cfq-iosched.c 76.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
L
Linus Torvalds 已提交
12
#include <linux/rbtree.h>
13
#include <linux/ioprio.h>
14
#include <linux/blktrace_api.h>
L
Linus Torvalds 已提交
15 16 17 18

/*
 * tunables
 */
19 20
/* max queue in one round of service */
static const int cfq_quantum = 4;
21
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 23 24 25
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
26
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
27
static int cfq_slice_async = HZ / 25;
28
static const int cfq_slice_async_rq = 2;
29
static int cfq_slice_idle = HZ / 125;
30 31
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
32

33
/*
34
 * offset from end of service tree
35
 */
36
#define CFQ_IDLE_DELAY		(HZ / 5)
37 38 39 40 41 42

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

43 44 45 46 47 48
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

49
#define CFQ_SLICE_SCALE		(5)
50
#define CFQ_HW_QUEUE_MIN	(5)
51

52 53
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
54
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
55

56 57
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
58

59
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
60
static struct completion *ioc_gone;
61
static DEFINE_SPINLOCK(ioc_gone_lock);
62

63 64 65 66
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

67 68
#define sample_valid(samples)	((samples) > 80)

69 70 71 72 73 74 75 76 77
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
78
	unsigned count;
79
};
80
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, }
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

124 125 126 127
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
128
	unsigned long seeky_start;
129

130
	pid_t pid;
J
Jeff Moyer 已提交
131

132
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
133
	struct cfq_queue *new_cfqq;
134 135
};

136
/*
137
 * First index in the service_trees.
138 139 140 141 142 143 144 145
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	IDLE_WORKLOAD = -1,
	BE_WORKLOAD = 0,
	RT_WORKLOAD = 1
};

146 147 148 149 150 151 152 153 154 155
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};


156 157 158
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
159
struct cfq_data {
160
	struct request_queue *queue;
161 162

	/*
163 164 165
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
166
	struct cfq_rb_root service_trees[2][3];
167 168 169
	struct cfq_rb_root service_tree_idle;
	/*
	 * The priority currently being served
170
	 */
171
	enum wl_prio_t serving_prio;
172 173
	enum wl_type_t serving_type;
	unsigned long workload_expires;
174 175 176 177 178 179 180 181

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

182
	unsigned int busy_queues;
183
	unsigned int busy_queues_avg[2];
184

185
	int rq_in_driver[2];
186
	int sync_flight;
187 188 189 190 191

	/*
	 * queue-depth detection
	 */
	int rq_queued;
192
	int hw_tag;
193 194
	int hw_tag_samples;
	int rq_in_driver_peak;
L
Linus Torvalds 已提交
195

196 197 198 199
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
200
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
201

202 203 204
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

205 206 207 208 209
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
210

J
Jens Axboe 已提交
211
	sector_t last_position;
L
Linus Torvalds 已提交
212 213 214 215 216

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
217
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
218 219
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
220 221 222
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
223
	unsigned int cfq_latency;
224 225

	struct list_head cic_list;
L
Linus Torvalds 已提交
226

227 228 229 230
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
231 232

	unsigned long last_end_sync_rq;
L
Linus Torvalds 已提交
233 234
};

235
static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
236
					    enum wl_type_t type,
237 238 239 240 241
					    struct cfq_data *cfqd)
{
	if (prio == IDLE_WORKLOAD)
		return &cfqd->service_tree_idle;

242
	return &cfqd->service_trees[prio][type];
243 244
}

J
Jens Axboe 已提交
245
enum cfqq_state_flags {
246 247
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
248
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
249 250 251 252
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
253
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
254
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
255
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
J
Jens Axboe 已提交
256 257 258 259 260
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
261
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
262 263 264
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
265
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
266 267 268
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
269
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
270 271 272 273
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
274
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
275 276 277 278
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
279
CFQ_CFQQ_FNS(slice_new);
280
CFQ_CFQQ_FNS(sync);
281
CFQ_CFQQ_FNS(coop);
J
Jens Axboe 已提交
282 283
#undef CFQ_CFQQ_FNS

284 285 286 287 288
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

289 290 291 292 293 294 295 296 297
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

298 299 300 301 302 303 304 305 306 307

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

308 309 310 311 312
static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
{
	if (wl == IDLE_WORKLOAD)
		return cfqd->service_tree_idle.count;

313 314 315
	return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_WORKLOAD].count;
316 317
}

318
static void cfq_dispatch_insert(struct request_queue *, struct request *);
319
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
320
				       struct io_context *, gfp_t);
321
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
322 323
						struct io_context *);

324 325 326 327 328
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

329
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
330
					    bool is_sync)
331
{
332
	return cic->cfqq[is_sync];
333 334 335
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
336
				struct cfq_queue *cfqq, bool is_sync)
337
{
338
	cic->cfqq[is_sync] = cfqq;
339 340 341 342 343 344
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
345
static inline bool cfq_bio_sync(struct bio *bio)
346
{
347
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
348
}
L
Linus Torvalds 已提交
349

A
Andrew Morton 已提交
350 351 352 353
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
354
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
355
{
356 357
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
358
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
359
	}
A
Andrew Morton 已提交
360 361
}

362
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
363 364 365
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

366
	return !cfqd->busy_queues;
A
Andrew Morton 已提交
367 368
}

369 370 371 372 373
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
374
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
375
				 unsigned short prio)
376
{
377
	const int base_slice = cfqd->cfq_slice[sync];
378

379 380 381 382
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
383

384 385 386 387
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
388 389
}

390 391 392 393 394 395
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

396 397
static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
{
398 399 400
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
401
	unsigned busy = cfq_busy_queues_wl(rt, cfqd);
402 403 404 405 406 407 408 409

	min_q = min(cfqd->busy_queues_avg[rt], busy);
	max_q = max(cfqd->busy_queues_avg[rt], busy);
	cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
		cfq_hist_divisor;
	return cfqd->busy_queues_avg[rt];
}

410 411 412
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
		/* interested queues (we consider only the ones with the same
		 * priority class) */
		unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
		if (expect_latency > cfq_target_latency) {
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
			slice = max(slice * cfq_target_latency / expect_latency,
				    low_slice);
		}
	}
	cfqq->slice_end = jiffies + slice;
433
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
434 435 436 437 438 439 440
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
441
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
442 443 444 445 446 447 448 449 450
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
451
/*
J
Jens Axboe 已提交
452
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
453
 * We choose the request that is closest to the head right now. Distance
454
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
455
 */
J
Jens Axboe 已提交
456
static struct request *
457
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
458
{
459
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
460
	unsigned long back_max;
461 462 463
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
464

J
Jens Axboe 已提交
465 466 467 468
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
469

J
Jens Axboe 已提交
470 471 472 473
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
474 475 476 477
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
478

479 480
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
497
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
498 499 500 501 502 503

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
504
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
505 506

	/* Found required data */
507 508 509 510 511 512

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
513
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
514
		if (d1 < d2)
J
Jens Axboe 已提交
515
			return rq1;
516
		else if (d2 < d1)
J
Jens Axboe 已提交
517
			return rq2;
518 519
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
520
				return rq1;
521
			else
J
Jens Axboe 已提交
522
				return rq2;
523
		}
L
Linus Torvalds 已提交
524

525
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
526
		return rq1;
527
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
528 529
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
530 531 532 533 534 535 536 537
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
538
			return rq1;
L
Linus Torvalds 已提交
539
		else
J
Jens Axboe 已提交
540
			return rq2;
L
Linus Torvalds 已提交
541 542 543
	}
}

544 545 546
/*
 * The below is leftmost cache rbtree addon
 */
547
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
548 549 550 551
{
	if (!root->left)
		root->left = rb_first(&root->rb);

552 553 554 555
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
556 557
}

558 559 560 561 562 563
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

564 565 566 567
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
568
	rb_erase_init(n, &root->rb);
569
	--root->count;
570 571
}

L
Linus Torvalds 已提交
572 573 574
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
575 576 577
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
578
{
579 580
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
581
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
582

583
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
584 585

	if (rbprev)
J
Jens Axboe 已提交
586
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
587

588
	if (rbnext)
J
Jens Axboe 已提交
589
		next = rb_entry_rq(rbnext);
590 591 592
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
593
			next = rb_entry_rq(rbnext);
594
	}
L
Linus Torvalds 已提交
595

596
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
597 598
}

599 600
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
601
{
602 603 604
	/*
	 * just an approximation, should be ok.
	 */
605 606
	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
607 608
}

609
/*
610
 * The cfqd->service_trees holds all pending cfq_queue's that have
611 612 613
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
614
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
615
				 bool add_front)
616
{
617 618
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
619
	unsigned long rb_key;
620
	struct cfq_rb_root *service_tree;
621
	int left;
622

623
	service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
624 625
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
626
		parent = rb_last(&service_tree->rb);
627 628 629 630 631 632
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
633 634 635 636 637 638
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
639
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
640
		rb_key -= cfqq->slice_resid;
641
		cfqq->slice_resid = 0;
642 643
	} else {
		rb_key = -HZ;
644
		__cfqq = cfq_rb_first(service_tree);
645 646
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
647

648
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
649
		/*
650
		 * same position, nothing more to do
651
		 */
652 653
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
654
			return;
L
Linus Torvalds 已提交
655

656 657
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
658
	}
659

660
	left = 1;
661
	parent = NULL;
662 663
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
664
	while (*p) {
665
		struct rb_node **n;
666

667 668 669
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

670
		/*
671
		 * sort by key, that represents service time.
672
		 */
673
		if (time_before(rb_key, __cfqq->rb_key))
674
			n = &(*p)->rb_left;
675
		else {
676
			n = &(*p)->rb_right;
677
			left = 0;
678
		}
679 680

		p = n;
681 682
	}

683
	if (left)
684
		service_tree->left = &cfqq->rb_node;
685

686 687
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
688 689
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
L
Linus Torvalds 已提交
690 691
}

692
static struct cfq_queue *
693 694 695
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
712
		if (sector > blk_rq_pos(cfqq->next_rq))
713
			n = &(*p)->rb_right;
714
		else if (sector < blk_rq_pos(cfqq->next_rq))
715 716 717 718
			n = &(*p)->rb_left;
		else
			break;
		p = n;
719
		cfqq = NULL;
720 721 722 723 724
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
725
	return cfqq;
726 727 728 729 730 731 732
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

733 734 735 736
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
737 738 739 740 741 742

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

743
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
744 745
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
746 747
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
748 749 750
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
751 752
}

753 754 755
/*
 * Update cfqq's position in the service tree.
 */
756
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
757 758 759 760
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
761
	if (cfq_cfqq_on_rr(cfqq)) {
762
		cfq_service_tree_add(cfqd, cfqq, 0);
763 764
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
765 766
}

L
Linus Torvalds 已提交
767 768
/*
 * add to busy list of queues for service, trying to be fair in ordering
769
 * the pending list according to last request service
L
Linus Torvalds 已提交
770
 */
J
Jens Axboe 已提交
771
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
772
{
773
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
774 775
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
776 777
	cfqd->busy_queues++;

778
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
779 780
}

781 782 783 784
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
785
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
786
{
787
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
788 789
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
790

791 792 793 794
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
795 796 797 798
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
799

L
Linus Torvalds 已提交
800 801 802 803 804 805 806
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
807
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
808
{
J
Jens Axboe 已提交
809
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
810
	struct cfq_data *cfqd = cfqq->cfqd;
J
Jens Axboe 已提交
811
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
812

813 814
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
815

J
Jens Axboe 已提交
816
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
817

818
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
819
		cfq_del_cfqq_rr(cfqd, cfqq);
L
Linus Torvalds 已提交
820 821
}

J
Jens Axboe 已提交
822
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
823
{
J
Jens Axboe 已提交
824
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
825
	struct cfq_data *cfqd = cfqq->cfqd;
826
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
827

828
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
829 830 831 832 833

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
834
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
835
		cfq_dispatch_insert(cfqd->queue, __alias);
836 837 838

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
839 840 841 842

	/*
	 * check if this request is a better next-serve candidate
	 */
843
	prev = cfqq->next_rq;
844
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
845 846 847 848 849 850 851

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

852
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
853 854
}

J
Jens Axboe 已提交
855
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
856
{
857 858
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
859
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
860 861
}

862 863
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
864
{
865
	struct task_struct *tsk = current;
866
	struct cfq_io_context *cic;
867
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
868

869
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
870 871 872 873
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
874 875 876
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

877
		return elv_rb_find(&cfqq->sort_list, sector);
878
	}
L
Linus Torvalds 已提交
879 880 881 882

	return NULL;
}

883
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
884
{
885
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
886

887
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
888
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
889
						rq_in_driver(cfqd));
890

891
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
892 893
}

894
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
895
{
896
	struct cfq_data *cfqd = q->elevator->elevator_data;
897
	const int sync = rq_is_sync(rq);
898

899 900
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
901
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
902
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
903 904
}

905
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
906
{
J
Jens Axboe 已提交
907
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
908

J
Jens Axboe 已提交
909 910
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
911

912
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
913
	cfq_del_rq_rb(rq);
914

915
	cfqq->cfqd->rq_queued--;
916 917 918 919
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
920 921
}

922 923
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
924 925 926 927
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

928
	__rq = cfq_find_rq_fmerge(cfqd, bio);
929
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
930 931
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
932 933 934 935 936
	}

	return ELEVATOR_NO_MERGE;
}

937
static void cfq_merged_request(struct request_queue *q, struct request *req,
938
			       int type)
L
Linus Torvalds 已提交
939
{
940
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
941
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
942

J
Jens Axboe 已提交
943
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
944 945 946 947
	}
}

static void
948
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
949 950
		    struct request *next)
{
951
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
952 953 954 955
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
956
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
957
		list_move(&rq->queuelist, &next->queuelist);
958 959
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
960

961 962
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
963
	cfq_remove_request(next);
964 965
}

966
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
967 968 969
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
970
	struct cfq_io_context *cic;
971 972 973
	struct cfq_queue *cfqq;

	/*
974
	 * Disallow merge of a sync bio into an async request.
975
	 */
976
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
977
		return false;
978 979

	/*
980 981
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
982
	 */
983
	cic = cfq_cic_lookup(cfqd, current->io_context);
984
	if (!cic)
985
		return false;
986

987
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
988
	return cfqq == RQ_CFQQ(rq);
989 990
}

J
Jens Axboe 已提交
991 992
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
993 994
{
	if (cfqq) {
995
		cfq_log_cfqq(cfqd, cfqq, "set_active");
996
		cfqq->slice_end = 0;
997 998 999
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1000
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1001 1002
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1003
		cfq_mark_cfqq_slice_new(cfqq);
1004 1005

		del_timer(&cfqd->idle_slice_timer);
1006 1007 1008 1009 1010
	}

	cfqd->active_queue = cfqq;
}

1011 1012 1013 1014 1015
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1016
		    bool timed_out)
1017
{
1018 1019
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1020 1021 1022 1023 1024 1025
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1026
	 * store what was left of this slice, if the queue idled/timed out
1027
	 */
1028
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1029
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1030 1031
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1032

1033
	cfq_resort_rr_list(cfqd, cfqq);
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1044
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1045 1046 1047 1048
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1049
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1050 1051
}

1052 1053 1054 1055
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1056
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1057
{
1058
	struct cfq_rb_root *service_tree =
1059
		service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
1060

1061 1062 1063
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1064 1065
}

1066 1067 1068
/*
 * Get and set a new active queue for service.
 */
1069 1070
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1071
{
1072
	if (!cfqq)
1073
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1074

1075
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1076
	return cfqq;
1077 1078
}

1079 1080 1081
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1082 1083
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1084
	else
1085
		return cfqd->last_position - blk_rq_pos(rq);
1086 1087
}

1088 1089
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1090

1091 1092
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1093
{
1094
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1095

1096 1097
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1098

1099
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1100 1101
}

1102 1103 1104
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1105
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1117
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1118 1119 1120 1121 1122 1123 1124 1125
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1126
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1127 1128
		return __cfqq;

1129
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1130 1131 1132 1133 1134 1135 1136
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1137
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1154
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1155
{
1156 1157
	struct cfq_queue *cfqq;

1158 1159 1160 1161 1162
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1163
	/*
1164 1165 1166
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1167
	 */
1168 1169 1170 1171
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1172 1173 1174 1175 1176
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1177 1178
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1179

1180 1181 1182 1183 1184 1185
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1186
	return cfqq;
J
Jens Axboe 已提交
1187 1188
}

1189 1190 1191 1192 1193 1194 1195
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1196
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1210 1211 1212
	if (!service_tree)
		service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);

1213 1214 1215 1216 1217 1218
	if (service_tree->count == 0)
		return true;

	return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
}

J
Jens Axboe 已提交
1219
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1220
{
1221
	struct cfq_queue *cfqq = cfqd->active_queue;
1222
	struct cfq_io_context *cic;
1223 1224
	unsigned long sl;

1225
	/*
J
Jens Axboe 已提交
1226 1227 1228
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1229
	 */
J
Jens Axboe 已提交
1230
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1231 1232
		return;

1233
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1234
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1235 1236 1237 1238

	/*
	 * idle is disabled, either manually or by past process history
	 */
1239
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1240 1241
		return;

1242 1243 1244
	/*
	 * still requests with the driver, don't idle
	 */
1245
	if (rq_in_driver(cfqd))
1246 1247
		return;

1248 1249 1250
	/*
	 * task has exited, don't wait
	 */
1251
	cic = cfqd->active_cic;
1252
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1253 1254
		return;

1255 1256 1257 1258 1259 1260 1261 1262 1263
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1264
	cfq_mark_cfqq_wait_request(cfqq);
1265

J
Jens Axboe 已提交
1266
	sl = cfqd->cfq_slice_idle;
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	/* are we servicing noidle tree, and there are more queues?
	 * non-rotational or NCQ: no idle
	 * non-NCQ rotational : very small idle, to allow
	 *     fair distribution of slice time for a process doing back-to-back
	 *     seeks.
	 */
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    service_tree_for(cfqd->serving_prio, SYNC_NOIDLE_WORKLOAD, cfqd)
		->count > 0) {
		if (blk_queue_nonrot(cfqd->queue) || cfqd->hw_tag)
			return;
1278
		sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1279
	}
1280

1281
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1282
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1283 1284
}

1285 1286 1287
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1288
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1289
{
1290
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1291
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1292

1293 1294
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1295
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1296
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1297
	cfqq->dispatched++;
1298
	elv_dispatch_sort(q, rq);
1299 1300 1301

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1302 1303 1304 1305 1306
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1307
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1308
{
1309
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1310

J
Jens Axboe 已提交
1311
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1312
		return NULL;
1313 1314 1315

	cfq_mark_cfqq_fifo_expire(cfqq);

1316 1317
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1318

1319
	rq = rq_entry_fifo(cfqq->fifo.next);
1320
	if (time_before(jiffies, rq_fifo_time(rq)))
1321
		rq = NULL;
L
Linus Torvalds 已提交
1322

1323
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1324
	return rq;
L
Linus Torvalds 已提交
1325 1326
}

1327 1328 1329 1330
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1331

1332
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1333

1334
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1335 1336
}

J
Jeff Moyer 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1352
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1381 1382
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
				    bool prio_changed)
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;
		cur_best = SYNC_WORKLOAD;
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
		queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

static void choose_service_tree(struct cfq_data *cfqd)
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;

	/* Choose next priority. RT > BE > IDLE */
	if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
		cfqd->serving_prio = RT_WORKLOAD;
	else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
		cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
	slice = cfq_target_latency * count /
		max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
		      cfq_busy_queues_wl(cfqd->serving_prio, cfqd));

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
}

1483
/*
1484 1485
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
1486
 */
1487
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
1488
{
1489
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
1490

1491 1492 1493
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
1494

1495
	/*
J
Jens Axboe 已提交
1496
	 * The active queue has run out of time, expire it and select new.
1497
	 */
1498
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
1499
		goto expire;
L
Linus Torvalds 已提交
1500

1501
	/*
J
Jens Axboe 已提交
1502 1503
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
1504
	 */
1505
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1506
		goto keep_queue;
J
Jens Axboe 已提交
1507

1508 1509 1510 1511
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
1512
	 * tree.  If possible, merge the expiring queue with the new cfqq.
1513
	 */
1514
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
1515 1516 1517
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
1518
		goto expire;
J
Jeff Moyer 已提交
1519
	}
1520

J
Jens Axboe 已提交
1521 1522 1523 1524 1525
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
1526
	if (timer_pending(&cfqd->idle_slice_timer) ||
1527
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1528 1529
		cfqq = NULL;
		goto keep_queue;
1530 1531
	}

J
Jens Axboe 已提交
1532
expire:
1533
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
1534
new_queue:
1535 1536 1537 1538 1539 1540 1541
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
		choose_service_tree(cfqd);

1542
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1543
keep_queue:
J
Jens Axboe 已提交
1544
	return cfqq;
1545 1546
}

J
Jens Axboe 已提交
1547
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
	return dispatched;
}

1560 1561 1562 1563
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
1564
static int cfq_forced_dispatch(struct cfq_data *cfqd)
1565
{
1566
	struct cfq_queue *cfqq;
1567
	int dispatched = 0;
1568
	int i, j;
1569
	for (i = 0; i < 2; ++i)
1570 1571 1572 1573
		for (j = 0; j < 3; ++j)
			while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
				!= NULL)
				dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1574

1575
	while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1576
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1577

1578
	cfq_slice_expired(cfqd, 0);
1579 1580 1581

	BUG_ON(cfqd->busy_queues);

1582
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1583 1584 1585
	return dispatched;
}

1586
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1587 1588
{
	unsigned int max_dispatch;
1589

1590 1591 1592
	/*
	 * Drain async requests before we start sync IO
	 */
1593
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1594
		return false;
1595

1596 1597 1598 1599
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1600
		return false;
1601 1602 1603 1604

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
1605

1606 1607 1608 1609 1610 1611 1612
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
1613
		if (cfq_class_idle(cfqq))
1614
			return false;
1615

1616 1617 1618 1619
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
1620
			return false;
1621

1622
		/*
1623
		 * Sole queue user, allow bigger slice
1624
		 */
1625 1626 1627 1628 1629 1630 1631 1632
		max_dispatch *= 4;
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
1633
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1634 1635
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
1636

1637
		depth = last_sync / cfqd->cfq_slice[1];
1638 1639
		if (!depth && !cfqq->dispatched)
			depth = 1;
1640 1641
		if (depth < max_dispatch)
			max_dispatch = depth;
1642
	}
1643

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
1702 1703
		return 0;

1704
	/*
1705
	 * Dispatch a request from this cfqq, if it is allowed
1706
	 */
1707 1708 1709
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

1710
	cfqq->slice_dispatch++;
1711
	cfq_clear_cfqq_must_dispatch(cfqq);
1712

1713 1714 1715 1716 1717 1718 1719 1720 1721
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
1722 1723
	}

1724
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1725
	return 1;
L
Linus Torvalds 已提交
1726 1727 1728
}

/*
J
Jens Axboe 已提交
1729 1730
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
1731 1732 1733 1734 1735
 *
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
1736 1737 1738
	struct cfq_data *cfqd = cfqq->cfqd;

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
1739 1740 1741 1742

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

1743
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
1744
	BUG_ON(rb_first(&cfqq->sort_list));
1745
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
J
Jens Axboe 已提交
1746
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
1747

1748
	if (unlikely(cfqd->active_queue == cfqq)) {
1749
		__cfq_slice_expired(cfqd, cfqq, 0);
1750
		cfq_schedule_dispatch(cfqd);
1751
	}
1752

L
Linus Torvalds 已提交
1753 1754 1755
	kmem_cache_free(cfq_pool, cfqq);
}

1756 1757 1758
/*
 * Must always be called with the rcu_read_lock() held
 */
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

1770
/*
1771
 * Call func for each cic attached to this ioc.
1772
 */
1773
static void
1774 1775
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
1776
{
1777
	rcu_read_lock();
1778
	__call_for_each_cic(ioc, func);
1779
	rcu_read_unlock();
1780 1781 1782 1783 1784 1785 1786 1787 1788
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
1789
	elv_ioc_count_dec(cfq_ioc_count);
1790

1791 1792 1793 1794 1795 1796 1797
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
1798
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1799 1800 1801 1802 1803
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
1804
}
1805

1806 1807 1808
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1819
	hlist_del_rcu(&cic->cic_list);
1820 1821
	spin_unlock_irqrestore(&ioc->lock, flags);

1822
	cfq_cic_free(cic);
1823 1824
}

1825 1826 1827 1828 1829
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
1830 1831 1832
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
1833 1834 1835 1836
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
1837
	 */
1838
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
1839 1840
}

1841
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1842
{
J
Jeff Moyer 已提交
1843 1844
	struct cfq_queue *__cfqq, *next;

1845
	if (unlikely(cfqq == cfqd->active_queue)) {
1846
		__cfq_slice_expired(cfqd, cfqq, 0);
1847
		cfq_schedule_dispatch(cfqd);
1848
	}
1849

J
Jeff Moyer 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

1866 1867
	cfq_put_queue(cfqq);
}
1868

1869 1870 1871
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
1872 1873
	struct io_context *ioc = cic->ioc;

1874
	list_del_init(&cic->queue_list);
1875 1876 1877 1878

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
1879
	smp_wmb();
1880
	cic->dead_key = (unsigned long) cic->key;
1881 1882
	cic->key = NULL;

1883 1884 1885
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

1886 1887 1888
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
1889 1890
	}

1891 1892 1893
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
1894
	}
1895 1896
}

1897 1898
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
1899 1900 1901 1902
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
1903
		struct request_queue *q = cfqd->queue;
1904
		unsigned long flags;
1905

1906
		spin_lock_irqsave(q->queue_lock, flags);
1907 1908 1909 1910 1911 1912 1913 1914 1915

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

1916
		spin_unlock_irqrestore(q->queue_lock, flags);
1917
	}
L
Linus Torvalds 已提交
1918 1919
}

1920 1921 1922 1923
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
1924
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
1925
{
1926
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
1927 1928
}

1929
static struct cfq_io_context *
A
Al Viro 已提交
1930
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1931
{
1932
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
1933

1934 1935
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
1936
	if (cic) {
1937
		cic->last_end_request = jiffies;
1938
		INIT_LIST_HEAD(&cic->queue_list);
1939
		INIT_HLIST_NODE(&cic->cic_list);
1940 1941
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
1942
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
1943 1944 1945 1946 1947
	}

	return cic;
}

1948
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1949 1950 1951 1952
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
1953
	if (!cfq_cfqq_prio_changed(cfqq))
1954 1955
		return;

1956
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1957
	switch (ioprio_class) {
1958 1959 1960 1961
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
1962
		 * no prio set, inherit CPU scheduling settings
1963 1964
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
1965
		cfqq->ioprio_class = task_nice_ioclass(tsk);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
1980 1981 1982 1983 1984 1985 1986 1987
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
1988
	cfq_clear_cfqq_prio_changed(cfqq);
1989 1990
}

J
Jens Axboe 已提交
1991
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1992
{
1993 1994
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
1995
	unsigned long flags;
1996

1997 1998 1999
	if (unlikely(!cfqd))
		return;

2000
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2001

2002
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2003 2004
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2005 2006
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2007
		if (new_cfqq) {
2008
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2009 2010
			cfq_put_queue(cfqq);
		}
2011
	}
2012

2013
	cfqq = cic->cfqq[BLK_RW_SYNC];
2014 2015 2016
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2017
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2018 2019
}

2020
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2021
{
2022
	call_for_each_cic(ioc, changed_ioprio);
2023
	ioc->ioprio_changed = 0;
2024 2025
}

2026
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2027
			  pid_t pid, bool is_sync)
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2046
static struct cfq_queue *
2047
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2048
		     struct io_context *ioc, gfp_t gfp_mask)
2049 2050
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2051
	struct cfq_io_context *cic;
2052 2053

retry:
2054
	cic = cfq_cic_lookup(cfqd, ioc);
2055 2056
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2057

2058 2059 2060 2061 2062 2063
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2064 2065 2066 2067 2068
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2069
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2070
					gfp_mask | __GFP_ZERO,
2071
					cfqd->queue->node);
2072
			spin_lock_irq(cfqd->queue->queue_lock);
2073 2074
			if (new_cfqq)
				goto retry;
2075
		} else {
2076 2077 2078
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2079 2080
		}

2081 2082 2083 2084 2085 2086
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2087 2088 2089 2090 2091 2092 2093 2094
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2095 2096 2097
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2098
	switch (ioprio_class) {
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2110
static struct cfq_queue *
2111
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2112 2113
	      gfp_t gfp_mask)
{
2114 2115
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2116
	struct cfq_queue **async_cfqq = NULL;
2117 2118
	struct cfq_queue *cfqq = NULL;

2119 2120 2121 2122 2123
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2124
	if (!cfqq)
2125
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2126 2127 2128 2129

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2130
	if (!is_sync && !(*async_cfqq)) {
2131
		atomic_inc(&cfqq->ref);
2132
		*async_cfqq = cfqq;
2133 2134 2135 2136 2137 2138
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2139 2140 2141
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2142
static void
2143 2144
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2145
{
2146 2147
	unsigned long flags;

2148
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2149

2150 2151
	spin_lock_irqsave(&ioc->lock, flags);

2152
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2153

2154
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2155
	hlist_del_rcu(&cic->cic_list);
2156 2157 2158
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2159 2160
}

2161
static struct cfq_io_context *
2162
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2163 2164
{
	struct cfq_io_context *cic;
2165
	unsigned long flags;
2166
	void *k;
2167

2168 2169 2170
	if (unlikely(!ioc))
		return NULL;

2171 2172
	rcu_read_lock();

J
Jens Axboe 已提交
2173 2174 2175
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2176
	cic = rcu_dereference(ioc->ioc_data);
2177 2178
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2179
		return cic;
2180
	}
J
Jens Axboe 已提交
2181

2182 2183 2184 2185 2186
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2187 2188 2189
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2190
			cfq_drop_dead_cic(cfqd, ioc, cic);
2191
			rcu_read_lock();
2192
			continue;
2193
		}
2194

2195
		spin_lock_irqsave(&ioc->lock, flags);
2196
		rcu_assign_pointer(ioc->ioc_data, cic);
2197
		spin_unlock_irqrestore(&ioc->lock, flags);
2198 2199
		break;
	} while (1);
2200

2201
	return cic;
2202 2203
}

2204 2205 2206 2207 2208
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2209 2210
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2211
{
2212
	unsigned long flags;
2213
	int ret;
2214

2215 2216 2217 2218
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2219

2220 2221 2222
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2223 2224
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2225
		spin_unlock_irqrestore(&ioc->lock, flags);
2226

2227 2228 2229 2230 2231 2232 2233
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2234 2235
	}

2236 2237
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2238

2239
	return ret;
2240 2241
}

L
Linus Torvalds 已提交
2242 2243 2244
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2245
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2246 2247
 */
static struct cfq_io_context *
2248
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2249
{
2250
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2251 2252
	struct cfq_io_context *cic;

2253
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2254

2255
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2256 2257 2258
	if (!ioc)
		return NULL;

2259
	cic = cfq_cic_lookup(cfqd, ioc);
2260 2261
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2262

2263 2264 2265
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2266

2267 2268 2269
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2270
out:
2271 2272 2273 2274
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2275
	return cic;
2276 2277
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2278 2279 2280 2281 2282
err:
	put_io_context(ioc);
	return NULL;
}

2283 2284
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2285
{
2286 2287
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2288

2289 2290 2291 2292
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2293

2294
static void
2295
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2296
		       struct request *rq)
2297 2298 2299 2300
{
	sector_t sdist;
	u64 total;

2301
	if (!cfqq->last_request_pos)
2302
		sdist = 0;
2303 2304
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2305
	else
2306
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2307 2308 2309 2310 2311

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2312 2313
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2314
	else
2315
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2316

2317 2318 2319 2320 2321
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2335
}
L
Linus Torvalds 已提交
2336

2337 2338 2339 2340 2341 2342 2343 2344
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2345
	int old_idle, enable_idle;
2346

2347 2348 2349 2350
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2351 2352
		return;

2353
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2354

2355
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2356
	    (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq)))
2357 2358
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2359
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2360 2361 2362
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2363 2364
	}

2365 2366 2367 2368 2369 2370 2371
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2372
}
L
Linus Torvalds 已提交
2373

2374 2375 2376 2377
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2378
static bool
2379
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2380
		   struct request *rq)
2381
{
J
Jens Axboe 已提交
2382
	struct cfq_queue *cfqq;
2383

J
Jens Axboe 已提交
2384 2385
	cfqq = cfqd->active_queue;
	if (!cfqq)
2386
		return false;
2387

J
Jens Axboe 已提交
2388
	if (cfq_slice_used(cfqq))
2389
		return true;
J
Jens Axboe 已提交
2390 2391

	if (cfq_class_idle(new_cfqq))
2392
		return false;
2393 2394

	if (cfq_class_idle(cfqq))
2395
		return true;
2396

2397 2398 2399 2400
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD
	    && new_cfqq->service_tree == cfqq->service_tree)
		return true;

2401 2402 2403 2404
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2405
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2406
		return true;
2407

2408 2409 2410 2411 2412
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2413
		return true;
2414

2415 2416 2417 2418
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2419
		return true;
2420

2421
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2422
		return false;
2423 2424 2425 2426 2427

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2428
	if (cfq_rq_close(cfqd, cfqq, rq))
2429
		return true;
2430

2431
	return false;
2432 2433 2434 2435 2436 2437 2438 2439
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2440
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2441
	cfq_slice_expired(cfqd, 1);
2442

2443 2444 2445 2446 2447
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2448 2449

	cfq_service_tree_add(cfqd, cfqq, 1);
2450

2451 2452
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2453 2454 2455
}

/*
J
Jens Axboe 已提交
2456
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2457 2458 2459
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2460 2461
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
2462
{
J
Jens Axboe 已提交
2463
	struct cfq_io_context *cic = RQ_CIC(rq);
2464

2465
	cfqd->rq_queued++;
2466 2467 2468
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
2469
	cfq_update_io_thinktime(cfqd, cic);
2470
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
2471 2472
	cfq_update_idle_window(cfqd, cfqq, cic);

2473
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2474 2475 2476

	if (cfqq == cfqd->active_queue) {
		/*
2477 2478 2479
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
2480 2481
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
2482 2483 2484
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
2485
		 */
2486
		if (cfq_cfqq_wait_request(cfqq)) {
2487 2488
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
2489
				del_timer(&cfqd->idle_slice_timer);
T
Tejun Heo 已提交
2490
			__blk_run_queue(cfqd->queue);
2491
			}
2492
			cfq_mark_cfqq_must_dispatch(cfqq);
2493
		}
J
Jens Axboe 已提交
2494
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2495 2496 2497
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
2498 2499
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
2500 2501
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
2502
		__blk_run_queue(cfqd->queue);
2503
	}
L
Linus Torvalds 已提交
2504 2505
}

2506
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2507
{
2508
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2509
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2510

2511
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2512
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2513

2514
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2515
	list_add_tail(&rq->queuelist, &cfqq->fifo);
2516
	cfq_add_rq_rb(rq);
2517

J
Jens Axboe 已提交
2518
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
2519 2520
}

2521 2522 2523 2524 2525 2526
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
2527 2528
	struct cfq_queue *cfqq = cfqd->active_queue;

2529 2530
	if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
		cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2531 2532

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2533
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2534 2535
		return;

S
Shaohua Li 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	if (cfqd->hw_tag_samples++ < 50)
		return;

	if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;

	cfqd->hw_tag_samples = 0;
	cfqd->rq_in_driver_peak = 0;
}

2558
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2559
{
J
Jens Axboe 已提交
2560
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2561
	struct cfq_data *cfqd = cfqq->cfqd;
2562
	const int sync = rq_is_sync(rq);
2563
	unsigned long now;
L
Linus Torvalds 已提交
2564

2565
	now = jiffies;
2566
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
2567

2568 2569
	cfq_update_hw_tag(cfqd);

2570
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
2571
	WARN_ON(!cfqq->dispatched);
2572
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
2573
	cfqq->dispatched--;
L
Linus Torvalds 已提交
2574

2575 2576 2577
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

2578
	if (sync) {
J
Jens Axboe 已提交
2579
		RQ_CIC(rq)->last_end_request = now;
2580 2581
		cfqd->last_end_sync_rq = now;
	}
2582 2583 2584 2585 2586 2587

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
2588 2589
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

2590 2591 2592 2593
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
2594 2595 2596 2597 2598 2599 2600
		/*
		 * If there are no requests waiting in this queue, and
		 * there are other queues ready to issue requests, AND
		 * those other queues are issuing requests within our
		 * mean seek distance, give them a chance to run instead
		 * of idling.
		 */
2601
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2602
			cfq_slice_expired(cfqd, 1);
2603
		else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2604
			 sync && !rq_noidle(rq))
J
Jens Axboe 已提交
2605
			cfq_arm_slice_timer(cfqd);
2606
	}
J
Jens Axboe 已提交
2607

2608
	if (!rq_in_driver(cfqd))
2609
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2610 2611
}

2612 2613 2614 2615 2616
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2617
{
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
2629
		 * unboost the queue (if needed)
2630
		 */
2631 2632
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
2633 2634
	}
}
L
Linus Torvalds 已提交
2635

2636
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2637
{
2638
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
2639
		cfq_mark_cfqq_must_alloc_slice(cfqq);
2640
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
2641
	}
L
Linus Torvalds 已提交
2642

2643 2644 2645
	return ELV_MQUEUE_MAY;
}

2646
static int cfq_may_queue(struct request_queue *q, int rw)
2647 2648 2649
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
2650
	struct cfq_io_context *cic;
2651 2652 2653 2654 2655 2656 2657 2658
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
2659
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2660 2661 2662
	if (!cic)
		return ELV_MQUEUE_MAY;

2663
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2664
	if (cfqq) {
2665
		cfq_init_prio_data(cfqq, cic->ioc);
2666 2667
		cfq_prio_boost(cfqq);

2668
		return __cfq_may_queue(cfqq);
2669 2670 2671
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
2672 2673 2674 2675 2676
}

/*
 * queue lock held here
 */
2677
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
2678
{
J
Jens Axboe 已提交
2679
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
2680

J
Jens Axboe 已提交
2681
	if (cfqq) {
2682
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
2683

2684 2685
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
2686

J
Jens Axboe 已提交
2687
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2688 2689

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
2690
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
2691 2692 2693 2694 2695

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
2696 2697 2698 2699 2700 2701
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2702
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
2703 2704 2705 2706
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
2733
/*
2734
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
2735
 */
2736
static int
2737
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2738 2739 2740 2741
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
2742
	const bool is_sync = rq_is_sync(rq);
2743
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
2744 2745 2746 2747
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

2748
	cic = cfq_get_io_context(cfqd, gfp_mask);
2749

L
Linus Torvalds 已提交
2750 2751
	spin_lock_irqsave(q->queue_lock, flags);

2752 2753 2754
	if (!cic)
		goto queue_fail;

2755
new_queue:
2756
	cfqq = cic_to_cfqq(cic, is_sync);
2757
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2758
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2759
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
2760
	} else {
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
2771 2772 2773 2774 2775 2776 2777 2778
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2779
	}
L
Linus Torvalds 已提交
2780 2781

	cfqq->allocated[rw]++;
2782
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
2783

J
Jens Axboe 已提交
2784
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
2785

J
Jens Axboe 已提交
2786 2787 2788
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
2789

2790 2791 2792
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
2793

2794
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2795
	spin_unlock_irqrestore(q->queue_lock, flags);
2796
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
2797 2798 2799
	return 1;
}

2800
static void cfq_kick_queue(struct work_struct *work)
2801
{
2802
	struct cfq_data *cfqd =
2803
		container_of(work, struct cfq_data, unplug_work);
2804
	struct request_queue *q = cfqd->queue;
2805

2806
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
2807
	__blk_run_queue(cfqd->queue);
2808
	spin_unlock_irq(q->queue_lock);
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
2819
	int timed_out = 1;
2820

2821 2822
	cfq_log(cfqd, "idle timer fired");

2823 2824
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

2825 2826
	cfqq = cfqd->active_queue;
	if (cfqq) {
2827 2828
		timed_out = 0;

2829 2830 2831 2832 2833 2834
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

2835 2836 2837
		/*
		 * expired
		 */
2838
		if (cfq_slice_used(cfqq))
2839 2840 2841 2842 2843 2844
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
2845
		if (!cfqd->busy_queues)
2846 2847 2848 2849 2850
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
2851
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2852 2853 2854
			goto out_kick;
	}
expire:
2855
	cfq_slice_expired(cfqd, timed_out);
2856
out_kick:
2857
	cfq_schedule_dispatch(cfqd);
2858 2859 2860 2861
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
2862 2863 2864
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
2865
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
2866
}
2867

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
2878 2879 2880

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
2881 2882
}

J
Jens Axboe 已提交
2883
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
2884
{
2885
	struct cfq_data *cfqd = e->elevator_data;
2886
	struct request_queue *q = cfqd->queue;
2887

J
Jens Axboe 已提交
2888
	cfq_shutdown_timer_wq(cfqd);
2889

2890
	spin_lock_irq(q->queue_lock);
2891

2892
	if (cfqd->active_queue)
2893
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2894 2895

	while (!list_empty(&cfqd->cic_list)) {
2896 2897 2898
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
2899 2900

		__cfq_exit_single_io_context(cfqd, cic);
2901
	}
2902

2903
	cfq_put_async_queues(cfqd);
2904

2905
	spin_unlock_irq(q->queue_lock);
2906 2907 2908 2909

	cfq_shutdown_timer_wq(cfqd);

	kfree(cfqd);
L
Linus Torvalds 已提交
2910 2911
}

2912
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
2913 2914
{
	struct cfq_data *cfqd;
2915
	int i, j;
L
Linus Torvalds 已提交
2916

2917
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
2918
	if (!cfqd)
J
Jens Axboe 已提交
2919
		return NULL;
L
Linus Torvalds 已提交
2920

2921
	for (i = 0; i < 2; ++i)
2922 2923
		for (j = 0; j < 3; ++j)
			cfqd->service_trees[i][j] = CFQ_RB_ROOT;
2924
	cfqd->service_tree_idle = CFQ_RB_ROOT;
2925 2926 2927 2928 2929 2930 2931 2932 2933

	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

2934 2935 2936 2937 2938 2939 2940 2941
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);

2942
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
2943 2944 2945

	cfqd->queue = q;

2946 2947 2948 2949
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

2950
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2951

L
Linus Torvalds 已提交
2952
	cfqd->cfq_quantum = cfq_quantum;
2953 2954
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
2955 2956
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
2957 2958 2959 2960
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
2961
	cfqd->cfq_latency = 1;
2962
	cfqd->hw_tag = 1;
2963
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
2964
	return cfqd;
L
Linus Torvalds 已提交
2965 2966 2967 2968
}

static void cfq_slab_kill(void)
{
2969 2970 2971 2972
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
2973 2974 2975 2976 2977 2978 2979 2980
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
2981
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
2982 2983 2984
	if (!cfq_pool)
		goto fail;

2985
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3014
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3015
{									\
3016
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3017 3018 3019 3020 3021 3022
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3023 3024
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3025 3026
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3027 3028 3029 3030
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3031
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3032 3033 3034
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3035
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3036
{									\
3037
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3051 3052 3053 3054
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3055
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3056 3057
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3058 3059 3060
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3061 3062
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3063
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3064 3065
#undef STORE_FUNCTION

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3079
	CFQ_ATTR(low_latency),
3080
	__ATTR_NULL
L
Linus Torvalds 已提交
3081 3082 3083 3084 3085 3086 3087
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3088
		.elevator_allow_merge_fn =	cfq_allow_merge,
3089
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3090
		.elevator_add_req_fn =		cfq_insert_request,
3091
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3092 3093 3094
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3095 3096
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3097 3098 3099 3100 3101
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3102
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3103
	},
3104
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3105 3106 3107 3108 3109 3110
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3111 3112 3113 3114 3115 3116 3117 3118
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3119 3120 3121
	if (cfq_slab_setup())
		return -ENOMEM;

3122
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3123

3124
	return 0;
L
Linus Torvalds 已提交
3125 3126 3127 3128
}

static void __exit cfq_exit(void)
{
3129
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3130
	elv_unregister(&iosched_cfq);
3131
	ioc_gone = &all_gone;
3132 3133
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3134 3135 3136 3137 3138

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3139
	if (elv_ioc_count_read(cfq_ioc_count))
3140
		wait_for_completion(&all_gone);
3141
	cfq_slab_kill();
L
Linus Torvalds 已提交
3142 3143 3144 3145 3146 3147 3148 3149
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");