216 1217 1218 1219 1220 1221
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1222
	return cfqq;
J
Jens Axboe 已提交
1223 1224
}

1225 1226 1227 1228 1229 1230 1231
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1232
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1246
	if (!service_tree)
1247 1248
		service_tree = service_tree_for(cfqq->cfqg, prio,
						cfqq_type(cfqq), cfqd);
1249

1250 1251 1252 1253 1254 1255
	if (service_tree->count == 0)
		return true;

	return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
}

J
Jens Axboe 已提交
1256
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1257
{
1258
	struct cfq_queue *cfqq = cfqd->active_queue;
1259
	struct cfq_io_context *cic;
1260 1261
	unsigned long sl;

1262
	/*
J
Jens Axboe 已提交
1263 1264 1265
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1266
	 */
J
Jens Axboe 已提交
1267
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1268 1269
		return;

1270
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1271
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1272 1273 1274 1275

	/*
	 * idle is disabled, either manually or by past process history
	 */
1276
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1277 1278
		return;

1279
	/*
1280
	 * still active requests from this queue, don't idle
1281
	 */
1282
	if (cfqq->dispatched)
1283 1284
		return;

1285 1286 1287
	/*
	 * task has exited, don't wait
	 */
1288
	cic = cfqd->active_cic;
1289
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1290 1291
		return;

1292 1293 1294 1295 1296 1297 1298 1299 1300
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1301
	cfq_mark_cfqq_wait_request(cfqq);
1302

J
Jens Axboe 已提交
1303
	sl = cfqd->cfq_slice_idle;
1304

1305
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1306
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1307 1308
}

1309 1310 1311
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1312
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1313
{
1314
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1315
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1316

1317 1318
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1319
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1320
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1321
	cfqq->dispatched++;
1322
	elv_dispatch_sort(q, rq);
1323 1324 1325

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1326 1327 1328 1329 1330
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1331
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1332
{
1333
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1334

J
Jens Axboe 已提交
1335
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1336
		return NULL;
1337 1338 1339

	cfq_mark_cfqq_fifo_expire(cfqq);

1340 1341
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1342

1343
	rq = rq_entry_fifo(cfqq->fifo.next);
1344
	if (time_before(jiffies, rq_fifo_time(rq)))
1345
		rq = NULL;
L
Linus Torvalds 已提交
1346

1347
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1348
	return rq;
L
Linus Torvalds 已提交
1349 1350
}

1351 1352 1353 1354
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1355

1356
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1357

1358
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1359 1360
}

J
Jeff Moyer 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1376
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1405 1406
}

1407 1408 1409
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
				struct cfq_group *cfqg, enum wl_prio_t prio,
				bool prio_changed)
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
1423
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1424 1425
			return cur_best;
		cur_best = SYNC_WORKLOAD;
1426
		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1427 1428 1429 1430 1431 1432 1433
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
1434
		queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

1446
static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1447 1448 1449 1450 1451
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;
1452
	struct cfq_rb_root *st;
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

	/* Choose next priority. RT > BE > IDLE */
	if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
		cfqd->serving_prio = RT_WORKLOAD;
	else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
1471 1472 1473
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
1485 1486 1487 1488
		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
				cfqd);
	count = st->count;
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
	slice = cfq_target_latency * count /
		max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
		      cfq_busy_queues_wl(cfqd->serving_prio, cfqd));

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
1509
	cfqd->noidle_tree_requires_idle = false;
1510 1511
}

1512 1513 1514 1515 1516 1517
static void cfq_choose_cfqg(struct cfq_data *cfqd)
{
	cfqd->serving_group = &cfqd->root_group;
	choose_service_tree(cfqd, &cfqd->root_group);
}

1518
/*
1519 1520
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
1521
 */
1522
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
1523
{
1524
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
1525

1526 1527 1528
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
1529

1530
	/*
J
Jens Axboe 已提交
1531
	 * The active queue has run out of time, expire it and select new.
1532
	 */
1533
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
1534
		goto expire;
L
Linus Torvalds 已提交
1535

1536
	/*
J
Jens Axboe 已提交
1537 1538
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
1539
	 */
1540
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1541
		goto keep_queue;
J
Jens Axboe 已提交
1542

1543 1544 1545 1546
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
1547
	 * tree.  If possible, merge the expiring queue with the new cfqq.
1548
	 */
1549
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
1550 1551 1552
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
1553
		goto expire;
J
Jeff Moyer 已提交
1554
	}
1555

J
Jens Axboe 已提交
1556 1557 1558 1559 1560
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
1561
	if (timer_pending(&cfqd->idle_slice_timer) ||
1562
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1563 1564
		cfqq = NULL;
		goto keep_queue;
1565 1566
	}

J
Jens Axboe 已提交
1567
expire:
1568
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
1569
new_queue:
1570 1571 1572 1573 1574
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
1575
		cfq_choose_cfqg(cfqd);
1576

1577
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1578
keep_queue:
J
Jens Axboe 已提交
1579
	return cfqq;
1580 1581
}

J
Jens Axboe 已提交
1582
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
	return dispatched;
}

1595 1596 1597 1598
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
1599
static int cfq_forced_dispatch(struct cfq_data *cfqd)
1600
{
1601
	struct cfq_queue *cfqq;
1602
	int dispatched = 0;
1603
	int i, j;
1604
	struct cfq_group *cfqg = &cfqd->root_group;
1605
	struct cfq_rb_root *st;
1606

1607 1608 1609 1610
	for_each_cfqg_st(cfqg, i, j, st) {
		while ((cfqq = cfq_rb_first(st)) != NULL)
			dispatched += __cfq_forced_dispatch_cfqq(cfqq);
	}
1611

1612
	cfq_slice_expired(cfqd, 0);
1613 1614
	BUG_ON(cfqd->busy_queues);

1615
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1616 1617 1618
	return dispatched;
}

1619
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1620 1621
{
	unsigned int max_dispatch;
1622

1623 1624 1625
	/*
	 * Drain async requests before we start sync IO
	 */
1626
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1627
		return false;
1628

1629 1630 1631 1632
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1633
		return false;
1634 1635 1636 1637

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
1638

1639 1640 1641 1642 1643 1644 1645
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
1646
		if (cfq_class_idle(cfqq))
1647
			return false;
1648

1649 1650 1651 1652
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
1653
			return false;
1654

1655
		/*
1656
		 * Sole queue user, no limit
1657
		 */
1658
		max_dispatch = -1;
1659 1660 1661 1662 1663 1664 1665
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
1666
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1667 1668
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
1669

1670
		depth = last_sync / cfqd->cfq_slice[1];
1671 1672
		if (!depth && !cfqq->dispatched)
			depth = 1;
1673 1674
		if (depth < max_dispatch)
			max_dispatch = depth;
1675
	}
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
1735 1736
		return 0;

1737
	/*
1738
	 * Dispatch a request from this cfqq, if it is allowed
1739
	 */
1740 1741 1742
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

1743
	cfqq->slice_dispatch++;
1744
	cfq_clear_cfqq_must_dispatch(cfqq);
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
1755 1756
	}

1757
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1758
	return 1;
L
Linus Torvalds 已提交
1759 1760 1761
}

/*
J
Jens Axboe 已提交
1762 1763
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
1764 1765 1766 1767 1768
 *
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
1769 1770 1771
	struct cfq_data *cfqd = cfqq->cfqd;

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
1772 1773 1774 1775

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

1776
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
1777
	BUG_ON(rb_first(&cfqq->sort_list));
1778
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
J
Jens Axboe 已提交
1779
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
1780

1781
	if (unlikely(cfqd->active_queue == cfqq)) {
1782
		__cfq_slice_expired(cfqd, cfqq, 0);
1783
		cfq_schedule_dispatch(cfqd);
1784
	}
1785

L
Linus Torvalds 已提交
1786 1787 1788
	kmem_cache_free(cfq_pool, cfqq);
}

1789 1790 1791
/*
 * Must always be called with the rcu_read_lock() held
 */
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

1803
/*
1804
 * Call func for each cic attached to this ioc.
1805
 */
1806
static void
1807 1808
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
1809
{
1810
	rcu_read_lock();
1811
	__call_for_each_cic(ioc, func);
1812
	rcu_read_unlock();
1813 1814 1815 1816 1817 1818 1819 1820 1821
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
1822
	elv_ioc_count_dec(cfq_ioc_count);
1823

1824 1825 1826 1827 1828 1829 1830
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
1831
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1832 1833 1834 1835 1836
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
1837
}
1838

1839 1840 1841
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1852
	hlist_del_rcu(&cic->cic_list);
1853 1854
	spin_unlock_irqrestore(&ioc->lock, flags);

1855
	cfq_cic_free(cic);
1856 1857
}

1858 1859 1860 1861 1862
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
1863 1864 1865
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
1866 1867 1868 1869
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
1870
	 */
1871
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
1872 1873
}

1874
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1875
{
J
Jeff Moyer 已提交
1876 1877
	struct cfq_queue *__cfqq, *next;

1878
	if (unlikely(cfqq == cfqd->active_queue)) {
1879
		__cfq_slice_expired(cfqd, cfqq, 0);
1880
		cfq_schedule_dispatch(cfqd);
1881
	}
1882

J
Jeff Moyer 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

1899 1900
	cfq_put_queue(cfqq);
}
1901

1902 1903 1904
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
1905 1906
	struct io_context *ioc = cic->ioc;

1907
	list_del_init(&cic->queue_list);
1908 1909 1910 1911

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
1912
	smp_wmb();
1913
	cic->dead_key = (unsigned long) cic->key;
1914 1915
	cic->key = NULL;

1916 1917 1918
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

1919 1920 1921
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
1922 1923
	}

1924 1925 1926
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
1927
	}
1928 1929
}

1930 1931
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
1932 1933 1934 1935
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
1936
		struct request_queue *q = cfqd->queue;
1937
		unsigned long flags;
1938

1939
		spin_lock_irqsave(q->queue_lock, flags);
1940 1941 1942 1943 1944 1945 1946 1947 1948

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

1949
		spin_unlock_irqrestore(q->queue_lock, flags);
1950
	}
L
Linus Torvalds 已提交
1951 1952
}

1953 1954 1955 1956
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
1957
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
1958
{
1959
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
1960 1961
}

1962
static struct cfq_io_context *
A
Al Viro 已提交
1963
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1964
{
1965
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
1966

1967 1968
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
1969
	if (cic) {
1970
		cic->last_end_request = jiffies;
1971
		INIT_LIST_HEAD(&cic->queue_list);
1972
		INIT_HLIST_NODE(&cic->cic_list);
1973 1974
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
1975
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
1976 1977 1978 1979 1980
	}

	return cic;
}

1981
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1982 1983 1984 1985
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
1986
	if (!cfq_cfqq_prio_changed(cfqq))
1987 1988
		return;

1989
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1990
	switch (ioprio_class) {
1991 1992 1993 1994
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
1995
		 * no prio set, inherit CPU scheduling settings
1996 1997
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
1998
		cfqq->ioprio_class = task_nice_ioclass(tsk);
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
2013 2014 2015 2016 2017 2018 2019 2020
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
2021
	cfq_clear_cfqq_prio_changed(cfqq);
2022 2023
}

J
Jens Axboe 已提交
2024
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2025
{
2026 2027
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
2028
	unsigned long flags;
2029

2030 2031 2032
	if (unlikely(!cfqd))
		return;

2033
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2034

2035
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2036 2037
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2038 2039
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2040
		if (new_cfqq) {
2041
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2042 2043
			cfq_put_queue(cfqq);
		}
2044
	}
2045

2046
	cfqq = cic->cfqq[BLK_RW_SYNC];
2047 2048 2049
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2050
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2051 2052
}

2053
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2054
{
2055
	call_for_each_cic(ioc, changed_ioprio);
2056
	ioc->ioprio_changed = 0;
2057 2058
}

2059
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2060
			  pid_t pid, bool is_sync)
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
{
	cfqq->cfqg = cfqg;
}

static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
{
	return &cfqd->root_group;
}

2089
static struct cfq_queue *
2090
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2091
		     struct io_context *ioc, gfp_t gfp_mask)
2092 2093
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2094
	struct cfq_io_context *cic;
2095
	struct cfq_group *cfqg;
2096 2097

retry:
2098
	cfqg = cfq_get_cfqg(cfqd, 1);
2099
	cic = cfq_cic_lookup(cfqd, ioc);
2100 2101
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2102

2103 2104 2105 2106 2107 2108
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2109 2110 2111 2112 2113
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2114
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2115
					gfp_mask | __GFP_ZERO,
2116
					cfqd->queue->node);
2117
			spin_lock_irq(cfqd->queue->queue_lock);
2118 2119
			if (new_cfqq)
				goto retry;
2120
		} else {
2121 2122 2123
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2124 2125
		}

2126 2127 2128
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
2129
			cfq_link_cfqq_cfqg(cfqq, cfqg);
2130 2131 2132
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2133 2134 2135 2136 2137 2138 2139 2140
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2141 2142 2143
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2144
	switch (ioprio_class) {
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2156
static struct cfq_queue *
2157
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2158 2159
	      gfp_t gfp_mask)
{
2160 2161
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2162
	struct cfq_queue **async_cfqq = NULL;
2163 2164
	struct cfq_queue *cfqq = NULL;

2165 2166 2167 2168 2169
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2170
	if (!cfqq)
2171
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2172 2173 2174 2175

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2176
	if (!is_sync && !(*async_cfqq)) {
2177
		atomic_inc(&cfqq->ref);
2178
		*async_cfqq = cfqq;
2179 2180 2181 2182 2183 2184
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2185 2186 2187
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2188
static void
2189 2190
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2191
{
2192 2193
	unsigned long flags;

2194
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2195

2196 2197
	spin_lock_irqsave(&ioc->lock, flags);

2198
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2199

2200
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2201
	hlist_del_rcu(&cic->cic_list);
2202 2203 2204
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2205 2206
}

2207
static struct cfq_io_context *
2208
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2209 2210
{
	struct cfq_io_context *cic;
2211
	unsigned long flags;
2212
	void *k;
2213

2214 2215 2216
	if (unlikely(!ioc))
		return NULL;

2217 2218
	rcu_read_lock();

J
Jens Axboe 已提交
2219 2220 2221
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2222
	cic = rcu_dereference(ioc->ioc_data);
2223 2224
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2225
		return cic;
2226
	}
J
Jens Axboe 已提交
2227

2228 2229 2230 2231 2232
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2233 2234 2235
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2236
			cfq_drop_dead_cic(cfqd, ioc, cic);
2237
			rcu_read_lock();
2238
			continue;
2239
		}
2240

2241
		spin_lock_irqsave(&ioc->lock, flags);
2242
		rcu_assign_pointer(ioc->ioc_data, cic);
2243
		spin_unlock_irqrestore(&ioc->lock, flags);
2244 2245
		break;
	} while (1);
2246

2247
	return cic;
2248 2249
}

2250 2251 2252 2253 2254
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2255 2256
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2257
{
2258
	unsigned long flags;
2259
	int ret;
2260

2261 2262 2263 2264
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2265

2266 2267 2268
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2269 2270
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2271
		spin_unlock_irqrestore(&ioc->lock, flags);
2272

2273 2274 2275 2276 2277 2278 2279
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2280 2281
	}

2282 2283
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2284

2285
	return ret;
2286 2287
}

L
Linus Torvalds 已提交
2288 2289 2290
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2291
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2292 2293
 */
static struct cfq_io_context *
2294
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2295
{
2296
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2297 2298
	struct cfq_io_context *cic;

2299
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2300

2301
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2302 2303 2304
	if (!ioc)
		return NULL;

2305
	cic = cfq_cic_lookup(cfqd, ioc);
2306 2307
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2308

2309 2310 2311
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2312

2313 2314 2315
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2316
out:
2317 2318 2319 2320
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2321
	return cic;
2322 2323
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2324 2325 2326 2327 2328
err:
	put_io_context(ioc);
	return NULL;
}

2329 2330
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2331
{
2332 2333
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2334

2335 2336 2337 2338
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2339

2340
static void
2341
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2342
		       struct request *rq)
2343 2344 2345 2346
{
	sector_t sdist;
	u64 total;

2347
	if (!cfqq->last_request_pos)
2348
		sdist = 0;
2349 2350
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2351
	else
2352
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2353 2354 2355 2356 2357

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2358 2359
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2360
	else
2361
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2362

2363 2364 2365 2366 2367
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2381
}
L
Linus Torvalds 已提交
2382

2383 2384 2385 2386 2387 2388 2389 2390
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2391
	int old_idle, enable_idle;
2392

2393 2394 2395 2396
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2397 2398
		return;

2399
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2400

2401 2402 2403
	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
		cfq_mark_cfqq_deep(cfqq);

2404
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2405 2406
	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
	     && CFQQ_SEEKY(cfqq)))
2407 2408
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2409
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2410 2411 2412
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2413 2414
	}

2415 2416 2417 2418 2419 2420 2421
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2422
}
L
Linus Torvalds 已提交
2423

2424 2425 2426 2427
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2428
static bool
2429
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2430
		   struct request *rq)
2431
{
J
Jens Axboe 已提交
2432
	struct cfq_queue *cfqq;
2433

J
Jens Axboe 已提交
2434 2435
	cfqq = cfqd->active_queue;
	if (!cfqq)
2436
		return false;
2437

J
Jens Axboe 已提交
2438
	if (cfq_slice_used(cfqq))
2439
		return true;
J
Jens Axboe 已提交
2440 2441

	if (cfq_class_idle(new_cfqq))
2442
		return false;
2443 2444

	if (cfq_class_idle(cfqq))
2445
		return true;
2446

2447 2448 2449
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
	    new_cfqq->service_tree->count == 1)
2450 2451
		return true;

2452 2453 2454 2455
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2456
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2457
		return true;
2458

2459 2460 2461 2462 2463
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2464
		return true;
2465

2466 2467 2468 2469
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2470
		return true;
2471

2472
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2473
		return false;
2474 2475 2476 2477 2478

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2479
	if (cfq_rq_close(cfqd, cfqq, rq))
2480
		return true;
2481

2482
	return false;
2483 2484 2485 2486 2487 2488 2489 2490
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2491
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2492
	cfq_slice_expired(cfqd, 1);
2493

2494 2495 2496 2497 2498
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2499 2500

	cfq_service_tree_add(cfqd, cfqq, 1);
2501

2502 2503
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2504 2505 2506
}

/*
J
Jens Axboe 已提交
2507
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2508 2509 2510
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2511 2512
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
2513
{
J
Jens Axboe 已提交
2514
	struct cfq_io_context *cic = RQ_CIC(rq);
2515

2516
	cfqd->rq_queued++;
2517 2518 2519
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
2520
	cfq_update_io_thinktime(cfqd, cic);
2521
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
2522 2523
	cfq_update_idle_window(cfqd, cfqq, cic);

2524
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2525 2526 2527

	if (cfqq == cfqd->active_queue) {
		/*
2528 2529 2530
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
2531 2532
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
2533 2534 2535
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
2536
		 */
2537
		if (cfq_cfqq_wait_request(cfqq)) {
2538 2539
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
2540
				del_timer(&cfqd->idle_slice_timer);
2541 2542 2543
				__blk_run_queue(cfqd->queue);
			} else
				cfq_mark_cfqq_must_dispatch(cfqq);
2544
		}
J
Jens Axboe 已提交
2545
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2546 2547 2548
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
2549 2550
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
2551 2552
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
2553
		__blk_run_queue(cfqd->queue);
2554
	}
L
Linus Torvalds 已提交
2555 2556
}

2557
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2558
{
2559
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2560
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2561

2562
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2563
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2564

2565
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2566
	list_add_tail(&rq->queuelist, &cfqq->fifo);
2567
	cfq_add_rq_rb(rq);
2568

J
Jens Axboe 已提交
2569
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
2570 2571
}

2572 2573 2574 2575 2576 2577
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
2578 2579
	struct cfq_queue *cfqq = cfqd->active_queue;

2580 2581 2582 2583 2584
	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);

	if (cfqd->hw_tag == 1)
		return;
2585 2586

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2587
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2588 2589
		return;

S
Shaohua Li 已提交
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

2600 2601 2602
	if (cfqd->hw_tag_samples++ < 50)
		return;

2603
	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2604 2605 2606 2607 2608
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;
}

2609
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2610
{
J
Jens Axboe 已提交
2611
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2612
	struct cfq_data *cfqd = cfqq->cfqd;
2613
	const int sync = rq_is_sync(rq);
2614
	unsigned long now;
L
Linus Torvalds 已提交
2615

2616
	now = jiffies;
2617
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
2618

2619 2620
	cfq_update_hw_tag(cfqd);

2621
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
2622
	WARN_ON(!cfqq->dispatched);
2623
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
2624
	cfqq->dispatched--;
L
Linus Torvalds 已提交
2625

2626 2627 2628
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

2629
	if (sync) {
J
Jens Axboe 已提交
2630
		RQ_CIC(rq)->last_end_request = now;
2631 2632
		cfqd->last_end_sync_rq = now;
	}
2633 2634 2635 2636 2637 2638

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
2639 2640
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

2641 2642 2643 2644
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
2645
		/*
2646 2647 2648 2649 2650 2651
		 * Idling is not enabled on:
		 * - expired queues
		 * - idle-priority queues
		 * - async queues
		 * - queues with still some requests queued
		 * - when there is a close cooperator
2652
		 */
2653
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2654
			cfq_slice_expired(cfqd, 1);
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		else if (sync && cfqq_empty &&
			 !cfq_close_cooperator(cfqd, cfqq)) {
			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
			/*
			 * Idling is enabled for SYNC_WORKLOAD.
			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
			 * only if we processed at least one !rq_noidle request
			 */
			if (cfqd->serving_type == SYNC_WORKLOAD
			    || cfqd->noidle_tree_requires_idle)
				cfq_arm_slice_timer(cfqd);
		}
2667
	}
J
Jens Axboe 已提交
2668

2669
	if (!rq_in_driver(cfqd))
2670
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2671 2672
}

2673 2674 2675 2676 2677
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2678
{
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
2690
		 * unboost the queue (if needed)
2691
		 */
2692 2693
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
2694 2695
	}
}
L
Linus Torvalds 已提交
2696

2697
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2698
{
2699
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
2700
		cfq_mark_cfqq_must_alloc_slice(cfqq);
2701
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
2702
	}
L
Linus Torvalds 已提交
2703

2704 2705 2706
	return ELV_MQUEUE_MAY;
}

2707
static int cfq_may_queue(struct request_queue *q, int rw)
2708 2709 2710
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
2711
	struct cfq_io_context *cic;
2712 2713 2714 2715 2716 2717 2718 2719
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
2720
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2721 2722 2723
	if (!cic)
		return ELV_MQUEUE_MAY;

2724
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2725
	if (cfqq) {
2726
		cfq_init_prio_data(cfqq, cic->ioc);
2727 2728
		cfq_prio_boost(cfqq);

2729
		return __cfq_may_queue(cfqq);
2730 2731 2732
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
2733 2734 2735 2736 2737
}

/*
 * queue lock held here
 */
2738
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
2739
{
J
Jens Axboe 已提交
2740
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
2741

J
Jens Axboe 已提交
2742
	if (cfqq) {
2743
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
2744

2745 2746
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
2747

J
Jens Axboe 已提交
2748
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2749 2750

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
2751
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
2752 2753 2754 2755 2756

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
2757 2758 2759 2760 2761 2762
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2763
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
2764 2765 2766 2767
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
2794
/*
2795
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
2796
 */
2797
static int
2798
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2799 2800 2801 2802
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
2803
	const bool is_sync = rq_is_sync(rq);
2804
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
2805 2806 2807 2808
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

2809
	cic = cfq_get_io_context(cfqd, gfp_mask);
2810

L
Linus Torvalds 已提交
2811 2812
	spin_lock_irqsave(q->queue_lock, flags);

2813 2814 2815
	if (!cic)
		goto queue_fail;

2816
new_queue:
2817
	cfqq = cic_to_cfqq(cic, is_sync);
2818
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2819
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2820
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
2821
	} else {
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
2832 2833 2834 2835 2836 2837 2838 2839
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2840
	}
L
Linus Torvalds 已提交
2841 2842

	cfqq->allocated[rw]++;
2843
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
2844

J
Jens Axboe 已提交
2845
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
2846

J
Jens Axboe 已提交
2847 2848 2849
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
2850

2851 2852 2853
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
2854

2855
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2856
	spin_unlock_irqrestore(q->queue_lock, flags);
2857
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
2858 2859 2860
	return 1;
}

2861
static void cfq_kick_queue(struct work_struct *work)
2862
{
2863
	struct cfq_data *cfqd =
2864
		container_of(work, struct cfq_data, unplug_work);
2865
	struct request_queue *q = cfqd->queue;
2866

2867
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
2868
	__blk_run_queue(cfqd->queue);
2869
	spin_unlock_irq(q->queue_lock);
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
2880
	int timed_out = 1;
2881

2882 2883
	cfq_log(cfqd, "idle timer fired");

2884 2885
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

2886 2887
	cfqq = cfqd->active_queue;
	if (cfqq) {
2888 2889
		timed_out = 0;

2890 2891 2892 2893 2894 2895
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

2896 2897 2898
		/*
		 * expired
		 */
2899
		if (cfq_slice_used(cfqq))
2900 2901 2902 2903 2904 2905
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
2906
		if (!cfqd->busy_queues)
2907 2908 2909 2910 2911
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
2912
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2913
			goto out_kick;
2914 2915 2916 2917 2918

		/*
		 * Queue depth flag is reset only when the idle didn't succeed
		 */
		cfq_clear_cfqq_deep(cfqq);
2919 2920
	}
expire:
2921
	cfq_slice_expired(cfqd, timed_out);
2922
out_kick:
2923
	cfq_schedule_dispatch(cfqd);
2924 2925 2926 2927
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
2928 2929 2930
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
2931
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
2932
}
2933

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
2944 2945 2946

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
2947 2948
}

J
Jens Axboe 已提交
2949
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
2950
{
2951
	struct cfq_data *cfqd = e->elevator_data;
2952
	struct request_queue *q = cfqd->queue;
2953

J
Jens Axboe 已提交
2954
	cfq_shutdown_timer_wq(cfqd);
2955

2956
	spin_lock_irq(q->queue_lock);
2957

2958
	if (cfqd->active_queue)
2959
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2960 2961

	while (!list_empty(&cfqd->cic_list)) {
2962 2963 2964
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
2965 2966

		__cfq_exit_single_io_context(cfqd, cic);
2967
	}
2968

2969
	cfq_put_async_queues(cfqd);
2970

2971
	spin_unlock_irq(q->queue_lock);
2972 2973 2974 2975

	cfq_shutdown_timer_wq(cfqd);

	kfree(cfqd);
L
Linus Torvalds 已提交
2976 2977
}

2978
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
2979 2980
{
	struct cfq_data *cfqd;
2981
	int i, j;
2982
	struct cfq_group *cfqg;
2983
	struct cfq_rb_root *st;
L
Linus Torvalds 已提交
2984

2985
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
2986
	if (!cfqd)
J
Jens Axboe 已提交
2987
		return NULL;
L
Linus Torvalds 已提交
2988

2989 2990
	/* Init root group */
	cfqg = &cfqd->root_group;
2991 2992
	for_each_cfqg_st(cfqg, i, j, st)
		*st = CFQ_RB_ROOT;
2993 2994 2995 2996 2997 2998 2999 3000 3001

	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

3002 3003 3004 3005 3006 3007 3008
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);
3009
	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3010

3011
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
3012 3013 3014

	cfqd->queue = q;

3015 3016 3017 3018
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

3019
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3020

L
Linus Torvalds 已提交
3021
	cfqd->cfq_quantum = cfq_quantum;
3022 3023
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
3024 3025
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
3026 3027 3028 3029
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
3030
	cfqd->cfq_latency = 1;
3031
	cfqd->hw_tag = -1;
3032
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
3033
	return cfqd;
L
Linus Torvalds 已提交
3034 3035 3036 3037
}

static void cfq_slab_kill(void)
{
3038 3039 3040 3041
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
3042 3043 3044 3045 3046 3047 3048 3049
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
3050
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
3051 3052 3053
	if (!cfq_pool)
		goto fail;

3054
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3083
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3084
{									\
3085
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3086 3087 3088 3089 3090 3091
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3092 3093
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3094 3095
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3096 3097 3098 3099
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3100
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3101 3102 3103
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3104
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3105
{									\
3106
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3120 3121 3122 3123
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3124
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3125 3126
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3127 3128 3129
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3130 3131
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3132
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3133 3134
#undef STORE_FUNCTION

3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3148
	CFQ_ATTR(low_latency),
3149
	__ATTR_NULL
L
Linus Torvalds 已提交
3150 3151 3152 3153 3154 3155 3156
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3157
		.elevator_allow_merge_fn =	cfq_allow_merge,
3158
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3159
		.elevator_add_req_fn =		cfq_insert_request,
3160
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3161 3162 3163
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3164 3165
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3166 3167 3168 3169 3170
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3171
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3172
	},
3173
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3174 3175 3176 3177 3178 3179
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3180 3181 3182 3183 3184 3185 3186 3187
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3188 3189 3190
	if (cfq_slab_setup())
		return -ENOMEM;

3191
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3192

3193
	return 0;
L
Linus Torvalds 已提交
3194 3195 3196 3197
}

static void __exit cfq_exit(void)
{
3198
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3199
	elv_unregister(&iosched_cfq);
3200
	ioc_gone = &all_gone;
3201 3202
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3203 3204 3205 3206 3207

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3208
	if (elv_ioc_count_read(cfq_ioc_count))
3209
		wait_for_completion(&all_gone);
3210
	cfq_slab_kill();
L
Linus Torvalds 已提交
3211 3212 3213 3214 3215 3216 3217 3218
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");