inode.c 148.5 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
137 138 139
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
140

141 142 143
/*
 * Test whether an inode is a fast symlink.
 */
144
static int ext4_inode_is_fast_symlink(struct inode *inode)
145
{
146
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 148 149 150 151 152 153 154 155 156
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
157
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158
				 int nblocks)
159
{
160 161 162
	int ret;

	/*
163
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 165 166 167
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
168
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169
	jbd_debug(2, "restarting handle %p\n", handle);
170
	up_write(&EXT4_I(inode)->i_data_sem);
171
	ret = ext4_journal_restart(handle, nblocks);
172
	down_write(&EXT4_I(inode)->i_data_sem);
173
	ext4_discard_preallocations(inode);
174 175

	return ret;
176 177 178 179 180
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
181
void ext4_evict_inode(struct inode *inode)
182 183
{
	handle_t *handle;
184
	int err;
185

186
	trace_ext4_evict_inode(inode);
187

A
Al Viro 已提交
188
	if (inode->i_nlink) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
208 209
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
		    inode->i_ino != EXT4_JOURNAL_INO) {
210 211 212 213 214 215 216
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
217
		truncate_inode_pages(&inode->i_data, 0);
218
		ext4_ioend_shutdown(inode);
A
Al Viro 已提交
219 220 221
		goto no_delete;
	}

222
	if (!is_bad_inode(inode))
223
		dquot_initialize(inode);
224

225 226
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
227
	truncate_inode_pages(&inode->i_data, 0);
228
	ext4_ioend_shutdown(inode);
229 230 231 232

	if (is_bad_inode(inode))
		goto no_delete;

233 234 235 236 237
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
238 239
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
				    ext4_blocks_for_truncate(inode)+3);
240
	if (IS_ERR(handle)) {
241
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 243 244 245 246
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
247
		ext4_orphan_del(NULL, inode);
248
		sb_end_intwrite(inode->i_sb);
249 250 251 252
		goto no_delete;
	}

	if (IS_SYNC(inode))
253
		ext4_handle_sync(handle);
254
	inode->i_size = 0;
255 256
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
257
		ext4_warning(inode->i_sb,
258 259 260
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
261
	if (inode->i_blocks)
262
		ext4_truncate(inode);
263 264 265 266 267 268 269

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
270
	if (!ext4_handle_has_enough_credits(handle, 3)) {
271 272 273 274
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
275
			ext4_warning(inode->i_sb,
276 277 278
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
279
			ext4_orphan_del(NULL, inode);
280
			sb_end_intwrite(inode->i_sb);
281 282 283 284
			goto no_delete;
		}
	}

285
	/*
286
	 * Kill off the orphan record which ext4_truncate created.
287
	 * AKPM: I think this can be inside the above `if'.
288
	 * Note that ext4_orphan_del() has to be able to cope with the
289
	 * deletion of a non-existent orphan - this is because we don't
290
	 * know if ext4_truncate() actually created an orphan record.
291 292
	 * (Well, we could do this if we need to, but heck - it works)
	 */
293 294
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
295 296 297 298 299 300 301 302

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
303
	if (ext4_mark_inode_dirty(handle, inode))
304
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
305
		ext4_clear_inode(inode);
306
	else
307 308
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
309
	sb_end_intwrite(inode->i_sb);
310 311
	return;
no_delete:
A
Al Viro 已提交
312
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
313 314
}

315 316
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
317
{
318
	return &EXT4_I(inode)->i_reserved_quota;
319
}
320
#endif
321

322 323
/*
 * Calculate the number of metadata blocks need to reserve
324
 * to allocate a block located at @lblock
325
 */
326
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327
{
328
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329
		return ext4_ext_calc_metadata_amount(inode, lblock);
330

331
	return ext4_ind_calc_metadata_amount(inode, lblock);
332 333
}

334 335 336 337
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
338 339
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
340 341
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342 343 344
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
345
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346
	if (unlikely(used > ei->i_reserved_data_blocks)) {
347
		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348
			 "with only %d reserved data blocks",
349 350 351 352 353
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
354

355
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356 357 358 359 360 361
		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
			"with only %d reserved metadata blocks "
			"(releasing %d blocks with reserved %d data blocks)",
			inode->i_ino, ei->i_allocated_meta_blocks,
			     ei->i_reserved_meta_blocks, used,
			     ei->i_reserved_data_blocks);
362 363 364 365
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

366 367 368
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370
			   used + ei->i_allocated_meta_blocks);
371
	ei->i_allocated_meta_blocks = 0;
372

373 374 375 376 377 378
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
379
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380
				   ei->i_reserved_meta_blocks);
381
		ei->i_reserved_meta_blocks = 0;
382
		ei->i_da_metadata_calc_len = 0;
383
	}
384
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385

386 387
	/* Update quota subsystem for data blocks */
	if (quota_claim)
388
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389
	else {
390 391 392
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
393
		 * not re-claim the quota for fallocated blocks.
394
		 */
395
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396
	}
397 398 399 400 401 402

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
403 404
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
405
		ext4_discard_preallocations(inode);
406 407
}

408
static int __check_block_validity(struct inode *inode, const char *func,
409 410
				unsigned int line,
				struct ext4_map_blocks *map)
411
{
412 413
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
414 415 416 417
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
418 419 420 421 422
		return -EIO;
	}
	return 0;
}

423
#define check_block_validity(inode, map)	\
424
	__check_block_validity((inode), __func__, __LINE__, (map))
425

426
/*
427 428
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
462 463 464 465 466 467 468 469 470
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
471 472 473 474 475
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
476 477
			if (num >= max_pages) {
				done = 1;
478
				break;
479
			}
480 481 482 483 484 485
		}
		pagevec_release(&pvec);
	}
	return num;
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
#ifdef ES_AGGRESSIVE_TEST
static void ext4_map_blocks_es_recheck(handle_t *handle,
				       struct inode *inode,
				       struct ext4_map_blocks *es_map,
				       struct ext4_map_blocks *map,
				       int flags)
{
	int retval;

	map->m_flags = 0;
	/*
	 * There is a race window that the result is not the same.
	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
	 * is that we lookup a block mapping in extent status tree with
	 * out taking i_data_sem.  So at the time the unwritten extent
	 * could be converted.
	 */
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	} else {
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	}
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
	/*
	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
	 * because it shouldn't be marked in es_map->m_flags.
	 */
	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);

	/*
	 * We don't check m_len because extent will be collpased in status
	 * tree.  So the m_len might not equal.
	 */
	if (es_map->m_lblk != map->m_lblk ||
	    es_map->m_flags != map->m_flags ||
	    es_map->m_pblk != map->m_pblk) {
		printk("ES cache assertation failed for inode: %lu "
		       "es_cached ex [%d/%d/%llu/%x] != "
		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
		       inode->i_ino, es_map->m_lblk, es_map->m_len,
		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
		       map->m_len, map->m_pblk, map->m_flags,
		       retval, flags);
	}
}
#endif /* ES_AGGRESSIVE_TEST */

538
/*
539
 * The ext4_map_blocks() function tries to look up the requested blocks,
540
 * and returns if the blocks are already mapped.
541 542 543 544 545
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
546 547
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
548 549 550 551 552 553 554 555
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
556
 * that case, buffer head is unmapped
557 558 559
 *
 * It returns the error in case of allocation failure.
 */
560 561
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
562
{
563
	struct extent_status es;
564
	int retval;
565 566 567 568 569
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
570

571 572 573 574
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
			map->m_pblk = ext4_es_pblock(&es) +
					map->m_lblk - es.es_lblk;
			map->m_flags |= ext4_es_is_written(&es) ?
					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
			retval = es.es_len - (map->m_lblk - es.es_lblk);
			if (retval > map->m_len)
				retval = map->m_len;
			map->m_len = retval;
		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
			retval = 0;
		} else {
			BUG_ON(1);
		}
592 593 594 595
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(handle, inode, map,
					   &orig_map, flags);
#endif
596 597 598
		goto found;
	}

599
	/*
600 601
	 * Try to see if we can get the block without requesting a new
	 * file system block.
602
	 */
603 604
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
605
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 607
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
608
	} else {
609 610
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
611
	}
612 613 614 615
	if (retval > 0) {
		int ret;
		unsigned long long status;

616 617 618 619 620 621 622 623 624
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

625 626 627 628 629 630 631 632 633 634 635
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk,
					    map->m_len, map->m_pblk, status);
		if (ret < 0)
			retval = ret;
	}
636 637
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
638

639
found:
640
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
641
		int ret = check_block_validity(inode, map);
642 643 644 645
		if (ret != 0)
			return ret;
	}

646
	/* If it is only a block(s) look up */
647
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
648 649 650 651 652 653
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
654
	 * ext4_ext_get_block() returns the create = 0
655 656
	 * with buffer head unmapped.
	 */
657
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
658 659
		return retval;

660
	/*
661 662
	 * Here we clear m_flags because after allocating an new extent,
	 * it will be set again.
663
	 */
664
	map->m_flags &= ~EXT4_MAP_FLAGS;
665

666
	/*
667 668 669 670
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
671 672
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
673 674 675 676 677 678 679

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
680
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
681
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682 683 684 685
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
686
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
687
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
688
	} else {
689
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
690

691
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692 693 694 695 696
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
697
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
698
		}
699

700 701 702 703 704 705 706
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
707
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
708 709
			ext4_da_update_reserve_space(inode, retval, 1);
	}
710
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
711
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712

713 714 715 716
	if (retval > 0) {
		int ret;
		unsigned long long status;

717 718 719 720 721 722 723 724 725
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (allocation)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

726 727 728 729 730 731 732 733 734
		/*
		 * If the extent has been zeroed out, we don't need to update
		 * extent status tree.
		 */
		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
			if (ext4_es_is_written(&es))
				goto has_zeroout;
		}
735 736 737 738 739 740 741 742 743 744
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret < 0)
			retval = ret;
745 746
	}

747
has_zeroout:
748
	up_write((&EXT4_I(inode)->i_data_sem));
749
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
750
		int ret = check_block_validity(inode, map);
751 752 753
		if (ret != 0)
			return ret;
	}
754 755 756
	return retval;
}

757 758 759
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

760 761
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
762
{
763
	handle_t *handle = ext4_journal_current_handle();
764
	struct ext4_map_blocks map;
J
Jan Kara 已提交
765
	int ret = 0, started = 0;
766
	int dio_credits;
767

T
Tao Ma 已提交
768 769 770
	if (ext4_has_inline_data(inode))
		return -ERANGE;

771 772 773
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

774
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
775
		/* Direct IO write... */
776 777 778
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
779 780
		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
					    dio_credits);
J
Jan Kara 已提交
781
		if (IS_ERR(handle)) {
782
			ret = PTR_ERR(handle);
783
			return ret;
784
		}
J
Jan Kara 已提交
785
		started = 1;
786 787
	}

788
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
789
	if (ret > 0) {
790 791 792
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
793
		ret = 0;
794
	}
J
Jan Kara 已提交
795 796
	if (started)
		ext4_journal_stop(handle);
797 798 799
	return ret;
}

800 801 802 803 804 805 806
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

807 808 809
/*
 * `handle' can be NULL if create is zero
 */
810
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
811
				ext4_lblk_t block, int create, int *errp)
812
{
813 814
	struct ext4_map_blocks map;
	struct buffer_head *bh;
815 816 817 818
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

819 820 821 822
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
823

824 825 826
	/* ensure we send some value back into *errp */
	*errp = 0;

827 828
	if (create && err == 0)
		err = -ENOSPC;	/* should never happen */
829 830 831 832 833 834
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
835
	if (unlikely(!bh)) {
836
		*errp = -ENOMEM;
837
		return NULL;
838
	}
839 840 841
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
842

843 844 845 846 847 848 849 850 851 852 853 854 855
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
856
		}
857 858 859 860 861 862 863
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
864
	}
865 866 867 868 869 870
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
871 872
}

873
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
874
			       ext4_lblk_t block, int create, int *err)
875
{
876
	struct buffer_head *bh;
877

878
	bh = ext4_getblk(handle, inode, block, create, err);
879 880 881 882
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
883
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
884 885 886 887 888 889 890 891
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

892 893 894 895 896 897 898
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
899 900 901 902 903 904 905
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

906 907
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
908
	     block_start = block_end, bh = next) {
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
926
 * close off a transaction and start a new one between the ext4_get_block()
927
 * and the commit_write().  So doing the jbd2_journal_start at the start of
928 929
 * prepare_write() is the right place.
 *
930 931 932 933
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
934
 *
935
 * By accident, ext4 can be reentered when a transaction is open via
936 937 938 939 940 941
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
942
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
943 944 945 946
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
947 948
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
949
{
950 951 952
	int dirty = buffer_dirty(bh);
	int ret;

953 954
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
955
	/*
C
Christoph Hellwig 已提交
956
	 * __block_write_begin() could have dirtied some buffers. Clean
957 958
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
959
	 * by __block_write_begin() isn't a real problem here as we clear
960 961 962 963 964 965 966 967 968
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
969 970
}

971 972
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
973
static int ext4_write_begin(struct file *file, struct address_space *mapping,
974 975
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
976
{
977
	struct inode *inode = mapping->host;
978
	int ret, needed_blocks;
979 980
	handle_t *handle;
	int retries = 0;
981
	struct page *page;
982
	pgoff_t index;
983
	unsigned from, to;
N
Nick Piggin 已提交
984

985
	trace_ext4_write_begin(inode, pos, len, flags);
986 987 988 989 990
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991
	index = pos >> PAGE_CACHE_SHIFT;
992 993
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
994

995 996 997 998
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
999 1000 1001
			return ret;
		if (ret == 1)
			return 0;
1002 1003
	}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

retry_journal:
1018
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019
	if (IS_ERR(handle)) {
1020 1021
		page_cache_release(page);
		return PTR_ERR(handle);
1022
	}
1023

1024 1025 1026 1027 1028
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
1029
		ext4_journal_stop(handle);
1030
		goto retry_grab;
1031
	}
1032
	wait_on_page_writeback(page);
1033

1034
	if (ext4_should_dioread_nolock(inode))
1035
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1036
	else
1037
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1038 1039

	if (!ret && ext4_should_journal_data(inode)) {
1040 1041 1042
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
1043
	}
N
Nick Piggin 已提交
1044 1045

	if (ret) {
1046
		unlock_page(page);
1047
		/*
1048
		 * __block_write_begin may have instantiated a few blocks
1049 1050
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1051 1052 1053
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1054
		 */
1055
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056 1057 1058 1059
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1060
			ext4_truncate_failed_write(inode);
1061
			/*
1062
			 * If truncate failed early the inode might
1063 1064 1065 1066 1067 1068 1069
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1070

1071 1072 1073 1074 1075 1076 1077
		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;
		page_cache_release(page);
		return ret;
	}
	*pagep = page;
1078 1079 1080
	return ret;
}

N
Nick Piggin 已提交
1081 1082
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 1084 1085 1086
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1087
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1088 1089
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
 * buffers are managed internally.
 */
static int ext4_write_end(struct file *file,
			  struct address_space *mapping,
			  loff_t pos, unsigned len, unsigned copied,
			  struct page *page, void *fsdata)
1101 1102
{
	handle_t *handle = ext4_journal_current_handle();
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	int i_size_changed = 0;

	trace_ext4_write_end(inode, pos, len, copied);
	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
		ret = ext4_jbd2_file_inode(handle, inode);
		if (ret) {
			unlock_page(page);
			page_cache_release(page);
			goto errout;
		}
	}
1116

1117 1118 1119 1120 1121 1122
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
1123 1124 1125

	/*
	 * No need to use i_size_read() here, the i_size
1126
	 * cannot change under us because we hole i_mutex.
1127 1128 1129 1130 1131 1132 1133 1134 1135
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

1136
	if (pos + copied > EXT4_I(inode)->i_disksize) {
1137 1138
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
1139
		 * but greater than i_disksize. (hint delalloc)
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

1156 1157
	if (copied < 0)
		ret = copied;
1158
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1159 1160 1161 1162 1163
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);
1164
errout:
1165
	ret2 = ext4_journal_stop(handle);
1166 1167
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1168

1169
	if (pos + len > inode->i_size) {
1170
		ext4_truncate_failed_write(inode);
1171
		/*
1172
		 * If truncate failed early the inode might still be
1173 1174 1175 1176 1177 1178 1179
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1180
	return ret ? ret : copied;
1181 1182
}

N
Nick Piggin 已提交
1183
static int ext4_journalled_write_end(struct file *file,
1184 1185 1186
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1187
{
1188
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1189
	struct inode *inode = mapping->host;
1190 1191
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1192
	unsigned from, to;
1193
	loff_t new_i_size;
1194

1195
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1196 1197 1198
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1199 1200
	BUG_ON(!ext4_handle_valid(handle));

1201 1202 1203 1204 1205 1206 1207 1208 1209
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1210

1211 1212 1213 1214 1215
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1216 1217
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1218
		i_size_write(inode, pos+copied);
1219
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1220
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1221 1222
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1223
		ret2 = ext4_mark_inode_dirty(handle, inode);
1224 1225 1226
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1227

1228
	unlock_page(page);
1229
	page_cache_release(page);
1230
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1231 1232 1233 1234 1235 1236
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1237
	ret2 = ext4_journal_stop(handle);
1238 1239
	if (!ret)
		ret = ret2;
1240
	if (pos + len > inode->i_size) {
1241
		ext4_truncate_failed_write(inode);
1242
		/*
1243
		 * If truncate failed early the inode might still be
1244 1245 1246 1247 1248 1249
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1250 1251

	return ret ? ret : copied;
1252
}
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
/*
 * Reserve a metadata for a single block located at lblock
 */
static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
{
	int retries = 0;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned int md_needed;
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
repeat:
	spin_lock(&ei->i_block_reservation_lock);
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
	trace_ext4_da_reserve_space(inode, md_needed);

	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			cond_resched();
			goto repeat;
		}
		return -ENOSPC;
	}
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);

	return 0;       /* success */
}

1303
/*
1304
 * Reserve a single cluster located at lblock
1305
 */
1306
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1307
{
A
Aneesh Kumar K.V 已提交
1308
	int retries = 0;
1309
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1310
	struct ext4_inode_info *ei = EXT4_I(inode);
1311
	unsigned int md_needed;
1312
	int ret;
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1324 1325 1326 1327 1328 1329

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1330
repeat:
1331
	spin_lock(&ei->i_block_reservation_lock);
1332 1333 1334 1335 1336 1337
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1338 1339
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1340
	trace_ext4_da_reserve_space(inode, md_needed);
1341

1342 1343 1344 1345
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1346
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1347 1348 1349
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1350
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
L
Lukas Czerner 已提交
1351
			cond_resched();
A
Aneesh Kumar K.V 已提交
1352 1353
			goto repeat;
		}
1354
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1355 1356
		return -ENOSPC;
	}
1357
	ei->i_reserved_data_blocks++;
1358 1359
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1360

1361 1362 1363
	return 0;       /* success */
}

1364
static void ext4_da_release_space(struct inode *inode, int to_free)
1365 1366
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1367
	struct ext4_inode_info *ei = EXT4_I(inode);
1368

1369 1370 1371
	if (!to_free)
		return;		/* Nothing to release, exit */

1372
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1373

L
Li Zefan 已提交
1374
	trace_ext4_da_release_space(inode, to_free);
1375
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1376
		/*
1377 1378 1379 1380
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1381
		 */
1382
		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1383
			 "ino %lu, to_free %d with only %d reserved "
1384
			 "data blocks", inode->i_ino, to_free,
1385 1386 1387
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1388
	}
1389
	ei->i_reserved_data_blocks -= to_free;
1390

1391 1392 1393 1394 1395
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1396 1397
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1398
		 */
1399
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1400
				   ei->i_reserved_meta_blocks);
1401
		ei->i_reserved_meta_blocks = 0;
1402
		ei->i_da_metadata_calc_len = 0;
1403
	}
1404

1405
	/* update fs dirty data blocks counter */
1406
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1407 1408

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1409

1410
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1411 1412 1413
}

static void ext4_da_page_release_reservation(struct page *page,
1414
					     unsigned long offset)
1415 1416 1417 1418
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1419 1420 1421
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1422
	ext4_fsblk_t lblk;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1435

1436 1437 1438 1439 1440
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1441 1442 1443 1444 1445 1446 1447
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1448
		    !ext4_find_delalloc_cluster(inode, lblk))
1449 1450 1451 1452
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1453
}
1454

1455 1456 1457 1458 1459 1460
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1461
 * them with writepage() call back
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1472 1473
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1474
{
1475 1476 1477 1478 1479
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1480
	loff_t size = i_size_read(inode);
1481 1482
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1483
	sector_t pblock = 0, cur_logical = 0;
1484
	struct ext4_io_submit io_submit;
1485 1486

	BUG_ON(mpd->next_page <= mpd->first_page);
1487
	memset(&io_submit, 0, sizeof(io_submit));
1488 1489 1490
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1491
	 * If we look at mpd->b_blocknr we would only be looking
1492 1493
	 * at the currently mapped buffer_heads.
	 */
1494 1495 1496
	index = mpd->first_page;
	end = mpd->next_page - 1;

1497
	pagevec_init(&pvec, 0);
1498
	while (index <= end) {
1499
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1500 1501 1502
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1503
			int skip_page = 0;
1504 1505
			struct page *page = pvec.pages[i];

1506 1507 1508
			index = page->index;
			if (index > end)
				break;
1509 1510 1511 1512 1513

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1514 1515 1516 1517 1518 1519
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1520 1521 1522 1523 1524
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1525 1526
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1527
			do {
1528 1529 1530
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1531 1532 1533 1534
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1535 1536 1537 1538 1539 1540 1541
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1542

1543 1544 1545 1546 1547
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1548
					skip_page = 1;
1549 1550
				bh = bh->b_this_page;
				block_start += bh->b_size;
1551 1552
				cur_logical++;
				pblock++;
1553 1554
			} while (bh != page_bufs);

1555 1556 1557 1558
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1559

1560
			clear_page_dirty_for_io(page);
1561 1562
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1563
			if (!err)
1564
				mpd->pages_written++;
1565 1566 1567 1568 1569 1570 1571 1572 1573
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1574
	ext4_io_submit(&io_submit);
1575 1576 1577
	return ret;
}

1578
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1579 1580 1581 1582 1583 1584
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1585
	ext4_lblk_t start, last;
1586

1587 1588
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1589 1590 1591 1592 1593

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1594
	pagevec_init(&pvec, 0);
1595 1596 1597 1598 1599 1600
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1601
			if (page->index > end)
1602 1603 1604 1605 1606 1607 1608
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1609 1610
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1611 1612 1613 1614
	}
	return;
}

1615 1616 1617
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1618 1619 1620
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1621 1622
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1623 1624
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1625 1626
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1627
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1628 1629
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1630 1631 1632 1633
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1634
	       EXT4_I(inode)->i_reserved_meta_blocks);
1635 1636 1637
	return;
}

1638
/*
1639 1640
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1641
 *
1642
 * @mpd - bh describing space
1643 1644 1645 1646
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1647
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1648
{
1649
	int err, blks, get_blocks_flags;
1650
	struct ext4_map_blocks map, *mapp = NULL;
1651 1652 1653 1654
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1655 1656

	/*
1657 1658
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1659
	 */
1660 1661 1662 1663 1664
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1665 1666 1667 1668

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1669
	/*
1670
	 * Call ext4_map_blocks() to allocate any delayed allocation
1671 1672 1673 1674 1675 1676 1677 1678
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1679
	 * want to change *many* call functions, so ext4_map_blocks()
1680
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1681 1682 1683 1684 1685
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1686
	 */
1687 1688
	map.m_lblk = next;
	map.m_len = max_blocks;
1689
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1690 1691
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1692
	if (mpd->b_state & (1 << BH_Delay))
1693 1694
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1695
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1696
	if (blks < 0) {
1697 1698
		struct super_block *sb = mpd->inode->i_sb;

1699
		err = blks;
1700
		/*
1701
		 * If get block returns EAGAIN or ENOSPC and there
1702 1703
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1704 1705
		 */
		if (err == -EAGAIN)
1706
			goto submit_io;
1707

1708
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1709
			mpd->retval = err;
1710
			goto submit_io;
1711 1712
		}

1713
		/*
1714 1715 1716 1717 1718
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1719
		 */
1720 1721 1722 1723 1724 1725 1726 1727
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
1728
				"This should not happen!! Data will be lost");
1729 1730
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1731
		}
1732
		/* invalidate all the pages */
1733
		ext4_da_block_invalidatepages(mpd);
1734 1735 1736

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1737
		return;
1738
	}
1739 1740
	BUG_ON(blks == 0);

1741
	mapp = &map;
1742 1743 1744
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1745

1746 1747
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1748 1749 1750
	}

	/*
1751
	 * Update on-disk size along with block allocation.
1752 1753 1754 1755 1756 1757
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1758 1759 1760 1761 1762
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1763 1764
	}

1765
submit_io:
1766
	mpage_da_submit_io(mpd, mapp);
1767
	mpd->io_done = 1;
1768 1769
}

1770 1771
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1772 1773 1774 1775 1776 1777

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1778
 * @b_state - b_state of the buffer head added
1779 1780 1781
 *
 * the function is used to collect contig. blocks in same state
 */
1782
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1783
				   unsigned long b_state)
1784 1785
{
	sector_t next;
1786 1787
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1788

1789 1790 1791 1792
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1793
	 * ext4_map_blocks() multiple times in a loop
1794
	 */
1795
	if (nrblocks >= (8*1024*1024 >> blkbits))
1796 1797
		goto flush_it;

1798 1799
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1810 1811 1812
	/*
	 * First block in the extent
	 */
1813 1814
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1815
		mpd->b_size = 1 << blkbits;
1816
		mpd->b_state = b_state & BH_FLAGS;
1817 1818 1819
		return;
	}

1820
	next = mpd->b_blocknr + nrblocks;
1821 1822 1823
	/*
	 * Can we merge the block to our big extent?
	 */
1824
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1825
		mpd->b_size += 1 << blkbits;
1826 1827 1828
		return;
	}

1829
flush_it:
1830 1831 1832 1833
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1834
	mpage_da_map_and_submit(mpd);
1835
	return;
1836 1837
}

1838
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1839
{
1840
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1841 1842
}

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
1853
	struct extent_status es;
1854 1855
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);
1856 1857 1858 1859 1860
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
1861 1862 1863 1864 1865 1866 1867 1868

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, iblock, &es)) {

		if (ext4_es_is_hole(&es)) {
			retval = 0;
			down_read((&EXT4_I(inode)->i_data_sem));
			goto add_delayed;
		}

		/*
		 * Delayed extent could be allocated by fallocate.
		 * So we need to check it.
		 */
		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
			map_bh(bh, inode->i_sb, invalid_block);
			set_buffer_new(bh);
			set_buffer_delay(bh);
			return 0;
		}

		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
		retval = es.es_len - (iblock - es.es_lblk);
		if (retval > map->m_len)
			retval = map->m_len;
		map->m_len = retval;
		if (ext4_es_is_written(&es))
			map->m_flags |= EXT4_MAP_MAPPED;
		else if (ext4_es_is_unwritten(&es))
			map->m_flags |= EXT4_MAP_UNWRITTEN;
		else
			BUG_ON(1);

1902 1903 1904
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
#endif
1905 1906 1907
		return retval;
	}

1908 1909 1910 1911 1912
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1926 1927
		retval = ext4_ext_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1928
	else
1929 1930
		retval = ext4_ind_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1931

1932
add_delayed:
1933
	if (retval == 0) {
1934
		int ret;
1935 1936 1937 1938
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
1939 1940 1941 1942 1943
		/*
		 * If the block was allocated from previously allocated cluster,
		 * then we don't need to reserve it again. However we still need
		 * to reserve metadata for every block we're going to write.
		 */
1944
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1945 1946
			ret = ext4_da_reserve_space(inode, iblock);
			if (ret) {
1947
				/* not enough space to reserve */
1948
				retval = ret;
1949
				goto out_unlock;
1950
			}
1951 1952 1953 1954 1955 1956 1957
		} else {
			ret = ext4_da_reserve_metadata(inode, iblock);
			if (ret) {
				/* not enough space to reserve */
				retval = ret;
				goto out_unlock;
			}
1958 1959
		}

1960 1961 1962 1963
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    ~0, EXTENT_STATUS_DELAYED);
		if (ret) {
			retval = ret;
1964
			goto out_unlock;
1965
		}
1966

1967 1968 1969 1970 1971 1972 1973 1974
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
1975 1976 1977 1978
	} else if (retval > 0) {
		int ret;
		unsigned long long status;

1979 1980 1981 1982 1983 1984 1985 1986 1987
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

1988 1989 1990 1991 1992 1993
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret != 0)
			retval = ret;
1994 1995 1996 1997 1998 1999 2000 2001
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

2002
/*
2003 2004 2005
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2006 2007 2008 2009 2010 2011 2012
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2013
 */
2014 2015
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
2016
{
2017
	struct ext4_map_blocks map;
2018 2019 2020
	int ret = 0;

	BUG_ON(create == 0);
2021 2022 2023 2024
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2025 2026 2027 2028 2029 2030

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2031 2032
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
2033
		return ret;
2034

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
2046
		set_buffer_mapped(bh);
2047 2048
	}
	return 0;
2049
}
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
2068
	struct buffer_head *page_bufs = NULL;
2069
	handle_t *handle = NULL;
2070 2071 2072
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
2073

2074
	ClearPageChecked(page);
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
2091 2092 2093 2094
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

2095 2096
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
2097 2098 2099 2100 2101
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

2102 2103
	BUG_ON(!ext4_handle_valid(handle));

2104 2105
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
2106

2107 2108 2109 2110 2111 2112 2113 2114 2115
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
2116 2117
	if (ret == 0)
		ret = err;
2118
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2119 2120 2121 2122
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

2123 2124 2125
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
2126
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2127
out:
2128
	brelse(inode_bh);
2129 2130 2131
	return ret;
}

2132
/*
2133 2134 2135 2136
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
2137
 * we are writing back data modified via mmap(), no one guarantees in which
2138 2139 2140 2141
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2142 2143 2144
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
2145
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2146
 *   - grab_page_cache when doing write_begin (have journal handle)
2147 2148 2149 2150 2151 2152 2153 2154 2155
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
2156
 * but other buffer_heads would be unmapped but dirty (dirty done via the
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2172
 */
2173
static int ext4_writepage(struct page *page,
2174
			  struct writeback_control *wbc)
2175
{
2176
	int ret = 0;
2177
	loff_t size;
2178
	unsigned int len;
2179
	struct buffer_head *page_bufs = NULL;
2180
	struct inode *inode = page->mapping->host;
2181
	struct ext4_io_submit io_submit;
2182

L
Lukas Czerner 已提交
2183
	trace_ext4_writepage(page);
2184 2185 2186 2187 2188
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2189

T
Theodore Ts'o 已提交
2190 2191
	page_bufs = page_buffers(page);
	/*
2192 2193 2194 2195 2196
	 * We cannot do block allocation or other extent handling in this
	 * function. If there are buffers needing that, we have to redirty
	 * the page. But we may reach here when we do a journal commit via
	 * journal_submit_inode_data_buffers() and in that case we must write
	 * allocated buffers to achieve data=ordered mode guarantees.
T
Theodore Ts'o 已提交
2197
	 */
2198 2199
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
2200
		redirty_page_for_writepage(wbc, page);
2201 2202 2203 2204 2205 2206 2207 2208
		if (current->flags & PF_MEMALLOC) {
			/*
			 * For memory cleaning there's no point in writing only
			 * some buffers. So just bail out. Warn if we came here
			 * from direct reclaim.
			 */
			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
							== PF_MEMALLOC);
2209 2210 2211
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2212
	}
2213

2214
	if (PageChecked(page) && ext4_should_journal_data(inode))
2215 2216 2217 2218
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2219
		return __ext4_journalled_writepage(page, len);
2220

2221 2222 2223
	memset(&io_submit, 0, sizeof(io_submit));
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2224 2225 2226
	return ret;
}

2227
/*
2228
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2229
 * calculate the total number of credits to reserve to fit
2230 2231 2232
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2233
 */
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2245
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2246 2247 2248 2249 2250
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2251

2252 2253
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2254
 * address space and accumulate pages that need writing, and call
2255 2256
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2257
 */
2258 2259
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2260
				struct writeback_control *wbc,
2261 2262
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2263
{
2264
	struct buffer_head	*bh, *head;
2265
	struct inode		*inode = mapping->host;
2266 2267 2268 2269 2270 2271
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2272

2273 2274 2275
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2276 2277 2278 2279
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2280
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2281 2282 2283 2284
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2285
	*done_index = index;
2286
	while (index <= end) {
2287
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2288 2289
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2290
			return 0;
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2302 2303
			if (page->index > end)
				goto out;
2304

2305 2306
			*done_index = page->index + 1;

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2317 2318 2319
			lock_page(page);

			/*
2320 2321 2322 2323 2324 2325
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2326
			 */
2327 2328 2329 2330
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2331 2332 2333 2334
				unlock_page(page);
				continue;
			}

2335
			wait_on_page_writeback(page);
2336 2337
			BUG_ON(PageWriteback(page));

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2349
			if (mpd->next_page != page->index)
2350 2351 2352 2353 2354
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2355 2356 2357 2358 2359
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2360
				/*
2361 2362 2363
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2364
				 */
2365 2366 2367 2368 2369 2370 2371
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2372
					/*
2373 2374 2375 2376 2377 2378 2379
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2380
					 */
2381 2382 2383 2384 2385 2386
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2387 2388 2389 2390

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2391
				    wbc->sync_mode == WB_SYNC_NONE)
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2402
					goto out;
2403 2404 2405 2406 2407
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2408 2409 2410
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2411 2412 2413
out:
	pagevec_release(&pvec);
	cond_resched();
2414 2415 2416 2417
	return ret;
}


2418
static int ext4_da_writepages(struct address_space *mapping,
2419
			      struct writeback_control *wbc)
2420
{
2421 2422
	pgoff_t	index;
	int range_whole = 0;
2423
	handle_t *handle = NULL;
2424
	struct mpage_da_data mpd;
2425
	struct inode *inode = mapping->host;
2426
	int pages_written = 0;
2427
	unsigned int max_pages;
2428
	int range_cyclic, cycled = 1, io_done = 0;
2429 2430
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2431
	loff_t range_start = wbc->range_start;
2432
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2433
	pgoff_t done_index = 0;
2434
	pgoff_t end;
S
Shaohua Li 已提交
2435
	struct blk_plug plug;
2436

2437
	trace_ext4_da_writepages(inode, wbc);
2438

2439 2440 2441 2442 2443
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2444
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2445
		return 0;
2446 2447 2448 2449 2450

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2451
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2452 2453 2454 2455 2456
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2457
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2458 2459
		return -EROFS;

2460 2461
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2462

2463 2464
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2465
		index = mapping->writeback_index;
2466 2467 2468 2469 2470
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2471 2472
		end = -1;
	} else {
2473
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2474 2475
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2476

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2494 2495 2496 2497 2498 2499
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2510
retry:
2511
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2512 2513
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2514
	blk_start_plug(&plug);
2515
	while (!ret && wbc->nr_to_write > 0) {
2516 2517 2518 2519 2520 2521 2522 2523

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2524
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2525

2526
		/* start a new transaction*/
2527 2528
		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
					    needed_blocks);
2529 2530
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2531
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2532
			       "%ld pages, ino %lu; err %d", __func__,
2533
				wbc->nr_to_write, inode->i_ino, ret);
2534
			blk_finish_plug(&plug);
2535 2536
			goto out_writepages;
		}
2537 2538

		/*
2539
		 * Now call write_cache_pages_da() to find the next
2540
		 * contiguous region of logical blocks that need
2541
		 * blocks to be allocated by ext4 and submit them.
2542
		 */
2543 2544
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2545
		/*
2546
		 * If we have a contiguous extent of pages and we
2547 2548 2549 2550
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2551
			mpage_da_map_and_submit(&mpd);
2552 2553
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2554
		trace_ext4_da_write_pages(inode, &mpd);
2555
		wbc->nr_to_write -= mpd.pages_written;
2556

2557
		ext4_journal_stop(handle);
2558

2559
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2560 2561 2562 2563
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2564
			jbd2_journal_force_commit_nested(sbi->s_journal);
2565 2566
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2567
			/*
2568 2569 2570
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2571
			 */
2572
			pages_written += mpd.pages_written;
2573
			ret = mpd.retval;
2574
			io_done = 1;
2575
		} else if (wbc->nr_to_write)
2576 2577 2578 2579 2580 2581
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2582
	}
S
Shaohua Li 已提交
2583
	blk_finish_plug(&plug);
2584 2585 2586 2587 2588 2589 2590
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2591 2592

	/* Update index */
2593
	wbc->range_cyclic = range_cyclic;
2594 2595 2596 2597 2598
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2599
		mapping->writeback_index = done_index;
2600

2601
out_writepages:
2602
	wbc->nr_to_write -= nr_to_writebump;
2603
	wbc->range_start = range_start;
2604
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2605
	return ret;
2606 2607
}

2608 2609 2610 2611 2612 2613 2614 2615
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2616
	 * counters can get slightly wrong with percpu_counter_batch getting
2617 2618 2619 2620
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2621 2622 2623
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2624 2625 2626
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
2627 2628
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks))
		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2629

2630
	if (2 * free_blocks < 3 * dirty_blocks ||
2631
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2632
		/*
2633 2634
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2635 2636 2637 2638 2639 2640
		 */
		return 1;
	}
	return 0;
}

2641
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2642 2643
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2644
{
2645
	int ret, retries = 0;
2646 2647 2648 2649 2650 2651
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2652 2653 2654 2655 2656 2657 2658

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2659
	trace_ext4_da_write_begin(inode, pos, len, flags);
2660 2661 2662 2663 2664 2665

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
2666 2667 2668
			return ret;
		if (ret == 1)
			return 0;
2669 2670
	}

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

2684 2685 2686 2687 2688 2689
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
2690
retry_journal:
2691
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2692
	if (IS_ERR(handle)) {
2693 2694
		page_cache_release(page);
		return PTR_ERR(handle);
2695 2696
	}

2697 2698 2699 2700 2701
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
2702
		ext4_journal_stop(handle);
2703
		goto retry_grab;
2704
	}
2705 2706
	/* In case writeback began while the page was unlocked */
	wait_on_page_writeback(page);
2707

2708
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2709 2710 2711
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
2712 2713 2714 2715 2716 2717
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2718
			ext4_truncate_failed_write(inode);
2719 2720 2721 2722 2723 2724 2725

		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;

		page_cache_release(page);
		return ret;
2726 2727
	}

2728
	*pagep = page;
2729 2730 2731
	return ret;
}

2732 2733 2734 2735 2736
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2737
					    unsigned long offset)
2738 2739 2740 2741 2742 2743 2744 2745 2746
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2747
	for (i = 0; i < idx; i++)
2748 2749
		bh = bh->b_this_page;

2750
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2751 2752 2753 2754
		return 0;
	return 1;
}

2755
static int ext4_da_write_end(struct file *file,
2756 2757 2758
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2759 2760 2761 2762 2763
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2764
	unsigned long start, end;
2765 2766
	int write_mode = (int)(unsigned long)fsdata;

2767 2768 2769
	if (write_mode == FALL_BACK_TO_NONDELALLOC)
		return ext4_write_end(file, mapping, pos,
				      len, copied, page, fsdata);
2770

2771
	trace_ext4_da_write_end(inode, pos, len, copied);
2772
	start = pos & (PAGE_CACHE_SIZE - 1);
2773
	end = start + copied - 1;
2774 2775 2776 2777 2778 2779 2780

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2781
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2782 2783
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2784
			down_write(&EXT4_I(inode)->i_data_sem);
2785
			if (new_i_size > EXT4_I(inode)->i_disksize)
2786 2787
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2788 2789 2790 2791 2792
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2793
		}
2794
	}
2795 2796 2797 2798 2799 2800 2801 2802

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2803
							page, fsdata);
2804

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2824
	ext4_da_page_release_reservation(page, offset);
2825 2826 2827 2828 2829 2830 2831

out:
	ext4_invalidatepage(page, offset);

	return;
}

2832 2833 2834 2835 2836
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2837 2838
	trace_ext4_alloc_da_blocks(inode);

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2849
	 *
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2862
	 * the pages by calling redirty_page_for_writepage() but that
2863 2864
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2865
	 * simplifying them because we wouldn't actually intend to
2866 2867 2868
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2869
	 *
2870 2871 2872 2873 2874 2875
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2876

2877 2878 2879 2880 2881
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2882
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2883 2884 2885 2886 2887 2888 2889 2890
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2891
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2892 2893 2894 2895 2896
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2897 2898 2899 2900 2901 2902
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2913 2914
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2926
		 * NB. EXT4_STATE_JDATA is not set on files other than
2927 2928 2929 2930 2931 2932
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2933
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2934
		journal = EXT4_JOURNAL(inode);
2935 2936 2937
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2938 2939 2940 2941 2942

		if (err)
			return 0;
	}

2943
	return generic_block_bmap(mapping, block, ext4_get_block);
2944 2945
}

2946
static int ext4_readpage(struct file *file, struct page *page)
2947
{
T
Tao Ma 已提交
2948 2949 2950
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2951
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2952 2953 2954 2955 2956 2957 2958 2959

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2960 2961 2962
}

static int
2963
ext4_readpages(struct file *file, struct address_space *mapping,
2964 2965
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2966 2967 2968 2969 2970 2971
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2972
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2973 2974
}

2975
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2976
{
2977 2978
	trace_ext4_invalidatepage(page, offset);

2979 2980 2981 2982 2983 2984
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

	block_invalidatepage(page, offset);
}

2985 2986
static int __ext4_journalled_invalidatepage(struct page *page,
					    unsigned long offset)
2987 2988 2989 2990 2991
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

	trace_ext4_journalled_invalidatepage(page, offset);

2992 2993 2994 2995 2996 2997
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2998 2999 3000 3001 3002 3003 3004 3005
	return jbd2_journal_invalidatepage(journal, page, offset);
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
					   unsigned long offset)
{
	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3006 3007
}

3008
static int ext4_releasepage(struct page *page, gfp_t wait)
3009
{
3010
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3011

3012 3013
	trace_ext4_releasepage(page);

3014 3015
	/* Page has dirty journalled data -> cannot release */
	if (PageChecked(page))
3016
		return 0;
3017 3018 3019 3020
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3021 3022
}

3023 3024 3025 3026 3027
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3028
int ext4_get_block_write(struct inode *inode, sector_t iblock,
3029 3030
		   struct buffer_head *bh_result, int create)
{
3031
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3032
		   inode->i_ino, create);
3033 3034
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3035 3036
}

3037
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3038
		   struct buffer_head *bh_result, int create)
3039
{
3040 3041 3042 3043
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
3044 3045
}

3046
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3047 3048
			    ssize_t size, void *private, int ret,
			    bool is_async)
3049
{
A
Al Viro 已提交
3050
	struct inode *inode = file_inode(iocb->ki_filp);
3051 3052
        ext4_io_end_t *io_end = iocb->private;

3053 3054
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3055
		goto out;
3056

3057
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3058
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3059 3060 3061
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

3062 3063
	iocb->private = NULL;

3064
	/* if not aio dio with unwritten extents, just free io and return */
3065
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3066
		ext4_free_io_end(io_end);
3067
out:
3068
		inode_dio_done(inode);
3069 3070 3071
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3072 3073
	}

3074 3075
	io_end->offset = offset;
	io_end->size = size;
3076 3077 3078 3079
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3080

3081
	ext4_add_complete_io(io_end);
3082
}
3083

3084 3085 3086 3087 3088
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
3089
 * For holes, we fallocate those blocks, mark them as uninitialized
3090
 * If those blocks were preallocated, we mark sure they are split, but
3091
 * still keep the range to write as uninitialized.
3092
 *
3093
 * The unwritten extents will be converted to written when DIO is completed.
3094
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
3095
 * set up an end_io call back function, which will do the conversion
3096
 * when async direct IO completed.
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
3111 3112 3113
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
3114
	loff_t final_size = offset + count;
3115

3116 3117 3118
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3119

3120
	BUG_ON(iocb->private == NULL);
3121

3122 3123
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
3124

3125 3126 3127 3128 3129
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
3130

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
3157
		}
3158 3159
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
3160
		/*
3161 3162 3163 3164
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
3165
		 */
3166 3167
		ext4_inode_aio_set(inode, io_end);
	}
3168

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3215

3216 3217 3218 3219 3220 3221
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3222
	}
3223

3224
	return ret;
3225 3226 3227 3228 3229 3230 3231 3232
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3233
	ssize_t ret;
3234

3235 3236 3237 3238 3239 3240
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3241 3242 3243 3244
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3245
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3246
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3247 3248 3249 3250 3251 3252
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3253 3254
}

3255
/*
3256
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3268
static int ext4_journalled_set_page_dirty(struct page *page)
3269 3270 3271 3272 3273
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3274
static const struct address_space_operations ext4_aops = {
3275 3276
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3277
	.writepage		= ext4_writepage,
3278
	.write_begin		= ext4_write_begin,
3279
	.write_end		= ext4_write_end,
3280 3281 3282 3283 3284 3285
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3286
	.error_remove_page	= generic_error_remove_page,
3287 3288
};

3289
static const struct address_space_operations ext4_journalled_aops = {
3290 3291
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3292
	.writepage		= ext4_writepage,
3293 3294 3295 3296
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3297
	.invalidatepage		= ext4_journalled_invalidatepage,
3298
	.releasepage		= ext4_releasepage,
3299
	.direct_IO		= ext4_direct_IO,
3300
	.is_partially_uptodate  = block_is_partially_uptodate,
3301
	.error_remove_page	= generic_error_remove_page,
3302 3303
};

3304
static const struct address_space_operations ext4_da_aops = {
3305 3306
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3307
	.writepage		= ext4_writepage,
3308 3309 3310 3311 3312 3313 3314 3315 3316
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3317
	.error_remove_page	= generic_error_remove_page,
3318 3319
};

3320
void ext4_set_aops(struct inode *inode)
3321
{
3322 3323
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
3324
		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3325 3326
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
3327
		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3328 3329
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3330
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3331
		return;
3332 3333 3334
	default:
		BUG();
	}
3335 3336 3337 3338
	if (test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else
		inode->i_mapping->a_ops = &ext4_aops;
3339 3340
}

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3361
		return -ENOMEM;
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3390
 * from:   The starting byte offset (from the beginning of the file)
3391 3392 3393 3394 3395 3396 3397
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3398
 *         for updating the contents of a page whose blocks may
3399 3400 3401
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3402
 * Returns zero on success or negative on failure.
3403
 */
E
Eric Sandeen 已提交
3404
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3430 3431
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3444 3445
		unsigned int end_of_block, range_to_discard;

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3531
		} else
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3555 3556 3557 3558 3559 3560 3561 3562
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3563
 * Returns: 0 on success or negative on failure
3564 3565 3566 3567
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
A
Al Viro 已提交
3568
	struct inode *inode = file_inode(file);
T
Theodore Ts'o 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577
	struct super_block *sb = inode->i_sb;
	ext4_lblk_t first_block, stop_block;
	struct address_space *mapping = inode->i_mapping;
	loff_t first_page, last_page, page_len;
	loff_t first_page_offset, last_page_offset;
	handle_t *handle;
	unsigned int credits;
	int ret = 0;

3578
	if (!S_ISREG(inode->i_mode))
3579
		return -EOPNOTSUPP;
3580

T
Theodore Ts'o 已提交
3581
	if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3582
		/* TODO: Add support for bigalloc file systems */
3583
		return -EOPNOTSUPP;
3584 3585
	}

3586 3587
	trace_ext4_punch_hole(inode, offset, length);

T
Theodore Ts'o 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
	/*
	 * Write out all dirty pages to avoid race conditions
	 * Then release them.
	 */
	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
		ret = filemap_write_and_wait_range(mapping, offset,
						   offset + length - 1);
		if (ret)
			return ret;
	}

	mutex_lock(&inode->i_mutex);
	/* It's not possible punch hole on append only file */
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
		ret = -EPERM;
		goto out_mutex;
	}
	if (IS_SWAPFILE(inode)) {
		ret = -ETXTBSY;
		goto out_mutex;
	}

	/* No need to punch hole beyond i_size */
	if (offset >= inode->i_size)
		goto out_mutex;

	/*
	 * If the hole extends beyond i_size, set the hole
	 * to end after the page that contains i_size
	 */
	if (offset + length > inode->i_size) {
		length = inode->i_size +
		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
		   offset;
	}

	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
	last_page = (offset + length) >> PAGE_CACHE_SHIFT;

	first_page_offset = first_page << PAGE_CACHE_SHIFT;
	last_page_offset = last_page << PAGE_CACHE_SHIFT;

	/* Now release the pages */
	if (last_page_offset > first_page_offset) {
		truncate_pagecache_range(inode, first_page_offset,
					 last_page_offset - 1);
	}

	/* Wait all existing dio workers, newcomers will block on i_mutex */
	ext4_inode_block_unlocked_dio(inode);
	ret = ext4_flush_unwritten_io(inode);
	if (ret)
		goto out_dio;
	inode_dio_wait(inode);

	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		credits = ext4_writepage_trans_blocks(inode);
	else
		credits = ext4_blocks_for_truncate(inode);
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		ext4_std_error(sb, ret);
		goto out_dio;
	}

	/*
	 * Now we need to zero out the non-page-aligned data in the
	 * pages at the start and tail of the hole, and unmap the
	 * buffer heads for the block aligned regions of the page that
	 * were completely zeroed.
	 */
	if (first_page > last_page) {
		/*
		 * If the file space being truncated is contained
		 * within a page just zero out and unmap the middle of
		 * that page
		 */
		ret = ext4_discard_partial_page_buffers(handle,
			mapping, offset, length, 0);

		if (ret)
			goto out_stop;
	} else {
		/*
		 * zero out and unmap the partial page that contains
		 * the start of the hole
		 */
		page_len = first_page_offset - offset;
		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers(handle, mapping,
						offset, page_len, 0);
			if (ret)
				goto out_stop;
		}

		/*
		 * zero out and unmap the partial page that contains
		 * the end of the hole
		 */
		page_len = offset + length - last_page_offset;
		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers(handle, mapping,
					last_page_offset, page_len, 0);
			if (ret)
				goto out_stop;
		}
	}

	/*
	 * If i_size is contained in the last page, we need to
	 * unmap and zero the partial page after i_size
	 */
	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
	   inode->i_size % PAGE_CACHE_SIZE != 0) {
		page_len = PAGE_CACHE_SIZE -
			(inode->i_size & (PAGE_CACHE_SIZE - 1));

		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers(handle,
					mapping, inode->i_size, page_len, 0);

			if (ret)
				goto out_stop;
		}
	}

	first_block = (offset + sb->s_blocksize - 1) >>
		EXT4_BLOCK_SIZE_BITS(sb);
	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);

	/* If there are no blocks to remove, return now */
	if (first_block >= stop_block)
		goto out_stop;

	down_write(&EXT4_I(inode)->i_data_sem);
	ext4_discard_preallocations(inode);

	ret = ext4_es_remove_extent(inode, first_block,
				    stop_block - first_block);
	if (ret) {
		up_write(&EXT4_I(inode)->i_data_sem);
		goto out_stop;
	}

	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		ret = ext4_ext_remove_space(inode, first_block,
					    stop_block - 1);
	else
		ret = ext4_free_hole_blocks(handle, inode, first_block,
					    stop_block);

	ext4_discard_preallocations(inode);
	if (IS_SYNC(inode))
		ext4_handle_sync(handle);
	up_write(&EXT4_I(inode)->i_data_sem);
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
	ext4_mark_inode_dirty(handle, inode);
out_stop:
	ext4_journal_stop(handle);
out_dio:
	ext4_inode_resume_unlocked_dio(inode);
out_mutex:
	mutex_unlock(&inode->i_mutex);
	return ret;
3753 3754
}

3755
/*
3756
 * ext4_truncate()
3757
 *
3758 3759
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3760 3761
 * simultaneously on behalf of the same inode.
 *
3762
 * As we work through the truncate and commit bits of it to the journal there
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3776
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3777
 * that this inode's truncate did not complete and it will again call
3778 3779
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3780
 * that's fine - as long as they are linked from the inode, the post-crash
3781
 * ext4_truncate() run will find them and release them.
3782
 */
3783
void ext4_truncate(struct inode *inode)
3784
{
3785 3786
	trace_ext4_truncate_enter(inode);

3787
	if (!ext4_can_truncate(inode))
3788 3789
		return;

3790
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3791

3792
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3793
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3794

3795 3796 3797 3798 3799 3800 3801 3802
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

3803
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3804
		ext4_ext_truncate(inode);
3805 3806
	else
		ext4_ind_truncate(inode);
3807

3808
	trace_ext4_truncate_exit(inode);
3809 3810 3811
}

/*
3812
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3813 3814 3815 3816
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3817 3818
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3819
{
3820 3821 3822 3823 3824 3825
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3826
	iloc->bh = NULL;
3827 3828
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3829

3830 3831 3832
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3833 3834
		return -EIO;

3835 3836 3837
	/*
	 * Figure out the offset within the block group inode table
	 */
3838
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3839 3840 3841 3842 3843 3844
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3845
	if (unlikely(!bh))
3846
		return -ENOMEM;
3847 3848
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3872
			int i, start;
3873

3874
			start = inode_offset & ~(inodes_per_block - 1);
3875

3876 3877
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3878
			if (unlikely(!bitmap_bh))
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3890
			for (i = start; i < start + inodes_per_block; i++) {
3891 3892
				if (i == inode_offset)
					continue;
3893
				if (ext4_test_bit(i, bitmap_bh->b_data))
3894 3895 3896
					break;
			}
			brelse(bitmap_bh);
3897
			if (i == start + inodes_per_block) {
3898 3899 3900 3901 3902 3903 3904 3905 3906
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3907 3908 3909 3910 3911 3912 3913 3914 3915
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3916
			/* s_inode_readahead_blks is always a power of 2 */
3917 3918 3919 3920 3921
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3922
			if (ext4_has_group_desc_csum(sb))
3923
				num -= ext4_itable_unused_count(sb, gdp);
3924 3925 3926 3927 3928 3929 3930
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3931 3932 3933 3934 3935
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3936
		trace_ext4_load_inode(inode);
3937 3938
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3939
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3940 3941
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3942 3943
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3944 3945 3946 3947 3948 3949 3950 3951 3952
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3953
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3954 3955
{
	/* We have all inode data except xattrs in memory here. */
3956
	return __ext4_get_inode_loc(inode, iloc,
3957
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3958 3959
}

3960
void ext4_set_inode_flags(struct inode *inode)
3961
{
3962
	unsigned int flags = EXT4_I(inode)->i_flags;
3963 3964

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3965
	if (flags & EXT4_SYNC_FL)
3966
		inode->i_flags |= S_SYNC;
3967
	if (flags & EXT4_APPEND_FL)
3968
		inode->i_flags |= S_APPEND;
3969
	if (flags & EXT4_IMMUTABLE_FL)
3970
		inode->i_flags |= S_IMMUTABLE;
3971
	if (flags & EXT4_NOATIME_FL)
3972
		inode->i_flags |= S_NOATIME;
3973
	if (flags & EXT4_DIRSYNC_FL)
3974 3975 3976
		inode->i_flags |= S_DIRSYNC;
}

3977 3978 3979
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4000
}
4001

4002
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4003
				  struct ext4_inode_info *ei)
4004 4005
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4006 4007
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4008 4009 4010 4011 4012 4013

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4014
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4015 4016 4017 4018 4019
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4020 4021 4022 4023
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4024

4025 4026 4027 4028 4029 4030
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4031
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4032
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4033
		ext4_find_inline_data_nolock(inode);
4034 4035
	} else
		EXT4_I(inode)->i_inline_off = 0;
4036 4037
}

4038
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4039
{
4040 4041
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4042 4043
	struct ext4_inode_info *ei;
	struct inode *inode;
4044
	journal_t *journal = EXT4_SB(sb)->s_journal;
4045
	long ret;
4046
	int block;
4047 4048
	uid_t i_uid;
	gid_t i_gid;
4049

4050 4051 4052 4053 4054 4055 4056
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4057
	iloc.bh = NULL;
4058

4059 4060
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4061
		goto bad_inode;
4062
	raw_inode = ext4_raw_inode(&iloc);
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

4096
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4097 4098
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4099
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4100 4101
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4102
	}
4103 4104
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
4105
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4106

4107
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4108
	ei->i_inline_off = 0;
4109 4110 4111 4112 4113 4114 4115 4116 4117
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4118
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4119
			/* this inode is deleted */
4120
			ret = -ESTALE;
4121 4122 4123 4124 4125 4126 4127 4128
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4129
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4130
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4131
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4132 4133
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4134
	inode->i_size = ext4_isize(raw_inode);
4135
	ei->i_disksize = inode->i_size;
4136 4137 4138
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4139 4140
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4141
	ei->i_last_alloc_group = ~0;
4142 4143 4144 4145
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4146
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4147 4148 4149
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4161
		read_lock(&journal->j_state_lock);
4162 4163 4164 4165 4166 4167 4168 4169
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4170
		read_unlock(&journal->j_state_lock);
4171 4172 4173 4174
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4175
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4176 4177
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4178 4179
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4180
		} else {
4181
			ext4_iget_extra_inode(inode, raw_inode, ei);
4182
		}
4183
	}
4184

K
Kalpak Shah 已提交
4185 4186 4187 4188 4189
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4190 4191 4192 4193 4194 4195 4196
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4197
	ret = 0;
4198
	if (ei->i_file_acl &&
4199
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4200 4201
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4202 4203
		ret = -EIO;
		goto bad_inode;
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
4217
	}
4218
	if (ret)
4219
		goto bad_inode;
4220

4221
	if (S_ISREG(inode->i_mode)) {
4222 4223 4224
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4225
	} else if (S_ISDIR(inode->i_mode)) {
4226 4227
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4228
	} else if (S_ISLNK(inode->i_mode)) {
4229
		if (ext4_inode_is_fast_symlink(inode)) {
4230
			inode->i_op = &ext4_fast_symlink_inode_operations;
4231 4232 4233
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4234 4235
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4236
		}
4237 4238
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4239
		inode->i_op = &ext4_special_inode_operations;
4240 4241 4242 4243 4244 4245
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4246 4247
	} else {
		ret = -EIO;
4248
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4249
		goto bad_inode;
4250
	}
4251
	brelse(iloc.bh);
4252
	ext4_set_inode_flags(inode);
4253 4254
	unlock_new_inode(inode);
	return inode;
4255 4256

bad_inode:
4257
	brelse(iloc.bh);
4258 4259
	iget_failed(inode);
	return ERR_PTR(ret);
4260 4261
}

4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
4272
		 * i_blocks can be represented in a 32 bit variable
4273 4274
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4275
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4276
		raw_inode->i_blocks_high = 0;
4277
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4278 4279 4280 4281 4282 4283
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4284 4285 4286 4287
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4288
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4289
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4290
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4291
	} else {
4292
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
4293 4294 4295 4296
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4297
	}
4298
	return 0;
4299 4300
}

4301 4302 4303 4304 4305 4306 4307
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4308
static int ext4_do_update_inode(handle_t *handle,
4309
				struct inode *inode,
4310
				struct ext4_iloc *iloc)
4311
{
4312 4313
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4314 4315
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4316
	int need_datasync = 0;
4317 4318
	uid_t i_uid;
	gid_t i_gid;
4319 4320 4321

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4322
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4323
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4324

4325
	ext4_get_inode_flags(ei);
4326
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4327 4328
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4329
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4330 4331
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4332 4333 4334 4335
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4336
		if (!ei->i_dtime) {
4337
			raw_inode->i_uid_high =
4338
				cpu_to_le16(high_16_bits(i_uid));
4339
			raw_inode->i_gid_high =
4340
				cpu_to_le16(high_16_bits(i_gid));
4341 4342 4343 4344 4345
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4346 4347
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4348 4349 4350 4351
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4352 4353 4354 4355 4356 4357

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4358 4359
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4360
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4361
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4362 4363
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4364 4365
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4366
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4367 4368 4369 4370
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4386
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4387
			ext4_handle_sync(handle);
4388
			err = ext4_handle_dirty_super(handle, sb);
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4403
	} else if (!ext4_has_inline_data(inode)) {
4404 4405
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4406
	}
4407

4408 4409 4410 4411 4412
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4413
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4414 4415
	}

4416 4417
	ext4_inode_csum_set(inode, raw_inode, ei);

4418
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4419
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4420 4421
	if (!err)
		err = rc;
4422
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4423

4424
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4425
out_brelse:
4426
	brelse(bh);
4427
	ext4_std_error(inode->i_sb, err);
4428 4429 4430 4431
	return err;
}

/*
4432
 * ext4_write_inode()
4433 4434 4435 4436 4437
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4438
 *   transaction to commit.
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4449
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4466
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4467
{
4468 4469
	int err;

4470 4471 4472
	if (current->flags & PF_MEMALLOC)
		return 0;

4473 4474 4475 4476 4477 4478
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4479

4480
		if (wbc->sync_mode != WB_SYNC_ALL)
4481 4482 4483 4484 4485
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4486

4487
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4488 4489
		if (err)
			return err;
4490
		if (wbc->sync_mode == WB_SYNC_ALL)
4491 4492
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4493 4494
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4495 4496
			err = -EIO;
		}
4497
		brelse(iloc.bh);
4498 4499
	}
	return err;
4500 4501
}

4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
		ret = __ext4_journalled_invalidatepage(page, offset);
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4543
/*
4544
 * ext4_setattr()
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4558 4559 4560 4561 4562 4563 4564 4565
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4566
 */
4567
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4568 4569 4570
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4571
	int orphan = 0;
4572 4573 4574 4575 4576 4577
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4578
	if (is_quota_modification(inode, attr))
4579
		dquot_initialize(inode);
4580 4581
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4582 4583 4584 4585
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4586 4587 4588
		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4589 4590 4591 4592
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4593
		error = dquot_transfer(inode, attr);
4594
		if (error) {
4595
			ext4_journal_stop(handle);
4596 4597 4598 4599 4600 4601 4602 4603
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4604 4605
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4606 4607
	}

4608
	if (attr->ia_valid & ATTR_SIZE) {
4609

4610
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4611 4612
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4613 4614
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4615 4616 4617
		}
	}

4618
	if (S_ISREG(inode->i_mode) &&
4619
	    attr->ia_valid & ATTR_SIZE &&
4620
	    (attr->ia_size < inode->i_size)) {
4621 4622
		handle_t *handle;

4623
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4624 4625 4626 4627
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4628 4629 4630 4631
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4632 4633
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4634 4635
		if (!error)
			error = rc;
4636
		ext4_journal_stop(handle);
4637 4638 4639 4640 4641 4642

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
4643 4644
				handle = ext4_journal_start(inode,
							    EXT4_HT_INODE, 3);
4645 4646 4647 4648 4649
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4650
				orphan = 0;
4651 4652 4653 4654
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4655 4656
	}

4657
	if (attr->ia_valid & ATTR_SIZE) {
4658 4659 4660 4661 4662 4663 4664 4665 4666
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4667
			if (orphan) {
4668 4669 4670 4671 4672 4673
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4674
			}
4675 4676 4677 4678 4679
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4680
		}
4681
		ext4_truncate(inode);
4682
	}
4683

C
Christoph Hellwig 已提交
4684 4685 4686 4687 4688 4689 4690 4691 4692
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4693
	if (orphan && inode->i_nlink)
4694
		ext4_orphan_del(NULL, inode);
4695 4696

	if (!rc && (ia_valid & ATTR_MODE))
4697
		rc = ext4_acl_chmod(inode);
4698 4699

err_out:
4700
	ext4_std_error(inode->i_sb, error);
4701 4702 4703 4704 4705
	if (!error)
		error = rc;
	return error;
}

4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4725 4726
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4727 4728 4729 4730

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4731

4732 4733
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4734
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4735
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4736
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4737
}
4738

4739
/*
4740 4741 4742
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4743
 *
4744
 * If datablocks are discontiguous, they are possible to spread over
4745
 * different block groups too. If they are contiguous, with flexbg,
4746
 * they could still across block group boundary.
4747
 *
4748 4749
 * Also account for superblock, inode, quota and xattr blocks
 */
4750
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4751
{
4752 4753
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4780 4781
	if (groups > ngroups)
		groups = ngroups;
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4795
 * Calculate the total number of credits to reserve to fit
4796 4797
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4798
 *
4799
 * This could be called via ext4_write_begin()
4800
 *
4801
 * We need to consider the worse case, when
4802
 * one new block per extent.
4803
 */
A
Alex Tomas 已提交
4804
int ext4_writepage_trans_blocks(struct inode *inode)
4805
{
4806
	int bpp = ext4_journal_blocks_per_page(inode);
4807 4808
	int ret;

4809
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4810

4811
	/* Account for data blocks for journalled mode */
4812
	if (ext4_should_journal_data(inode))
4813
		ret += bpp;
4814 4815
	return ret;
}
4816 4817 4818 4819 4820

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4821
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4822 4823 4824 4825 4826 4827 4828 4829 4830
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4831
/*
4832
 * The caller must have previously called ext4_reserve_inode_write().
4833 4834
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4835
int ext4_mark_iloc_dirty(handle_t *handle,
4836
			 struct inode *inode, struct ext4_iloc *iloc)
4837 4838 4839
{
	int err = 0;

4840
	if (IS_I_VERSION(inode))
4841 4842
		inode_inc_iversion(inode);

4843 4844 4845
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4846
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4847
	err = ext4_do_update_inode(handle, inode, iloc);
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4858 4859
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4860
{
4861 4862 4863 4864 4865 4866 4867 4868 4869
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4870 4871
		}
	}
4872
	ext4_std_error(inode->i_sb, err);
4873 4874 4875
	return err;
}

4876 4877 4878 4879
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4880 4881 4882 4883
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4896 4897
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4922
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4923
{
4924
	struct ext4_iloc iloc;
4925 4926 4927
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4928 4929

	might_sleep();
4930
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4931
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4932 4933
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4934
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4948 4949
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4950 4951
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4952
					ext4_warning(inode->i_sb,
4953 4954 4955
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4956 4957
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4958 4959 4960 4961
				}
			}
		}
	}
4962
	if (!err)
4963
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4964 4965 4966 4967
	return err;
}

/*
4968
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4969 4970 4971 4972 4973
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4974
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4975 4976 4977 4978 4979 4980
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4981
void ext4_dirty_inode(struct inode *inode, int flags)
4982 4983 4984
{
	handle_t *handle;

4985
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4986 4987
	if (IS_ERR(handle))
		goto out;
4988 4989 4990

	ext4_mark_inode_dirty(handle, inode);

4991
	ext4_journal_stop(handle);
4992 4993 4994 4995 4996 4997 4998 4999
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5000
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5001 5002 5003
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5004
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5005
{
5006
	struct ext4_iloc iloc;
5007 5008 5009

	int err = 0;
	if (handle) {
5010
		err = ext4_get_inode_loc(inode, &iloc);
5011 5012
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5013
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5014
			if (!err)
5015
				err = ext4_handle_dirty_metadata(handle,
5016
								 NULL,
5017
								 iloc.bh);
5018 5019 5020
			brelse(iloc.bh);
		}
	}
5021
	ext4_std_error(inode->i_sb, err);
5022 5023 5024 5025
	return err;
}
#endif

5026
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5042
	journal = EXT4_JOURNAL(inode);
5043 5044
	if (!journal)
		return 0;
5045
	if (is_journal_aborted(journal))
5046
		return -EROFS;
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
5058

5059 5060 5061 5062
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

5063
	jbd2_journal_lock_updates(journal);
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5074
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5075 5076
	else {
		jbd2_journal_flush(journal);
5077
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5078
	}
5079
	ext4_set_aops(inode);
5080

5081
	jbd2_journal_unlock_updates(journal);
5082
	ext4_inode_resume_unlocked_dio(inode);
5083 5084 5085

	/* Finally we can mark the inode as dirty. */

5086
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5087 5088 5089
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5090
	err = ext4_mark_inode_dirty(handle, inode);
5091
	ext4_handle_sync(handle);
5092 5093
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5094 5095 5096

	return err;
}
5097 5098 5099 5100 5101 5102

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5103
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5104
{
5105
	struct page *page = vmf->page;
5106 5107
	loff_t size;
	unsigned long len;
5108
	int ret;
5109
	struct file *file = vma->vm_file;
A
Al Viro 已提交
5110
	struct inode *inode = file_inode(file);
5111
	struct address_space *mapping = inode->i_mapping;
5112 5113 5114
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
5115

5116
	sb_start_pagefault(inode->i_sb);
5117
	file_update_time(vma->vm_file);
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
5128
	}
5129 5130

	lock_page(page);
5131 5132 5133 5134 5135 5136
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
5137
	}
5138 5139 5140 5141 5142

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
5143
	/*
5144 5145
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
5146
	 */
5147
	if (page_has_buffers(page)) {
5148 5149 5150
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
5151
			/* Wait so that we don't change page under IO */
5152
			wait_for_stable_page(page);
5153 5154
			ret = VM_FAULT_LOCKED;
			goto out;
5155
		}
5156
	}
5157
	unlock_page(page);
5158 5159 5160 5161 5162 5163
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
5164 5165
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
5166
	if (IS_ERR(handle)) {
5167
		ret = VM_FAULT_SIGBUS;
5168 5169 5170 5171
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
5172
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5173 5174 5175
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
5176
			ext4_journal_stop(handle);
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
5187
	sb_end_pagefault(inode->i_sb);
5188 5189
	return ret;
}