core.c 165.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3
 *
I
Ingo Molnar 已提交
4
 *  Core kernel scheduler code and related syscalls
L
Linus Torvalds 已提交
5 6 7
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 */
8
#include <linux/sched.h>
9
#include <linux/sched/clock.h>
10
#include <uapi/linux/sched/types.h>
11
#include <linux/sched/loadavg.h>
12
#include <linux/sched/hotplug.h>
13
#include <linux/wait_bit.h>
L
Linus Torvalds 已提交
14
#include <linux/cpuset.h>
15
#include <linux/delayacct.h>
16
#include <linux/init_task.h>
17
#include <linux/context_tracking.h>
18
#include <linux/rcupdate_wait.h>
19 20 21 22 23 24

#include <linux/blkdev.h>
#include <linux/kprobes.h>
#include <linux/mmu_context.h>
#include <linux/module.h>
#include <linux/nmi.h>
25
#include <linux/prefetch.h>
26 27 28
#include <linux/profile.h>
#include <linux/security.h>
#include <linux/syscalls.h>
L
Linus Torvalds 已提交
29

30
#include <asm/switch_to.h>
31
#include <asm/tlb.h>
32 33 34
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
35

36
#include "sched.h"
37
#include "../workqueue_internal.h"
38
#include "../smpboot.h"
39

40
#define CREATE_TRACE_POINTS
41
#include <trace/events/sched.h>
42

43
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
44

I
Ingo Molnar 已提交
45 46 47
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
48 49 50 51

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
52
const_debug unsigned int sysctl_sched_features =
53
#include "features.h"
P
Peter Zijlstra 已提交
54 55 56 57
	0;

#undef SCHED_FEAT

58 59 60 61 62 63
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

64 65 66 67 68 69 70 71
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
72
/*
I
Ingo Molnar 已提交
73
 * period over which we measure -rt task CPU usage in us.
P
Peter Zijlstra 已提交
74 75
 * default: 1s
 */
P
Peter Zijlstra 已提交
76
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
77

78
__read_mostly int scheduler_running;
79

P
Peter Zijlstra 已提交
80 81 82 83 84
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
85

I
Ingo Molnar 已提交
86
/* CPUs with isolated domains */
87 88
cpumask_var_t cpu_isolated_map;

89 90 91
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
92
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
93 94 95 96 97 98 99 100 101 102
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
103
			rq_pin_lock(rq, rf);
104 105 106 107 108 109 110 111 112 113 114 115
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
116
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
117 118 119 120 121 122
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
123
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
I
Ingo Molnar 已提交
139
		 * If we observe the new CPU in task_rq_lock, the acquire will
140 141 142
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
143
			rq_pin_lock(rq, rf);
144 145 146
			return rq;
		}
		raw_spin_unlock(&rq->lock);
147
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
148 149 150 151 152 153

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * RQ-clock updating methods:
 */

static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_key_false((&paravirt_steal_rq_enabled))) {
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

	rq->clock_task += delta;

#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
}

void update_rq_clock(struct rq *rq)
{
	s64 delta;

	lockdep_assert_held(&rq->lock);

	if (rq->clock_update_flags & RQCF_ACT_SKIP)
		return;

#ifdef CONFIG_SCHED_DEBUG
222 223
	if (sched_feat(WARN_DOUBLE_CLOCK))
		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
224 225
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
226

227 228 229 230 231 232 233 234
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	if (delta < 0)
		return;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
}


P
Peter Zijlstra 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
253
	struct rq_flags rf;
P
Peter Zijlstra 已提交
254 255 256

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

257
	rq_lock(rq, &rf);
258
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
259
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
260
	rq_unlock(rq, &rf);
P
Peter Zijlstra 已提交
261 262 263 264

	return HRTIMER_NORESTART;
}

265
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
266

267
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
268 269 270
{
	struct hrtimer *timer = &rq->hrtick_timer;

271
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
272 273
}

274 275 276 277
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
278
{
279
	struct rq *rq = arg;
280
	struct rq_flags rf;
281

282
	rq_lock(rq, &rf);
P
Peter Zijlstra 已提交
283
	__hrtick_restart(rq);
284
	rq->hrtick_csd_pending = 0;
285
	rq_unlock(rq, &rf);
286 287
}

288 289 290 291 292
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
293
void hrtick_start(struct rq *rq, u64 delay)
294
{
295
	struct hrtimer *timer = &rq->hrtick_timer;
296 297 298 299 300 301 302 303 304
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
305

306
	hrtimer_set_expires(timer, time);
307 308

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
309
		__hrtick_restart(rq);
310
	} else if (!rq->hrtick_csd_pending) {
311
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
312 313
		rq->hrtick_csd_pending = 1;
	}
314 315
}

316 317 318 319 320 321
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
322
void hrtick_start(struct rq *rq, u64 delay)
323
{
W
Wanpeng Li 已提交
324 325 326 327 328
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
329 330
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
331 332
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
333

334
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
335
{
336 337
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
338

339 340 341 342
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
343

344 345
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
346
}
A
Andrew Morton 已提交
347
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
348 349 350 351 352 353 354
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
355
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

375
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
376 377 378 379 380 381 382 383 384 385
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
386 387 388 389 390 391 392 393 394 395

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
396
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
397 398 399 400 401 402 403 404 405 406 407 408 409 410

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

411 412 413 414 415 416
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
417 418 419 420 421 422 423

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
424 425
#endif

426 427 428 429 430 431 432 433 434 435
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
436
	 * barrier implied by the wakeup in wake_up_q().
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
I
Ingo Molnar 已提交
459
		/* Task can safely be re-inserted now: */
460 461 462 463 464 465 466 467 468 469 470 471
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
472
/*
473
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
474 475 476 477 478
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
479
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
480
{
481
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
482 483
	int cpu;

484
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
485

486
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
487 488
		return;

489
	cpu = cpu_of(rq);
490

491
	if (cpu == smp_processor_id()) {
492
		set_tsk_need_resched(curr);
493
		set_preempt_need_resched();
I
Ingo Molnar 已提交
494
		return;
495
	}
I
Ingo Molnar 已提交
496

497
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
498
		smp_send_reschedule(cpu);
499 500
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
501 502
}

503
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
504 505 506 507
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

508
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
509
		return;
510
	resched_curr(rq);
511
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
512
}
513

514
#ifdef CONFIG_SMP
515
#ifdef CONFIG_NO_HZ_COMMON
516
/*
I
Ingo Molnar 已提交
517 518
 * In the semi idle case, use the nearest busy CPU for migrating timers
 * from an idle CPU.  This is good for power-savings.
519 520
 *
 * We don't do similar optimization for completely idle system, as
I
Ingo Molnar 已提交
521 522
 * selecting an idle CPU will add more delays to the timers than intended
 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
523
 */
524
int get_nohz_timer_target(void)
525
{
526
	int i, cpu = smp_processor_id();
527 528
	struct sched_domain *sd;

529
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
530 531
		return cpu;

532
	rcu_read_lock();
533
	for_each_domain(cpu, sd) {
534
		for_each_cpu(i, sched_domain_span(sd)) {
535 536 537 538
			if (cpu == i)
				continue;

			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
539 540 541 542
				cpu = i;
				goto unlock;
			}
		}
543
	}
544 545 546

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
547 548
unlock:
	rcu_read_unlock();
549 550
	return cpu;
}
I
Ingo Molnar 已提交
551

552 553 554 555 556 557 558 559 560 561
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
562
static void wake_up_idle_cpu(int cpu)
563 564 565 566 567 568
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

569
	if (set_nr_and_not_polling(rq->idle))
570
		smp_send_reschedule(cpu);
571 572
	else
		trace_sched_wake_idle_without_ipi(cpu);
573 574
}

575
static bool wake_up_full_nohz_cpu(int cpu)
576
{
577 578 579 580 581 582
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
583 584
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
585
	if (tick_nohz_full_cpu(cpu)) {
586 587
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
588
			tick_nohz_full_kick_cpu(cpu);
589 590 591 592 593 594
		return true;
	}

	return false;
}

595 596 597 598 599
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
600 601
void wake_up_nohz_cpu(int cpu)
{
602
	if (!wake_up_full_nohz_cpu(cpu))
603 604 605
		wake_up_idle_cpu(cpu);
}

606
static inline bool got_nohz_idle_kick(void)
607
{
608
	int cpu = smp_processor_id();
609 610 611 612 613 614 615 616 617 618 619 620 621

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
622 623
}

624
#else /* CONFIG_NO_HZ_COMMON */
625

626
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
627
{
628
	return false;
P
Peter Zijlstra 已提交
629 630
}

631
#endif /* CONFIG_NO_HZ_COMMON */
632

633
#ifdef CONFIG_NO_HZ_FULL
634
bool sched_can_stop_tick(struct rq *rq)
635
{
636 637 638 639 640 641
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

642
	/*
643 644
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
645
	 */
646 647 648 649 650
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
651 652
	}

653 654 655 656 657 658 659 660 661 662 663 664 665 666
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
667
		return false;
668

669
	return true;
670 671
}
#endif /* CONFIG_NO_HZ_FULL */
672

673
void sched_avg_update(struct rq *rq)
674
{
675 676
	s64 period = sched_avg_period();

677
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
678 679 680 681 682 683
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
684 685 686
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
687 688
}

689
#endif /* CONFIG_SMP */
690

691 692
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
693
/*
694 695 696 697
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
698
 */
699
int walk_tg_tree_from(struct task_group *from,
700
			     tg_visitor down, tg_visitor up, void *data)
701 702
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
703
	int ret;
704

705 706
	parent = from;

707
down:
P
Peter Zijlstra 已提交
708 709
	ret = (*down)(parent, data);
	if (ret)
710
		goto out;
711 712 713 714 715 716 717
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
718
	ret = (*up)(parent, data);
719 720
	if (ret || parent == from)
		goto out;
721 722 723 724 725

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
726
out:
P
Peter Zijlstra 已提交
727
	return ret;
728 729
}

730
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
731
{
732
	return 0;
P
Peter Zijlstra 已提交
733
}
734 735
#endif

736 737
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
738 739 740
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
741 742 743
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
744
	if (idle_policy(p->policy)) {
745
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
746
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
747 748
		return;
	}
749

750 751
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
752 753
}

754
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
755
{
756 757 758
	if (!(flags & ENQUEUE_NOCLOCK))
		update_rq_clock(rq);

759 760
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
761

762
	p->sched_class->enqueue_task(rq, p, flags);
763 764
}

765
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
766
{
767 768 769
	if (!(flags & DEQUEUE_NOCLOCK))
		update_rq_clock(rq);

770 771
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
772

773
	p->sched_class->dequeue_task(rq, p, flags);
774 775
}

776
void activate_task(struct rq *rq, struct task_struct *p, int flags)
777 778 779 780
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

781
	enqueue_task(rq, p, flags);
782 783
}

784
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
785 786 787 788
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

789
	dequeue_task(rq, p, flags);
790 791
}

792
/*
I
Ingo Molnar 已提交
793
 * __normal_prio - return the priority that is based on the static prio
794 795 796
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
797
	return p->static_prio;
798 799
}

800 801 802 803 804 805 806
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
807
static inline int normal_prio(struct task_struct *p)
808 809 810
{
	int prio;

811 812 813
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
814 815 816 817 818 819 820 821 822 823 824 825 826
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
827
static int effective_prio(struct task_struct *p)
828 829 830 831 832 833 834 835 836 837 838 839
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
840 841 842
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
843 844
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
845
 */
846
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
847 848 849 850
{
	return cpu_curr(task_cpu(p)) == p;
}

851
/*
852 853 854 855 856
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
857
 */
858 859
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
860
				       int oldprio)
861 862 863
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
864
			prev_class->switched_from(rq, p);
865

P
Peter Zijlstra 已提交
866
		p->sched_class->switched_to(rq, p);
867
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
868
		p->sched_class->prio_changed(rq, p, oldprio);
869 870
}

871
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
872 873 874 875 876 877 878 879 880 881
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
882
				resched_curr(rq);
883 884 885 886 887 888 889 890 891
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
892
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
893
		rq_clock_skip_update(rq, true);
894 895
}

L
Linus Torvalds 已提交
896
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
916 917
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
				   struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
918 919 920 921
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
922
	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
923
	set_task_cpu(p, new_cpu);
924
	rq_unlock(rq, rf);
P
Peter Zijlstra 已提交
925 926 927

	rq = cpu_rq(new_cpu);

928
	rq_lock(rq, rf);
P
Peter Zijlstra 已提交
929 930
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
931
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
932 933 934 935 936 937 938 939 940 941 942
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
I
Ingo Molnar 已提交
943
 * Move (not current) task off this CPU, onto the destination CPU. We're doing
P
Peter Zijlstra 已提交
944 945 946 947 948 949 950
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
951 952
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
				 struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
953
{
954 955 956 957 958 959 960
	if (p->flags & PF_KTHREAD) {
		if (unlikely(!cpu_online(dest_cpu)))
			return rq;
	} else {
		if (unlikely(!cpu_active(dest_cpu)))
			return rq;
	}
P
Peter Zijlstra 已提交
961 962

	/* Affinity changed (again). */
963
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
964
		return rq;
P
Peter Zijlstra 已提交
965

966
	update_rq_clock(rq);
967
	rq = move_queued_task(rq, rf, p, dest_cpu);
968 969

	return rq;
P
Peter Zijlstra 已提交
970 971 972 973 974 975 976 977 978 979
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
980 981
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
982
	struct rq_flags rf;
P
Peter Zijlstra 已提交
983 984

	/*
I
Ingo Molnar 已提交
985 986
	 * The original target CPU might have gone down and we might
	 * be on another CPU but it doesn't matter.
P
Peter Zijlstra 已提交
987 988 989 990 991 992 993 994
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
995 996

	raw_spin_lock(&p->pi_lock);
997
	rq_lock(rq, &rf);
998 999 1000 1001 1002
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
1003 1004
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
1005
			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1006 1007 1008
		else
			p->wake_cpu = arg->dest_cpu;
	}
1009
	rq_unlock(rq, &rf);
1010 1011
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1012 1013 1014 1015
	local_irq_enable();
	return 0;
}

1016 1017 1018 1019 1020
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1021 1022 1023 1024 1025
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1026 1027
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1028 1029 1030
	struct rq *rq = task_rq(p);
	bool queued, running;

1031
	lockdep_assert_held(&p->pi_lock);
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1042
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1043 1044 1045 1046
	}
	if (running)
		put_prev_task(rq, p);

1047
	p->sched_class->set_cpus_allowed(p, new_mask);
1048 1049

	if (queued)
1050
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1051
	if (running)
1052
		set_curr_task(rq, p);
1053 1054
}

P
Peter Zijlstra 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1064 1065
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1066
{
1067
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1068
	unsigned int dest_cpu;
1069 1070
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1071 1072
	int ret = 0;

1073
	rq = task_rq_lock(p, &rf);
1074
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1075

1076 1077 1078 1079 1080 1081 1082
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1083 1084 1085 1086 1087 1088 1089 1090 1091
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1092 1093 1094
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1095
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1096 1097 1098 1099 1100 1101
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1102 1103 1104
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
I
Ingo Molnar 已提交
1105
		 * !active we want to ensure they are strict per-CPU threads.
1106 1107 1108 1109 1110 1111
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1112 1113 1114 1115
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1116
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1117 1118 1119
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1120
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1121 1122 1123
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1124 1125 1126 1127 1128
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1129
		rq = move_queued_task(rq, &rf, p, dest_cpu);
1130
	}
P
Peter Zijlstra 已提交
1131
out:
1132
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1133 1134 1135

	return ret;
}
1136 1137 1138 1139 1140

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1141 1142
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1143
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1144
{
1145 1146 1147 1148 1149
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1150
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1151
			!p->on_rq);
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1162
#ifdef CONFIG_LOCKDEP
1163 1164 1165 1166 1167
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1168
	 * see task_group().
1169 1170 1171 1172
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1173 1174 1175
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1176 1177
#endif

1178
	trace_sched_migrate_task(p, new_cpu);
1179

1180
	if (task_cpu(p) != new_cpu) {
1181
		if (p->sched_class->migrate_task_rq)
1182
			p->sched_class->migrate_task_rq(p);
1183
		p->se.nr_migrations++;
1184
		perf_event_task_migrate(p);
1185
	}
I
Ingo Molnar 已提交
1186 1187

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1188 1189
}

1190 1191
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1192
	if (task_on_rq_queued(p)) {
1193
		struct rq *src_rq, *dst_rq;
1194
		struct rq_flags srf, drf;
1195 1196 1197 1198

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1199 1200 1201
		rq_pin_lock(src_rq, &srf);
		rq_pin_lock(dst_rq, &drf);

1202
		p->on_rq = TASK_ON_RQ_MIGRATING;
1203 1204 1205
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1206
		p->on_rq = TASK_ON_RQ_QUEUED;
1207
		check_preempt_curr(dst_rq, p, 0);
1208 1209 1210 1211

		rq_unpin_lock(dst_rq, &drf);
		rq_unpin_lock(src_rq, &srf);

1212 1213 1214 1215
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
I
Ingo Molnar 已提交
1216
		 * previous CPU our target instead of where it really is.
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1233 1234 1235
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1236 1237 1238
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1239 1240
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1241
	double_rq_lock(src_rq, dst_rq);
1242

1243 1244 1245 1246 1247 1248
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

1249
	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1250 1251
		goto unlock;

1252
	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1253 1254 1255 1256 1257 1258 1259 1260 1261
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1262 1263
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1286 1287 1288 1289
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1290 1291 1292
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

1293
	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1294 1295
		goto out;

1296
	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1297 1298
		goto out;

1299
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1300 1301 1302 1303 1304 1305
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1306 1307 1308
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1309 1310 1311 1312 1313 1314 1315
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1316 1317 1318 1319 1320 1321
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1322
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1323
{
1324
	int running, queued;
1325
	struct rq_flags rf;
R
Roland McGrath 已提交
1326
	unsigned long ncsw;
1327
	struct rq *rq;
L
Linus Torvalds 已提交
1328

1329 1330 1331 1332 1333 1334 1335 1336
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1349 1350 1351
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1352
			cpu_relax();
R
Roland McGrath 已提交
1353
		}
1354

1355 1356 1357 1358 1359
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1360
		rq = task_rq_lock(p, &rf);
1361
		trace_sched_wait_task(p);
1362
		running = task_running(rq, p);
1363
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1364
		ncsw = 0;
1365
		if (!match_state || p->state == match_state)
1366
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1367
		task_rq_unlock(rq, p, &rf);
1368

R
Roland McGrath 已提交
1369 1370 1371 1372 1373 1374
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1385

1386 1387 1388 1389 1390
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1391
		 * So if it was still runnable (but just not actively
1392 1393 1394
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1395
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1396
			ktime_t to = NSEC_PER_SEC / HZ;
1397 1398 1399

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1400 1401
			continue;
		}
1402

1403 1404 1405 1406 1407 1408 1409
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1410 1411

	return ncsw;
L
Linus Torvalds 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1421
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1422 1423 1424 1425 1426
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1427
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1437
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1438

1439
/*
1440
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1441 1442 1443 1444 1445 1446 1447
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
I
Ingo Molnar 已提交
1448
 *    CPU isn't yet part of the sched domains, and balancing will not
1449 1450
 *    see it.
 *
I
Ingo Molnar 已提交
1451
 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1452
 *    avoid the load balancer to place new tasks on the to be removed
I
Ingo Molnar 已提交
1453
 *    CPU. Existing tasks will remain running there and will be taken
1454 1455 1456 1457 1458 1459
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1460
 */
1461 1462
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1463 1464
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1465 1466
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1467

1468
	/*
I
Ingo Molnar 已提交
1469 1470 1471
	 * If the node that the CPU is on has been offlined, cpu_to_node()
	 * will return -1. There is no CPU on the node, and we should
	 * select the CPU on the other node.
1472 1473 1474 1475 1476 1477 1478 1479
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
1480
			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1481 1482
				return dest_cpu;
		}
1483
	}
1484

1485 1486
	for (;;) {
		/* Any allowed, online CPU? */
1487
		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1488 1489 1490
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1491 1492 1493
				continue;
			goto out;
		}
1494

1495
		/* No more Mr. Nice Guy. */
1496 1497
		switch (state) {
		case cpuset:
1498 1499 1500 1501 1502
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
I
Ingo Molnar 已提交
1503
			/* Fall-through */
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1523
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1524 1525
					task_pid_nr(p), p->comm, cpu);
		}
1526 1527 1528 1529 1530
	}

	return dest_cpu;
}

1531
/*
1532
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1533
 */
1534
static inline
1535
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1536
{
1537 1538
	lockdep_assert_held(&p->pi_lock);

1539
	if (p->nr_cpus_allowed > 1)
1540
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1541
	else
1542
		cpu = cpumask_any(&p->cpus_allowed);
1543 1544 1545 1546

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
I
Ingo Molnar 已提交
1547
	 * CPU.
1548 1549 1550 1551 1552 1553
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1554
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
1555
		     !cpu_online(cpu)))
1556
		cpu = select_fallback_rq(task_cpu(p), p);
1557 1558

	return cpu;
1559
}
1560 1561 1562 1563 1564 1565

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1597 1598 1599 1600 1601 1602 1603 1604
#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1605
#endif /* CONFIG_SMP */
1606

P
Peter Zijlstra 已提交
1607
static void
1608
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1609
{
1610
	struct rq *rq;
1611

1612 1613 1614 1615
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1616

1617 1618
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1619 1620
		schedstat_inc(rq->ttwu_local);
		schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1621 1622 1623
	} else {
		struct sched_domain *sd;

1624
		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1625
		rcu_read_lock();
1626
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1627
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1628
				schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1629 1630 1631
				break;
			}
		}
1632
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1633
	}
1634 1635

	if (wake_flags & WF_MIGRATED)
1636
		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1637 1638
#endif /* CONFIG_SMP */

1639 1640
	schedstat_inc(rq->ttwu_count);
	schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1641 1642

	if (wake_flags & WF_SYNC)
1643
		schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1644 1645
}

1646
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1647
{
T
Tejun Heo 已提交
1648
	activate_task(rq, p, en_flags);
1649
	p->on_rq = TASK_ON_RQ_QUEUED;
1650

I
Ingo Molnar 已提交
1651
	/* If a worker is waking up, notify the workqueue: */
1652 1653
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1654 1655
}

1656 1657 1658
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1659
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1660
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1661 1662 1663
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1664 1665
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1666
#ifdef CONFIG_SMP
1667 1668
	if (p->sched_class->task_woken) {
		/*
1669 1670
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1671
		 */
1672
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1673
		p->sched_class->task_woken(rq, p);
1674
		rq_repin_lock(rq, rf);
1675
	}
T
Tejun Heo 已提交
1676

1677
	if (rq->idle_stamp) {
1678
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1679
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1680

1681 1682 1683
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1684
			rq->avg_idle = max;
1685

T
Tejun Heo 已提交
1686 1687 1688 1689 1690
		rq->idle_stamp = 0;
	}
#endif
}

1691
static void
1692
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1693
		 struct rq_flags *rf)
1694
{
1695
	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1696

1697 1698
	lockdep_assert_held(&rq->lock);

1699 1700 1701
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1702 1703

	if (wake_flags & WF_MIGRATED)
1704
		en_flags |= ENQUEUE_MIGRATED;
1705 1706
#endif

1707
	ttwu_activate(rq, p, en_flags);
1708
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1719
	struct rq_flags rf;
1720 1721 1722
	struct rq *rq;
	int ret = 0;

1723
	rq = __task_rq_lock(p, &rf);
1724
	if (task_on_rq_queued(p)) {
1725 1726
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1727
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1728 1729
		ret = 1;
	}
1730
	__task_rq_unlock(rq, &rf);
1731 1732 1733 1734

	return ret;
}

1735
#ifdef CONFIG_SMP
1736
void sched_ttwu_pending(void)
1737 1738
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1739
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1740
	struct task_struct *p, *t;
1741
	struct rq_flags rf;
1742

1743 1744 1745
	if (!llist)
		return;

1746
	rq_lock_irqsave(rq, &rf);
1747
	update_rq_clock(rq);
1748

1749 1750
	llist_for_each_entry_safe(p, t, llist, wake_entry)
		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1751

1752
	rq_unlock_irqrestore(rq, &rf);
1753 1754 1755 1756
}

void scheduler_ipi(void)
{
1757 1758 1759 1760 1761
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1762
	preempt_fold_need_resched();
1763

1764
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1781
	sched_ttwu_pending();
1782 1783 1784 1785

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1786
	if (unlikely(got_nohz_idle_kick())) {
1787
		this_rq()->idle_balance = 1;
1788
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1789
	}
1790
	irq_exit();
1791 1792
}

P
Peter Zijlstra 已提交
1793
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1794
{
1795 1796
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1797 1798
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1799 1800 1801 1802 1803 1804
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1805
}
1806

1807 1808 1809
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1810
	struct rq_flags rf;
1811

1812 1813 1814 1815
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1816 1817 1818 1819

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
1820
		rq_lock_irqsave(rq, &rf);
1821 1822
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
I
Ingo Molnar 已提交
1823
		/* Else CPU is not idle, do nothing here: */
1824
		rq_unlock_irqrestore(rq, &rf);
1825
	}
1826 1827 1828

out:
	rcu_read_unlock();
1829 1830
}

1831
bool cpus_share_cache(int this_cpu, int that_cpu)
1832 1833 1834
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1835
#endif /* CONFIG_SMP */
1836

1837
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1838 1839
{
	struct rq *rq = cpu_rq(cpu);
1840
	struct rq_flags rf;
1841

1842
#if defined(CONFIG_SMP)
1843
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
I
Ingo Molnar 已提交
1844
		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
P
Peter Zijlstra 已提交
1845
		ttwu_queue_remote(p, cpu, wake_flags);
1846 1847 1848 1849
		return;
	}
#endif

1850
	rq_lock(rq, &rf);
1851
	update_rq_clock(rq);
1852
	ttwu_do_activate(rq, p, wake_flags, &rf);
1853
	rq_unlock(rq, &rf);
T
Tejun Heo 已提交
1854 1855
}

1856 1857 1858 1859 1860 1861
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
I
Ingo Molnar 已提交
1862 1863
 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 * execution on its new CPU [c1].
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
I
Ingo Molnar 已提交
1874
 * Note: the CPU doing B need not be c0 or c1
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1906
 *   2) smp_cond_load_acquire(!X->on_cpu)
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1917
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1943
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1944 1945 1946
 *
 */

T
Tejun Heo 已提交
1947
/**
L
Linus Torvalds 已提交
1948
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1949
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1950
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1951
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1952
 *
1953
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
1954
 *
1955 1956 1957 1958 1959 1960 1961
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
1962
 */
1963 1964
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1965 1966
{
	unsigned long flags;
1967
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1968

1969 1970 1971 1972 1973 1974 1975
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1976
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1977
	if (!(p->state & state))
L
Linus Torvalds 已提交
1978 1979
		goto out;

1980 1981
	trace_sched_waking(p);

I
Ingo Molnar 已提交
1982 1983
	/* We're going to change ->state: */
	success = 1;
L
Linus Torvalds 已提交
1984 1985
	cpu = task_cpu(p);

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2008 2009
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2010 2011

#ifdef CONFIG_SMP
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2031
	/*
I
Ingo Molnar 已提交
2032
	 * If the owning (remote) CPU is still in the middle of schedule() with
2033
	 * this task as prev, wait until its done referencing the task.
2034 2035 2036 2037 2038
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2039
	 */
2040
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2041

2042
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2043
	p->state = TASK_WAKING;
2044

2045 2046 2047 2048 2049
	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

2050
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2051 2052
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2053
		set_task_cpu(p, cpu);
2054
	}
2055 2056 2057 2058 2059 2060 2061 2062

#else /* CONFIG_SMP */

	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

L
Linus Torvalds 已提交
2063 2064
#endif /* CONFIG_SMP */

2065
	ttwu_queue(p, cpu, wake_flags);
2066
stat:
2067
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2068
out:
2069
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2070 2071 2072 2073

	return success;
}

T
Tejun Heo 已提交
2074 2075 2076
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2077
 * @cookie: context's cookie for pinning
T
Tejun Heo 已提交
2078
 *
2079
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2080
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2081
 * the current task.
T
Tejun Heo 已提交
2082
 */
2083
static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
T
Tejun Heo 已提交
2084 2085 2086
{
	struct rq *rq = task_rq(p);

2087 2088 2089 2090
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2091 2092
	lockdep_assert_held(&rq->lock);

2093
	if (!raw_spin_trylock(&p->pi_lock)) {
2094 2095 2096 2097 2098 2099
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2100
		rq_unlock(rq, rf);
2101
		raw_spin_lock(&p->pi_lock);
2102
		rq_relock(rq, rf);
2103 2104
	}

T
Tejun Heo 已提交
2105
	if (!(p->state & TASK_NORMAL))
2106
		goto out;
T
Tejun Heo 已提交
2107

2108 2109
	trace_sched_waking(p);

2110 2111 2112 2113 2114
	if (!task_on_rq_queued(p)) {
		if (p->in_iowait) {
			delayacct_blkio_end();
			atomic_dec(&rq->nr_iowait);
		}
2115
		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2116
	}
P
Peter Zijlstra 已提交
2117

2118
	ttwu_do_wakeup(rq, p, 0, rf);
2119
	ttwu_stat(p, smp_processor_id(), 0);
2120 2121
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2122 2123
}

2124 2125 2126 2127 2128
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2129 2130 2131
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2132 2133 2134 2135
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2136
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2137
{
2138
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2139 2140 2141
}
EXPORT_SYMBOL(wake_up_process);

2142
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2143 2144 2145 2146 2147 2148 2149
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2150 2151 2152
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2153
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2154
{
P
Peter Zijlstra 已提交
2155 2156 2157
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2158 2159
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2160
	p->se.prev_sum_exec_runtime	= 0;
2161
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2162
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2163
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2164

2165 2166 2167 2168
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2169
#ifdef CONFIG_SCHEDSTATS
2170
	/* Even if schedstat is disabled, there should not be garbage */
2171
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2172
#endif
N
Nick Piggin 已提交
2173

2174
	RB_CLEAR_NODE(&p->dl.rb_node);
2175
	init_dl_task_timer(&p->dl);
2176
	init_dl_inactive_task_timer(&p->dl);
2177
	__dl_clear_params(p);
2178

P
Peter Zijlstra 已提交
2179
	INIT_LIST_HEAD(&p->rt.run_list);
2180 2181 2182 2183
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2184

2185 2186 2187
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2188 2189 2190

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2191
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2192 2193 2194
		p->mm->numa_scan_seq = 0;
	}

2195 2196 2197 2198 2199
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2200 2201
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2202
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2203
	p->numa_work.next = &p->numa_work;
2204
	p->numa_faults = NULL;
2205 2206
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2207 2208

	p->numa_group = NULL;
2209
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2210 2211
}

2212 2213
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2214
#ifdef CONFIG_NUMA_BALANCING
2215

2216 2217 2218
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2219
		static_branch_enable(&sched_numa_balancing);
2220
	else
2221
		static_branch_disable(&sched_numa_balancing);
2222
}
2223 2224 2225 2226 2227 2228 2229

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2230
	int state = static_branch_likely(&sched_numa_balancing);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2246

2247 2248
#ifdef CONFIG_SCHEDSTATS

2249
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2250
static bool __initdata __sched_schedstats = false;
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2274 2275 2276 2277 2278
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2279
	if (!strcmp(str, "enable")) {
2280
		__sched_schedstats = true;
2281 2282
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2283
		__sched_schedstats = false;
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2294 2295 2296 2297 2298
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2319 2320 2321 2322
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2323 2324 2325 2326

/*
 * fork()/clone()-time setup:
 */
2327
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2328
{
2329
	unsigned long flags;
I
Ingo Molnar 已提交
2330 2331
	int cpu = get_cpu();

2332
	__sched_fork(clone_flags, p);
2333
	/*
2334
	 * We mark the process as NEW here. This guarantees that
2335 2336 2337
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2338
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2339

2340 2341 2342 2343 2344
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2345 2346 2347 2348
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2349
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2350
			p->policy = SCHED_NORMAL;
2351
			p->static_prio = NICE_TO_PRIO(0);
2352 2353 2354 2355 2356 2357
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2358

2359 2360 2361 2362 2363 2364
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2365

2366 2367 2368 2369 2370 2371
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2372
		p->sched_class = &fair_sched_class;
2373
	}
2374

2375
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2376

2377 2378 2379 2380 2381 2382 2383
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2384
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2385
	/*
I
Ingo Molnar 已提交
2386
	 * We're setting the CPU for the first time, we don't migrate,
2387 2388 2389 2390 2391
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2392
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2393

2394
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2395
	if (likely(sched_info_on()))
2396
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2397
#endif
P
Peter Zijlstra 已提交
2398 2399
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2400
#endif
2401
	init_task_preempt_count(p);
2402
#ifdef CONFIG_SMP
2403
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2404
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2405
#endif
2406

N
Nick Piggin 已提交
2407
	put_cpu();
2408
	return 0;
L
Linus Torvalds 已提交
2409 2410
}

2411 2412 2413
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
2414
		return BW_UNIT;
2415 2416 2417 2418 2419 2420 2421 2422 2423

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

2424
	return div64_u64(runtime << BW_SHIFT, period);
2425 2426
}

L
Linus Torvalds 已提交
2427 2428 2429 2430 2431 2432 2433
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2434
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2435
{
2436
	struct rq_flags rf;
I
Ingo Molnar 已提交
2437
	struct rq *rq;
2438

2439
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2440
	p->state = TASK_RUNNING;
2441 2442 2443 2444
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
I
Ingo Molnar 已提交
2445
	 *  - any previously selected CPU might disappear through hotplug
2446 2447 2448
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2449
	 */
2450
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2451
#endif
2452
	rq = __task_rq_lock(p, &rf);
2453
	update_rq_clock(rq);
2454
	post_init_entity_util_avg(&p->se);
2455

2456
	activate_task(rq, p, ENQUEUE_NOCLOCK);
2457
	p->on_rq = TASK_ON_RQ_QUEUED;
2458
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2459
	check_preempt_curr(rq, p, WF_FORK);
2460
#ifdef CONFIG_SMP
2461 2462 2463 2464 2465
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2466
		rq_unpin_lock(rq, &rf);
2467
		p->sched_class->task_woken(rq, p);
2468
		rq_repin_lock(rq, &rf);
2469
	}
2470
#endif
2471
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2472 2473
}

2474 2475
#ifdef CONFIG_PREEMPT_NOTIFIERS

2476 2477
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2490
/**
2491
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2492
 * @notifier: notifier struct to register
2493 2494 2495
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2496 2497 2498
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2499 2500 2501 2502 2503 2504
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2505
 * @notifier: notifier struct to unregister
2506
 *
2507
 * This is *not* safe to call from within a preemption notifier.
2508 2509 2510 2511 2512 2513 2514
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2515
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2516 2517 2518
{
	struct preempt_notifier *notifier;

2519
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2520 2521 2522
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2523 2524 2525 2526 2527 2528
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2529
static void
2530 2531
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2532 2533 2534
{
	struct preempt_notifier *notifier;

2535
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2536 2537 2538
		notifier->ops->sched_out(notifier, next);
}

2539 2540 2541 2542 2543 2544 2545 2546
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2547
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2548

2549
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2550 2551 2552
{
}

2553
static inline void
2554 2555 2556 2557 2558
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2559
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2560

2561 2562 2563
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2564
 * @prev: the current task that is being switched out
2565 2566 2567 2568 2569 2570 2571 2572 2573
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2574 2575 2576
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2577
{
2578
	sched_info_switch(rq, prev, next);
2579
	perf_event_task_sched_out(prev, next);
2580
	fire_sched_out_preempt_notifiers(prev, next);
2581 2582 2583 2584
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2585 2586 2587 2588
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2589 2590 2591 2592
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2593 2594
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2595
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2596 2597
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2598 2599 2600 2601 2602
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2603
 */
2604
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2605 2606
	__releases(rq->lock)
{
2607
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2608
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2609
	long prev_state;
L
Linus Torvalds 已提交
2610

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2622 2623 2624 2625
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2626

L
Linus Torvalds 已提交
2627 2628 2629 2630
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2631
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2632 2633
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2634 2635 2636 2637 2638
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2639
	 */
O
Oleg Nesterov 已提交
2640
	prev_state = prev->state;
2641
	vtime_task_switch(prev);
2642
	perf_event_task_sched_in(prev, current);
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	/*
	 * The membarrier system call requires a full memory barrier
	 * after storing to rq->curr, before going back to user-space.
	 *
	 * TODO: This smp_mb__after_unlock_lock can go away if PPC end
	 * up adding a full barrier to switch_mm(), or we should figure
	 * out if a smp_mb__after_unlock_lock is really the proper API
	 * to use.
	 */
	smp_mb__after_unlock_lock();
2653
	finish_lock_switch(rq, prev);
2654
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2655

2656
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2657 2658
	if (mm)
		mmdrop(mm);
2659
	if (unlikely(prev_state == TASK_DEAD)) {
2660 2661 2662
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2663 2664 2665
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2666
		 */
2667
		kprobe_flush_task(prev);
2668 2669 2670 2671

		/* Task is done with its stack. */
		put_task_stack(prev);

L
Linus Torvalds 已提交
2672
		put_task_struct(prev);
2673
	}
2674

2675
	tick_nohz_task_switch();
2676
	return rq;
L
Linus Torvalds 已提交
2677 2678
}

2679 2680 2681
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2682
static void __balance_callback(struct rq *rq)
2683
{
2684 2685 2686
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2687

2688 2689 2690 2691 2692 2693 2694 2695
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2696

2697
		func(rq);
2698
	}
2699 2700 2701 2702 2703 2704 2705
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2706 2707 2708
}

#else
2709

2710
static inline void balance_callback(struct rq *rq)
2711
{
L
Linus Torvalds 已提交
2712 2713
}

2714 2715
#endif

L
Linus Torvalds 已提交
2716 2717 2718 2719
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2720
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2721 2722
	__releases(rq->lock)
{
2723
	struct rq *rq;
2724

2725 2726 2727 2728 2729 2730 2731 2732 2733
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2734
	rq = finish_task_switch(prev);
2735
	balance_callback(rq);
2736
	preempt_enable();
2737

L
Linus Torvalds 已提交
2738
	if (current->set_child_tid)
2739
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2740 2741 2742
}

/*
2743
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2744
 */
2745
static __always_inline struct rq *
2746
context_switch(struct rq *rq, struct task_struct *prev,
2747
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2748
{
I
Ingo Molnar 已提交
2749
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2750

2751
	prepare_task_switch(rq, prev, next);
2752

I
Ingo Molnar 已提交
2753 2754
	mm = next->mm;
	oldmm = prev->active_mm;
2755 2756 2757 2758 2759
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2760
	arch_start_context_switch(prev);
2761

2762
	if (!mm) {
L
Linus Torvalds 已提交
2763
		next->active_mm = oldmm;
V
Vegard Nossum 已提交
2764
		mmgrab(oldmm);
L
Linus Torvalds 已提交
2765 2766
		enter_lazy_tlb(oldmm, next);
	} else
2767
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2768

2769
	if (!prev->mm) {
L
Linus Torvalds 已提交
2770 2771 2772
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2773

2774
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2775

2776 2777 2778 2779 2780 2781
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2782
	rq_unpin_lock(rq, rf);
2783
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2784 2785 2786

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2787
	barrier();
2788 2789

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2790 2791 2792
}

/*
2793
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2794 2795
 *
 * externally visible scheduler statistics: current number of runnable
2796
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2797 2798 2799 2800 2801 2802 2803 2804 2805
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2806
}
L
Linus Torvalds 已提交
2807

2808
/*
I
Ingo Molnar 已提交
2809
 * Check if only the current task is running on the CPU.
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2820 2821 2822
 */
bool single_task_running(void)
{
2823
	return raw_rq()->nr_running == 1;
2824 2825 2826
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2827
unsigned long long nr_context_switches(void)
2828
{
2829 2830
	int i;
	unsigned long long sum = 0;
2831

2832
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2833
		sum += cpu_rq(i)->nr_switches;
2834

L
Linus Torvalds 已提交
2835 2836
	return sum;
}
2837

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
2868 2869 2870
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2871

2872
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2873
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2874

L
Linus Torvalds 已提交
2875 2876
	return sum;
}
2877

2878 2879 2880 2881 2882 2883 2884
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

2885
unsigned long nr_iowait_cpu(int cpu)
2886
{
2887
	struct rq *this = cpu_rq(cpu);
2888 2889
	return atomic_read(&this->nr_iowait);
}
2890

2891 2892
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2893 2894 2895
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2896 2897
}

I
Ingo Molnar 已提交
2898
#ifdef CONFIG_SMP
2899

2900
/*
P
Peter Zijlstra 已提交
2901 2902
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2903
 */
P
Peter Zijlstra 已提交
2904
void sched_exec(void)
2905
{
P
Peter Zijlstra 已提交
2906
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2907
	unsigned long flags;
2908
	int dest_cpu;
2909

2910
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2911
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2912 2913
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2914

2915
	if (likely(cpu_active(dest_cpu))) {
2916
		struct migration_arg arg = { p, dest_cpu };
2917

2918 2919
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2920 2921
		return;
	}
2922
unlock:
2923
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2924
}
I
Ingo Molnar 已提交
2925

L
Linus Torvalds 已提交
2926 2927 2928
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2929
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2930 2931

EXPORT_PER_CPU_SYMBOL(kstat);
2932
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2933

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

2951 2952 2953 2954 2955 2956 2957
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
2958
	struct rq_flags rf;
2959
	struct rq *rq;
2960
	u64 ns;
2961

2962 2963 2964 2965 2966 2967
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
I
Ingo Molnar 已提交
2968 2969
	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
	 * If we race with it entering CPU, unaccounted time is 0. This is
2970
	 * indistinguishable from the read occurring a few cycles earlier.
2971 2972
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2973
	 */
2974
	if (!p->on_cpu || !task_on_rq_queued(p))
2975 2976 2977
		return p->se.sum_exec_runtime;
#endif

2978
	rq = task_rq_lock(p, &rf);
2979 2980 2981 2982 2983 2984
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
2985
		prefetch_curr_exec_start(p);
2986 2987 2988 2989
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2990
	task_rq_unlock(rq, p, &rf);
2991 2992 2993

	return ns;
}
2994

2995 2996 2997 2998 2999 3000 3001 3002
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3003
	struct task_struct *curr = rq->curr;
3004
	struct rq_flags rf;
3005 3006

	sched_clock_tick();
I
Ingo Molnar 已提交
3007

3008 3009
	rq_lock(rq, &rf);

3010
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3011
	curr->sched_class->task_tick(rq, curr, 0);
3012
	cpu_load_update_active(rq);
3013
	calc_global_load_tick(rq);
3014 3015

	rq_unlock(rq, &rf);
3016

3017
	perf_event_task_tick();
3018

3019
#ifdef CONFIG_SMP
3020
	rq->idle_balance = idle_cpu(cpu);
3021
	trigger_load_balance(rq);
3022
#endif
3023
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3024 3025
}

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3037 3038
 *
 * Return: Maximum deferment in nanoseconds.
3039 3040 3041 3042
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3043
	unsigned long next, now = READ_ONCE(jiffies);
3044 3045 3046 3047 3048 3049

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3050
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3051
}
3052
#endif
L
Linus Torvalds 已提交
3053

3054 3055
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3070

3071
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3072
{
3073
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3074 3075 3076
	/*
	 * Underflow?
	 */
3077 3078
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3079
#endif
3080
	__preempt_count_add(val);
3081
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3082 3083 3084
	/*
	 * Spinlock count overflowing soon?
	 */
3085 3086
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3087
#endif
3088
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3089
}
3090
EXPORT_SYMBOL(preempt_count_add);
3091
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3092

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3103
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3104
{
3105
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3106 3107 3108
	/*
	 * Underflow?
	 */
3109
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3110
		return;
L
Linus Torvalds 已提交
3111 3112 3113
	/*
	 * Is the spinlock portion underflowing?
	 */
3114 3115 3116
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3117
#endif
3118

3119
	preempt_latency_stop(val);
3120
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3121
}
3122
EXPORT_SYMBOL(preempt_count_sub);
3123
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3124

3125 3126 3127
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3128 3129
#endif

3130 3131 3132 3133 3134 3135 3136 3137 3138
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
	return p->preempt_disable_ip;
#else
	return 0;
#endif
}

L
Linus Torvalds 已提交
3139
/*
I
Ingo Molnar 已提交
3140
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3141
 */
I
Ingo Molnar 已提交
3142
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3143
{
3144 3145 3146
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3147 3148 3149
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3150 3151
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3152

I
Ingo Molnar 已提交
3153
	debug_show_held_locks(prev);
3154
	print_modules();
I
Ingo Molnar 已提交
3155 3156
	if (irqs_disabled())
		print_irqtrace_events(prev);
3157 3158
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3159
		pr_err("Preemption disabled at:");
3160
		print_ip_sym(preempt_disable_ip);
3161 3162
		pr_cont("\n");
	}
3163 3164 3165
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3166
	dump_stack();
3167
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3168
}
L
Linus Torvalds 已提交
3169

I
Ingo Molnar 已提交
3170 3171 3172 3173 3174
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3175
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3176 3177
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3178
#endif
3179

3180
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3181
		__schedule_bug(prev);
3182 3183
		preempt_count_set(PREEMPT_DISABLED);
	}
3184
	rcu_sleep_check();
I
Ingo Molnar 已提交
3185

L
Linus Torvalds 已提交
3186 3187
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3188
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3189 3190 3191 3192 3193 3194
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3195
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3196
{
3197
	const struct sched_class *class;
I
Ingo Molnar 已提交
3198
	struct task_struct *p;
L
Linus Torvalds 已提交
3199 3200

	/*
3201 3202 3203 3204
	 * Optimization: we know that if all tasks are in the fair class we can
	 * call that function directly, but only if the @prev task wasn't of a
	 * higher scheduling class, because otherwise those loose the
	 * opportunity to pull in more work from other CPUs.
L
Linus Torvalds 已提交
3205
	 */
3206 3207 3208 3209
	if (likely((prev->sched_class == &idle_sched_class ||
		    prev->sched_class == &fair_sched_class) &&
		   rq->nr_running == rq->cfs.h_nr_running)) {

3210
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3211 3212 3213
		if (unlikely(p == RETRY_TASK))
			goto again;

I
Ingo Molnar 已提交
3214
		/* Assumes fair_sched_class->next == idle_sched_class */
3215
		if (unlikely(!p))
3216
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3217 3218

		return p;
L
Linus Torvalds 已提交
3219 3220
	}

3221
again:
3222
	for_each_class(class) {
3223
		p = class->pick_next_task(rq, prev, rf);
3224 3225 3226
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3227
			return p;
3228
		}
I
Ingo Molnar 已提交
3229
	}
3230

I
Ingo Molnar 已提交
3231 3232
	/* The idle class should always have a runnable task: */
	BUG();
I
Ingo Molnar 已提交
3233
}
L
Linus Torvalds 已提交
3234

I
Ingo Molnar 已提交
3235
/*
3236
 * __schedule() is the main scheduler function.
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3271
 *
3272
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3273
 */
3274
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3275 3276
{
	struct task_struct *prev, *next;
3277
	unsigned long *switch_count;
3278
	struct rq_flags rf;
I
Ingo Molnar 已提交
3279
	struct rq *rq;
3280
	int cpu;
I
Ingo Molnar 已提交
3281 3282 3283 3284 3285 3286

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3287

3288
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3289
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3290

3291
	local_irq_disable();
3292
	rcu_note_context_switch(preempt);
3293

3294 3295 3296 3297 3298 3299
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3300
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
3301

I
Ingo Molnar 已提交
3302 3303
	/* Promote REQ to ACT */
	rq->clock_update_flags <<= 1;
3304
	update_rq_clock(rq);
3305

3306
	switch_count = &prev->nivcsw;
3307
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3308
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3309
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3310
		} else {
3311
			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3312 3313
			prev->on_rq = 0;

3314 3315 3316 3317 3318
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
				delayacct_blkio_start();
			}

T
Tejun Heo 已提交
3319
			/*
3320 3321 3322
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3323 3324 3325 3326
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3327
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3328
				if (to_wakeup)
3329
					try_to_wake_up_local(to_wakeup, &rf);
T
Tejun Heo 已提交
3330 3331
			}
		}
I
Ingo Molnar 已提交
3332
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3333 3334
	}

3335
	next = pick_next_task(rq, prev, &rf);
3336
	clear_tsk_need_resched(prev);
3337
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3338 3339 3340 3341

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
		/*
		 * The membarrier system call requires each architecture
		 * to have a full memory barrier after updating
		 * rq->curr, before returning to user-space. For TSO
		 * (e.g. x86), the architecture must provide its own
		 * barrier in switch_mm(). For weakly ordered machines
		 * for which spin_unlock() acts as a full memory
		 * barrier, finish_lock_switch() in common code takes
		 * care of this barrier. For weakly ordered machines for
		 * which spin_unlock() acts as a RELEASE barrier (only
		 * arm64 and PowerPC), arm64 has a full barrier in
		 * switch_to(), and PowerPC has
		 * smp_mb__after_unlock_lock() before
		 * finish_lock_switch().
		 */
L
Linus Torvalds 已提交
3357 3358
		++*switch_count;

3359
		trace_sched_switch(preempt, prev, next);
I
Ingo Molnar 已提交
3360 3361 3362

		/* Also unlocks the rq: */
		rq = context_switch(rq, prev, next, &rf);
3363
	} else {
3364
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3365
		rq_unlock_irq(rq, &rf);
3366
	}
L
Linus Torvalds 已提交
3367

3368
	balance_callback(rq);
L
Linus Torvalds 已提交
3369
}
3370

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
void __noreturn do_task_dead(void)
{
	/*
	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
	 * when the following two conditions become true.
	 *   - There is race condition of mmap_sem (It is acquired by
	 *     exit_mm()), and
	 *   - SMI occurs before setting TASK_RUNINNG.
	 *     (or hypervisor of virtual machine switches to other guest)
	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
	 *
	 * To avoid it, we have to wait for releasing tsk->pi_lock which
	 * is held by try_to_wake_up()
	 */
	smp_mb();
	raw_spin_unlock_wait(&current->pi_lock);

I
Ingo Molnar 已提交
3388
	/* Causes final put_task_struct in finish_task_switch(): */
3389
	__set_current_state(TASK_DEAD);
I
Ingo Molnar 已提交
3390 3391 3392 3393

	/* Tell freezer to ignore us: */
	current->flags |= PF_NOFREEZE;

3394 3395
	__schedule(false);
	BUG();
I
Ingo Molnar 已提交
3396 3397

	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3398
	for (;;)
I
Ingo Molnar 已提交
3399
		cpu_relax();
3400 3401
}

3402 3403
static inline void sched_submit_work(struct task_struct *tsk)
{
3404
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3405 3406 3407 3408 3409 3410 3411 3412 3413
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3414
asmlinkage __visible void __sched schedule(void)
3415
{
3416 3417 3418
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3419
	do {
3420
		preempt_disable();
3421
		__schedule(false);
3422
		sched_preempt_enable_no_resched();
3423
	} while (need_resched());
3424
}
L
Linus Torvalds 已提交
3425 3426
EXPORT_SYMBOL(schedule);

3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
/*
 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 * state (have scheduled out non-voluntarily) by making sure that all
 * tasks have either left the run queue or have gone into user space.
 * As idle tasks do not do either, they must not ever be preempted
 * (schedule out non-voluntarily).
 *
 * schedule_idle() is similar to schedule_preempt_disable() except that it
 * never enables preemption because it does not call sched_submit_work().
 */
void __sched schedule_idle(void)
{
	/*
	 * As this skips calling sched_submit_work(), which the idle task does
	 * regardless because that function is a nop when the task is in a
	 * TASK_RUNNING state, make sure this isn't used someplace that the
	 * current task can be in any other state. Note, idle is always in the
	 * TASK_RUNNING state.
	 */
	WARN_ON_ONCE(current->state);
	do {
		__schedule(false);
	} while (need_resched());
}

3452
#ifdef CONFIG_CONTEXT_TRACKING
3453
asmlinkage __visible void __sched schedule_user(void)
3454 3455 3456 3457 3458 3459
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3460 3461
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3462
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3463
	 * too frequently to make sense yet.
3464
	 */
3465
	enum ctx_state prev_state = exception_enter();
3466
	schedule();
3467
	exception_exit(prev_state);
3468 3469 3470
}
#endif

3471 3472 3473 3474 3475 3476 3477
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3478
	sched_preempt_enable_no_resched();
3479 3480 3481 3482
	schedule();
	preempt_disable();
}

3483
static void __sched notrace preempt_schedule_common(void)
3484 3485
{
	do {
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3499
		preempt_disable_notrace();
3500
		preempt_latency_start(1);
3501
		__schedule(true);
3502
		preempt_latency_stop(1);
3503
		preempt_enable_no_resched_notrace();
3504 3505 3506 3507 3508 3509 3510 3511

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3512 3513
#ifdef CONFIG_PREEMPT
/*
3514
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3515
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3516 3517
 * occur there and call schedule directly.
 */
3518
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3519 3520 3521
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3522
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3523
	 */
3524
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3525 3526
		return;

3527
	preempt_schedule_common();
L
Linus Torvalds 已提交
3528
}
3529
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3530
EXPORT_SYMBOL(preempt_schedule);
3531 3532

/**
3533
 * preempt_schedule_notrace - preempt_schedule called by tracing
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3546
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3547 3548 3549 3550 3551 3552 3553
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3567
		preempt_disable_notrace();
3568
		preempt_latency_start(1);
3569 3570 3571 3572 3573 3574
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3575
		__schedule(true);
3576 3577
		exception_exit(prev_ctx);

3578
		preempt_latency_stop(1);
3579
		preempt_enable_no_resched_notrace();
3580 3581
	} while (need_resched());
}
3582
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3583

3584
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3585 3586

/*
3587
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3588 3589 3590 3591
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3592
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3593
{
3594
	enum ctx_state prev_state;
3595

3596
	/* Catch callers which need to be fixed */
3597
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3598

3599 3600
	prev_state = exception_enter();

3601
	do {
3602
		preempt_disable();
3603
		local_irq_enable();
3604
		__schedule(true);
3605
		local_irq_disable();
3606
		sched_preempt_enable_no_resched();
3607
	} while (need_resched());
3608 3609

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3610 3611
}

3612
int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3613
			  void *key)
L
Linus Torvalds 已提交
3614
{
P
Peter Zijlstra 已提交
3615
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3616 3617 3618
}
EXPORT_SYMBOL(default_wake_function);

3619 3620
#ifdef CONFIG_RT_MUTEXES

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{
	if (pi_task)
		prio = min(prio, pi_task->prio);

	return prio;
}

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	struct task_struct *pi_task = rt_mutex_get_top_task(p);

	return __rt_effective_prio(pi_task, prio);
}

3636 3637
/*
 * rt_mutex_setprio - set the current priority of a task
3638 3639
 * @p: task to boost
 * @pi_task: donor task
3640 3641 3642 3643
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3644 3645
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3646
 */
3647
void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3648
{
3649
	int prio, oldprio, queued, running, queue_flag =
3650
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3651
	const struct sched_class *prev_class;
3652 3653
	struct rq_flags rf;
	struct rq *rq;
3654

3655 3656 3657 3658 3659 3660 3661 3662
	/* XXX used to be waiter->prio, not waiter->task->prio */
	prio = __rt_effective_prio(pi_task, p->normal_prio);

	/*
	 * If nothing changed; bail early.
	 */
	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
		return;
3663

3664
	rq = __task_rq_lock(p, &rf);
3665
	update_rq_clock(rq);
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
	/*
	 * Set under pi_lock && rq->lock, such that the value can be used under
	 * either lock.
	 *
	 * Note that there is loads of tricky to make this pointer cache work
	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
	 * ensure a task is de-boosted (pi_task is set to NULL) before the
	 * task is allowed to run again (and can exit). This ensures the pointer
	 * points to a blocked task -- which guaratees the task is present.
	 */
	p->pi_top_task = pi_task;

	/*
	 * For FIFO/RR we only need to set prio, if that matches we're done.
	 */
	if (prio == p->prio && !dl_prio(prio))
		goto out_unlock;
3683

3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3702
	trace_sched_pi_setprio(p, pi_task);
3703
	oldprio = p->prio;
3704 3705 3706 3707

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3708
	prev_class = p->sched_class;
3709
	queued = task_on_rq_queued(p);
3710
	running = task_current(rq, p);
3711
	if (queued)
3712
		dequeue_task(rq, p, queue_flag);
3713
	if (running)
3714
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3715

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3726 3727
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3728
			p->dl.dl_boosted = 1;
3729
			queue_flag |= ENQUEUE_REPLENISH;
3730 3731
		} else
			p->dl.dl_boosted = 0;
3732
		p->sched_class = &dl_sched_class;
3733 3734 3735 3736
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3737
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3738
		p->sched_class = &rt_sched_class;
3739 3740 3741
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3742 3743
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3744
		p->sched_class = &fair_sched_class;
3745
	}
I
Ingo Molnar 已提交
3746

3747 3748
	p->prio = prio;

3749
	if (queued)
3750
		enqueue_task(rq, p, queue_flag);
3751
	if (running)
3752
		set_curr_task(rq, p);
3753

P
Peter Zijlstra 已提交
3754
	check_class_changed(rq, p, prev_class, oldprio);
3755
out_unlock:
I
Ingo Molnar 已提交
3756 3757
	/* Avoid rq from going away on us: */
	preempt_disable();
3758
	__task_rq_unlock(rq, &rf);
3759 3760 3761

	balance_callback(rq);
	preempt_enable();
3762
}
3763 3764 3765 3766 3767
#else
static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	return prio;
}
3768
#endif
3769

3770
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3771
{
P
Peter Zijlstra 已提交
3772 3773
	bool queued, running;
	int old_prio, delta;
3774
	struct rq_flags rf;
3775
	struct rq *rq;
L
Linus Torvalds 已提交
3776

3777
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3778 3779 3780 3781 3782
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3783
	rq = task_rq_lock(p, &rf);
3784 3785
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3786 3787 3788 3789
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3790
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3791
	 */
3792
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3793 3794 3795
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3796
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3797
	running = task_current(rq, p);
3798
	if (queued)
3799
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
3800 3801
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3802 3803

	p->static_prio = NICE_TO_PRIO(nice);
3804
	set_load_weight(p);
3805 3806 3807
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3808

3809
	if (queued) {
3810
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
L
Linus Torvalds 已提交
3811
		/*
3812 3813
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3814
		 */
3815
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3816
			resched_curr(rq);
L
Linus Torvalds 已提交
3817
	}
P
Peter Zijlstra 已提交
3818 3819
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3820
out_unlock:
3821
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3822 3823 3824
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3825 3826 3827 3828 3829
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3830
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3831
{
I
Ingo Molnar 已提交
3832
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3833
	int nice_rlim = nice_to_rlimit(nice);
3834

3835
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3836 3837 3838
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3839 3840 3841 3842 3843 3844 3845 3846 3847
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3848
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3849
{
3850
	long nice, retval;
L
Linus Torvalds 已提交
3851 3852 3853 3854 3855 3856

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3857
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3858
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3859

3860
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3861 3862 3863
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3878
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3879 3880 3881
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3882
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3883 3884 3885 3886 3887
{
	return p->prio - MAX_RT_PRIO;
}

/**
I
Ingo Molnar 已提交
3888
 * idle_cpu - is a given CPU idle currently?
L
Linus Torvalds 已提交
3889
 * @cpu: the processor in question.
3890 3891
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3892 3893 3894
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3909 3910 3911
}

/**
I
Ingo Molnar 已提交
3912
 * idle_task - return the idle task for a given CPU.
L
Linus Torvalds 已提交
3913
 * @cpu: the processor in question.
3914
 *
I
Ingo Molnar 已提交
3915
 * Return: The idle task for the CPU @cpu.
L
Linus Torvalds 已提交
3916
 */
3917
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3918 3919 3920 3921 3922 3923 3924
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3925 3926
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3927
 */
A
Alexey Dobriyan 已提交
3928
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3929
{
3930
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3931 3932
}

3933 3934 3935 3936 3937 3938
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3939 3940
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3941
{
3942 3943
	int policy = attr->sched_policy;

3944
	if (policy == SETPARAM_POLICY)
3945 3946
		policy = p->policy;

L
Linus Torvalds 已提交
3947
	p->policy = policy;
3948

3949 3950
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3951
	else if (fair_policy(policy))
3952 3953
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3954 3955 3956 3957 3958 3959
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3960
	p->normal_prio = normal_prio(p);
3961 3962
	set_load_weight(p);
}
3963

3964 3965
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3966
			   const struct sched_attr *attr, bool keep_boost)
3967 3968
{
	__setscheduler_params(p, attr);
3969

3970
	/*
3971 3972
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3973
	 */
3974
	p->prio = normal_prio(p);
3975
	if (keep_boost)
3976
		p->prio = rt_effective_prio(p, p->prio);
3977

3978 3979 3980
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3981 3982 3983
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3984
}
3985

3986
/*
I
Ingo Molnar 已提交
3987
 * Check the target process has a UID that matches the current process's:
3988 3989 3990 3991 3992 3993 3994 3995
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3996 3997
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3998 3999 4000 4001
	rcu_read_unlock();
	return match;
}

4002 4003
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4004
				bool user, bool pi)
L
Linus Torvalds 已提交
4005
{
4006 4007
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4008
	int retval, oldprio, oldpolicy = -1, queued, running;
4009
	int new_effective_prio, policy = attr->sched_policy;
4010
	const struct sched_class *prev_class;
4011
	struct rq_flags rf;
4012
	int reset_on_fork;
4013
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4014
	struct rq *rq;
L
Linus Torvalds 已提交
4015

4016 4017
	/* The pi code expects interrupts enabled */
	BUG_ON(pi && in_interrupt());
L
Linus Torvalds 已提交
4018
recheck:
I
Ingo Molnar 已提交
4019
	/* Double check policy once rq lock held: */
4020 4021
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4022
		policy = oldpolicy = p->policy;
4023
	} else {
4024
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4025

4026
		if (!valid_policy(policy))
4027 4028 4029
			return -EINVAL;
	}

4030 4031
	if (attr->sched_flags &
		~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
4032 4033
		return -EINVAL;

L
Linus Torvalds 已提交
4034 4035
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4036 4037
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4038
	 */
4039
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4040
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4041
		return -EINVAL;
4042 4043
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4044 4045
		return -EINVAL;

4046 4047 4048
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4049
	if (user && !capable(CAP_SYS_NICE)) {
4050
		if (fair_policy(policy)) {
4051
			if (attr->sched_nice < task_nice(p) &&
4052
			    !can_nice(p, attr->sched_nice))
4053 4054 4055
				return -EPERM;
		}

4056
		if (rt_policy(policy)) {
4057 4058
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4059

I
Ingo Molnar 已提交
4060
			/* Can't set/change the rt policy: */
4061 4062 4063
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

I
Ingo Molnar 已提交
4064
			/* Can't increase priority: */
4065 4066
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4067 4068
				return -EPERM;
		}
4069

4070 4071 4072 4073 4074 4075 4076 4077 4078
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4079
		/*
4080 4081
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4082
		 */
4083
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4084
			if (!can_nice(p, task_nice(p)))
4085 4086
				return -EPERM;
		}
4087

I
Ingo Molnar 已提交
4088
		/* Can't change other user's priorities: */
4089
		if (!check_same_owner(p))
4090
			return -EPERM;
4091

I
Ingo Molnar 已提交
4092
		/* Normal users shall not reset the sched_reset_on_fork flag: */
4093 4094
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4095
	}
L
Linus Torvalds 已提交
4096

4097
	if (user) {
4098
		retval = security_task_setscheduler(p);
4099 4100 4101 4102
		if (retval)
			return retval;
	}

4103
	/*
I
Ingo Molnar 已提交
4104
	 * Make sure no PI-waiters arrive (or leave) while we are
4105
	 * changing the priority of the task:
4106
	 *
L
Lucas De Marchi 已提交
4107
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4108 4109
	 * runqueue lock must be held.
	 */
4110
	rq = task_rq_lock(p, &rf);
4111
	update_rq_clock(rq);
4112

4113
	/*
I
Ingo Molnar 已提交
4114
	 * Changing the policy of the stop threads its a very bad idea:
4115 4116
	 */
	if (p == rq->stop) {
4117
		task_rq_unlock(rq, p, &rf);
4118 4119 4120
		return -EINVAL;
	}

4121
	/*
4122 4123
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4124
	 */
4125
	if (unlikely(policy == p->policy)) {
4126
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4127 4128 4129
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4130
		if (dl_policy(policy) && dl_param_changed(p, attr))
4131
			goto change;
4132

4133
		p->sched_reset_on_fork = reset_on_fork;
4134
		task_rq_unlock(rq, p, &rf);
4135 4136
		return 0;
	}
4137
change:
4138

4139
	if (user) {
4140
#ifdef CONFIG_RT_GROUP_SCHED
4141 4142 4143 4144 4145
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4146 4147
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4148
			task_rq_unlock(rq, p, &rf);
4149 4150 4151
			return -EPERM;
		}
#endif
4152 4153 4154 4155 4156 4157 4158 4159 4160
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4161 4162
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4163
				task_rq_unlock(rq, p, &rf);
4164 4165 4166 4167 4168
				return -EPERM;
			}
		}
#endif
	}
4169

I
Ingo Molnar 已提交
4170
	/* Re-check policy now with rq lock held: */
L
Linus Torvalds 已提交
4171 4172
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4173
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4174 4175
		goto recheck;
	}
4176 4177 4178 4179 4180 4181

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4182
	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4183
		task_rq_unlock(rq, p, &rf);
4184 4185 4186
		return -EBUSY;
	}

4187 4188 4189
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4190 4191 4192 4193 4194 4195 4196 4197
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
4198
		new_effective_prio = rt_effective_prio(p, newprio);
4199 4200
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4201 4202
	}

4203
	queued = task_on_rq_queued(p);
4204
	running = task_current(rq, p);
4205
	if (queued)
4206
		dequeue_task(rq, p, queue_flags);
4207
	if (running)
4208
		put_prev_task(rq, p);
4209

4210
	prev_class = p->sched_class;
4211
	__setscheduler(rq, p, attr, pi);
4212

4213
	if (queued) {
4214 4215 4216 4217
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4218 4219
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4220

4221
		enqueue_task(rq, p, queue_flags);
4222
	}
4223
	if (running)
4224
		set_curr_task(rq, p);
4225

P
Peter Zijlstra 已提交
4226
	check_class_changed(rq, p, prev_class, oldprio);
I
Ingo Molnar 已提交
4227 4228 4229

	/* Avoid rq from going away on us: */
	preempt_disable();
4230
	task_rq_unlock(rq, p, &rf);
4231

4232 4233
	if (pi)
		rt_mutex_adjust_pi(p);
4234

I
Ingo Molnar 已提交
4235
	/* Run balance callbacks after we've adjusted the PI chain: */
4236 4237
	balance_callback(rq);
	preempt_enable();
4238

L
Linus Torvalds 已提交
4239 4240
	return 0;
}
4241

4242 4243 4244 4245 4246 4247 4248 4249 4250
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4251 4252
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4253 4254 4255 4256 4257
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4258
	return __sched_setscheduler(p, &attr, check, true);
4259
}
4260 4261 4262 4263 4264 4265
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4266 4267
 * Return: 0 on success. An error code otherwise.
 *
4268 4269 4270
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4271
		       const struct sched_param *param)
4272
{
4273
	return _sched_setscheduler(p, policy, param, true);
4274
}
L
Linus Torvalds 已提交
4275 4276
EXPORT_SYMBOL_GPL(sched_setscheduler);

4277 4278
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4279
	return __sched_setscheduler(p, attr, true, true);
4280 4281 4282
}
EXPORT_SYMBOL_GPL(sched_setattr);

4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4293 4294
 *
 * Return: 0 on success. An error code otherwise.
4295 4296
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4297
			       const struct sched_param *param)
4298
{
4299
	return _sched_setscheduler(p, policy, param, false);
4300
}
4301
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4302

I
Ingo Molnar 已提交
4303 4304
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4305 4306 4307
{
	struct sched_param lparam;
	struct task_struct *p;
4308
	int retval;
L
Linus Torvalds 已提交
4309 4310 4311 4312 4313

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4314 4315 4316

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4317
	p = find_process_by_pid(pid);
4318 4319 4320
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4321

L
Linus Torvalds 已提交
4322 4323 4324
	return retval;
}

4325 4326 4327
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
I
Ingo Molnar 已提交
4328
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4329 4330 4331 4332 4333 4334 4335
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

I
Ingo Molnar 已提交
4336
	/* Zero the full structure, so that a short copy will be nice: */
4337 4338 4339 4340 4341 4342
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

I
Ingo Molnar 已提交
4343 4344
	/* Bail out on silly large: */
	if (size > PAGE_SIZE)
4345 4346
		goto err_size;

I
Ingo Molnar 已提交
4347 4348
	/* ABI compatibility quirk: */
	if (!size)
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
I
Ingo Molnar 已提交
4383
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4384 4385
	 * to be strict and return an error on out-of-bounds values?
	 */
4386
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4387

4388
	return 0;
4389 4390 4391

err_size:
	put_user(sizeof(*attr), &uattr->size);
4392
	return -E2BIG;
4393 4394
}

L
Linus Torvalds 已提交
4395 4396 4397 4398 4399
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4400 4401
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4402
 */
I
Ingo Molnar 已提交
4403
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4404
{
4405 4406 4407
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4408 4409 4410 4411 4412 4413 4414
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4415 4416
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4417
 */
4418
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4419
{
4420
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4421 4422
}

4423 4424 4425
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4426
 * @uattr: structure containing the extended parameters.
4427
 * @flags: for future extension.
4428
 */
4429 4430
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4431 4432 4433 4434 4435
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4436
	if (!uattr || pid < 0 || flags)
4437 4438
		return -EINVAL;

4439 4440 4441
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4442

4443
	if ((int)attr.sched_policy < 0)
4444
		return -EINVAL;
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4456 4457 4458
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4459 4460 4461
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4462
 */
4463
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4464
{
4465
	struct task_struct *p;
4466
	int retval;
L
Linus Torvalds 已提交
4467 4468

	if (pid < 0)
4469
		return -EINVAL;
L
Linus Torvalds 已提交
4470 4471

	retval = -ESRCH;
4472
	rcu_read_lock();
L
Linus Torvalds 已提交
4473 4474 4475 4476
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4477 4478
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4479
	}
4480
	rcu_read_unlock();
L
Linus Torvalds 已提交
4481 4482 4483 4484
	return retval;
}

/**
4485
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4486 4487
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4488 4489 4490
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4491
 */
4492
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4493
{
4494
	struct sched_param lp = { .sched_priority = 0 };
4495
	struct task_struct *p;
4496
	int retval;
L
Linus Torvalds 已提交
4497 4498

	if (!param || pid < 0)
4499
		return -EINVAL;
L
Linus Torvalds 已提交
4500

4501
	rcu_read_lock();
L
Linus Torvalds 已提交
4502 4503 4504 4505 4506 4507 4508 4509 4510
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4511 4512
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4513
	rcu_read_unlock();
L
Linus Torvalds 已提交
4514 4515 4516 4517 4518 4519 4520 4521 4522

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4523
	rcu_read_unlock();
L
Linus Torvalds 已提交
4524 4525 4526
	return retval;
}

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4550
				return -EFBIG;
4551 4552 4553 4554 4555
		}

		attr->size = usize;
	}

4556
	ret = copy_to_user(uattr, attr, attr->size);
4557 4558 4559
	if (ret)
		return -EFAULT;

4560
	return 0;
4561 4562 4563
}

/**
4564
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4565
 * @pid: the pid in question.
J
Juri Lelli 已提交
4566
 * @uattr: structure containing the extended parameters.
4567
 * @size: sizeof(attr) for fwd/bwd comp.
4568
 * @flags: for future extension.
4569
 */
4570 4571
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4572 4573 4574 4575 4576 4577 4578 4579
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4580
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4594 4595
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4596 4597 4598
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4599 4600
		attr.sched_priority = p->rt_priority;
	else
4601
		attr.sched_nice = task_nice(p);
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4613
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4614
{
4615
	cpumask_var_t cpus_allowed, new_mask;
4616 4617
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4618

4619
	rcu_read_lock();
L
Linus Torvalds 已提交
4620 4621 4622

	p = find_process_by_pid(pid);
	if (!p) {
4623
		rcu_read_unlock();
L
Linus Torvalds 已提交
4624 4625 4626
		return -ESRCH;
	}

4627
	/* Prevent p going away */
L
Linus Torvalds 已提交
4628
	get_task_struct(p);
4629
	rcu_read_unlock();
L
Linus Torvalds 已提交
4630

4631 4632 4633 4634
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4635 4636 4637 4638 4639 4640 4641 4642
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4643
	retval = -EPERM;
E
Eric W. Biederman 已提交
4644 4645 4646 4647
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4648
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4649 4650 4651
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4652

4653
	retval = security_task_setscheduler(p);
4654
	if (retval)
4655
		goto out_free_new_mask;
4656

4657 4658 4659 4660

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4661 4662 4663 4664 4665 4666 4667
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4668 4669 4670
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4671
			retval = -EBUSY;
4672
			rcu_read_unlock();
4673
			goto out_free_new_mask;
4674
		}
4675
		rcu_read_unlock();
4676 4677
	}
#endif
P
Peter Zijlstra 已提交
4678
again:
4679
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4680

P
Paul Menage 已提交
4681
	if (!retval) {
4682 4683
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4684 4685 4686 4687 4688
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4689
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4690 4691 4692
			goto again;
		}
	}
4693
out_free_new_mask:
4694 4695 4696 4697
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4698 4699 4700 4701 4702
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4703
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4704
{
4705 4706 4707 4708 4709
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4710 4711 4712 4713
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
I
Ingo Molnar 已提交
4714
 * sys_sched_setaffinity - set the CPU affinity of a process
L
Linus Torvalds 已提交
4715 4716
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4717
 * @user_mask_ptr: user-space pointer to the new CPU mask
4718 4719
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4720
 */
4721 4722
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4723
{
4724
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4725 4726
	int retval;

4727 4728
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4729

4730 4731 4732 4733 4734
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4735 4736
}

4737
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4738
{
4739
	struct task_struct *p;
4740
	unsigned long flags;
L
Linus Torvalds 已提交
4741 4742
	int retval;

4743
	rcu_read_lock();
L
Linus Torvalds 已提交
4744 4745 4746 4747 4748 4749

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4750 4751 4752 4753
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4754
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4755
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4756
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4757 4758

out_unlock:
4759
	rcu_read_unlock();
L
Linus Torvalds 已提交
4760

4761
	return retval;
L
Linus Torvalds 已提交
4762 4763 4764
}

/**
I
Ingo Molnar 已提交
4765
 * sys_sched_getaffinity - get the CPU affinity of a process
L
Linus Torvalds 已提交
4766 4767
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4768
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4769
 *
4770 4771
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4772
 */
4773 4774
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4775 4776
{
	int ret;
4777
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4778

A
Anton Blanchard 已提交
4779
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4780 4781
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4782 4783
		return -EINVAL;

4784 4785
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4786

4787 4788
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4789
		size_t retlen = min_t(size_t, len, cpumask_size());
4790 4791

		if (copy_to_user(user_mask_ptr, mask, retlen))
4792 4793
			ret = -EFAULT;
		else
4794
			ret = retlen;
4795 4796
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4797

4798
	return ret;
L
Linus Torvalds 已提交
4799 4800 4801 4802 4803
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4804 4805
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4806 4807
 *
 * Return: 0.
L
Linus Torvalds 已提交
4808
 */
4809
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4810
{
4811 4812 4813 4814 4815 4816
	struct rq_flags rf;
	struct rq *rq;

	local_irq_disable();
	rq = this_rq();
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
4817

4818
	schedstat_inc(rq->yld_count);
4819
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4820 4821 4822 4823 4824

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
4825 4826
	preempt_disable();
	rq_unlock(rq, &rf);
4827
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4828 4829 4830 4831 4832 4833

	schedule();

	return 0;
}

4834
#ifndef CONFIG_PREEMPT
4835
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4836
{
4837
	if (should_resched(0)) {
4838
		preempt_schedule_common();
L
Linus Torvalds 已提交
4839 4840 4841 4842
		return 1;
	}
	return 0;
}
4843
EXPORT_SYMBOL(_cond_resched);
4844
#endif
L
Linus Torvalds 已提交
4845 4846

/*
4847
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4848 4849
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4850
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4851 4852 4853
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4854
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4855
{
4856
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4857 4858
	int ret = 0;

4859 4860
	lockdep_assert_held(lock);

4861
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4862
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4863
		if (resched)
4864
			preempt_schedule_common();
N
Nick Piggin 已提交
4865 4866
		else
			cpu_relax();
J
Jan Kara 已提交
4867
		ret = 1;
L
Linus Torvalds 已提交
4868 4869
		spin_lock(lock);
	}
J
Jan Kara 已提交
4870
	return ret;
L
Linus Torvalds 已提交
4871
}
4872
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4873

4874
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4875 4876 4877
{
	BUG_ON(!in_softirq());

4878
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4879
		local_bh_enable();
4880
		preempt_schedule_common();
L
Linus Torvalds 已提交
4881 4882 4883 4884 4885
		local_bh_disable();
		return 1;
	}
	return 0;
}
4886
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4887 4888 4889 4890

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4891 4892 4893 4894 4895 4896 4897 4898 4899
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
I
Ingo Molnar 已提交
4900
 *	yield();
P
Peter Zijlstra 已提交
4901 4902 4903 4904 4905 4906 4907 4908
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4909 4910 4911 4912 4913 4914 4915 4916
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4917 4918 4919 4920
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4921 4922
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4923 4924 4925 4926
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4927
 * Return:
4928 4929 4930
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4931
 */
4932
int __sched yield_to(struct task_struct *p, bool preempt)
4933 4934 4935 4936
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4937
	int yielded = 0;
4938 4939 4940 4941 4942 4943

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4944 4945 4946 4947 4948 4949 4950 4951 4952
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4953
	double_rq_lock(rq, p_rq);
4954
	if (task_rq(p) != p_rq) {
4955 4956 4957 4958 4959
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4960
		goto out_unlock;
4961 4962

	if (curr->sched_class != p->sched_class)
4963
		goto out_unlock;
4964 4965

	if (task_running(p_rq, p) || p->state)
4966
		goto out_unlock;
4967 4968

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4969
	if (yielded) {
4970
		schedstat_inc(rq->yld_count);
4971 4972 4973 4974 4975
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4976
			resched_curr(p_rq);
4977
	}
4978

4979
out_unlock:
4980
	double_rq_unlock(rq, p_rq);
4981
out_irq:
4982 4983
	local_irq_restore(flags);

4984
	if (yielded > 0)
4985 4986 4987 4988 4989 4990
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
5006
/*
I
Ingo Molnar 已提交
5007
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5008 5009 5010 5011
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5012
	int token;
L
Linus Torvalds 已提交
5013 5014
	long ret;

5015
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
5016
	ret = schedule_timeout(timeout);
5017
	io_schedule_finish(token);
5018

L
Linus Torvalds 已提交
5019 5020
	return ret;
}
5021
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5022

5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
void io_schedule(void)
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5033 5034 5035 5036
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5037 5038 5039
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5040
 */
5041
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5042 5043 5044 5045 5046 5047 5048 5049
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5050
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5051
	case SCHED_NORMAL:
5052
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5053
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5064 5065 5066
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5067
 */
5068
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5069 5070 5071 5072 5073 5074 5075 5076
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5077
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5078
	case SCHED_NORMAL:
5079
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5080
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
5093 5094 5095
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
5096
 */
5097
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5098
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5099
{
5100
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5101
	unsigned int time_slice;
5102 5103
	struct rq_flags rf;
	struct timespec t;
5104
	struct rq *rq;
5105
	int retval;
L
Linus Torvalds 已提交
5106 5107

	if (pid < 0)
5108
		return -EINVAL;
L
Linus Torvalds 已提交
5109 5110

	retval = -ESRCH;
5111
	rcu_read_lock();
L
Linus Torvalds 已提交
5112 5113 5114 5115 5116 5117 5118 5119
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5120
	rq = task_rq_lock(p, &rf);
5121 5122 5123
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5124
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5125

5126
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5127
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5128 5129
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5130

L
Linus Torvalds 已提交
5131
out_unlock:
5132
	rcu_read_unlock();
L
Linus Torvalds 已提交
5133 5134 5135
	return retval;
}

5136
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5137

5138
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5139 5140
{
	unsigned long free = 0;
5141
	int ppid;
5142
	unsigned long state = p->state;
L
Linus Torvalds 已提交
5143

5144 5145 5146
	/* Make sure the string lines up properly with the number of task states: */
	BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);

5147 5148
	if (!try_get_task_stack(p))
		return;
5149 5150
	if (state)
		state = __ffs(state) + 1;
5151
	printk(KERN_INFO "%-15.15s %c", p->comm,
5152
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
5153
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5154
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5155
#ifdef CONFIG_DEBUG_STACK_USAGE
5156
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5157
#endif
5158
	ppid = 0;
5159
	rcu_read_lock();
5160 5161
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5162
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5163
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5164
		task_pid_nr(p), ppid,
5165
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5166

5167
	print_worker_info(KERN_INFO, p);
5168
	show_stack(p, NULL);
5169
	put_task_stack(p);
L
Linus Torvalds 已提交
5170 5171
}

I
Ingo Molnar 已提交
5172
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5173
{
5174
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5175

5176
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5177 5178
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5179
#else
P
Peter Zijlstra 已提交
5180 5181
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5182
#endif
5183
	rcu_read_lock();
5184
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5185 5186
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5187
		 * console might take a lot of time:
5188 5189 5190
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5191 5192
		 */
		touch_nmi_watchdog();
5193
		touch_all_softlockup_watchdogs();
I
Ingo Molnar 已提交
5194
		if (!state_filter || (p->state & state_filter))
5195
			sched_show_task(p);
5196
	}
L
Linus Torvalds 已提交
5197

I
Ingo Molnar 已提交
5198
#ifdef CONFIG_SCHED_DEBUG
5199 5200
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5201
#endif
5202
	rcu_read_unlock();
I
Ingo Molnar 已提交
5203 5204 5205
	/*
	 * Only show locks if all tasks are dumped:
	 */
5206
	if (!state_filter)
I
Ingo Molnar 已提交
5207
		debug_show_all_locks();
L
Linus Torvalds 已提交
5208 5209
}

5210
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
5211
{
I
Ingo Molnar 已提交
5212
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5213 5214
}

5215 5216 5217
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
I
Ingo Molnar 已提交
5218
 * @cpu: CPU the idle task belongs to
5219 5220 5221 5222
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5223
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5224
{
5225
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5226 5227
	unsigned long flags;

5228 5229
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5230

5231
	__sched_fork(0, idle);
5232
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5233
	idle->se.exec_start = sched_clock();
5234
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5235

5236 5237
	kasan_unpoison_task_stack(idle);

5238 5239 5240 5241 5242 5243 5244 5245 5246
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5247 5248
	/*
	 * We're having a chicken and egg problem, even though we are
I
Ingo Molnar 已提交
5249
	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5250 5251 5252 5253 5254 5255 5256 5257
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5258
	__set_task_cpu(idle, cpu);
5259
	rcu_read_unlock();
L
Linus Torvalds 已提交
5260 5261

	rq->curr = rq->idle = idle;
5262
	idle->on_rq = TASK_ON_RQ_QUEUED;
5263
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5264
	idle->on_cpu = 1;
5265
#endif
5266 5267
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5268 5269

	/* Set the preempt count _outside_ the spinlocks! */
5270
	init_idle_preempt_count(idle, cpu);
5271

I
Ingo Molnar 已提交
5272 5273 5274 5275
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5276
	ftrace_graph_init_idle_task(idle, cpu);
5277
	vtime_init_idle(idle, cpu);
5278
#ifdef CONFIG_SMP
5279 5280
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5281 5282
}

5283 5284
#ifdef CONFIG_SMP

5285 5286 5287
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
5288
	int ret = 1;
5289

5290 5291 5292
	if (!cpumask_weight(cur))
		return ret;

5293
	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5294 5295 5296 5297

	return ret;
}

5298 5299 5300 5301 5302 5303 5304
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
I
Ingo Molnar 已提交
5305
	 * to a new cpuset; we don't want to change their CPU
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5318 5319
					      cs_cpus_allowed))
		ret = dl_task_can_attach(p, cs_cpus_allowed);
5320 5321 5322 5323 5324

out:
	return ret;
}

5325
bool sched_smp_initialized __read_mostly;
5326

5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

5337
	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5338 5339 5340 5341
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5342
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5343 5344
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5345 5346 5347 5348 5349 5350 5351

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5352
	bool queued, running;
5353 5354
	struct rq_flags rf;
	struct rq *rq;
5355

5356
	rq = task_rq_lock(p, &rf);
5357
	queued = task_on_rq_queued(p);
5358 5359
	running = task_current(rq, p);

5360
	if (queued)
5361
		dequeue_task(rq, p, DEQUEUE_SAVE);
5362
	if (running)
5363
		put_prev_task(rq, p);
5364 5365 5366

	p->numa_preferred_nid = nid;

5367
	if (queued)
5368
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5369
	if (running)
5370
		set_curr_task(rq, p);
5371
	task_rq_unlock(rq, p, &rf);
5372
}
P
Peter Zijlstra 已提交
5373
#endif /* CONFIG_NUMA_BALANCING */
5374

L
Linus Torvalds 已提交
5375
#ifdef CONFIG_HOTPLUG_CPU
5376
/*
I
Ingo Molnar 已提交
5377
 * Ensure that the idle task is using init_mm right before its CPU goes
5378
 * offline.
5379
 */
5380
void idle_task_exit(void)
L
Linus Torvalds 已提交
5381
{
5382
	struct mm_struct *mm = current->active_mm;
5383

5384
	BUG_ON(cpu_online(smp_processor_id()));
5385

5386
	if (mm != &init_mm) {
5387
		switch_mm(mm, &init_mm, current);
5388 5389
		finish_arch_post_lock_switch();
	}
5390
	mmdrop(mm);
L
Linus Torvalds 已提交
5391 5392 5393
}

/*
5394 5395
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5396 5397 5398
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5399 5400
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5401
 */
5402
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5403
{
5404
	long delta = calc_load_fold_active(rq, 1);
5405 5406
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5407 5408
}

5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5425
/*
5426 5427 5428 5429 5430 5431
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5432
 */
5433
static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
L
Linus Torvalds 已提交
5434
{
5435
	struct rq *rq = dead_rq;
5436
	struct task_struct *next, *stop = rq->stop;
5437
	struct rq_flags orf = *rf;
5438
	int dest_cpu;
L
Linus Torvalds 已提交
5439 5440

	/*
5441 5442 5443 5444 5445 5446 5447
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5448
	 */
5449
	rq->stop = NULL;
5450

5451 5452 5453 5454 5455 5456 5457
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5458
	for (;;) {
5459 5460
		/*
		 * There's this thread running, bail when that's the only
I
Ingo Molnar 已提交
5461
		 * remaining thread:
5462 5463
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5464
			break;
5465

5466
		/*
I
Ingo Molnar 已提交
5467
		 * pick_next_task() assumes pinned rq->lock:
5468
		 */
5469
		next = pick_next_task(rq, &fake_task, rf);
5470
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5471
		next->sched_class->put_prev_task(rq, next);
5472

W
Wanpeng Li 已提交
5473 5474 5475 5476 5477 5478 5479 5480 5481
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5482
		rq_unlock(rq, rf);
W
Wanpeng Li 已提交
5483
		raw_spin_lock(&next->pi_lock);
5484
		rq_relock(rq, rf);
W
Wanpeng Li 已提交
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5496
		/* Find suitable destination for @next, with force if needed. */
5497
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5498
		rq = __migrate_task(rq, rf, next, dest_cpu);
5499
		if (rq != dead_rq) {
5500
			rq_unlock(rq, rf);
5501
			rq = dead_rq;
5502 5503
			*rf = orf;
			rq_relock(rq, rf);
5504
		}
W
Wanpeng Li 已提交
5505
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5506
	}
5507

5508
	rq->stop = stop;
5509
}
L
Linus Torvalds 已提交
5510 5511
#endif /* CONFIG_HOTPLUG_CPU */

5512
void set_rq_online(struct rq *rq)
5513 5514 5515 5516
{
	if (!rq->online) {
		const struct sched_class *class;

5517
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5518 5519 5520 5521 5522 5523 5524 5525 5526
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

5527
void set_rq_offline(struct rq *rq)
5528 5529 5530 5531 5532 5533 5534 5535 5536
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5537
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5538 5539 5540 5541
		rq->online = 0;
	}
}

5542
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5543
{
5544
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5545

5546 5547 5548
	rq->age_stamp = sched_clock_cpu(cpu);
}

I
Ingo Molnar 已提交
5549 5550 5551 5552
/*
 * used to mark begin/end of suspend/resume:
 */
static int num_cpus_frozen;
5553

L
Linus Torvalds 已提交
5554
/*
5555 5556 5557
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
5558 5559 5560
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
5561
 */
5562
static void cpuset_cpu_active(void)
5563
{
5564
	if (cpuhp_tasks_frozen) {
5565 5566 5567 5568 5569 5570 5571 5572 5573
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
5574
			return;
5575 5576 5577 5578 5579 5580
		}
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
5581
	}
5582
	cpuset_update_active_cpus();
5583
}
5584

5585
static int cpuset_cpu_inactive(unsigned int cpu)
5586
{
5587
	if (!cpuhp_tasks_frozen) {
5588
		if (dl_cpu_busy(cpu))
5589
			return -EBUSY;
5590
		cpuset_update_active_cpus();
5591
	} else {
5592 5593
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
5594
	}
5595
	return 0;
5596 5597
}

5598
int sched_cpu_activate(unsigned int cpu)
5599
{
5600
	struct rq *rq = cpu_rq(cpu);
5601
	struct rq_flags rf;
5602

5603
	set_cpu_active(cpu, true);
5604

5605
	if (sched_smp_initialized) {
5606
		sched_domains_numa_masks_set(cpu);
5607
		cpuset_cpu_active();
5608
	}
5609 5610 5611 5612 5613

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
I
Ingo Molnar 已提交
5614
	 *    after all CPUs have been brought up.
5615 5616 5617 5618
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
5619
	rq_lock_irqsave(rq, &rf);
5620 5621 5622 5623
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
5624
	rq_unlock_irqrestore(rq, &rf);
5625 5626 5627

	update_max_interval();

5628
	return 0;
5629 5630
}

5631
int sched_cpu_deactivate(unsigned int cpu)
5632 5633 5634
{
	int ret;

5635
	set_cpu_active(cpu, false);
5636 5637 5638 5639 5640 5641 5642
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
5643
	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5644 5645 5646 5647 5648 5649 5650 5651

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
5652
	}
5653 5654
	sched_domains_numa_masks_clear(cpu);
	return 0;
5655 5656
}

5657 5658 5659 5660 5661 5662 5663 5664
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

5665 5666 5667
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
5668
	sched_rq_cpu_starting(cpu);
5669
	return 0;
5670 5671
}

5672 5673 5674 5675
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5676
	struct rq_flags rf;
5677 5678 5679

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
5680 5681

	rq_lock_irqsave(rq, &rf);
5682 5683 5684 5685
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
5686
	migrate_tasks(rq, &rf);
5687
	BUG_ON(rq->nr_running != 1);
5688 5689
	rq_unlock_irqrestore(rq, &rf);

5690 5691
	calc_load_migrate(rq);
	update_max_interval();
5692
	nohz_balance_exit_idle(cpu);
5693
	hrtick_clear(rq);
5694 5695 5696 5697
	return 0;
}
#endif

P
Peter Zijlstra 已提交
5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static void sched_init_smt(void)
{
	/*
	 * We've enumerated all CPUs and will assume that if any CPU
	 * has SMT siblings, CPU0 will too.
	 */
	if (cpumask_weight(cpu_smt_mask(0)) > 1)
		static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif

L
Linus Torvalds 已提交
5714 5715
void __init sched_init_smp(void)
{
5716 5717 5718
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5719

5720 5721
	sched_init_numa();

5722 5723
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
I
Ingo Molnar 已提交
5724
	 * CPU masks are stable and all blatant races in the below code cannot
5725 5726
	 * happen.
	 */
5727
	mutex_lock(&sched_domains_mutex);
P
Peter Zijlstra 已提交
5728
	sched_init_domains(cpu_active_mask);
5729 5730 5731
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5732
	mutex_unlock(&sched_domains_mutex);
5733

5734
	/* Move init over to a non-isolated CPU */
5735
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5736
		BUG();
I
Ingo Molnar 已提交
5737
	sched_init_granularity();
5738
	free_cpumask_var(non_isolated_cpus);
5739

5740
	init_sched_rt_class();
5741
	init_sched_dl_class();
P
Peter Zijlstra 已提交
5742 5743 5744

	sched_init_smt();

5745
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
5746
}
5747 5748 5749

static int __init migration_init(void)
{
5750
	sched_rq_cpu_starting(smp_processor_id());
5751
	return 0;
L
Linus Torvalds 已提交
5752
}
5753 5754
early_initcall(migration_init);

L
Linus Torvalds 已提交
5755 5756 5757
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
5758
	sched_init_granularity();
L
Linus Torvalds 已提交
5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

5769
#ifdef CONFIG_CGROUP_SCHED
5770 5771 5772 5773
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
5774
struct task_group root_task_group;
5775
LIST_HEAD(task_groups);
5776 5777 5778

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
5779
#endif
P
Peter Zijlstra 已提交
5780

5781
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5782
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
5783

L
Linus Torvalds 已提交
5784 5785
void __init sched_init(void)
{
I
Ingo Molnar 已提交
5786
	int i, j;
5787 5788
	unsigned long alloc_size = 0, ptr;

5789
	sched_clock_init();
5790
	wait_bit_init();
5791

5792 5793 5794 5795 5796 5797 5798
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
5799
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5800 5801

#ifdef CONFIG_FAIR_GROUP_SCHED
5802
		root_task_group.se = (struct sched_entity **)ptr;
5803 5804
		ptr += nr_cpu_ids * sizeof(void **);

5805
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5806
		ptr += nr_cpu_ids * sizeof(void **);
5807

5808
#endif /* CONFIG_FAIR_GROUP_SCHED */
5809
#ifdef CONFIG_RT_GROUP_SCHED
5810
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5811 5812
		ptr += nr_cpu_ids * sizeof(void **);

5813
		root_task_group.rt_rq = (struct rt_rq **)ptr;
5814 5815
		ptr += nr_cpu_ids * sizeof(void **);

5816
#endif /* CONFIG_RT_GROUP_SCHED */
5817
	}
5818
#ifdef CONFIG_CPUMASK_OFFSTACK
5819 5820 5821
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5822 5823
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5824
	}
5825
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
5826

I
Ingo Molnar 已提交
5827 5828
	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5829

G
Gregory Haskins 已提交
5830 5831 5832 5833
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

5834
#ifdef CONFIG_RT_GROUP_SCHED
5835
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5836
			global_rt_period(), global_rt_runtime());
5837
#endif /* CONFIG_RT_GROUP_SCHED */
5838

D
Dhaval Giani 已提交
5839
#ifdef CONFIG_CGROUP_SCHED
5840 5841
	task_group_cache = KMEM_CACHE(task_group, 0);

5842 5843
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
5844
	INIT_LIST_HEAD(&root_task_group.siblings);
5845
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
5846
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
5847

5848
	for_each_possible_cpu(i) {
5849
		struct rq *rq;
L
Linus Torvalds 已提交
5850 5851

		rq = cpu_rq(i);
5852
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
5853
		rq->nr_running = 0;
5854 5855
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
5856
		init_cfs_rq(&rq->cfs);
5857 5858
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
5859
#ifdef CONFIG_FAIR_GROUP_SCHED
5860
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
5861
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5862
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
5863
		/*
I
Ingo Molnar 已提交
5864
		 * How much CPU bandwidth does root_task_group get?
D
Dhaval Giani 已提交
5865 5866
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
I
Ingo Molnar 已提交
5867 5868
		 * gets 100% of the CPU resources in the system. This overall
		 * system CPU resource is divided among the tasks of
5869
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
5870 5871 5872
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
5873
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
5874
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
I
Ingo Molnar 已提交
5875
		 * then A0's share of the CPU resource is:
D
Dhaval Giani 已提交
5876
		 *
5877
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
5878
		 *
5879 5880
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
5881
		 */
5882
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5883
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
5884 5885 5886
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5887
#ifdef CONFIG_RT_GROUP_SCHED
5888
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
5889
#endif
L
Linus Torvalds 已提交
5890

I
Ingo Molnar 已提交
5891 5892
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
5893

L
Linus Torvalds 已提交
5894
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
5895
		rq->sd = NULL;
G
Gregory Haskins 已提交
5896
		rq->rd = NULL;
5897
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
5898
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
5899
		rq->active_balance = 0;
I
Ingo Molnar 已提交
5900
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
5901
		rq->push_cpu = 0;
5902
		rq->cpu = i;
5903
		rq->online = 0;
5904 5905
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
5906
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
5907 5908 5909

		INIT_LIST_HEAD(&rq->cfs_tasks);

5910
		rq_attach_root(rq, &def_root_domain);
5911
#ifdef CONFIG_NO_HZ_COMMON
5912
		rq->last_load_update_tick = jiffies;
5913
		rq->nohz_flags = 0;
5914
#endif
5915 5916 5917
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
5918
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
5919
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
5920 5921 5922
		atomic_set(&rq->nr_iowait, 0);
	}

5923
	set_load_weight(&init_task);
5924

L
Linus Torvalds 已提交
5925 5926 5927
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
V
Vegard Nossum 已提交
5928
	mmgrab(&init_mm);
L
Linus Torvalds 已提交
5929 5930 5931 5932 5933 5934 5935 5936 5937
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
5938 5939 5940

	calc_load_update = jiffies + LOAD_FREQ;

5941
#ifdef CONFIG_SMP
R
Rusty Russell 已提交
5942 5943 5944
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
5945
	idle_thread_set_boot_cpu();
5946
	set_cpu_rq_start_time(smp_processor_id());
5947 5948
#endif
	init_sched_fair_class();
5949

5950 5951
	init_schedstats();

5952
	scheduler_running = 1;
L
Linus Torvalds 已提交
5953 5954
}

5955
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5956 5957
static inline int preempt_count_equals(int preempt_offset)
{
5958
	int nested = preempt_count() + rcu_preempt_depth();
5959

A
Arnd Bergmann 已提交
5960
	return (nested == preempt_offset);
5961 5962
}

5963
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
5964
{
P
Peter Zijlstra 已提交
5965 5966 5967 5968 5969
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
5970
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
5971 5972 5973 5974
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
5975
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
5976

5977 5978 5979 5980 5981
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
5982
{
I
Ingo Molnar 已提交
5983 5984 5985
	/* Ratelimiting timestamp: */
	static unsigned long prev_jiffy;

5986
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
5987

I
Ingo Molnar 已提交
5988 5989 5990
	/* WARN_ON_ONCE() by default, no rate limit required: */
	rcu_sleep_check();

5991 5992
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
5993 5994
	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
	    oops_in_progress)
I
Ingo Molnar 已提交
5995
		return;
5996

I
Ingo Molnar 已提交
5997 5998 5999 6000
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

I
Ingo Molnar 已提交
6001
	/* Save this before calling printk(), since that will clobber it: */
6002 6003
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
6004 6005 6006 6007 6008 6009 6010
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6011

6012 6013 6014
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
6015 6016 6017
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6018 6019
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
6020
		pr_err("Preemption disabled at:");
6021
		print_ip_sym(preempt_disable_ip);
6022 6023
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
6024
	dump_stack();
6025
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
6026
}
6027
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
6028 6029 6030
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6031
void normalize_rt_tasks(void)
6032
{
6033
	struct task_struct *g, *p;
6034 6035 6036
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
6037

6038
	read_lock(&tasklist_lock);
6039
	for_each_process_thread(g, p) {
6040 6041 6042
		/*
		 * Only normalize user tasks:
		 */
6043
		if (p->flags & PF_KTHREAD)
6044 6045
			continue;

6046 6047 6048 6049
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
6050

6051
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6052 6053 6054 6055
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
6056
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
6057
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6058
			continue;
I
Ingo Molnar 已提交
6059
		}
L
Linus Torvalds 已提交
6060

6061
		__sched_setscheduler(p, &attr, false, false);
6062
	}
6063
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6064 6065 6066
}

#endif /* CONFIG_MAGIC_SYSRQ */
6067

6068
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6069
/*
6070
 * These functions are only useful for the IA64 MCA handling, or kdb.
6071 6072 6073 6074 6075 6076 6077 6078 6079
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
I
Ingo Molnar 已提交
6080
 * curr_task - return the current task for a given CPU.
6081 6082 6083
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6084 6085
 *
 * Return: The current task for @cpu.
6086
 */
6087
struct task_struct *curr_task(int cpu)
6088 6089 6090 6091
{
	return cpu_curr(cpu);
}

6092 6093 6094
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6095
/**
I
Ingo Molnar 已提交
6096
 * set_curr_task - set the current task for a given CPU.
6097 6098 6099 6100
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6101
 * are serviced on a separate stack. It allows the architecture to switch the
I
Ingo Molnar 已提交
6102
 * notion of the current task on a CPU in a non-blocking manner. This function
6103 6104 6105 6106 6107 6108 6109
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6110
void ia64_set_curr_task(int cpu, struct task_struct *p)
6111 6112 6113 6114 6115
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6116

D
Dhaval Giani 已提交
6117
#ifdef CONFIG_CGROUP_SCHED
6118 6119 6120
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6121
static void sched_free_group(struct task_group *tg)
6122 6123 6124
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6125
	autogroup_free(tg);
6126
	kmem_cache_free(task_group_cache, tg);
6127 6128 6129
}

/* allocate runqueue etc for a new task group */
6130
struct task_group *sched_create_group(struct task_group *parent)
6131 6132 6133
{
	struct task_group *tg;

6134
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6135 6136 6137
	if (!tg)
		return ERR_PTR(-ENOMEM);

6138
	if (!alloc_fair_sched_group(tg, parent))
6139 6140
		goto err;

6141
	if (!alloc_rt_sched_group(tg, parent))
6142 6143
		goto err;

6144 6145 6146
	return tg;

err:
6147
	sched_free_group(tg);
6148 6149 6150 6151 6152 6153 6154
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6155
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6156
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6157

I
Ingo Molnar 已提交
6158 6159
	/* Root should already exist: */
	WARN_ON(!parent);
P
Peter Zijlstra 已提交
6160 6161 6162

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6163
	list_add_rcu(&tg->siblings, &parent->children);
6164
	spin_unlock_irqrestore(&task_group_lock, flags);
6165 6166

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
6167 6168
}

6169
/* rcu callback to free various structures associated with a task group */
6170
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6171
{
I
Ingo Molnar 已提交
6172
	/* Now it should be safe to free those cfs_rqs: */
6173
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6174 6175
}

6176
void sched_destroy_group(struct task_group *tg)
6177
{
I
Ingo Molnar 已提交
6178
	/* Wait for possible concurrent references to cfs_rqs complete: */
6179
	call_rcu(&tg->rcu, sched_free_group_rcu);
6180 6181 6182
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6183
{
6184
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
6185

I
Ingo Molnar 已提交
6186
	/* End participation in shares distribution: */
6187
	unregister_fair_sched_group(tg);
6188 6189

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6190
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6191
	list_del_rcu(&tg->siblings);
6192
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6193 6194
}

6195
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
6196
{
P
Peter Zijlstra 已提交
6197
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6198

6199 6200 6201 6202 6203 6204
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
6205 6206 6207 6208
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6209
#ifdef CONFIG_FAIR_GROUP_SCHED
6210 6211
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
6212
	else
P
Peter Zijlstra 已提交
6213
#endif
6214
		set_task_rq(tsk, task_cpu(tsk));
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
6226 6227
	int queued, running, queue_flags =
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6228 6229 6230 6231
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);
6232
	update_rq_clock(rq);
6233 6234 6235 6236 6237

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
6238
		dequeue_task(rq, tsk, queue_flags);
6239
	if (running)
6240 6241 6242
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
6243

6244
	if (queued)
6245
		enqueue_task(rq, tsk, queue_flags);
6246
	if (running)
6247
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6248

6249
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
6250
}
6251

6252
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6253
{
6254
	return css ? container_of(css, struct task_group, css) : NULL;
6255 6256
}

6257 6258
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6259
{
6260 6261
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
6262

6263
	if (!parent) {
6264
		/* This is early initialization for the top cgroup */
6265
		return &root_task_group.css;
6266 6267
	}

6268
	tg = sched_create_group(parent);
6269 6270 6271 6272 6273 6274
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css->parent);

	if (parent)
		sched_online_group(tg, parent);
	return 0;
}

6286
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6287
{
6288
	struct task_group *tg = css_tg(css);
6289

6290
	sched_offline_group(tg);
6291 6292
}

6293
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6294
{
6295
	struct task_group *tg = css_tg(css);
6296

6297 6298 6299 6300
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
6301 6302
}

6303 6304 6305 6306
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
6307
static void cpu_cgroup_fork(struct task_struct *task)
6308
{
6309 6310 6311 6312 6313
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

6314
	update_rq_clock(rq);
6315 6316 6317
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
6318 6319
}

6320
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6321
{
6322
	struct task_struct *task;
6323
	struct cgroup_subsys_state *css;
6324
	int ret = 0;
6325

6326
	cgroup_taskset_for_each(task, css, tset) {
6327
#ifdef CONFIG_RT_GROUP_SCHED
6328
		if (!sched_rt_can_attach(css_tg(css), task))
6329
			return -EINVAL;
6330
#else
6331 6332 6333
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
6334
#endif
6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
6351
	}
6352
	return ret;
6353
}
6354

6355
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6356
{
6357
	struct task_struct *task;
6358
	struct cgroup_subsys_state *css;
6359

6360
	cgroup_taskset_for_each(task, css, tset)
6361
		sched_move_task(task);
6362 6363
}

6364
#ifdef CONFIG_FAIR_GROUP_SCHED
6365 6366
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
6367
{
6368
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6369 6370
}

6371 6372
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
6373
{
6374
	struct task_group *tg = css_tg(css);
6375

6376
	return (u64) scale_load_down(tg->shares);
6377
}
6378 6379

#ifdef CONFIG_CFS_BANDWIDTH
6380 6381
static DEFINE_MUTEX(cfs_constraints_mutex);

6382 6383 6384
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

6385 6386
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

6387 6388
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
6389
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6390
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

6411 6412 6413 6414 6415
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
6416 6417 6418 6419 6420
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

6421
	runtime_enabled = quota != RUNTIME_INF;
6422
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6423 6424 6425 6426 6427 6428
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
6429 6430 6431
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
6432

P
Paul Turner 已提交
6433
	__refill_cfs_bandwidth_runtime(cfs_b);
I
Ingo Molnar 已提交
6434 6435

	/* Restart the period timer (if active) to handle new period expiry: */
P
Peter Zijlstra 已提交
6436 6437
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
I
Ingo Molnar 已提交
6438

6439 6440
	raw_spin_unlock_irq(&cfs_b->lock);

6441
	for_each_online_cpu(i) {
6442
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6443
		struct rq *rq = cfs_rq->rq;
6444
		struct rq_flags rf;
6445

6446
		rq_lock_irq(rq, &rf);
6447
		cfs_rq->runtime_enabled = runtime_enabled;
6448
		cfs_rq->runtime_remaining = 0;
6449

6450
		if (cfs_rq->throttled)
6451
			unthrottle_cfs_rq(cfs_rq);
6452
		rq_unlock_irq(rq, &rf);
6453
	}
6454 6455
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
6456 6457
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
6458
	put_online_cpus();
6459

6460
	return ret;
6461 6462 6463 6464 6465 6466
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

6467
	period = ktime_to_ns(tg->cfs_bandwidth.period);
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

6480
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6481 6482
		return -1;

6483
	quota_us = tg->cfs_bandwidth.quota;
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
6494
	quota = tg->cfs_bandwidth.quota;
6495 6496 6497 6498 6499 6500 6501 6502

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

6503
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6504 6505 6506 6507 6508
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

6509 6510
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
6511
{
6512
	return tg_get_cfs_quota(css_tg(css));
6513 6514
}

6515 6516
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
6517
{
6518
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6519 6520
}

6521 6522
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6523
{
6524
	return tg_get_cfs_period(css_tg(css));
6525 6526
}

6527 6528
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
6529
{
6530
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6531 6532
}

6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
6565
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6566 6567 6568 6569 6570
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
6571
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6572 6573

		quota = normalize_cfs_quota(tg, d);
6574
		parent_quota = parent_b->hierarchical_quota;
6575 6576

		/*
I
Ingo Molnar 已提交
6577 6578
		 * Ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set:
6579 6580 6581 6582 6583 6584
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
6585
	cfs_b->hierarchical_quota = quota;
6586 6587 6588 6589 6590 6591

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
6592
	int ret;
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

6604 6605 6606 6607 6608
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6609
}
6610

6611
static int cpu_stats_show(struct seq_file *sf, void *v)
6612
{
6613
	struct task_group *tg = css_tg(seq_css(sf));
6614
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6615

6616 6617 6618
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6619 6620 6621

	return 0;
}
6622
#endif /* CONFIG_CFS_BANDWIDTH */
6623
#endif /* CONFIG_FAIR_GROUP_SCHED */
6624

6625
#ifdef CONFIG_RT_GROUP_SCHED
6626 6627
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
6628
{
6629
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
6630 6631
}

6632 6633
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
6634
{
6635
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
6636
}
6637

6638 6639
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
6640
{
6641
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6642 6643
}

6644 6645
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6646
{
6647
	return sched_group_rt_period(css_tg(css));
6648
}
6649
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
6650

6651
static struct cftype cpu_files[] = {
6652
#ifdef CONFIG_FAIR_GROUP_SCHED
6653 6654
	{
		.name = "shares",
6655 6656
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
6657
	},
6658
#endif
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
6670 6671
	{
		.name = "stat",
6672
		.seq_show = cpu_stats_show,
6673
	},
6674
#endif
6675
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6676
	{
P
Peter Zijlstra 已提交
6677
		.name = "rt_runtime_us",
6678 6679
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
6680
	},
6681 6682
	{
		.name = "rt_period_us",
6683 6684
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
6685
	},
6686
#endif
I
Ingo Molnar 已提交
6687
	{ }	/* Terminate */
6688 6689
};

6690
struct cgroup_subsys cpu_cgrp_subsys = {
6691
	.css_alloc	= cpu_cgroup_css_alloc,
6692
	.css_online	= cpu_cgroup_css_online,
6693
	.css_released	= cpu_cgroup_css_released,
6694
	.css_free	= cpu_cgroup_css_free,
6695
	.fork		= cpu_cgroup_fork,
6696 6697
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
6698
	.legacy_cftypes	= cpu_files,
6699
	.early_init	= true,
6700 6701
};

6702
#endif	/* CONFIG_CGROUP_SCHED */
6703

6704 6705 6706 6707 6708
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};