inode.c 155.0 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40
#include <linux/aio.h>
41

42
#include "ext4_jbd2.h"
43 44
#include "xattr.h"
#include "acl.h"
45
#include "truncate.h"
46

47 48
#include <trace/events/ext4.h>

49 50
#define MPAGE_DA_EXTENT_TAIL 0x01

51 52 53 54 55 56 57 58
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

59
	csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 61 62
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63
		csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 65 66 67 68 69
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

70
	raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 72
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73
		raw->i_checksum_hi = cpu_to_le16(csum_hi);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

118 119 120
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
121
	trace_ext4_begin_ordered_truncate(inode, new_size);
122 123 124 125 126 127 128 129 130 131 132
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
133 134
}

135 136
static void ext4_invalidatepage(struct page *page, unsigned int offset,
				unsigned int length);
137 138
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
139 140 141
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
142

143 144 145
/*
 * Test whether an inode is a fast symlink.
 */
146
static int ext4_inode_is_fast_symlink(struct inode *inode)
147
{
148
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 150 151 152 153 154 155 156 157 158
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
159
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160
				 int nblocks)
161
{
162 163 164
	int ret;

	/*
165
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166 167 168 169
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
170
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
171
	jbd_debug(2, "restarting handle %p\n", handle);
172
	up_write(&EXT4_I(inode)->i_data_sem);
173
	ret = ext4_journal_restart(handle, nblocks);
174
	down_write(&EXT4_I(inode)->i_data_sem);
175
	ext4_discard_preallocations(inode);
176 177

	return ret;
178 179 180 181 182
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
183
void ext4_evict_inode(struct inode *inode)
184 185
{
	handle_t *handle;
186
	int err;
187

188
	trace_ext4_evict_inode(inode);
189

A
Al Viro 已提交
190
	if (inode->i_nlink) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
210 211
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
		    inode->i_ino != EXT4_JOURNAL_INO) {
212 213 214
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

215
			jbd2_complete_transaction(journal, commit_tid);
216 217
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
218
		truncate_inode_pages(&inode->i_data, 0);
219
		ext4_ioend_shutdown(inode);
A
Al Viro 已提交
220 221 222
		goto no_delete;
	}

223
	if (!is_bad_inode(inode))
224
		dquot_initialize(inode);
225

226 227
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
228
	truncate_inode_pages(&inode->i_data, 0);
229
	ext4_ioend_shutdown(inode);
230 231 232 233

	if (is_bad_inode(inode))
		goto no_delete;

234 235 236 237 238
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
239 240
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
				    ext4_blocks_for_truncate(inode)+3);
241
	if (IS_ERR(handle)) {
242
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 244 245 246 247
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
248
		ext4_orphan_del(NULL, inode);
249
		sb_end_intwrite(inode->i_sb);
250 251 252 253
		goto no_delete;
	}

	if (IS_SYNC(inode))
254
		ext4_handle_sync(handle);
255
	inode->i_size = 0;
256 257
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
258
		ext4_warning(inode->i_sb,
259 260 261
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
262
	if (inode->i_blocks)
263
		ext4_truncate(inode);
264 265 266 267 268 269 270

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
271
	if (!ext4_handle_has_enough_credits(handle, 3)) {
272 273 274 275
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
276
			ext4_warning(inode->i_sb,
277 278 279
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
280
			ext4_orphan_del(NULL, inode);
281
			sb_end_intwrite(inode->i_sb);
282 283 284 285
			goto no_delete;
		}
	}

286
	/*
287
	 * Kill off the orphan record which ext4_truncate created.
288
	 * AKPM: I think this can be inside the above `if'.
289
	 * Note that ext4_orphan_del() has to be able to cope with the
290
	 * deletion of a non-existent orphan - this is because we don't
291
	 * know if ext4_truncate() actually created an orphan record.
292 293
	 * (Well, we could do this if we need to, but heck - it works)
	 */
294 295
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
296 297 298 299 300 301 302 303

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
304
	if (ext4_mark_inode_dirty(handle, inode))
305
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
306
		ext4_clear_inode(inode);
307
	else
308 309
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
310
	sb_end_intwrite(inode->i_sb);
311 312
	return;
no_delete:
A
Al Viro 已提交
313
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
314 315
}

316 317
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
318
{
319
	return &EXT4_I(inode)->i_reserved_quota;
320
}
321
#endif
322

323 324
/*
 * Calculate the number of metadata blocks need to reserve
325
 * to allocate a block located at @lblock
326
 */
327
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328
{
329
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330
		return ext4_ext_calc_metadata_amount(inode, lblock);
331

332
	return ext4_ind_calc_metadata_amount(inode, lblock);
333 334
}

335 336 337 338
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
339 340
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
341 342
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 344 345
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
346
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347
	if (unlikely(used > ei->i_reserved_data_blocks)) {
348
		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349
			 "with only %d reserved data blocks",
350 351 352 353 354
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
355

356
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 358 359 360 361 362
		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
			"with only %d reserved metadata blocks "
			"(releasing %d blocks with reserved %d data blocks)",
			inode->i_ino, ei->i_allocated_meta_blocks,
			     ei->i_reserved_meta_blocks, used,
			     ei->i_reserved_data_blocks);
363 364 365 366
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

367 368 369
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371
			   used + ei->i_allocated_meta_blocks);
372
	ei->i_allocated_meta_blocks = 0;
373

374 375 376 377 378 379
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
380
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381
				   ei->i_reserved_meta_blocks);
382
		ei->i_reserved_meta_blocks = 0;
383
		ei->i_da_metadata_calc_len = 0;
384
	}
385
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386

387 388
	/* Update quota subsystem for data blocks */
	if (quota_claim)
389
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
390
	else {
391 392 393
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
394
		 * not re-claim the quota for fallocated blocks.
395
		 */
396
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397
	}
398 399 400 401 402 403

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
404 405
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
406
		ext4_discard_preallocations(inode);
407 408
}

409
static int __check_block_validity(struct inode *inode, const char *func,
410 411
				unsigned int line,
				struct ext4_map_blocks *map)
412
{
413 414
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
415 416 417 418
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
419 420 421 422 423
		return -EIO;
	}
	return 0;
}

424
#define check_block_validity(inode, map)	\
425
	__check_block_validity((inode), __func__, __LINE__, (map))
426

427
/*
428 429
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
463 464 465 466 467 468 469 470 471
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
472 473 474 475 476
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
477 478
			if (num >= max_pages) {
				done = 1;
479
				break;
480
			}
481 482 483 484 485 486
		}
		pagevec_release(&pvec);
	}
	return num;
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
#ifdef ES_AGGRESSIVE_TEST
static void ext4_map_blocks_es_recheck(handle_t *handle,
				       struct inode *inode,
				       struct ext4_map_blocks *es_map,
				       struct ext4_map_blocks *map,
				       int flags)
{
	int retval;

	map->m_flags = 0;
	/*
	 * There is a race window that the result is not the same.
	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
	 * is that we lookup a block mapping in extent status tree with
	 * out taking i_data_sem.  So at the time the unwritten extent
	 * could be converted.
	 */
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	} else {
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	}
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
	/*
	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
	 * because it shouldn't be marked in es_map->m_flags.
	 */
	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);

	/*
	 * We don't check m_len because extent will be collpased in status
	 * tree.  So the m_len might not equal.
	 */
	if (es_map->m_lblk != map->m_lblk ||
	    es_map->m_flags != map->m_flags ||
	    es_map->m_pblk != map->m_pblk) {
		printk("ES cache assertation failed for inode: %lu "
		       "es_cached ex [%d/%d/%llu/%x] != "
		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
		       inode->i_ino, es_map->m_lblk, es_map->m_len,
		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
		       map->m_len, map->m_pblk, map->m_flags,
		       retval, flags);
	}
}
#endif /* ES_AGGRESSIVE_TEST */

539
/*
540
 * The ext4_map_blocks() function tries to look up the requested blocks,
541
 * and returns if the blocks are already mapped.
542 543 544 545 546
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
547 548
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
549 550 551 552 553 554 555 556
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
557
 * that case, buffer head is unmapped
558 559 560
 *
 * It returns the error in case of allocation failure.
 */
561 562
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
563
{
564
	struct extent_status es;
565
	int retval;
566 567 568 569 570
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
571

572 573 574 575
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
			map->m_pblk = ext4_es_pblock(&es) +
					map->m_lblk - es.es_lblk;
			map->m_flags |= ext4_es_is_written(&es) ?
					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
			retval = es.es_len - (map->m_lblk - es.es_lblk);
			if (retval > map->m_len)
				retval = map->m_len;
			map->m_len = retval;
		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
			retval = 0;
		} else {
			BUG_ON(1);
		}
593 594 595 596
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(handle, inode, map,
					   &orig_map, flags);
#endif
597 598 599
		goto found;
	}

600
	/*
601 602
	 * Try to see if we can get the block without requesting a new
	 * file system block.
603
	 */
604 605
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
606
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
607 608
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
609
	} else {
610 611
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
612
	}
613 614 615 616
	if (retval > 0) {
		int ret;
		unsigned long long status;

617 618 619 620 621 622 623 624 625
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

626 627 628 629 630 631 632 633 634 635 636
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk,
					    map->m_len, map->m_pblk, status);
		if (ret < 0)
			retval = ret;
	}
637 638
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
639

640
found:
641
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
642
		int ret = check_block_validity(inode, map);
643 644 645 646
		if (ret != 0)
			return ret;
	}

647
	/* If it is only a block(s) look up */
648
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
649 650 651 652 653 654
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
655
	 * ext4_ext_get_block() returns the create = 0
656 657
	 * with buffer head unmapped.
	 */
658
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
659 660
		return retval;

661
	/*
662 663
	 * Here we clear m_flags because after allocating an new extent,
	 * it will be set again.
664
	 */
665
	map->m_flags &= ~EXT4_MAP_FLAGS;
666

667
	/*
668 669 670 671
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
672 673
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
674 675 676 677 678 679 680

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
681
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
682
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
683 684 685 686
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
687
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
688
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
689
	} else {
690
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
691

692
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
693 694 695 696 697
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
698
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
699
		}
700

701 702 703 704 705 706 707
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
708
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
709 710
			ext4_da_update_reserve_space(inode, retval, 1);
	}
711
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
712
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
713

714 715 716 717
	if (retval > 0) {
		int ret;
		unsigned long long status;

718 719 720 721 722 723 724 725 726
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (allocation)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

727 728 729 730 731 732 733 734 735
		/*
		 * If the extent has been zeroed out, we don't need to update
		 * extent status tree.
		 */
		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
			if (ext4_es_is_written(&es))
				goto has_zeroout;
		}
736 737 738 739 740 741 742 743 744 745
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret < 0)
			retval = ret;
746 747
	}

748
has_zeroout:
749
	up_write((&EXT4_I(inode)->i_data_sem));
750
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
751
		int ret = check_block_validity(inode, map);
752 753 754
		if (ret != 0)
			return ret;
	}
755 756 757
	return retval;
}

758 759 760
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

761 762
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
763
{
764
	handle_t *handle = ext4_journal_current_handle();
765
	struct ext4_map_blocks map;
J
Jan Kara 已提交
766
	int ret = 0, started = 0;
767
	int dio_credits;
768

T
Tao Ma 已提交
769 770 771
	if (ext4_has_inline_data(inode))
		return -ERANGE;

772 773 774
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

775
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
776
		/* Direct IO write... */
777 778 779
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
780 781
		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
					    dio_credits);
J
Jan Kara 已提交
782
		if (IS_ERR(handle)) {
783
			ret = PTR_ERR(handle);
784
			return ret;
785
		}
J
Jan Kara 已提交
786
		started = 1;
787 788
	}

789
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
790
	if (ret > 0) {
791 792 793
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
794
		ret = 0;
795
	}
J
Jan Kara 已提交
796 797
	if (started)
		ext4_journal_stop(handle);
798 799 800
	return ret;
}

801 802 803 804 805 806 807
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

808 809 810
/*
 * `handle' can be NULL if create is zero
 */
811
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
812
				ext4_lblk_t block, int create, int *errp)
813
{
814 815
	struct ext4_map_blocks map;
	struct buffer_head *bh;
816 817 818 819
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

820 821 822 823
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
824

825 826 827
	/* ensure we send some value back into *errp */
	*errp = 0;

828 829
	if (create && err == 0)
		err = -ENOSPC;	/* should never happen */
830 831 832 833 834 835
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
836
	if (unlikely(!bh)) {
837
		*errp = -ENOMEM;
838
		return NULL;
839
	}
840 841 842
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
843

844 845 846 847 848 849 850 851 852 853 854 855 856
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
857
		}
858 859 860 861 862 863 864
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
865
	}
866 867 868 869 870 871
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
872 873
}

874
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
875
			       ext4_lblk_t block, int create, int *err)
876
{
877
	struct buffer_head *bh;
878

879
	bh = ext4_getblk(handle, inode, block, create, err);
880 881 882 883
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
884
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
885 886 887 888 889 890 891 892
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

893 894 895 896 897 898 899
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
900 901 902 903 904 905 906
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

907 908
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
909
	     block_start = block_end, bh = next) {
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
927
 * close off a transaction and start a new one between the ext4_get_block()
928
 * and the commit_write().  So doing the jbd2_journal_start at the start of
929 930
 * prepare_write() is the right place.
 *
931 932 933 934
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
935
 *
936
 * By accident, ext4 can be reentered when a transaction is open via
937 938 939 940 941 942
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
943
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
944 945 946 947
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
948 949
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
950
{
951 952 953
	int dirty = buffer_dirty(bh);
	int ret;

954 955
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
956
	/*
C
Christoph Hellwig 已提交
957
	 * __block_write_begin() could have dirtied some buffers. Clean
958 959
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
960
	 * by __block_write_begin() isn't a real problem here as we clear
961 962 963 964 965 966 967 968 969
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
970 971
}

972 973
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
974
static int ext4_write_begin(struct file *file, struct address_space *mapping,
975 976
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
977
{
978
	struct inode *inode = mapping->host;
979
	int ret, needed_blocks;
980 981
	handle_t *handle;
	int retries = 0;
982
	struct page *page;
983
	pgoff_t index;
984
	unsigned from, to;
N
Nick Piggin 已提交
985

986
	trace_ext4_write_begin(inode, pos, len, flags);
987 988 989 990 991
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
992
	index = pos >> PAGE_CACHE_SHIFT;
993 994
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
995

996 997 998 999
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
1000 1001 1002
			return ret;
		if (ret == 1)
			return 0;
1003 1004
	}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

retry_journal:
1019
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1020
	if (IS_ERR(handle)) {
1021 1022
		page_cache_release(page);
		return PTR_ERR(handle);
1023
	}
1024

1025 1026 1027 1028 1029
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
1030
		ext4_journal_stop(handle);
1031
		goto retry_grab;
1032
	}
1033
	wait_on_page_writeback(page);
1034

1035
	if (ext4_should_dioread_nolock(inode))
1036
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1037
	else
1038
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1039 1040

	if (!ret && ext4_should_journal_data(inode)) {
1041 1042 1043
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
1044
	}
N
Nick Piggin 已提交
1045 1046

	if (ret) {
1047
		unlock_page(page);
1048
		/*
1049
		 * __block_write_begin may have instantiated a few blocks
1050 1051
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1052 1053 1054
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1055
		 */
1056
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1057 1058 1059 1060
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1061
			ext4_truncate_failed_write(inode);
1062
			/*
1063
			 * If truncate failed early the inode might
1064 1065 1066 1067 1068 1069 1070
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1071

1072 1073 1074 1075 1076 1077 1078
		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;
		page_cache_release(page);
		return ret;
	}
	*pagep = page;
1079 1080 1081
	return ret;
}

N
Nick Piggin 已提交
1082 1083
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1084
{
1085
	int ret;
1086 1087 1088
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1089 1090 1091 1092
	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	clear_buffer_meta(bh);
	clear_buffer_prio(bh);
	return ret;
1093 1094
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
 * buffers are managed internally.
 */
static int ext4_write_end(struct file *file,
			  struct address_space *mapping,
			  loff_t pos, unsigned len, unsigned copied,
			  struct page *page, void *fsdata)
1106 1107
{
	handle_t *handle = ext4_journal_current_handle();
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	int i_size_changed = 0;

	trace_ext4_write_end(inode, pos, len, copied);
	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
		ret = ext4_jbd2_file_inode(handle, inode);
		if (ret) {
			unlock_page(page);
			page_cache_release(page);
			goto errout;
		}
	}
1121

1122 1123 1124 1125 1126 1127
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
1128 1129 1130

	/*
	 * No need to use i_size_read() here, the i_size
1131
	 * cannot change under us because we hole i_mutex.
1132 1133 1134 1135 1136 1137 1138 1139 1140
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

1141
	if (pos + copied > EXT4_I(inode)->i_disksize) {
1142 1143
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
1144
		 * but greater than i_disksize. (hint delalloc)
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

1161 1162
	if (copied < 0)
		ret = copied;
1163
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164 1165 1166 1167 1168
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);
1169
errout:
1170
	ret2 = ext4_journal_stop(handle);
1171 1172
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1173

1174
	if (pos + len > inode->i_size) {
1175
		ext4_truncate_failed_write(inode);
1176
		/*
1177
		 * If truncate failed early the inode might still be
1178 1179 1180 1181 1182 1183 1184
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1185
	return ret ? ret : copied;
1186 1187
}

N
Nick Piggin 已提交
1188
static int ext4_journalled_write_end(struct file *file,
1189 1190 1191
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1192
{
1193
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1194
	struct inode *inode = mapping->host;
1195 1196
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1197
	unsigned from, to;
1198
	loff_t new_i_size;
1199

1200
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1201 1202 1203
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1204 1205
	BUG_ON(!ext4_handle_valid(handle));

1206 1207 1208 1209 1210 1211 1212 1213 1214
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1215

1216 1217 1218 1219 1220
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1221 1222
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1223
		i_size_write(inode, pos+copied);
1224
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1225
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1226 1227
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1228
		ret2 = ext4_mark_inode_dirty(handle, inode);
1229 1230 1231
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1232

1233
	unlock_page(page);
1234
	page_cache_release(page);
1235
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1236 1237 1238 1239 1240 1241
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1242
	ret2 = ext4_journal_stop(handle);
1243 1244
	if (!ret)
		ret = ret2;
1245
	if (pos + len > inode->i_size) {
1246
		ext4_truncate_failed_write(inode);
1247
		/*
1248
		 * If truncate failed early the inode might still be
1249 1250 1251 1252 1253 1254
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1255 1256

	return ret ? ret : copied;
1257
}
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
/*
 * Reserve a metadata for a single block located at lblock
 */
static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
{
	int retries = 0;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned int md_needed;
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
repeat:
	spin_lock(&ei->i_block_reservation_lock);
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
	trace_ext4_da_reserve_space(inode, md_needed);

	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			cond_resched();
			goto repeat;
		}
		return -ENOSPC;
	}
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);

	return 0;       /* success */
}

1308
/*
1309
 * Reserve a single cluster located at lblock
1310
 */
1311
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1312
{
A
Aneesh Kumar K.V 已提交
1313
	int retries = 0;
1314
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1315
	struct ext4_inode_info *ei = EXT4_I(inode);
1316
	unsigned int md_needed;
1317
	int ret;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1329 1330 1331 1332 1333 1334

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1335
repeat:
1336
	spin_lock(&ei->i_block_reservation_lock);
1337 1338 1339 1340 1341 1342
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1343 1344
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1345
	trace_ext4_da_reserve_space(inode, md_needed);
1346

1347 1348 1349 1350
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1351
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1352 1353 1354
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1355
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
L
Lukas Czerner 已提交
1356
			cond_resched();
A
Aneesh Kumar K.V 已提交
1357 1358
			goto repeat;
		}
1359
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1360 1361
		return -ENOSPC;
	}
1362
	ei->i_reserved_data_blocks++;
1363 1364
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1365

1366 1367 1368
	return 0;       /* success */
}

1369
static void ext4_da_release_space(struct inode *inode, int to_free)
1370 1371
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1372
	struct ext4_inode_info *ei = EXT4_I(inode);
1373

1374 1375 1376
	if (!to_free)
		return;		/* Nothing to release, exit */

1377
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1378

L
Li Zefan 已提交
1379
	trace_ext4_da_release_space(inode, to_free);
1380
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1381
		/*
1382 1383 1384 1385
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1386
		 */
1387
		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1388
			 "ino %lu, to_free %d with only %d reserved "
1389
			 "data blocks", inode->i_ino, to_free,
1390 1391 1392
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1393
	}
1394
	ei->i_reserved_data_blocks -= to_free;
1395

1396 1397 1398 1399 1400
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1401 1402
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1403
		 */
1404
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1405
				   ei->i_reserved_meta_blocks);
1406
		ei->i_reserved_meta_blocks = 0;
1407
		ei->i_da_metadata_calc_len = 0;
1408
	}
1409

1410
	/* update fs dirty data blocks counter */
1411
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1412 1413

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1414

1415
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1416 1417 1418
}

static void ext4_da_page_release_reservation(struct page *page,
1419 1420
					     unsigned int offset,
					     unsigned int length)
1421 1422 1423 1424
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1425 1426
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1427
	unsigned int stop = offset + length;
1428
	int num_clusters;
1429
	ext4_fsblk_t lblk;
1430

1431 1432
	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);

1433 1434 1435 1436 1437
	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

1438 1439 1440
		if (next_off > stop)
			break;

1441 1442 1443 1444 1445 1446
		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1447

1448 1449 1450 1451 1452
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1453 1454 1455 1456 1457 1458 1459
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1460
		    !ext4_find_delalloc_cluster(inode, lblk))
1461 1462 1463 1464
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1465
}
1466

1467 1468 1469 1470 1471 1472
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1473
 * them with writepage() call back
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1484 1485
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1486
{
1487 1488 1489 1490 1491
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1492
	loff_t size = i_size_read(inode);
1493 1494
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1495
	sector_t pblock = 0, cur_logical = 0;
1496
	struct ext4_io_submit io_submit;
1497 1498

	BUG_ON(mpd->next_page <= mpd->first_page);
1499
	memset(&io_submit, 0, sizeof(io_submit));
1500 1501 1502
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1503
	 * If we look at mpd->b_blocknr we would only be looking
1504 1505
	 * at the currently mapped buffer_heads.
	 */
1506 1507 1508
	index = mpd->first_page;
	end = mpd->next_page - 1;

1509
	pagevec_init(&pvec, 0);
1510
	while (index <= end) {
1511
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1512 1513 1514
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1515
			int skip_page = 0;
1516 1517
			struct page *page = pvec.pages[i];

1518 1519 1520
			index = page->index;
			if (index > end)
				break;
1521 1522 1523 1524 1525

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1526 1527 1528 1529 1530 1531
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1532 1533 1534 1535 1536
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1537 1538
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1539
			do {
1540 1541 1542
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1543 1544 1545 1546
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1547 1548 1549 1550 1551 1552 1553
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1554

1555 1556 1557 1558 1559
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1560
					skip_page = 1;
1561 1562
				bh = bh->b_this_page;
				block_start += bh->b_size;
1563 1564
				cur_logical++;
				pblock++;
1565 1566
			} while (bh != page_bufs);

1567 1568 1569 1570
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1571

1572
			clear_page_dirty_for_io(page);
1573 1574
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1575
			if (!err)
1576
				mpd->pages_written++;
1577 1578 1579 1580 1581 1582 1583 1584 1585
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1586
	ext4_io_submit(&io_submit);
1587 1588 1589
	return ret;
}

1590
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1591 1592 1593 1594 1595 1596
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1597
	ext4_lblk_t start, last;
1598

1599 1600
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1601 1602 1603 1604 1605

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1606
	pagevec_init(&pvec, 0);
1607 1608 1609 1610 1611 1612
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1613
			if (page->index > end)
1614 1615 1616
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
1617
			block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1618 1619 1620
			ClearPageUptodate(page);
			unlock_page(page);
		}
1621 1622
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1623 1624 1625 1626
	}
	return;
}

1627 1628 1629
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1630
	struct super_block *sb = inode->i_sb;
1631
	struct ext4_inode_info *ei = EXT4_I(inode);
1632 1633

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1634
	       EXT4_C2B(EXT4_SB(inode->i_sb),
1635
			ext4_count_free_clusters(sb)));
1636 1637
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1638
	       (long long) EXT4_C2B(EXT4_SB(sb),
1639
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1640
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1641
	       (long long) EXT4_C2B(EXT4_SB(sb),
1642
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1643 1644
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1645
		 ei->i_reserved_data_blocks);
1646
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1647 1648 1649
	       ei->i_reserved_meta_blocks);
	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
	       ei->i_allocated_meta_blocks);
1650 1651 1652
	return;
}

1653
/*
1654 1655
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1656
 *
1657
 * @mpd - bh describing space
1658 1659 1660 1661
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1662
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1663
{
1664
	int err, blks, get_blocks_flags;
1665
	struct ext4_map_blocks map, *mapp = NULL;
1666 1667 1668 1669
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1670 1671

	/*
1672 1673
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1674
	 */
1675 1676 1677 1678 1679
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1680 1681 1682 1683

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1684
	/*
1685
	 * Call ext4_map_blocks() to allocate any delayed allocation
1686 1687 1688 1689 1690 1691 1692 1693
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1694
	 * want to change *many* call functions, so ext4_map_blocks()
1695
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1696 1697 1698 1699 1700
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1701
	 */
1702 1703
	map.m_lblk = next;
	map.m_len = max_blocks;
L
Lukas Czerner 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712
	/*
	 * We're in delalloc path and it is possible that we're going to
	 * need more metadata blocks than previously reserved. However
	 * we must not fail because we're in writeback and there is
	 * nothing we can do about it so it might result in data loss.
	 * So use reserved blocks to allocate metadata if possible.
	 */
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
1713 1714
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1715
	if (mpd->b_state & (1 << BH_Delay))
1716 1717
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

L
Lukas Czerner 已提交
1718

1719
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1720
	if (blks < 0) {
1721 1722
		struct super_block *sb = mpd->inode->i_sb;

1723
		err = blks;
1724
		/*
1725
		 * If get block returns EAGAIN or ENOSPC and there
1726 1727
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1728 1729
		 */
		if (err == -EAGAIN)
1730
			goto submit_io;
1731

1732
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1733
			mpd->retval = err;
1734
			goto submit_io;
1735 1736
		}

1737
		/*
1738 1739 1740 1741 1742
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1743
		 */
1744 1745 1746 1747 1748 1749 1750 1751
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
1752
				"This should not happen!! Data will be lost");
1753 1754
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1755
		}
1756
		/* invalidate all the pages */
1757
		ext4_da_block_invalidatepages(mpd);
1758 1759 1760

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1761
		return;
1762
	}
1763 1764
	BUG_ON(blks == 0);

1765
	mapp = &map;
1766 1767 1768
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1769

1770 1771
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1772 1773 1774
	}

	/*
1775
	 * Update on-disk size along with block allocation.
1776 1777 1778 1779 1780 1781
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1782 1783 1784 1785 1786
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1787 1788
	}

1789
submit_io:
1790
	mpage_da_submit_io(mpd, mapp);
1791
	mpd->io_done = 1;
1792 1793
}

1794 1795
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1796 1797 1798 1799 1800 1801

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1802
 * @b_state - b_state of the buffer head added
1803 1804 1805
 *
 * the function is used to collect contig. blocks in same state
 */
1806
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1807
				   unsigned long b_state)
1808 1809
{
	sector_t next;
1810 1811
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1812

1813 1814 1815 1816
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1817
	 * ext4_map_blocks() multiple times in a loop
1818
	 */
1819
	if (nrblocks >= (8*1024*1024 >> blkbits))
1820 1821
		goto flush_it;

1822 1823
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1834 1835 1836
	/*
	 * First block in the extent
	 */
1837 1838
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1839
		mpd->b_size = 1 << blkbits;
1840
		mpd->b_state = b_state & BH_FLAGS;
1841 1842 1843
		return;
	}

1844
	next = mpd->b_blocknr + nrblocks;
1845 1846 1847
	/*
	 * Can we merge the block to our big extent?
	 */
1848
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1849
		mpd->b_size += 1 << blkbits;
1850 1851 1852
		return;
	}

1853
flush_it:
1854 1855 1856 1857
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1858
	mpage_da_map_and_submit(mpd);
1859
	return;
1860 1861
}

1862
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1863
{
1864
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1865 1866
}

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
1877
	struct extent_status es;
1878 1879
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);
1880 1881 1882 1883 1884
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
1885 1886 1887 1888 1889 1890 1891 1892

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, iblock, &es)) {

		if (ext4_es_is_hole(&es)) {
			retval = 0;
			down_read((&EXT4_I(inode)->i_data_sem));
			goto add_delayed;
		}

		/*
		 * Delayed extent could be allocated by fallocate.
		 * So we need to check it.
		 */
		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
			map_bh(bh, inode->i_sb, invalid_block);
			set_buffer_new(bh);
			set_buffer_delay(bh);
			return 0;
		}

		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
		retval = es.es_len - (iblock - es.es_lblk);
		if (retval > map->m_len)
			retval = map->m_len;
		map->m_len = retval;
		if (ext4_es_is_written(&es))
			map->m_flags |= EXT4_MAP_MAPPED;
		else if (ext4_es_is_unwritten(&es))
			map->m_flags |= EXT4_MAP_UNWRITTEN;
		else
			BUG_ON(1);

1926 1927 1928
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
#endif
1929 1930 1931
		return retval;
	}

1932 1933 1934 1935 1936
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1950 1951
		retval = ext4_ext_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1952
	else
1953 1954
		retval = ext4_ind_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1955

1956
add_delayed:
1957
	if (retval == 0) {
1958
		int ret;
1959 1960 1961 1962
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
1963 1964 1965 1966 1967
		/*
		 * If the block was allocated from previously allocated cluster,
		 * then we don't need to reserve it again. However we still need
		 * to reserve metadata for every block we're going to write.
		 */
1968
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1969 1970
			ret = ext4_da_reserve_space(inode, iblock);
			if (ret) {
1971
				/* not enough space to reserve */
1972
				retval = ret;
1973
				goto out_unlock;
1974
			}
1975 1976 1977 1978 1979 1980 1981
		} else {
			ret = ext4_da_reserve_metadata(inode, iblock);
			if (ret) {
				/* not enough space to reserve */
				retval = ret;
				goto out_unlock;
			}
1982 1983
		}

1984 1985 1986 1987
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    ~0, EXTENT_STATUS_DELAYED);
		if (ret) {
			retval = ret;
1988
			goto out_unlock;
1989
		}
1990

1991 1992 1993 1994 1995 1996 1997 1998
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
1999 2000 2001 2002
	} else if (retval > 0) {
		int ret;
		unsigned long long status;

2003 2004 2005 2006 2007 2008 2009 2010 2011
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

2012 2013 2014 2015 2016 2017
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret != 0)
			retval = ret;
2018 2019 2020 2021 2022 2023 2024 2025
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

2026
/*
2027 2028 2029
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2030 2031 2032 2033 2034 2035 2036
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2037
 */
2038 2039
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
2040
{
2041
	struct ext4_map_blocks map;
2042 2043 2044
	int ret = 0;

	BUG_ON(create == 0);
2045 2046 2047 2048
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2049 2050 2051 2052 2053 2054

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2055 2056
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
2057
		return ret;
2058

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
2070
		set_buffer_mapped(bh);
2071 2072
	}
	return 0;
2073
}
2074

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
2092
	struct buffer_head *page_bufs = NULL;
2093
	handle_t *handle = NULL;
2094 2095 2096
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
2097

2098
	ClearPageChecked(page);
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
2115 2116 2117 2118
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

2119 2120
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
2121 2122 2123 2124 2125
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

2126 2127
	BUG_ON(!ext4_handle_valid(handle));

2128 2129
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
2130

2131 2132 2133 2134 2135 2136 2137 2138 2139
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
2140 2141
	if (ret == 0)
		ret = err;
2142
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2143 2144 2145 2146
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

2147 2148 2149
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
2150
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2151
out:
2152
	brelse(inode_bh);
2153 2154 2155
	return ret;
}

2156
/*
2157 2158 2159 2160
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
2161
 * we are writing back data modified via mmap(), no one guarantees in which
2162 2163 2164 2165
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2166 2167 2168
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
2169
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2170
 *   - grab_page_cache when doing write_begin (have journal handle)
2171 2172 2173 2174 2175 2176 2177 2178 2179
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
2180
 * but other buffer_heads would be unmapped but dirty (dirty done via the
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2196
 */
2197
static int ext4_writepage(struct page *page,
2198
			  struct writeback_control *wbc)
2199
{
2200
	int ret = 0;
2201
	loff_t size;
2202
	unsigned int len;
2203
	struct buffer_head *page_bufs = NULL;
2204
	struct inode *inode = page->mapping->host;
2205
	struct ext4_io_submit io_submit;
2206

L
Lukas Czerner 已提交
2207
	trace_ext4_writepage(page);
2208 2209 2210 2211 2212
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2213

T
Theodore Ts'o 已提交
2214 2215
	page_bufs = page_buffers(page);
	/*
2216 2217 2218 2219 2220
	 * We cannot do block allocation or other extent handling in this
	 * function. If there are buffers needing that, we have to redirty
	 * the page. But we may reach here when we do a journal commit via
	 * journal_submit_inode_data_buffers() and in that case we must write
	 * allocated buffers to achieve data=ordered mode guarantees.
T
Theodore Ts'o 已提交
2221
	 */
2222 2223
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
2224
		redirty_page_for_writepage(wbc, page);
2225 2226 2227 2228 2229 2230 2231 2232
		if (current->flags & PF_MEMALLOC) {
			/*
			 * For memory cleaning there's no point in writing only
			 * some buffers. So just bail out. Warn if we came here
			 * from direct reclaim.
			 */
			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
							== PF_MEMALLOC);
2233 2234 2235
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2236
	}
2237

2238
	if (PageChecked(page) && ext4_should_journal_data(inode))
2239 2240 2241 2242
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2243
		return __ext4_journalled_writepage(page, len);
2244

2245
	memset(&io_submit, 0, sizeof(io_submit));
2246 2247
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2248 2249 2250
	return ret;
}

2251
/*
2252
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2253
 * calculate the total number of credits to reserve to fit
2254 2255 2256
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2257
 */
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2269
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2270 2271 2272 2273 2274
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2275

2276 2277
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2278
 * address space and accumulate pages that need writing, and call
2279 2280
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2281
 */
2282 2283
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2284
				struct writeback_control *wbc,
2285 2286
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2287
{
2288
	struct buffer_head	*bh, *head;
2289
	struct inode		*inode = mapping->host;
2290 2291 2292 2293 2294 2295
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2296

2297 2298 2299
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2300 2301 2302 2303
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2304
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2305 2306 2307 2308
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2309
	*done_index = index;
2310
	while (index <= end) {
2311
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2312 2313
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2314
			return 0;
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2326 2327
			if (page->index > end)
				goto out;
2328

2329 2330
			*done_index = page->index + 1;

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2341 2342 2343
			lock_page(page);

			/*
2344 2345 2346 2347 2348 2349
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2350
			 */
2351 2352 2353 2354
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2355 2356 2357 2358
				unlock_page(page);
				continue;
			}

2359
			wait_on_page_writeback(page);
2360 2361
			BUG_ON(PageWriteback(page));

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2373
			if (mpd->next_page != page->index)
2374 2375 2376 2377 2378
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2379 2380 2381 2382 2383
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2384
				/*
2385 2386 2387
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2388
				 */
2389 2390 2391 2392 2393 2394 2395
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2396
					/*
2397 2398 2399 2400 2401 2402 2403
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2404
					 */
2405 2406 2407 2408 2409 2410
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2411 2412 2413 2414

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2415
				    wbc->sync_mode == WB_SYNC_NONE)
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2426
					goto out;
2427 2428 2429 2430 2431
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2432 2433 2434
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2435 2436 2437
out:
	pagevec_release(&pvec);
	cond_resched();
2438 2439 2440 2441
	return ret;
}


2442
static int ext4_da_writepages(struct address_space *mapping,
2443
			      struct writeback_control *wbc)
2444
{
2445 2446
	pgoff_t	index;
	int range_whole = 0;
2447
	handle_t *handle = NULL;
2448
	struct mpage_da_data mpd;
2449
	struct inode *inode = mapping->host;
2450
	int pages_written = 0;
2451
	unsigned int max_pages;
2452
	int range_cyclic, cycled = 1, io_done = 0;
2453 2454
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2455
	loff_t range_start = wbc->range_start;
2456
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2457
	pgoff_t done_index = 0;
2458
	pgoff_t end;
S
Shaohua Li 已提交
2459
	struct blk_plug plug;
2460

2461
	trace_ext4_da_writepages(inode, wbc);
2462

2463 2464 2465 2466 2467
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2468
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2469
		return 0;
2470 2471 2472 2473 2474

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2475
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2476 2477 2478 2479 2480
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2481
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2482 2483
		return -EROFS;

2484 2485
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2486

2487 2488
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2489
		index = mapping->writeback_index;
2490 2491 2492 2493 2494
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2495 2496
		end = -1;
	} else {
2497
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2498 2499
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2500

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2518 2519 2520 2521 2522 2523
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2534
retry:
2535
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2536 2537
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2538
	blk_start_plug(&plug);
2539
	while (!ret && wbc->nr_to_write > 0) {
2540 2541 2542 2543 2544 2545 2546 2547

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2548
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2549

2550
		/* start a new transaction*/
2551 2552
		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
					    needed_blocks);
2553 2554
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2555
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2556
			       "%ld pages, ino %lu; err %d", __func__,
2557
				wbc->nr_to_write, inode->i_ino, ret);
2558
			blk_finish_plug(&plug);
2559 2560
			goto out_writepages;
		}
2561 2562

		/*
2563
		 * Now call write_cache_pages_da() to find the next
2564
		 * contiguous region of logical blocks that need
2565
		 * blocks to be allocated by ext4 and submit them.
2566
		 */
2567 2568
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2569
		/*
2570
		 * If we have a contiguous extent of pages and we
2571 2572 2573 2574
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2575
			mpage_da_map_and_submit(&mpd);
2576 2577
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2578
		trace_ext4_da_write_pages(inode, &mpd);
2579
		wbc->nr_to_write -= mpd.pages_written;
2580

2581
		ext4_journal_stop(handle);
2582

2583
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2584 2585 2586 2587
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2588
			jbd2_journal_force_commit_nested(sbi->s_journal);
2589 2590
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2591
			/*
2592 2593 2594
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2595
			 */
2596
			pages_written += mpd.pages_written;
2597
			ret = mpd.retval;
2598
			io_done = 1;
2599
		} else if (wbc->nr_to_write)
2600 2601 2602 2603 2604 2605
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2606
	}
S
Shaohua Li 已提交
2607
	blk_finish_plug(&plug);
2608 2609 2610 2611 2612 2613 2614
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2615 2616

	/* Update index */
2617
	wbc->range_cyclic = range_cyclic;
2618 2619 2620 2621 2622
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2623
		mapping->writeback_index = done_index;
2624

2625
out_writepages:
2626
	wbc->nr_to_write -= nr_to_writebump;
2627
	wbc->range_start = range_start;
2628
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2629
	return ret;
2630 2631
}

2632 2633
static int ext4_nonda_switch(struct super_block *sb)
{
2634
	s64 free_clusters, dirty_clusters;
2635 2636 2637 2638 2639
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2640
	 * counters can get slightly wrong with percpu_counter_batch getting
2641 2642 2643 2644
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2645 2646 2647 2648
	free_clusters =
		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
	dirty_clusters =
		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2649 2650 2651
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
2652
	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2653
		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2654

2655 2656
	if (2 * free_clusters < 3 * dirty_clusters ||
	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2657
		/*
2658 2659
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2660 2661 2662 2663 2664 2665
		 */
		return 1;
	}
	return 0;
}

2666
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2667 2668
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2669
{
2670
	int ret, retries = 0;
2671 2672 2673 2674 2675 2676
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2677 2678 2679 2680 2681 2682 2683

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2684
	trace_ext4_da_write_begin(inode, pos, len, flags);
2685 2686 2687 2688 2689 2690

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
2691 2692 2693
			return ret;
		if (ret == 1)
			return 0;
2694 2695
	}

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

2709 2710 2711 2712 2713 2714
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
2715
retry_journal:
2716
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2717
	if (IS_ERR(handle)) {
2718 2719
		page_cache_release(page);
		return PTR_ERR(handle);
2720 2721
	}

2722 2723 2724 2725 2726
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
2727
		ext4_journal_stop(handle);
2728
		goto retry_grab;
2729
	}
2730 2731
	/* In case writeback began while the page was unlocked */
	wait_on_page_writeback(page);
2732

2733
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2734 2735 2736
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
2737 2738 2739 2740 2741 2742
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2743
			ext4_truncate_failed_write(inode);
2744 2745 2746 2747 2748 2749 2750

		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;

		page_cache_release(page);
		return ret;
2751 2752
	}

2753
	*pagep = page;
2754 2755 2756
	return ret;
}

2757 2758 2759 2760 2761
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2762
					    unsigned long offset)
2763 2764 2765 2766 2767 2768 2769 2770 2771
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2772
	for (i = 0; i < idx; i++)
2773 2774
		bh = bh->b_this_page;

2775
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2776 2777 2778 2779
		return 0;
	return 1;
}

2780
static int ext4_da_write_end(struct file *file,
2781 2782 2783
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2784 2785 2786 2787 2788
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2789
	unsigned long start, end;
2790 2791
	int write_mode = (int)(unsigned long)fsdata;

2792 2793 2794
	if (write_mode == FALL_BACK_TO_NONDELALLOC)
		return ext4_write_end(file, mapping, pos,
				      len, copied, page, fsdata);
2795

2796
	trace_ext4_da_write_end(inode, pos, len, copied);
2797
	start = pos & (PAGE_CACHE_SIZE - 1);
2798
	end = start + copied - 1;
2799 2800 2801 2802 2803 2804 2805

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2806
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2807 2808
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2809
			down_write(&EXT4_I(inode)->i_data_sem);
2810
			if (new_i_size > EXT4_I(inode)->i_disksize)
2811 2812
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2813 2814 2815 2816 2817
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2818
		}
2819
	}
2820 2821 2822 2823 2824 2825 2826 2827

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2828
							page, fsdata);
2829

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

2840 2841
static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
				   unsigned int length)
2842 2843 2844 2845 2846 2847 2848 2849
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2850
	ext4_da_page_release_reservation(page, offset, length);
2851 2852

out:
2853
	ext4_invalidatepage(page, offset, length);
2854 2855 2856 2857

	return;
}

2858 2859 2860 2861 2862
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2863 2864
	trace_ext4_alloc_da_blocks(inode);

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2875
	 *
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2888
	 * the pages by calling redirty_page_for_writepage() but that
2889 2890
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2891
	 * simplifying them because we wouldn't actually intend to
2892 2893 2894
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2895
	 *
2896 2897 2898 2899 2900 2901
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2902

2903 2904 2905 2906 2907
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2908
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2909 2910 2911 2912 2913 2914 2915 2916
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2917
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2918 2919 2920 2921 2922
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2923 2924 2925 2926 2927 2928
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2939 2940
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2952
		 * NB. EXT4_STATE_JDATA is not set on files other than
2953 2954 2955 2956 2957 2958
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2959
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2960
		journal = EXT4_JOURNAL(inode);
2961 2962 2963
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2964 2965 2966 2967 2968

		if (err)
			return 0;
	}

2969
	return generic_block_bmap(mapping, block, ext4_get_block);
2970 2971
}

2972
static int ext4_readpage(struct file *file, struct page *page)
2973
{
T
Tao Ma 已提交
2974 2975 2976
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2977
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2978 2979 2980 2981 2982 2983 2984 2985

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2986 2987 2988
}

static int
2989
ext4_readpages(struct file *file, struct address_space *mapping,
2990 2991
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2992 2993 2994 2995 2996 2997
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2998
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2999 3000
}

3001 3002
static void ext4_invalidatepage(struct page *page, unsigned int offset,
				unsigned int length)
3003
{
3004
	trace_ext4_invalidatepage(page, offset, length);
3005

3006 3007 3008
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

3009
	block_invalidatepage(page, offset, length);
3010 3011
}

3012
static int __ext4_journalled_invalidatepage(struct page *page,
3013 3014
					    unsigned int offset,
					    unsigned int length)
3015 3016 3017
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

3018
	trace_ext4_journalled_invalidatepage(page, offset, length);
3019

3020 3021 3022
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
3023
	if (offset == 0 && length == PAGE_CACHE_SIZE)
3024 3025
		ClearPageChecked(page);

3026
	return jbd2_journal_invalidatepage(journal, page, offset, length);
3027 3028 3029 3030
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
3031 3032
					   unsigned int offset,
					   unsigned int length)
3033
{
3034
	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3035 3036
}

3037
static int ext4_releasepage(struct page *page, gfp_t wait)
3038
{
3039
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3040

3041 3042
	trace_ext4_releasepage(page);

3043 3044
	/* Page has dirty journalled data -> cannot release */
	if (PageChecked(page))
3045
		return 0;
3046 3047 3048 3049
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3050 3051
}

3052 3053 3054 3055 3056
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3057
int ext4_get_block_write(struct inode *inode, sector_t iblock,
3058 3059
		   struct buffer_head *bh_result, int create)
{
3060
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3061
		   inode->i_ino, create);
3062 3063
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3064 3065
}

3066
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3067
		   struct buffer_head *bh_result, int create)
3068
{
3069 3070 3071 3072
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
3073 3074
}

3075
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3076 3077
			    ssize_t size, void *private, int ret,
			    bool is_async)
3078
{
A
Al Viro 已提交
3079
	struct inode *inode = file_inode(iocb->ki_filp);
3080 3081
        ext4_io_end_t *io_end = iocb->private;

3082 3083 3084
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
		goto out;
3085

3086
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3087
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3088 3089 3090
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

3091
	iocb->private = NULL;
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102

	/* if not aio dio with unwritten extents, just free io and return */
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
		ext4_free_io_end(io_end);
out:
		inode_dio_done(inode);
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
	}

3103 3104
	io_end->offset = offset;
	io_end->size = size;
3105 3106 3107 3108
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3109 3110

	ext4_add_complete_io(io_end);
3111
}
3112

3113 3114 3115 3116 3117
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
3118
 * For holes, we fallocate those blocks, mark them as uninitialized
3119
 * If those blocks were preallocated, we mark sure they are split, but
3120
 * still keep the range to write as uninitialized.
3121
 *
3122
 * The unwritten extents will be converted to written when DIO is completed.
3123
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
3124
 * set up an end_io call back function, which will do the conversion
3125
 * when async direct IO completed.
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
3140 3141 3142
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
3143
	loff_t final_size = offset + count;
3144

3145 3146 3147
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3148

3149
	BUG_ON(iocb->private == NULL);
3150

3151 3152
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
3153

3154 3155 3156 3157 3158
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
3159

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
3182
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3183 3184 3185
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
3186
		}
3187
		io_end->flag |= EXT4_IO_END_DIRECT;
3188
		iocb->private = io_end;
3189
		/*
3190 3191 3192 3193
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
3194
		 */
3195 3196
		ext4_inode_aio_set(inode, io_end);
	}
3197

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

3212 3213
	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
3214
	/*
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
3227
	 */
3228 3229 3230 3231
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3244

3245 3246 3247 3248 3249 3250
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3251
	}
3252

3253
	return ret;
3254 3255 3256 3257 3258 3259 3260 3261
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3262
	ssize_t ret;
3263

3264 3265 3266 3267 3268 3269
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3270 3271 3272 3273
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3274
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3275
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3276 3277 3278 3279 3280 3281
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3282 3283
}

3284
/*
3285
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3297
static int ext4_journalled_set_page_dirty(struct page *page)
3298 3299 3300 3301 3302
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3303
static const struct address_space_operations ext4_aops = {
3304 3305
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3306
	.writepage		= ext4_writepage,
3307
	.write_begin		= ext4_write_begin,
3308
	.write_end		= ext4_write_end,
3309 3310 3311 3312 3313 3314
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3315
	.error_remove_page	= generic_error_remove_page,
3316 3317
};

3318
static const struct address_space_operations ext4_journalled_aops = {
3319 3320
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3321
	.writepage		= ext4_writepage,
3322 3323 3324 3325
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3326
	.invalidatepage		= ext4_journalled_invalidatepage,
3327
	.releasepage		= ext4_releasepage,
3328
	.direct_IO		= ext4_direct_IO,
3329
	.is_partially_uptodate  = block_is_partially_uptodate,
3330
	.error_remove_page	= generic_error_remove_page,
3331 3332
};

3333
static const struct address_space_operations ext4_da_aops = {
3334 3335
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3336
	.writepage		= ext4_writepage,
3337 3338 3339 3340 3341 3342 3343 3344 3345
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3346
	.error_remove_page	= generic_error_remove_page,
3347 3348
};

3349
void ext4_set_aops(struct inode *inode)
3350
{
3351 3352
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
3353
		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3354 3355
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
3356
		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3357 3358
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3359
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3360
		return;
3361 3362 3363
	default:
		BUG();
	}
3364 3365 3366 3367
	if (test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else
		inode->i_mapping->a_ops = &ext4_aops;
3368 3369
}

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3390
		return -ENOMEM;
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3419
 * from:   The starting byte offset (from the beginning of the file)
3420 3421 3422 3423 3424 3425 3426
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3427
 *         for updating the contents of a page whose blocks may
3428 3429 3430
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3431
 * Returns zero on success or negative on failure.
3432
 */
E
Eric Sandeen 已提交
3433
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3459 3460
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3473 3474
		unsigned int end_of_block, range_to_discard;

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3560
		} else
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
/*
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
int ext4_block_truncate_page(handle_t *handle,
		struct address_space *mapping, loff_t from)
{
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	unsigned length;
	unsigned blocksize;
	struct inode *inode = mapping->host;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));

	return ext4_block_zero_page_range(handle, mapping, from, length);
}

/*
 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
 * starting from file offset 'from'.  The range to be zero'd must
 * be contained with in one block.  If the specified range exceeds
 * the end of the block it will be shortened to end of the block
 * that cooresponds to 'from'
 */
int ext4_block_zero_page_range(handle_t *handle,
		struct address_space *mapping, loff_t from, loff_t length)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	unsigned blocksize, max, pos;
	ext4_lblk_t iblock;
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
		return -ENOMEM;

	blocksize = inode->i_sb->s_blocksize;
	max = blocksize - (offset & (blocksize - 1));

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the block
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
		ext4_get_block(inode, iblock, bh, 0);
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

	if (ext4_should_journal_data(inode)) {
		BUFFER_TRACE(bh, "get write access");
		err = ext4_journal_get_write_access(handle, bh);
		if (err)
			goto unlock;
	}

	zero_user(page, offset, length);

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
	if (ext4_should_journal_data(inode)) {
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3684
	} else {
3685
		mark_buffer_dirty(bh);
3686 3687 3688
		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
			err = ext4_jbd2_file_inode(handle, inode);
	}
3689 3690 3691 3692 3693 3694 3695

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3707 3708 3709 3710 3711 3712 3713 3714
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3715
 * Returns: 0 on success or negative on failure
3716 3717 3718 3719
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
A
Al Viro 已提交
3720
	struct inode *inode = file_inode(file);
T
Theodore Ts'o 已提交
3721 3722 3723 3724 3725 3726 3727 3728 3729
	struct super_block *sb = inode->i_sb;
	ext4_lblk_t first_block, stop_block;
	struct address_space *mapping = inode->i_mapping;
	loff_t first_page, last_page, page_len;
	loff_t first_page_offset, last_page_offset;
	handle_t *handle;
	unsigned int credits;
	int ret = 0;

3730
	if (!S_ISREG(inode->i_mode))
3731
		return -EOPNOTSUPP;
3732

T
Theodore Ts'o 已提交
3733
	if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3734
		/* TODO: Add support for bigalloc file systems */
3735
		return -EOPNOTSUPP;
3736 3737
	}

3738 3739
	trace_ext4_punch_hole(inode, offset, length);

T
Theodore Ts'o 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
	/*
	 * Write out all dirty pages to avoid race conditions
	 * Then release them.
	 */
	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
		ret = filemap_write_and_wait_range(mapping, offset,
						   offset + length - 1);
		if (ret)
			return ret;
	}

	mutex_lock(&inode->i_mutex);
	/* It's not possible punch hole on append only file */
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
		ret = -EPERM;
		goto out_mutex;
	}
	if (IS_SWAPFILE(inode)) {
		ret = -ETXTBSY;
		goto out_mutex;
	}

	/* No need to punch hole beyond i_size */
	if (offset >= inode->i_size)
		goto out_mutex;

	/*
	 * If the hole extends beyond i_size, set the hole
	 * to end after the page that contains i_size
	 */
	if (offset + length > inode->i_size) {
		length = inode->i_size +
		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
		   offset;
	}

	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
	last_page = (offset + length) >> PAGE_CACHE_SHIFT;

	first_page_offset = first_page << PAGE_CACHE_SHIFT;
	last_page_offset = last_page << PAGE_CACHE_SHIFT;

	/* Now release the pages */
	if (last_page_offset > first_page_offset) {
		truncate_pagecache_range(inode, first_page_offset,
					 last_page_offset - 1);
	}

	/* Wait all existing dio workers, newcomers will block on i_mutex */
	ext4_inode_block_unlocked_dio(inode);
	ret = ext4_flush_unwritten_io(inode);
	if (ret)
		goto out_dio;
	inode_dio_wait(inode);

	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		credits = ext4_writepage_trans_blocks(inode);
	else
		credits = ext4_blocks_for_truncate(inode);
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		ext4_std_error(sb, ret);
		goto out_dio;
	}

	/*
	 * Now we need to zero out the non-page-aligned data in the
	 * pages at the start and tail of the hole, and unmap the
	 * buffer heads for the block aligned regions of the page that
	 * were completely zeroed.
	 */
	if (first_page > last_page) {
		/*
		 * If the file space being truncated is contained
		 * within a page just zero out and unmap the middle of
		 * that page
		 */
		ret = ext4_discard_partial_page_buffers(handle,
			mapping, offset, length, 0);

		if (ret)
			goto out_stop;
	} else {
		/*
		 * zero out and unmap the partial page that contains
		 * the start of the hole
		 */
		page_len = first_page_offset - offset;
		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers(handle, mapping,
						offset, page_len, 0);
			if (ret)
				goto out_stop;
		}

		/*
		 * zero out and unmap the partial page that contains
		 * the end of the hole
		 */
		page_len = offset + length - last_page_offset;
		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers(handle, mapping,
					last_page_offset, page_len, 0);
			if (ret)
				goto out_stop;
		}
	}

	/*
	 * If i_size is contained in the last page, we need to
	 * unmap and zero the partial page after i_size
	 */
	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
	   inode->i_size % PAGE_CACHE_SIZE != 0) {
		page_len = PAGE_CACHE_SIZE -
			(inode->i_size & (PAGE_CACHE_SIZE - 1));

		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers(handle,
					mapping, inode->i_size, page_len, 0);

			if (ret)
				goto out_stop;
		}
	}

	first_block = (offset + sb->s_blocksize - 1) >>
		EXT4_BLOCK_SIZE_BITS(sb);
	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);

	/* If there are no blocks to remove, return now */
	if (first_block >= stop_block)
		goto out_stop;

	down_write(&EXT4_I(inode)->i_data_sem);
	ext4_discard_preallocations(inode);

	ret = ext4_es_remove_extent(inode, first_block,
				    stop_block - first_block);
	if (ret) {
		up_write(&EXT4_I(inode)->i_data_sem);
		goto out_stop;
	}

	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		ret = ext4_ext_remove_space(inode, first_block,
					    stop_block - 1);
	else
		ret = ext4_free_hole_blocks(handle, inode, first_block,
					    stop_block);

	ext4_discard_preallocations(inode);
T
Theodore Ts'o 已提交
3893
	up_write(&EXT4_I(inode)->i_data_sem);
T
Theodore Ts'o 已提交
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
	if (IS_SYNC(inode))
		ext4_handle_sync(handle);
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
	ext4_mark_inode_dirty(handle, inode);
out_stop:
	ext4_journal_stop(handle);
out_dio:
	ext4_inode_resume_unlocked_dio(inode);
out_mutex:
	mutex_unlock(&inode->i_mutex);
	return ret;
3905 3906
}

3907
/*
3908
 * ext4_truncate()
3909
 *
3910 3911
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3912 3913
 * simultaneously on behalf of the same inode.
 *
3914
 * As we work through the truncate and commit bits of it to the journal there
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3928
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3929
 * that this inode's truncate did not complete and it will again call
3930 3931
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3932
 * that's fine - as long as they are linked from the inode, the post-crash
3933
 * ext4_truncate() run will find them and release them.
3934
 */
3935
void ext4_truncate(struct inode *inode)
3936
{
T
Theodore Ts'o 已提交
3937 3938 3939 3940 3941 3942
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned int credits;
	handle_t *handle;
	struct address_space *mapping = inode->i_mapping;
	loff_t page_len;

3943 3944 3945 3946 3947 3948 3949
	/*
	 * There is a possibility that we're either freeing the inode
	 * or it completely new indode. In those cases we might not
	 * have i_mutex locked because it's not necessary.
	 */
	if (!(inode->i_state & (I_NEW|I_FREEING)))
		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3950 3951
	trace_ext4_truncate_enter(inode);

3952
	if (!ext4_can_truncate(inode))
3953 3954
		return;

3955
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3956

3957
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3958
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3959

3960 3961 3962 3963 3964 3965 3966 3967
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

T
Theodore Ts'o 已提交
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	/*
	 * finish any pending end_io work so we won't run the risk of
	 * converting any truncated blocks to initialized later
	 */
	ext4_flush_unwritten_io(inode);

	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		credits = ext4_writepage_trans_blocks(inode);
	else
		credits = ext4_blocks_for_truncate(inode);

	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
	if (IS_ERR(handle)) {
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
		return;
	}

	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
		page_len = PAGE_CACHE_SIZE -
			(inode->i_size & (PAGE_CACHE_SIZE - 1));

		if (ext4_discard_partial_page_buffers(handle,
				mapping, inode->i_size, page_len, 0))
			goto out_stop;
	}

	/*
	 * We add the inode to the orphan list, so that if this
	 * truncate spans multiple transactions, and we crash, we will
	 * resume the truncate when the filesystem recovers.  It also
	 * marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
	if (ext4_orphan_add(handle, inode))
		goto out_stop;

	down_write(&EXT4_I(inode)->i_data_sem);

	ext4_discard_preallocations(inode);

4010
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
T
Theodore Ts'o 已提交
4011
		ext4_ext_truncate(handle, inode);
4012
	else
T
Theodore Ts'o 已提交
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
		ext4_ind_truncate(handle, inode);

	up_write(&ei->i_data_sem);

	if (IS_SYNC(inode))
		ext4_handle_sync(handle);

out_stop:
	/*
	 * If this was a simple ftruncate() and the file will remain alive,
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
	 * ext4_delete_inode(), and we allow that function to clean up the
	 * orphan info for us.
	 */
	if (inode->i_nlink)
		ext4_orphan_del(handle, inode);

	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
	ext4_mark_inode_dirty(handle, inode);
	ext4_journal_stop(handle);
4034

4035
	trace_ext4_truncate_exit(inode);
4036 4037 4038
}

/*
4039
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4040 4041 4042 4043
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4044 4045
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4046
{
4047 4048 4049 4050 4051 4052
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4053
	iloc->bh = NULL;
4054 4055
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4056

4057 4058 4059
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4060 4061
		return -EIO;

4062 4063 4064
	/*
	 * Figure out the offset within the block group inode table
	 */
4065
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4066 4067 4068 4069 4070 4071
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4072
	if (unlikely(!bh))
4073
		return -ENOMEM;
4074 4075
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4099
			int i, start;
4100

4101
			start = inode_offset & ~(inodes_per_block - 1);
4102

4103 4104
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4105
			if (unlikely(!bitmap_bh))
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4117
			for (i = start; i < start + inodes_per_block; i++) {
4118 4119
				if (i == inode_offset)
					continue;
4120
				if (ext4_test_bit(i, bitmap_bh->b_data))
4121 4122 4123
					break;
			}
			brelse(bitmap_bh);
4124
			if (i == start + inodes_per_block) {
4125 4126 4127 4128 4129 4130 4131 4132 4133
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4134 4135 4136 4137 4138 4139 4140
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;
4141
			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4142 4143

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4144
			/* s_inode_readahead_blks is always a power of 2 */
4145
			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4146 4147
			if (table > b)
				b = table;
4148
			end = b + ra_blks;
4149
			num = EXT4_INODES_PER_GROUP(sb);
4150
			if (ext4_has_group_desc_csum(sb))
4151
				num -= ext4_itable_unused_count(sb, gdp);
4152 4153 4154 4155 4156 4157 4158
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4159 4160 4161 4162 4163
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
4164
		trace_ext4_load_inode(inode);
4165 4166
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
4167
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4168 4169
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4170 4171
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4172 4173 4174 4175 4176 4177 4178 4179 4180
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4181
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4182 4183
{
	/* We have all inode data except xattrs in memory here. */
4184
	return __ext4_get_inode_loc(inode, iloc,
4185
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4186 4187
}

4188
void ext4_set_inode_flags(struct inode *inode)
4189
{
4190
	unsigned int flags = EXT4_I(inode)->i_flags;
4191 4192

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4193
	if (flags & EXT4_SYNC_FL)
4194
		inode->i_flags |= S_SYNC;
4195
	if (flags & EXT4_APPEND_FL)
4196
		inode->i_flags |= S_APPEND;
4197
	if (flags & EXT4_IMMUTABLE_FL)
4198
		inode->i_flags |= S_IMMUTABLE;
4199
	if (flags & EXT4_NOATIME_FL)
4200
		inode->i_flags |= S_NOATIME;
4201
	if (flags & EXT4_DIRSYNC_FL)
4202 4203 4204
		inode->i_flags |= S_DIRSYNC;
}

4205 4206 4207
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4228
}
4229

4230
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4231
				  struct ext4_inode_info *ei)
4232 4233
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4234 4235
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4236 4237 4238 4239 4240 4241

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4242
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4243 4244 4245 4246 4247
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4248 4249 4250 4251
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4252

4253 4254 4255 4256 4257 4258
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4259
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4260
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4261
		ext4_find_inline_data_nolock(inode);
4262 4263
	} else
		EXT4_I(inode)->i_inline_off = 0;
4264 4265
}

4266
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4267
{
4268 4269
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4270 4271
	struct ext4_inode_info *ei;
	struct inode *inode;
4272
	journal_t *journal = EXT4_SB(sb)->s_journal;
4273
	long ret;
4274
	int block;
4275 4276
	uid_t i_uid;
	gid_t i_gid;
4277

4278 4279 4280 4281 4282 4283 4284
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4285
	iloc.bh = NULL;
4286

4287 4288
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4289
		goto bad_inode;
4290
	raw_inode = ext4_raw_inode(&iloc);
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

4324
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4325 4326
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4327
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4328 4329
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4330
	}
4331 4332
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
4333
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4334

4335
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4336
	ei->i_inline_off = 0;
4337 4338 4339 4340 4341 4342 4343 4344
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
4345 4346 4347
		if ((inode->i_mode == 0 ||
		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
		    ino != EXT4_BOOT_LOADER_INO) {
4348
			/* this inode is deleted */
4349
			ret = -ESTALE;
4350 4351 4352 4353 4354
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
4355 4356 4357
		 * the process of deleting those.
		 * OR it is the EXT4_BOOT_LOADER_INO which is
		 * not initialized on a new filesystem. */
4358 4359
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4360
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4361
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4362
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4363 4364
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4365
	inode->i_size = ext4_isize(raw_inode);
4366
	ei->i_disksize = inode->i_size;
4367 4368 4369
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4370 4371
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4372
	ei->i_last_alloc_group = ~0;
4373 4374 4375 4376
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4377
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4378 4379 4380
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4392
		read_lock(&journal->j_state_lock);
4393 4394 4395 4396 4397 4398 4399 4400
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4401
		read_unlock(&journal->j_state_lock);
4402 4403 4404 4405
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4406
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4407 4408
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4409 4410
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4411
		} else {
4412
			ext4_iget_extra_inode(inode, raw_inode, ei);
4413
		}
4414
	}
4415

K
Kalpak Shah 已提交
4416 4417 4418 4419 4420
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4421 4422 4423 4424 4425 4426 4427
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4428
	ret = 0;
4429
	if (ei->i_file_acl &&
4430
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4431 4432
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4433 4434
		ret = -EIO;
		goto bad_inode;
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
4448
	}
4449
	if (ret)
4450
		goto bad_inode;
4451

4452
	if (S_ISREG(inode->i_mode)) {
4453 4454 4455
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4456
	} else if (S_ISDIR(inode->i_mode)) {
4457 4458
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4459
	} else if (S_ISLNK(inode->i_mode)) {
4460
		if (ext4_inode_is_fast_symlink(inode)) {
4461
			inode->i_op = &ext4_fast_symlink_inode_operations;
4462 4463 4464
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4465 4466
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4467
		}
4468 4469
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4470
		inode->i_op = &ext4_special_inode_operations;
4471 4472 4473 4474 4475 4476
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4477 4478
	} else if (ino == EXT4_BOOT_LOADER_INO) {
		make_bad_inode(inode);
4479 4480
	} else {
		ret = -EIO;
4481
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4482
		goto bad_inode;
4483
	}
4484
	brelse(iloc.bh);
4485
	ext4_set_inode_flags(inode);
4486 4487
	unlock_new_inode(inode);
	return inode;
4488 4489

bad_inode:
4490
	brelse(iloc.bh);
4491 4492
	iget_failed(inode);
	return ERR_PTR(ret);
4493 4494
}

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
4505
		 * i_blocks can be represented in a 32 bit variable
4506 4507
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4508
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4509
		raw_inode->i_blocks_high = 0;
4510
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4511 4512 4513 4514 4515 4516
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4517 4518 4519 4520
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4521
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4522
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4523
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4524
	} else {
4525
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
4526 4527 4528 4529
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4530
	}
4531
	return 0;
4532 4533
}

4534 4535 4536 4537 4538 4539 4540
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4541
static int ext4_do_update_inode(handle_t *handle,
4542
				struct inode *inode,
4543
				struct ext4_iloc *iloc)
4544
{
4545 4546
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4547 4548
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4549
	int need_datasync = 0;
4550 4551
	uid_t i_uid;
	gid_t i_gid;
4552 4553 4554

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4555
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4556
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4557

4558
	ext4_get_inode_flags(ei);
4559
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4560 4561
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4562
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4563 4564
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4565 4566 4567 4568
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4569
		if (!ei->i_dtime) {
4570
			raw_inode->i_uid_high =
4571
				cpu_to_le16(high_16_bits(i_uid));
4572
			raw_inode->i_gid_high =
4573
				cpu_to_le16(high_16_bits(i_gid));
4574 4575 4576 4577 4578
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4579 4580
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4581 4582 4583 4584
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4585 4586 4587 4588 4589 4590

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4591 4592
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4593
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4594
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4595 4596
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4597 4598
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4599
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4600 4601 4602 4603
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4619
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4620
			ext4_handle_sync(handle);
4621
			err = ext4_handle_dirty_super(handle, sb);
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4636
	} else if (!ext4_has_inline_data(inode)) {
4637 4638
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4639
	}
4640

4641 4642 4643 4644 4645
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4646
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4647 4648
	}

4649 4650
	ext4_inode_csum_set(inode, raw_inode, ei);

4651
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4652
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4653 4654
	if (!err)
		err = rc;
4655
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4656

4657
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4658
out_brelse:
4659
	brelse(bh);
4660
	ext4_std_error(inode->i_sb, err);
4661 4662 4663 4664
	return err;
}

/*
4665
 * ext4_write_inode()
4666 4667 4668 4669 4670
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4671
 *   transaction to commit.
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4682
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4699
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4700
{
4701 4702
	int err;

4703 4704 4705
	if (current->flags & PF_MEMALLOC)
		return 0;

4706 4707 4708 4709 4710 4711
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4712

4713
		if (wbc->sync_mode != WB_SYNC_ALL)
4714 4715 4716 4717 4718
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4719

4720
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4721 4722
		if (err)
			return err;
4723
		if (wbc->sync_mode == WB_SYNC_ALL)
4724 4725
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4726 4727
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4728 4729
			err = -EIO;
		}
4730
		brelse(iloc.bh);
4731 4732
	}
	return err;
4733 4734
}

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
4761 4762
		ret = __ext4_journalled_invalidatepage(page, offset,
						PAGE_CACHE_SIZE - offset);
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4777
/*
4778
 * ext4_setattr()
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4792 4793 4794 4795 4796 4797 4798 4799
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4800
 */
4801
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4802 4803 4804
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4805
	int orphan = 0;
4806 4807 4808 4809 4810 4811
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4812
	if (is_quota_modification(inode, attr))
4813
		dquot_initialize(inode);
4814 4815
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4816 4817 4818 4819
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4820 4821 4822
		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4823 4824 4825 4826
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4827
		error = dquot_transfer(inode, attr);
4828
		if (error) {
4829
			ext4_journal_stop(handle);
4830 4831 4832 4833 4834 4835 4836 4837
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4838 4839
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4840 4841
	}

4842
	if (attr->ia_valid & ATTR_SIZE) {
4843

4844
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4845 4846
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4847 4848
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4849 4850 4851
		}
	}

4852
	if (S_ISREG(inode->i_mode) &&
4853
	    attr->ia_valid & ATTR_SIZE &&
4854
	    (attr->ia_size < inode->i_size)) {
4855 4856
		handle_t *handle;

4857
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4858 4859 4860 4861
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4862 4863 4864 4865
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4866 4867
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4868 4869
		if (!error)
			error = rc;
4870
		ext4_journal_stop(handle);
4871 4872 4873 4874 4875 4876

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
4877 4878
				handle = ext4_journal_start(inode,
							    EXT4_HT_INODE, 3);
4879 4880 4881 4882 4883
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4884
				orphan = 0;
4885 4886 4887 4888
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4889 4890
	}

4891
	if (attr->ia_valid & ATTR_SIZE) {
4892 4893 4894 4895 4896 4897 4898 4899 4900
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4901
			if (orphan) {
4902 4903 4904 4905 4906 4907
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4908
			}
4909 4910 4911 4912 4913
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4914
		}
4915
		ext4_truncate(inode);
4916
	}
4917

C
Christoph Hellwig 已提交
4918 4919 4920 4921 4922 4923 4924 4925 4926
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4927
	if (orphan && inode->i_nlink)
4928
		ext4_orphan_del(NULL, inode);
4929 4930

	if (!rc && (ia_valid & ATTR_MODE))
4931
		rc = ext4_acl_chmod(inode);
4932 4933

err_out:
4934
	ext4_std_error(inode->i_sb, error);
4935 4936 4937 4938 4939
	if (!error)
		error = rc;
	return error;
}

4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4959 4960
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4961 4962 4963 4964

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4965

4966 4967
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4968
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4969
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4970
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4971
}
4972

4973
/*
4974 4975 4976
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4977
 *
4978
 * If datablocks are discontiguous, they are possible to spread over
4979
 * different block groups too. If they are contiguous, with flexbg,
4980
 * they could still across block group boundary.
4981
 *
4982 4983
 * Also account for superblock, inode, quota and xattr blocks
 */
4984
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4985
{
4986 4987
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5014 5015
	if (groups > ngroups)
		groups = ngroups;
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
5029
 * Calculate the total number of credits to reserve to fit
5030 5031
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5032
 *
5033
 * This could be called via ext4_write_begin()
5034
 *
5035
 * We need to consider the worse case, when
5036
 * one new block per extent.
5037
 */
A
Alex Tomas 已提交
5038
int ext4_writepage_trans_blocks(struct inode *inode)
5039
{
5040
	int bpp = ext4_journal_blocks_per_page(inode);
5041 5042
	int ret;

5043
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5044

5045
	/* Account for data blocks for journalled mode */
5046
	if (ext4_should_journal_data(inode))
5047
		ret += bpp;
5048 5049
	return ret;
}
5050 5051 5052 5053 5054

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5055
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5056 5057 5058 5059 5060 5061 5062 5063 5064
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5065
/*
5066
 * The caller must have previously called ext4_reserve_inode_write().
5067 5068
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5069
int ext4_mark_iloc_dirty(handle_t *handle,
5070
			 struct inode *inode, struct ext4_iloc *iloc)
5071 5072 5073
{
	int err = 0;

5074
	if (IS_I_VERSION(inode))
5075 5076
		inode_inc_iversion(inode);

5077 5078 5079
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5080
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5081
	err = ext4_do_update_inode(handle, inode, iloc);
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5092 5093
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5094
{
5095 5096 5097 5098 5099 5100 5101 5102 5103
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5104 5105
		}
	}
5106
	ext4_std_error(inode->i_sb, err);
5107 5108 5109
	return err;
}

5110 5111 5112 5113
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5114 5115 5116 5117
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5130 5131
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
5156
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5157
{
5158
	struct ext4_iloc iloc;
5159 5160 5161
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5162 5163

	might_sleep();
5164
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5165
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5166 5167
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5168
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5182 5183
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5184 5185
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5186
					ext4_warning(inode->i_sb,
5187 5188 5189
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5190 5191
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5192 5193 5194 5195
				}
			}
		}
	}
5196
	if (!err)
5197
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5198 5199 5200 5201
	return err;
}

/*
5202
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5203 5204 5205 5206 5207
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5208
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5209 5210 5211 5212 5213 5214
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5215
void ext4_dirty_inode(struct inode *inode, int flags)
5216 5217 5218
{
	handle_t *handle;

5219
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5220 5221
	if (IS_ERR(handle))
		goto out;
5222 5223 5224

	ext4_mark_inode_dirty(handle, inode);

5225
	ext4_journal_stop(handle);
5226 5227 5228 5229 5230 5231 5232 5233
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5234
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5235 5236 5237
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5238
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5239
{
5240
	struct ext4_iloc iloc;
5241 5242 5243

	int err = 0;
	if (handle) {
5244
		err = ext4_get_inode_loc(inode, &iloc);
5245 5246
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5247
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5248
			if (!err)
5249
				err = ext4_handle_dirty_metadata(handle,
5250
								 NULL,
5251
								 iloc.bh);
5252 5253 5254
			brelse(iloc.bh);
		}
	}
5255
	ext4_std_error(inode->i_sb, err);
5256 5257 5258 5259
	return err;
}
#endif

5260
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5276
	journal = EXT4_JOURNAL(inode);
5277 5278
	if (!journal)
		return 0;
5279
	if (is_journal_aborted(journal))
5280
		return -EROFS;
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
5292

5293 5294 5295 5296
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

5297
	jbd2_journal_lock_updates(journal);
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5308
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5309 5310
	else {
		jbd2_journal_flush(journal);
5311
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5312
	}
5313
	ext4_set_aops(inode);
5314

5315
	jbd2_journal_unlock_updates(journal);
5316
	ext4_inode_resume_unlocked_dio(inode);
5317 5318 5319

	/* Finally we can mark the inode as dirty. */

5320
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5321 5322 5323
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5324
	err = ext4_mark_inode_dirty(handle, inode);
5325
	ext4_handle_sync(handle);
5326 5327
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5328 5329 5330

	return err;
}
5331 5332 5333 5334 5335 5336

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5337
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5338
{
5339
	struct page *page = vmf->page;
5340 5341
	loff_t size;
	unsigned long len;
5342
	int ret;
5343
	struct file *file = vma->vm_file;
A
Al Viro 已提交
5344
	struct inode *inode = file_inode(file);
5345
	struct address_space *mapping = inode->i_mapping;
5346 5347 5348
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
5349

5350
	sb_start_pagefault(inode->i_sb);
5351
	file_update_time(vma->vm_file);
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
5362
	}
5363 5364

	lock_page(page);
5365 5366 5367 5368 5369 5370
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
5371
	}
5372 5373 5374 5375 5376

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
5377
	/*
5378 5379
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
5380
	 */
5381
	if (page_has_buffers(page)) {
5382 5383 5384
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
5385
			/* Wait so that we don't change page under IO */
5386
			wait_for_stable_page(page);
5387 5388
			ret = VM_FAULT_LOCKED;
			goto out;
5389
		}
5390
	}
5391
	unlock_page(page);
5392 5393 5394 5395 5396 5397
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
5398 5399
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
5400
	if (IS_ERR(handle)) {
5401
		ret = VM_FAULT_SIGBUS;
5402 5403 5404 5405
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
5406
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5407 5408 5409
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
5410
			ext4_journal_stop(handle);
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
5421
	sb_end_pagefault(inode->i_sb);
5422 5423
	return ret;
}