inode.c 174.2 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45 46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49 50
#include <trace/events/ext4.h>

51 52
#define MPAGE_DA_EXTENT_TAIL 0x01

53 54 55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56 57 58 59
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
60 61
}

62 63
static void ext4_invalidatepage(struct page *page, unsigned long offset);

64 65 66
/*
 * Test whether an inode is a fast symlink.
 */
67
static int ext4_inode_is_fast_symlink(struct inode *inode)
68
{
69
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
70 71 72 73 74 75 76 77 78 79 80
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
81
	ext4_lblk_t needed;
82 83 84 85 86 87

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
88
	 * like a regular file for ext4 to try to delete it.  Things
89 90 91 92 93 94 95
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
96 97
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
98

99
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

116
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
117 118 119
	if (!IS_ERR(result))
		return result;

120
	ext4_std_error(inode->i_sb, PTR_ERR(result));
121 122 123 124 125 126 127 128 129 130 131
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
132 133 134
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135
		return 0;
136
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137 138 139 140 141 142 143 144 145
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
146
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147
				 int nblocks)
148
{
149 150 151
	int ret;

	/*
152
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
153 154 155 156
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
157
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
158
	jbd_debug(2, "restarting handle %p\n", handle);
159 160 161
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
162
	ext4_discard_preallocations(inode);
163 164

	return ret;
165 166 167 168 169
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
170
void ext4_delete_inode(struct inode *inode)
171 172
{
	handle_t *handle;
173
	int err;
174

175
	if (!is_bad_inode(inode))
176
		dquot_initialize(inode);
177

178 179
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
180 181 182 183 184
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

185
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186
	if (IS_ERR(handle)) {
187
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
188 189 190 191 192
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
193
		ext4_orphan_del(NULL, inode);
194 195 196 197
		goto no_delete;
	}

	if (IS_SYNC(inode))
198
		ext4_handle_sync(handle);
199
	inode->i_size = 0;
200 201
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
202
		ext4_warning(inode->i_sb,
203 204 205
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
206
	if (inode->i_blocks)
207
		ext4_truncate(inode);
208 209 210 211 212 213 214

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
215
	if (!ext4_handle_has_enough_credits(handle, 3)) {
216 217 218 219
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
220
			ext4_warning(inode->i_sb,
221 222 223 224 225 226 227
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

228
	/*
229
	 * Kill off the orphan record which ext4_truncate created.
230
	 * AKPM: I think this can be inside the above `if'.
231
	 * Note that ext4_orphan_del() has to be able to cope with the
232
	 * deletion of a non-existent orphan - this is because we don't
233
	 * know if ext4_truncate() actually created an orphan record.
234 235
	 * (Well, we could do this if we need to, but heck - it works)
	 */
236 237
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
238 239 240 241 242 243 244 245

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
246
	if (ext4_mark_inode_dirty(handle, inode))
247 248 249
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
250 251
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
270
 *	ext4_block_to_path - parse the block number into array of offsets
271 272 273
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
274 275
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
276
 *
277
 *	To store the locations of file's data ext4 uses a data structure common
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

300
static int ext4_block_to_path(struct inode *inode,
301 302
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
303
{
304 305 306
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
307 308 309 310 311
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

312
	if (i_block < direct_blocks) {
313 314
		offsets[n++] = i_block;
		final = direct_blocks;
315
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
316
		offsets[n++] = EXT4_IND_BLOCK;
317 318 319
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
320
		offsets[n++] = EXT4_DIND_BLOCK;
321 322 323 324
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325
		offsets[n++] = EXT4_TIND_BLOCK;
326 327 328 329 330
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
331
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
332 333
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
334 335 336 337 338 339
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

340
static int __ext4_check_blockref(const char *function, struct inode *inode,
341 342
				 __le32 *p, unsigned int max)
{
343
	__le32 *bref = p;
344 345
	unsigned int blk;

346
	while (bref < p+max) {
347
		blk = le32_to_cpu(*bref++);
348 349
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
350
						    blk, 1))) {
351 352
			ext4_error_inode(function, inode,
					 "invalid block reference %u", blk);
353 354 355 356
			return -EIO;
		}
	}
	return 0;
357 358 359 360
}


#define ext4_check_indirect_blockref(inode, bh)                         \
361
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
362 363 364
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
365
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
366 367
			      EXT4_NDIR_BLOCKS)

368
/**
369
 *	ext4_get_branch - read the chain of indirect blocks leading to data
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
394 395
 *
 *      Need to be called with
396
 *      down_read(&EXT4_I(inode)->i_data_sem)
397
 */
A
Aneesh Kumar K.V 已提交
398 399
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
400 401 402 403 404 405 406 407
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
408
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
409 410 411
	if (!p->key)
		goto no_block;
	while (--depth) {
412 413
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
414
			goto failure;
415

416 417 418 419 420 421 422 423 424 425 426
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
427

428
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
429 430 431 432 433 434 435 436 437 438 439 440 441
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
442
 *	ext4_find_near - find a place for allocation with sufficient locality
443 444 445
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
446
 *	This function returns the preferred place for block allocation.
447 448 449 450 451 452 453 454 455 456 457 458 459 460
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
461
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
462
{
463
	struct ext4_inode_info *ei = EXT4_I(inode);
464
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
465
	__le32 *p;
466
	ext4_fsblk_t bg_start;
467
	ext4_fsblk_t last_block;
468
	ext4_grpblk_t colour;
469 470
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
486 487 488 489 490 491 492
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
493 494
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

495 496 497 498 499 500 501
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

502 503
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
504
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
505 506
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
507 508 509 510
	return bg_start + colour;
}

/**
511
 *	ext4_find_goal - find a preferred place for allocation.
512 513 514 515
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
516
 *	Normally this function find the preferred place for block allocation,
517
 *	returns it.
518 519
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
520
 */
A
Aneesh Kumar K.V 已提交
521
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
522
				   Indirect *partial)
523
{
524 525
	ext4_fsblk_t goal;

526
	/*
527
	 * XXX need to get goal block from mballoc's data structures
528 529
	 */

530 531 532
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
533 534 535
}

/**
536
 *	ext4_blks_to_allocate: Look up the block map and count the number
537 538 539 540 541 542 543 544 545 546
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
547
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
548
				 int blocks_to_boundary)
549
{
550
	unsigned int count = 0;
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
574
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
575 576 577 578 579 580 581 582
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
583
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
584 585 586
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
587
{
588
	struct ext4_allocation_request ar;
589
	int target, i;
590
	unsigned long count = 0, blk_allocated = 0;
591
	int index = 0;
592
	ext4_fsblk_t current_block = 0;
593 594 595 596 597 598 599 600 601 602
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
603 604 605
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
606 607
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
608 609
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
610 611 612
		if (*err)
			goto failed_out;

613 614 615 616 617 618 619 620
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
621

622 623 624 625 626 627
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
628 629 630 631 632 633 634 635 636
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
637
			break;
638
		}
639 640
	}

641 642 643 644 645
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
646 647 648 649 650 651 652 653 654 655
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
656 657 658 659 660 661 662 663
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
664

665 666 667 668 669 670 671 672 673
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
674 675 676 677
			/*
			 * save the new block number
			 * for the first direct block
			 */
678 679
			new_blocks[index] = current_block;
		}
680
		blk_allocated += ar.len;
681 682
	}
allocated:
683
	/* total number of blocks allocated for direct blocks */
684
	ret = blk_allocated;
685 686 687
	*err = 0;
	return ret;
failed_out:
688
	for (i = 0; i < index; i++)
689
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
690 691 692 693
	return ret;
}

/**
694
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
695 696 697 698 699 700 701 702 703 704
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
705
 *	the same format as ext4_get_branch() would do. We are calling it after
706 707
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
708
 *	picture as after the successful ext4_get_block(), except that in one
709 710 711 712 713 714
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
715
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
716 717
 *	as described above and return 0.
 */
718
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
719 720 721
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
722 723 724 725 726 727
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
728 729
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
730

731
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
750
		err = ext4_journal_get_create_access(handle, bh);
751
		if (err) {
752 753
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
754 755 756 757 758 759 760 761
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
762
		if (n == indirect_blks) {
763 764 765 766 767 768
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
769
			for (i = 1; i < num; i++)
770 771 772 773 774 775
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

776 777
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
778 779 780 781 782 783 784
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
785
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
786
	for (i = 1; i <= n ; i++) {
787
		/*
788 789 790
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
791
		 */
792 793
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
794
	}
795 796
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
797

798
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
799 800 801 802 803

	return err;
}

/**
804
 * ext4_splice_branch - splice the allocated branch onto inode.
805 806 807
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
808
 *	ext4_alloc_branch)
809 810 811 812 813 814 815 816
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
817
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
818 819
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
820 821 822
{
	int i;
	int err = 0;
823
	ext4_fsblk_t current_block;
824 825 826 827 828 829 830 831

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
832
		err = ext4_journal_get_write_access(handle, where->bh);
833 834 835 836 837 838 839 840 841 842 843 844 845 846
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
847
			*(where->p + i) = cpu_to_le32(current_block++);
848 849 850 851 852 853 854 855 856 857 858
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
859
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
860 861
		 */
		jbd_debug(5, "splicing indirect only\n");
862 863
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
864 865 866 867 868 869
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
870
		ext4_mark_inode_dirty(handle, inode);
871 872 873 874 875 876
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
877
		/*
878 879 880
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
881
		 */
882 883
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
884
	}
885 886
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
887 888 889 890 891

	return err;
}

/*
892
 * The ext4_ind_map_blocks() function handles non-extents inodes
893
 * (i.e., using the traditional indirect/double-indirect i_blocks
894
 * scheme) for ext4_map_blocks().
895
 *
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
912
 *
913 914 915 916 917
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
918
 */
919 920
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
921
			       int flags)
922 923
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
924
	ext4_lblk_t offsets[4];
925 926
	Indirect chain[4];
	Indirect *partial;
927
	ext4_fsblk_t goal;
928 929 930 931
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
932
	ext4_fsblk_t first_block = 0;
933

934
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
935
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
936
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
937
				   &blocks_to_boundary);
938 939 940 941

	if (depth == 0)
		goto out;

942
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
943 944 945 946 947 948

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
949
		while (count < map->m_len && count <= blocks_to_boundary) {
950
			ext4_fsblk_t blk;
951 952 953 954 955 956 957 958

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
959
		goto got_it;
960 961 962
	}

	/* Next simple case - plain lookup or failed read of indirect block */
963
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
964 965 966
		goto cleanup;

	/*
967
	 * Okay, we need to do block allocation.
968
	*/
969
	goal = ext4_find_goal(inode, map->m_lblk, partial);
970 971 972 973 974 975 976 977

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
978
	count = ext4_blks_to_allocate(partial, indirect_blks,
979
				      map->m_len, blocks_to_boundary);
980
	/*
981
	 * Block out ext4_truncate while we alter the tree
982
	 */
983
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
984 985
				&count, goal,
				offsets + (partial - chain), partial);
986 987

	/*
988
	 * The ext4_splice_branch call will free and forget any buffers
989 990 991 992 993 994
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
995
		err = ext4_splice_branch(handle, inode, map->m_lblk,
996
					 partial, indirect_blks, count);
997
	if (err)
998 999
		goto cleanup;

1000
	map->m_flags |= EXT4_MAP_NEW;
1001 1002

	ext4_update_inode_fsync_trans(handle, inode, 1);
1003
got_it:
1004 1005 1006
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1007
	if (count > blocks_to_boundary)
1008
		map->m_flags |= EXT4_MAP_BOUNDARY;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
	return err;
}

1022 1023
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1024
{
1025
	return &EXT4_I(inode)->i_reserved_quota;
1026
}
1027
#endif
1028

1029 1030
/*
 * Calculate the number of metadata blocks need to reserve
1031
 * to allocate a new block at @lblocks for non extent file based file
1032
 */
1033 1034
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1035
{
1036
	struct ext4_inode_info *ei = EXT4_I(inode);
1037
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1038
	int blk_bits;
1039

1040 1041
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1042

1043
	lblock -= EXT4_NDIR_BLOCKS;
1044

1045 1046 1047 1048 1049 1050 1051
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1052
	blk_bits = order_base_2(lblock);
1053
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1054 1055 1056 1057
}

/*
 * Calculate the number of metadata blocks need to reserve
1058
 * to allocate a block located at @lblock
1059
 */
1060
static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1061
{
1062
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1063
		return ext4_ext_calc_metadata_amount(inode, lblock);
1064

1065
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1066 1067
}

1068 1069 1070 1071
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1072 1073
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1074 1075
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1076 1077 1078
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1079
	trace_ext4_da_update_reserve_space(inode, used);
1080 1081 1082 1083 1084 1085 1086 1087
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1088

1089 1090 1091
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1092 1093
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1094
	ei->i_allocated_meta_blocks = 0;
1095

1096 1097 1098 1099 1100 1101
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1102 1103
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1104
		ei->i_reserved_meta_blocks = 0;
1105
		ei->i_da_metadata_calc_len = 0;
1106
	}
1107
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1108

1109 1110
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1111
		dquot_claim_block(inode, used);
1112
	else {
1113 1114 1115
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1116
		 * not re-claim the quota for fallocated blocks.
1117
		 */
1118
		dquot_release_reservation_block(inode, used);
1119
	}
1120 1121 1122 1123 1124 1125

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1126 1127
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1128
		ext4_discard_preallocations(inode);
1129 1130
}

1131 1132
static int check_block_validity(struct inode *inode, const char *func,
				struct ext4_map_blocks *map)
1133
{
1134 1135 1136 1137 1138 1139
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
		ext4_error_inode(func, inode,
			   "lblock %lu mapped to illegal pblock %llu "
			   "(length %d)", (unsigned long) map->m_lblk,
				 map->m_pblk, map->m_len);
1140 1141 1142 1143 1144
		return -EIO;
	}
	return 0;
}

1145
/*
1146 1147
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1181 1182 1183 1184 1185 1186 1187 1188 1189
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
			if (num >= max_pages)
				break;
		}
		pagevec_release(&pvec);
	}
	return num;
}

1203
/*
1204
 * The ext4_map_blocks() function tries to look up the requested blocks,
1205
 * and returns if the blocks are already mapped.
1206 1207 1208 1209 1210
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1211 1212
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1225 1226
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1227 1228
{
	int retval;
1229

1230 1231 1232 1233
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1234
	/*
1235 1236
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1237 1238
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1239
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1240
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1241
	} else {
1242
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1243
	}
1244
	up_read((&EXT4_I(inode)->i_data_sem));
1245

1246
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1247
		int ret = check_block_validity(inode, __func__, map);
1248 1249 1250 1251
		if (ret != 0)
			return ret;
	}

1252
	/* If it is only a block(s) look up */
1253
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1254 1255 1256 1257 1258 1259 1260 1261 1262
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1263
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1264 1265
		return retval;

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1276
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1277

1278
	/*
1279 1280 1281 1282
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1283 1284
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1285 1286 1287 1288 1289 1290 1291

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1292
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1293
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1294 1295 1296 1297
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1298
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1299
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1300
	} else {
1301
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1302

1303
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1304 1305 1306 1307 1308
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1309
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1310
		}
1311

1312 1313 1314 1315 1316 1317 1318
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1319
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1320 1321
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1322
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1323
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1324

1325
	up_write((&EXT4_I(inode)->i_data_sem));
1326
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1327 1328 1329
		int ret = check_block_validity(inode,
					       "ext4_map_blocks_after_alloc",
					       map);
1330 1331 1332
		if (ret != 0)
			return ret;
	}
1333 1334 1335
	return retval;
}

1336 1337 1338
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1339 1340
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1341
{
1342
	handle_t *handle = ext4_journal_current_handle();
1343
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1344
	int ret = 0, started = 0;
1345
	int dio_credits;
1346

1347 1348 1349 1350
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1351
		/* Direct IO write... */
1352 1353 1354
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1355
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1356
		if (IS_ERR(handle)) {
1357
			ret = PTR_ERR(handle);
1358
			return ret;
1359
		}
J
Jan Kara 已提交
1360
		started = 1;
1361 1362
	}

1363
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1364
	if (ret > 0) {
1365 1366 1367
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1368
		ret = 0;
1369
	}
J
Jan Kara 已提交
1370 1371
	if (started)
		ext4_journal_stop(handle);
1372 1373 1374
	return ret;
}

1375 1376 1377 1378 1379 1380 1381
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1382 1383 1384
/*
 * `handle' can be NULL if create is zero
 */
1385
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1386
				ext4_lblk_t block, int create, int *errp)
1387
{
1388 1389
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1390 1391 1392 1393
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1394 1395 1396 1397
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1409
	}
1410 1411 1412
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1427
		}
1428 1429 1430 1431 1432 1433 1434
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1435
	}
1436 1437 1438 1439 1440 1441
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1442 1443
}

1444
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1445
			       ext4_lblk_t block, int create, int *err)
1446
{
1447
	struct buffer_head *bh;
1448

1449
	bh = ext4_getblk(handle, inode, block, create, err);
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1463 1464 1465 1466 1467 1468 1469
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1470 1471 1472 1473 1474 1475 1476
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1477 1478
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1479
	     block_start = block_end, bh = next) {
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1497
 * close off a transaction and start a new one between the ext4_get_block()
1498
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1499 1500
 * prepare_write() is the right place.
 *
1501 1502
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1503 1504 1505 1506
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1507
 * By accident, ext4 can be reentered when a transaction is open via
1508 1509 1510 1511 1512 1513
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1514
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1515 1516 1517 1518 1519
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1520
				       struct buffer_head *bh)
1521 1522 1523
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1524
	return ext4_journal_get_write_access(handle, bh);
1525 1526
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1537 1538
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1539
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1540 1541
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1542
{
1543
	struct inode *inode = mapping->host;
1544
	int ret, needed_blocks;
1545 1546
	handle_t *handle;
	int retries = 0;
1547
	struct page *page;
1548
	pgoff_t index;
1549
	unsigned from, to;
N
Nick Piggin 已提交
1550

1551
	trace_ext4_write_begin(inode, pos, len, flags);
1552 1553 1554 1555 1556
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1557
	index = pos >> PAGE_CACHE_SHIFT;
1558 1559
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1560 1561

retry:
1562 1563 1564 1565
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1566
	}
1567

1568 1569 1570 1571
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1572
	page = grab_cache_page_write_begin(mapping, index, flags);
1573 1574 1575 1576 1577 1578 1579
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1580
	if (ext4_should_dioread_nolock(inode))
1581
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1582
	else
1583
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1584 1585

	if (!ret && ext4_should_journal_data(inode)) {
1586 1587 1588
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1589 1590

	if (ret) {
1591 1592
		unlock_page(page);
		page_cache_release(page);
1593
		/*
1594
		 * __block_write_begin may have instantiated a few blocks
1595 1596
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1597 1598 1599
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1600
		 */
1601
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1602 1603 1604 1605
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1606
			ext4_truncate_failed_write(inode);
1607
			/*
1608
			 * If truncate failed early the inode might
1609 1610 1611 1612 1613 1614 1615
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1616 1617
	}

1618
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1619
		goto retry;
1620
out:
1621 1622 1623
	return ret;
}

N
Nick Piggin 已提交
1624 1625
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1626 1627 1628 1629
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1630
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1631 1632
}

1633
static int ext4_generic_write_end(struct file *file,
1634 1635 1636
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1679 1680 1681 1682
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1683
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1684 1685
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1686
static int ext4_ordered_write_end(struct file *file,
1687 1688 1689
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1690
{
1691
	handle_t *handle = ext4_journal_current_handle();
1692
	struct inode *inode = mapping->host;
1693 1694
	int ret = 0, ret2;

1695
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1696
	ret = ext4_jbd2_file_inode(handle, inode);
1697 1698

	if (ret == 0) {
1699
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1700
							page, fsdata);
1701
		copied = ret2;
1702
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1703 1704 1705 1706 1707
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1708 1709
		if (ret2 < 0)
			ret = ret2;
1710
	}
1711
	ret2 = ext4_journal_stop(handle);
1712 1713
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1714

1715
	if (pos + len > inode->i_size) {
1716
		ext4_truncate_failed_write(inode);
1717
		/*
1718
		 * If truncate failed early the inode might still be
1719 1720 1721 1722 1723 1724 1725 1726
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1727
	return ret ? ret : copied;
1728 1729
}

N
Nick Piggin 已提交
1730
static int ext4_writeback_write_end(struct file *file,
1731 1732 1733
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1734
{
1735
	handle_t *handle = ext4_journal_current_handle();
1736
	struct inode *inode = mapping->host;
1737 1738
	int ret = 0, ret2;

1739
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1740
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1741
							page, fsdata);
1742
	copied = ret2;
1743
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1744 1745 1746 1747 1748 1749
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1750 1751
	if (ret2 < 0)
		ret = ret2;
1752

1753
	ret2 = ext4_journal_stop(handle);
1754 1755
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1756

1757
	if (pos + len > inode->i_size) {
1758
		ext4_truncate_failed_write(inode);
1759
		/*
1760
		 * If truncate failed early the inode might still be
1761 1762 1763 1764 1765 1766 1767
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1768
	return ret ? ret : copied;
1769 1770
}

N
Nick Piggin 已提交
1771
static int ext4_journalled_write_end(struct file *file,
1772 1773 1774
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1775
{
1776
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1777
	struct inode *inode = mapping->host;
1778 1779
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1780
	unsigned from, to;
1781
	loff_t new_i_size;
1782

1783
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1784 1785 1786 1787 1788 1789 1790 1791
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1792 1793

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1794
				to, &partial, write_end_fn);
1795 1796
	if (!partial)
		SetPageUptodate(page);
1797 1798
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1799
		i_size_write(inode, pos+copied);
1800
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1801 1802
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1803
		ret2 = ext4_mark_inode_dirty(handle, inode);
1804 1805 1806
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1807

1808
	unlock_page(page);
1809
	page_cache_release(page);
1810
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1811 1812 1813 1814 1815 1816
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1817
	ret2 = ext4_journal_stop(handle);
1818 1819
	if (!ret)
		ret = ret2;
1820
	if (pos + len > inode->i_size) {
1821
		ext4_truncate_failed_write(inode);
1822
		/*
1823
		 * If truncate failed early the inode might still be
1824 1825 1826 1827 1828 1829
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1830 1831

	return ret ? ret : copied;
1832
}
1833

1834 1835 1836 1837
/*
 * Reserve a single block located at lblock
 */
static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1838
{
A
Aneesh Kumar K.V 已提交
1839
	int retries = 0;
1840
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1841
	struct ext4_inode_info *ei = EXT4_I(inode);
1842
	unsigned long md_needed;
1843
	int ret;
1844 1845 1846 1847 1848 1849

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1850
repeat:
1851
	spin_lock(&ei->i_block_reservation_lock);
1852
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1853
	trace_ext4_da_reserve_space(inode, md_needed);
1854
	spin_unlock(&ei->i_block_reservation_lock);
1855

1856
	/*
1857 1858 1859
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1860
	 */
1861
	ret = dquot_reserve_block(inode, 1);
1862 1863
	if (ret)
		return ret;
1864 1865 1866 1867
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1868
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1869
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1870 1871 1872 1873
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1874 1875
		return -ENOSPC;
	}
1876
	spin_lock(&ei->i_block_reservation_lock);
1877
	ei->i_reserved_data_blocks++;
1878 1879
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1880

1881 1882 1883
	return 0;       /* success */
}

1884
static void ext4_da_release_space(struct inode *inode, int to_free)
1885 1886
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1887
	struct ext4_inode_info *ei = EXT4_I(inode);
1888

1889 1890 1891
	if (!to_free)
		return;		/* Nothing to release, exit */

1892
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1893

L
Li Zefan 已提交
1894
	trace_ext4_da_release_space(inode, to_free);
1895
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1896
		/*
1897 1898 1899 1900
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1901
		 */
1902 1903 1904 1905 1906 1907
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1908
	}
1909
	ei->i_reserved_data_blocks -= to_free;
1910

1911 1912 1913 1914 1915 1916
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1917 1918
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1919
		ei->i_reserved_meta_blocks = 0;
1920
		ei->i_da_metadata_calc_len = 0;
1921
	}
1922

1923
	/* update fs dirty data blocks counter */
1924
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1925 1926

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1927

1928
	dquot_release_reservation_block(inode, to_free);
1929 1930 1931
}

static void ext4_da_page_release_reservation(struct page *page,
1932
					     unsigned long offset)
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1949
	ext4_da_release_space(page->mapping->host, to_release);
1950
}
1951

1952 1953 1954 1955 1956 1957
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1958
 * them with writepage() call back
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1971
	long pages_skipped;
1972 1973 1974 1975 1976
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1977 1978

	BUG_ON(mpd->next_page <= mpd->first_page);
1979 1980 1981
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1982
	 * If we look at mpd->b_blocknr we would only be looking
1983 1984
	 * at the currently mapped buffer_heads.
	 */
1985 1986 1987
	index = mpd->first_page;
	end = mpd->next_page - 1;

1988
	pagevec_init(&pvec, 0);
1989
	while (index <= end) {
1990
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1991 1992 1993 1994 1995
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1996 1997 1998 1999 2000 2001 2002 2003
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2004
			pages_skipped = mpd->wbc->pages_skipped;
2005
			err = mapping->a_ops->writepage(page, mpd->wbc);
2006 2007 2008 2009 2010
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
2011
				mpd->pages_written++;
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * the function goes through all passed space and put actual disk
2029
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2030
 */
2031 2032
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
				 struct ext4_map_blocks *map)
2033 2034 2035
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2036 2037
	int blocks = map->m_len;
	sector_t pblock = map->m_pblk, cur_logical;
2038
	struct buffer_head *head, *bh;
2039
	pgoff_t index, end;
2040 2041 2042
	struct pagevec pvec;
	int nr_pages, i;

2043 2044
	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
2071
				if (cur_logical >= map->m_lblk)
2072 2073 2074 2075 2076
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
2077
				if (cur_logical >= map->m_lblk + blocks)
2078
					break;
2079

2080
				if (buffer_delay(bh) || buffer_unwritten(bh)) {
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2096
				} else if (buffer_mapped(bh))
2097 2098
					BUG_ON(bh->b_blocknr != pblock);

2099
				if (map->m_flags & EXT4_MAP_UNINIT)
2100
					set_buffer_uninit(bh);
2101 2102 2103 2104 2105 2106 2107 2108 2109
				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2128
			if (page->index > end)
2129 2130 2131 2132 2133 2134 2135
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2136 2137
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2138 2139 2140 2141
	}
	return;
}

2142 2143 2144
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2157 2158 2159
	return;
}

2160 2161 2162
/*
 * mpage_da_map_blocks - go through given space
 *
2163
 * @mpd - bh describing space
2164 2165 2166 2167
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2168
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2169
{
2170
	int err, blks, get_blocks_flags;
2171
	struct ext4_map_blocks map;
2172 2173 2174 2175
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2176 2177 2178 2179

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2180
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2181 2182
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2183
		return 0;
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2194
	/*
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	 * Call ext4_get_blocks() to allocate any delayed allocation
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
	 * want to change *many* call functions, so ext4_get_blocks()
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2211
	 */
2212 2213
	map.m_lblk = next;
	map.m_len = max_blocks;
2214
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2215 2216
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2217
	if (mpd->b_state & (1 << BH_Delay))
2218 2219
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2220
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2221 2222
	if (blks < 0) {
		err = blks;
2223 2224 2225 2226
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2227 2228 2229
		 */
		if (err == -EAGAIN)
			return 0;
2230 2231

		if (err == -ENOSPC &&
2232
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2233 2234 2235 2236
			mpd->retval = err;
			return 0;
		}

2237
		/*
2238 2239 2240 2241 2242
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2243
		 */
2244 2245 2246
		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
			 "delayed block allocation failed for inode %lu at "
			 "logical offset %llu with max blocks %zd with "
2247
			 "error %d", mpd->inode->i_ino,
2248 2249 2250 2251
			 (unsigned long long) next,
			 mpd->b_size >> mpd->inode->i_blkbits, err);
		printk(KERN_CRIT "This should not happen!!  "
		       "Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2252
		if (err == -ENOSPC) {
2253
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2254
		}
2255
		/* invalidate all the pages */
2256
		ext4_da_block_invalidatepages(mpd, next,
2257
				mpd->b_size >> mpd->inode->i_blkbits);
2258 2259
		return err;
	}
2260 2261
	BUG_ON(blks == 0);

2262 2263 2264
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2265

2266 2267 2268
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2269

2270 2271 2272 2273
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2274 2275
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2276
		mpage_put_bnr_to_bhs(mpd, &map);
2277

2278 2279 2280 2281 2282 2283 2284
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2285
	 * Update on-disk size along with block allocation.
2286 2287 2288 2289 2290 2291 2292 2293 2294
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2295
	return 0;
2296 2297
}

2298 2299
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2311 2312
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2313 2314
{
	sector_t next;
2315
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2316

2317 2318 2319 2320 2321 2322 2323 2324 2325
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
	 * ext4_get_blocks() multiple times in a loop
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2326
	/* check if thereserved journal credits might overflow */
2327
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2348 2349 2350
	/*
	 * First block in the extent
	 */
2351 2352 2353 2354
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2355 2356 2357
		return;
	}

2358
	next = mpd->b_blocknr + nrblocks;
2359 2360 2361
	/*
	 * Can we merge the block to our big extent?
	 */
2362 2363
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2364 2365 2366
		return;
	}

2367
flush_it:
2368 2369 2370 2371
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2372 2373
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2374 2375
	mpd->io_done = 1;
	return;
2376 2377
}

2378
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2379
{
2380
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2381 2382
}

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2397
	struct buffer_head *bh, *head;
2398 2399 2400 2401 2402 2403 2404 2405
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2406
		 * and start IO on them using writepage()
2407 2408
		 */
		if (mpd->next_page != mpd->first_page) {
2409 2410
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2411 2412 2413 2414 2415 2416 2417
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2428 2429 2430
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2431 2432 2433 2434 2435 2436 2437
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2438 2439
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2440 2441
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2442 2443 2444 2445 2446 2447 2448 2449
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2450 2451 2452 2453
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2454
			 * with the page in ext4_writepage
2455
			 */
2456
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2457 2458 2459
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2460 2461
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2462 2463 2464 2465 2466 2467 2468 2469 2470
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2471 2472
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2473
			}
2474 2475 2476 2477 2478 2479 2480 2481
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2482 2483 2484
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2485 2486 2487 2488 2489 2490 2491
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2492 2493
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2494
				  struct buffer_head *bh, int create)
2495
{
2496
	struct ext4_map_blocks map;
2497
	int ret = 0;
2498 2499 2500 2501
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2502 2503

	BUG_ON(create == 0);
2504 2505 2506 2507
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2508 2509 2510 2511 2512 2513

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2514 2515 2516 2517 2518 2519
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2520 2521 2522 2523
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2524
		ret = ext4_da_reserve_space(inode, iblock);
2525 2526 2527 2528
		if (ret)
			/* not enough space to reserve */
			return ret;

2529 2530 2531 2532
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2533 2534
	}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
		set_buffer_mapped(bh);
	}
	return 0;
2549
}
2550

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
 * callback function for block_prepare_write(), nobh_writepage(), and
 * block_write_full_page().  These functions should only try to map a
 * single block at a time.
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
 * delayed allocation before calling nobh_writepage() or
 * block_write_full_page().  Otherwise, b_blocknr could be left
 * unitialized, and the page write functions will be taken by
 * surprise.
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2568 2569
				   struct buffer_head *bh_result, int create)
{
2570
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2571
	return _ext4_get_block(inode, iblock, bh_result, 0);
2572 2573
}

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2621
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2622 2623 2624 2625
out:
	return ret;
}

2626 2627 2628
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2629
/*
2630 2631 2632 2633 2634 2635 2636 2637 2638
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2639 2640 2641 2642 2643
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2669
 */
2670
static int ext4_writepage(struct page *page,
2671
			  struct writeback_control *wbc)
2672 2673
{
	int ret = 0;
2674
	loff_t size;
2675
	unsigned int len;
2676
	struct buffer_head *page_bufs = NULL;
2677 2678
	struct inode *inode = page->mapping->host;

2679
	trace_ext4_writepage(inode, page);
2680 2681 2682 2683 2684
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2685

2686
	if (page_has_buffers(page)) {
2687
		page_bufs = page_buffers(page);
2688
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2689
					ext4_bh_delay_or_unwritten)) {
2690
			/*
2691 2692
			 * We don't want to do  block allocation
			 * So redirty the page and return
2693 2694 2695
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2716
		ret = block_prepare_write(page, 0, len,
2717
					  noalloc_get_block_write);
2718 2719 2720 2721
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2722
						ext4_bh_delay_or_unwritten)) {
2723 2724 2725 2726 2727 2728 2729 2730 2731
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2732 2733 2734 2735 2736
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2737
		/* now mark the buffer_heads as dirty and uptodate */
2738
		block_commit_write(page, 0, len);
2739 2740
	}

2741 2742 2743 2744 2745 2746
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
2747
		return __ext4_journalled_writepage(page, len);
2748 2749
	}

2750
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2751
		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2752 2753 2754 2755 2756
	else if (page_bufs && buffer_uninit(page_bufs)) {
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2757 2758
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2759 2760 2761 2762

	return ret;
}

2763
/*
2764 2765 2766 2767 2768
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2769
 */
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2781
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2782 2783 2784 2785 2786
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2787

2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
 * address space and call the callback function (which usually writes
 * the pages).
 *
 * This is a forked version of write_cache_pages().  Differences:
 *	Range cyclic is ignored.
 *	no_nrwrite_index_update is always presumed true
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
				struct mpage_da_data *mpd)
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	long nr_to_write = wbc->nr_to_write;

	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

	while (!done && (index <= end)) {
		int i;

		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
			      PAGECACHE_TAG_DIRTY,
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				done = 1;
				break;
			}

			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

			ret = __mpage_da_writepage(page, wbc, mpd);
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					done = 1;
					break;
				}
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
				    wbc->sync_mode == WB_SYNC_NONE) {
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
					done = 1;
					break;
				}
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	return ret;
}


2906
static int ext4_da_writepages(struct address_space *mapping,
2907
			      struct writeback_control *wbc)
2908
{
2909 2910
	pgoff_t	index;
	int range_whole = 0;
2911
	handle_t *handle = NULL;
2912
	struct mpage_da_data mpd;
2913
	struct inode *inode = mapping->host;
2914 2915
	int pages_written = 0;
	long pages_skipped;
2916
	unsigned int max_pages;
2917
	int range_cyclic, cycled = 1, io_done = 0;
2918 2919
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2920
	loff_t range_start = wbc->range_start;
2921
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2922

2923
	trace_ext4_da_writepages(inode, wbc);
2924

2925 2926 2927 2928 2929
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2930
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2931
		return 0;
2932 2933 2934 2935 2936

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2937
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2938 2939 2940 2941 2942
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2943
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2944 2945
		return -EROFS;

2946 2947
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2948

2949 2950
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2951
		index = mapping->writeback_index;
2952 2953 2954 2955 2956 2957
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2958
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2959

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
	if (!range_cyclic && range_whole)
		desired_nr_to_write = wbc->nr_to_write * 8;
	else
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2990 2991 2992
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2993 2994
	pages_skipped = wbc->pages_skipped;

2995
retry:
2996
	while (!ret && wbc->nr_to_write > 0) {
2997 2998 2999 3000 3001 3002 3003 3004

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
3005
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3006

3007 3008 3009 3010
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
3011
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3012
			       "%ld pages, ino %lu; err %d", __func__,
3013
				wbc->nr_to_write, inode->i_ino, ret);
3014 3015
			goto out_writepages;
		}
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
3034
		ret = write_cache_pages_da(mapping, wbc, &mpd);
3035
		/*
3036
		 * If we have a contiguous extent of pages and we
3037 3038 3039 3040 3041 3042 3043 3044 3045
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3046
		trace_ext4_da_write_pages(inode, &mpd);
3047
		wbc->nr_to_write -= mpd.pages_written;
3048

3049
		ext4_journal_stop(handle);
3050

3051
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3052 3053 3054 3055
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3056
			jbd2_journal_force_commit_nested(sbi->s_journal);
3057 3058 3059
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3060 3061 3062 3063
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3064 3065
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
3066
			ret = 0;
3067
			io_done = 1;
3068
		} else if (wbc->nr_to_write)
3069 3070 3071 3072 3073 3074
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3075
	}
3076 3077 3078 3079 3080 3081 3082
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3083
	if (pages_skipped != wbc->pages_skipped)
3084 3085
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
3086
			 "with nr_to_write = %ld ret = %d",
3087
			 __func__, wbc->nr_to_write, ret);
3088 3089 3090

	/* Update index */
	index += pages_written;
3091
	wbc->range_cyclic = range_cyclic;
3092 3093 3094 3095 3096 3097
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
3098

3099
out_writepages:
3100
	wbc->nr_to_write -= nr_to_writebump;
3101
	wbc->range_start = range_start;
3102
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3103
	return ret;
3104 3105
}

3106 3107 3108 3109 3110 3111 3112 3113 3114
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3115
	 * counters can get slightly wrong with percpu_counter_batch getting
3116 3117 3118 3119 3120 3121 3122 3123 3124
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3125 3126
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3127 3128 3129
		 */
		return 1;
	}
3130 3131 3132 3133 3134 3135 3136
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3137 3138 3139
	return 0;
}

3140
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3141 3142
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3143
{
3144
	int ret, retries = 0;
3145 3146 3147 3148 3149 3150 3151 3152 3153
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
3154 3155 3156 3157 3158 3159 3160

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3161
	trace_ext4_da_write_begin(inode, pos, len, flags);
3162
retry:
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3174 3175 3176
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3177

3178
	page = grab_cache_page_write_begin(mapping, index, flags);
3179 3180 3181 3182 3183
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3184 3185
	*pagep = page;

3186
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3187 3188 3189 3190
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3191 3192 3193 3194 3195 3196
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3197
			ext4_truncate_failed_write(inode);
3198 3199
	}

3200 3201
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3202 3203 3204 3205
out:
	return ret;
}

3206 3207 3208 3209 3210
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3211
					    unsigned long offset)
3212 3213 3214 3215 3216 3217 3218 3219 3220
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3221
	for (i = 0; i < idx; i++)
3222 3223
		bh = bh->b_this_page;

3224
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3225 3226 3227 3228
		return 0;
	return 1;
}

3229
static int ext4_da_write_end(struct file *file,
3230 3231 3232
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3233 3234 3235 3236 3237
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3238
	unsigned long start, end;
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3252

3253
	trace_ext4_da_write_end(inode, pos, len, copied);
3254
	start = pos & (PAGE_CACHE_SIZE - 1);
3255
	end = start + copied - 1;
3256 3257 3258 3259 3260 3261 3262 3263

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3275

3276 3277 3278
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3279 3280 3281 3282 3283
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3284
		}
3285
	}
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3307
	ext4_da_page_release_reservation(page, offset);
3308 3309 3310 3311 3312 3313 3314

out:
	ext4_invalidatepage(page, offset);

	return;
}

3315 3316 3317 3318 3319
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3320 3321
	trace_ext4_alloc_da_blocks(inode);

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3332
	 *
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3352
	 *
3353 3354 3355 3356 3357 3358
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3359

3360 3361 3362 3363 3364
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3365
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3366 3367 3368 3369 3370 3371 3372 3373
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3374
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3375 3376 3377 3378 3379
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3390 3391
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3403
		 * NB. EXT4_STATE_JDATA is not set on files other than
3404 3405 3406 3407 3408 3409
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3410
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3411
		journal = EXT4_JOURNAL(inode);
3412 3413 3414
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3415 3416 3417 3418 3419

		if (err)
			return 0;
	}

3420
	return generic_block_bmap(mapping, block, ext4_get_block);
3421 3422
}

3423
static int ext4_readpage(struct file *file, struct page *page)
3424
{
3425
	return mpage_readpage(page, ext4_get_block);
3426 3427 3428
}

static int
3429
ext4_readpages(struct file *file, struct address_space *mapping,
3430 3431
		struct list_head *pages, unsigned nr_pages)
{
3432
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3433 3434
}

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
static void ext4_free_io_end(ext4_io_end_t *io)
{
	BUG_ON(!io);
	if (io->page)
		put_page(io->page);
	iput(io->inode);
	kfree(io);
}

static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3464
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3465
{
3466
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3467

3468 3469 3470 3471 3472
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3473 3474 3475 3476 3477 3478
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3479 3480 3481 3482
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3483 3484
}

3485
static int ext4_releasepage(struct page *page, gfp_t wait)
3486
{
3487
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3488 3489 3490 3491

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3492 3493 3494 3495
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3496 3497 3498
}

/*
3499 3500
 * O_DIRECT for ext3 (or indirect map) based files
 *
3501 3502 3503 3504 3505
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3506 3507
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3508
 */
3509
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3510 3511
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3512 3513 3514
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3515
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3516
	handle_t *handle;
3517 3518 3519
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3520
	int retries = 0;
3521 3522 3523 3524 3525

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3526 3527 3528 3529 3530 3531
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3532
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3533 3534 3535 3536
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3537 3538
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3539
			ext4_journal_stop(handle);
3540 3541 3542
		}
	}

3543
retry:
3544
	if (rw == READ && ext4_should_dioread_nolock(inode))
3545
		ret = __blockdev_direct_IO(rw, iocb, inode,
3546 3547
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3548 3549
				 ext4_get_block, NULL, NULL, 0);
	else {
3550 3551
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3552
				 offset, nr_segs,
3553
				 ext4_get_block, NULL);
3554 3555 3556 3557 3558 3559 3560 3561 3562

		if (unlikely((rw & WRITE) && ret < 0)) {
			loff_t isize = i_size_read(inode);
			loff_t end = offset + iov_length(iov, nr_segs);

			if (end > isize)
				vmtruncate(inode, isize);
		}
	}
3563 3564
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3565

J
Jan Kara 已提交
3566
	if (orphan) {
3567 3568
		int err;

J
Jan Kara 已提交
3569 3570 3571 3572 3573 3574 3575
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3576 3577 3578
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3579 3580 3581
			goto out;
		}
		if (inode->i_nlink)
3582
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3583
		if (ret > 0) {
3584 3585 3586 3587 3588 3589 3590 3591
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3592
				 * ext4_mark_inode_dirty() to userspace.  So
3593 3594
				 * ignore it.
				 */
3595
				ext4_mark_inode_dirty(handle, inode);
3596 3597
			}
		}
3598
		err = ext4_journal_stop(handle);
3599 3600 3601 3602 3603 3604 3605
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3606 3607 3608 3609 3610
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3611
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3612 3613
		   struct buffer_head *bh_result, int create)
{
3614
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3615
		   inode->i_ino, create);
3616 3617
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3618 3619
}

3620
static void dump_completed_IO(struct inode * inode)
3621 3622 3623 3624
{
#ifdef	EXT4_DEBUG
	struct list_head *cur, *before, *after;
	ext4_io_end_t *io, *io0, *io1;
3625
	unsigned long flags;
3626

3627 3628
	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3629 3630 3631
		return;
	}

3632
	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3633
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3634
	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3635 3636 3637 3638 3639 3640 3641 3642 3643
		cur = &io->list;
		before = cur->prev;
		io0 = container_of(before, ext4_io_end_t, list);
		after = cur->next;
		io1 = container_of(after, ext4_io_end_t, list);

		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
			    io, inode->i_ino, io0, io1);
	}
3644
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3645 3646
#endif
}
3647 3648 3649 3650

/*
 * check a range of space and convert unwritten extents to written.
 */
3651
static int ext4_end_io_nolock(ext4_io_end_t *io)
3652 3653 3654
{
	struct inode *inode = io->inode;
	loff_t offset = io->offset;
3655
	ssize_t size = io->size;
3656 3657
	int ret = 0;

3658
	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3659 3660 3661 3662 3663 3664
		   "list->prev 0x%p\n",
	           io, inode->i_ino, io->list.next, io->list.prev);

	if (list_empty(&io->list))
		return ret;

3665
	if (io->flag != EXT4_IO_UNWRITTEN)
3666 3667
		return ret;

3668
	ret = ext4_convert_unwritten_extents(inode, offset, size);
3669
	if (ret < 0) {
3670
		printk(KERN_EMERG "%s: failed to convert unwritten"
3671 3672 3673 3674 3675
			"extents to written extents, error is %d"
			" io is still on inode %lu aio dio list\n",
                       __func__, ret, inode->i_ino);
		return ret;
	}
3676

3677 3678 3679
	/* clear the DIO AIO unwritten flag */
	io->flag = 0;
	return ret;
3680
}
3681

3682 3683 3684
/*
 * work on completed aio dio IO, to convert unwritten extents to extents
 */
3685
static void ext4_end_io_work(struct work_struct *work)
3686
{
3687 3688 3689 3690 3691
	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
	struct inode		*inode = io->inode;
	struct ext4_inode_info	*ei = EXT4_I(inode);
	unsigned long		flags;
	int			ret;
3692

3693
	mutex_lock(&inode->i_mutex);
3694
	ret = ext4_end_io_nolock(io);
3695 3696 3697
	if (ret < 0) {
		mutex_unlock(&inode->i_mutex);
		return;
3698
	}
3699 3700 3701 3702 3703

	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	if (!list_empty(&io->list))
		list_del_init(&io->list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3704
	mutex_unlock(&inode->i_mutex);
3705
	ext4_free_io_end(io);
3706
}
3707

3708 3709 3710
/*
 * This function is called from ext4_sync_file().
 *
3711 3712
 * When IO is completed, the work to convert unwritten extents to
 * written is queued on workqueue but may not get immediately
3713 3714
 * scheduled. When fsync is called, we need to ensure the
 * conversion is complete before fsync returns.
3715 3716 3717 3718 3719
 * The inode keeps track of a list of pending/completed IO that
 * might needs to do the conversion. This function walks through
 * the list and convert the related unwritten extents for completed IO
 * to written.
 * The function return the number of pending IOs on success.
3720
 */
3721
int flush_completed_IO(struct inode *inode)
3722 3723
{
	ext4_io_end_t *io;
3724 3725
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned long flags;
3726 3727 3728
	int ret = 0;
	int ret2 = 0;

3729
	if (list_empty(&ei->i_completed_io_list))
3730 3731
		return ret;

3732
	dump_completed_IO(inode);
3733 3734 3735
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	while (!list_empty(&ei->i_completed_io_list)){
		io = list_entry(ei->i_completed_io_list.next,
3736 3737
				ext4_io_end_t, list);
		/*
3738
		 * Calling ext4_end_io_nolock() to convert completed
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
		 * IO to written.
		 *
		 * When ext4_sync_file() is called, run_queue() may already
		 * about to flush the work corresponding to this io structure.
		 * It will be upset if it founds the io structure related
		 * to the work-to-be schedule is freed.
		 *
		 * Thus we need to keep the io structure still valid here after
		 * convertion finished. The io structure has a flag to
		 * avoid double converting from both fsync and background work
		 * queue work.
		 */
3751
		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3752
		ret = ext4_end_io_nolock(io);
3753
		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3754 3755 3756 3757 3758
		if (ret < 0)
			ret2 = ret;
		else
			list_del_init(&io->list);
	}
3759
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3760 3761 3762
	return (ret2 < 0) ? ret2 : 0;
}

3763
static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3764 3765 3766
{
	ext4_io_end_t *io = NULL;

3767
	io = kmalloc(sizeof(*io), flags);
3768 3769

	if (io) {
3770
		igrab(inode);
3771
		io->inode = inode;
3772
		io->flag = 0;
3773 3774
		io->offset = 0;
		io->size = 0;
3775
		io->page = NULL;
3776
		INIT_WORK(&io->work, ext4_end_io_work);
3777
		INIT_LIST_HEAD(&io->list);
3778 3779 3780 3781 3782 3783
	}

	return io;
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3784 3785
			    ssize_t size, void *private, int ret,
			    bool is_async)
3786 3787 3788
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3789 3790
	unsigned long flags;
	struct ext4_inode_info *ei;
3791

3792 3793
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3794
		goto out;
3795

3796 3797 3798 3799 3800 3801
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3802
	if (io_end->flag != EXT4_IO_UNWRITTEN){
3803 3804
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3805
		goto out;
3806 3807
	}

3808 3809
	io_end->offset = offset;
	io_end->size = size;
3810
	io_end->flag = EXT4_IO_UNWRITTEN;
3811 3812
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3813
	/* queue the work to convert unwritten extents to written */
3814 3815
	queue_work(wq, &io_end->work);

3816
	/* Add the io_end to per-inode completed aio dio list*/
3817 3818 3819 3820
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3821
	iocb->private = NULL;
3822 3823 3824
out:
	if (is_async)
		aio_complete(iocb, ret, 0);
3825
}
3826

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

	io_end->flag = EXT4_IO_UNWRITTEN;
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
		if (printk_ratelimit())
			printk(KERN_WARNING "%s: allocation fail\n", __func__);
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3892 3893 3894 3895 3896 3897 3898 3899 3900
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3901 3902 3903 3904
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3923 3924 3925
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3926 3927
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3928 3929
		 *
 		 * As to previously fallocated extents, ext4 get_block
3930 3931 3932
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3933 3934 3935 3936 3937 3938 3939 3940
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3941
 		 */
3942 3943 3944
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3945
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
			 * direct IO, so that later ext4_get_blocks()
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3958 3959 3960
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3961
					 ext4_get_block_write,
3962
					 ext4_end_io_dio);
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3982 3983
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3984
			int err;
3985 3986 3987 3988
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3989 3990 3991 3992
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3993
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3994
		}
3995 3996
		return ret;
	}
3997 3998

	/* for write the the end of file case, we fall back to old way */
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

4009
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4010 4011 4012 4013 4014
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

4015
/*
4016
 * Pages can be marked dirty completely asynchronously from ext4's journalling
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
4028
static int ext4_journalled_set_page_dirty(struct page *page)
4029 4030 4031 4032 4033
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

4034
static const struct address_space_operations ext4_ordered_aops = {
4035 4036
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4037
	.writepage		= ext4_writepage,
4038 4039 4040 4041 4042 4043 4044 4045 4046
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4047
	.error_remove_page	= generic_error_remove_page,
4048 4049
};

4050
static const struct address_space_operations ext4_writeback_aops = {
4051 4052
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4053
	.writepage		= ext4_writepage,
4054 4055 4056 4057 4058 4059 4060 4061 4062
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4063
	.error_remove_page	= generic_error_remove_page,
4064 4065
};

4066
static const struct address_space_operations ext4_journalled_aops = {
4067 4068
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4069
	.writepage		= ext4_writepage,
4070 4071 4072 4073 4074 4075 4076 4077
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
4078
	.error_remove_page	= generic_error_remove_page,
4079 4080
};

4081
static const struct address_space_operations ext4_da_aops = {
4082 4083
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4084
	.writepage		= ext4_writepage,
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4095
	.error_remove_page	= generic_error_remove_page,
4096 4097
};

4098
void ext4_set_aops(struct inode *inode)
4099
{
4100 4101 4102 4103
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
4104
		inode->i_mapping->a_ops = &ext4_ordered_aops;
4105 4106 4107
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
4108 4109
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
4110
	else
4111
		inode->i_mapping->a_ops = &ext4_journalled_aops;
4112 4113 4114
}

/*
4115
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4116 4117 4118 4119
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
4120
int ext4_block_truncate_page(handle_t *handle,
4121 4122
		struct address_space *mapping, loff_t from)
{
4123
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4124
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
4125 4126
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
4127 4128
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
4129
	struct page *page;
4130 4131
	int err = 0;

4132 4133
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4134 4135 4136
	if (!page)
		return -EINVAL;

4137 4138 4139 4140 4141 4142 4143 4144 4145
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4146
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
4147
		zero_user(page, offset, length);
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4172
		ext4_get_block(inode, iblock, bh, 0);
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4193
	if (ext4_should_journal_data(inode)) {
4194
		BUFFER_TRACE(bh, "get write access");
4195
		err = ext4_journal_get_write_access(handle, bh);
4196 4197 4198 4199
		if (err)
			goto unlock;
	}

4200
	zero_user(page, offset, length);
4201 4202 4203 4204

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4205
	if (ext4_should_journal_data(inode)) {
4206
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4207
	} else {
4208
		if (ext4_should_order_data(inode))
4209
			err = ext4_jbd2_file_inode(handle, inode);
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4233
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4234 4235
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4236
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4237 4238 4239
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4240
 *	This is a helper function used by ext4_truncate().
4241 4242 4243 4244 4245 4246 4247
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4248
 *	past the truncation point is possible until ext4_truncate()
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4267
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4268 4269
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4270 4271 4272 4273 4274
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4275
	/* Make k index the deepest non-null offset + 1 */
4276 4277
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4278
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4289
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4301
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4302 4303 4304 4305 4306 4307
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4308
	while (partial > p) {
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4324 4325 4326 4327 4328
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4329 4330
{
	__le32 *p;
4331
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4332 4333 4334

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4335

4336 4337
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4338 4339 4340
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4341 4342 4343
		return 1;
	}

4344 4345
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4346 4347
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4348
		}
4349
		ext4_mark_inode_dirty(handle, inode);
4350 4351
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4352 4353
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4354
			ext4_journal_get_write_access(handle, bh);
4355 4356 4357
		}
	}

4358 4359
	for (p = first; p < last; p++)
		*p = 0;
4360

4361
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4362
	return 0;
4363 4364 4365
}

/**
4366
 * ext4_free_data - free a list of data blocks
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4384
static void ext4_free_data(handle_t *handle, struct inode *inode,
4385 4386 4387
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4388
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4389 4390 4391 4392
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4393
	ext4_fsblk_t nr;		    /* Current block # */
4394 4395 4396 4397 4398 4399
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4400
		err = ext4_journal_get_write_access(handle, this_bh);
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4418 4419 4420 4421
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4422 4423 4424 4425 4426 4427 4428 4429
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4430
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4431 4432 4433
				  count, block_to_free_p, p);

	if (this_bh) {
4434
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4435 4436 4437 4438 4439 4440 4441

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4442
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4443
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4444
		else
4445 4446 4447 4448
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4449 4450 4451 4452
	}
}

/**
4453
 *	ext4_free_branches - free an array of branches
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4465
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4466 4467 4468
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4469
	ext4_fsblk_t nr;
4470 4471
	__le32 *p;

4472
	if (ext4_handle_is_aborted(handle))
4473 4474 4475 4476
		return;

	if (depth--) {
		struct buffer_head *bh;
4477
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4478 4479 4480 4481 4482 4483
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4484 4485
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4486 4487 4488 4489
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4490 4491 4492
				break;
			}

4493 4494 4495 4496 4497 4498 4499 4500
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4501 4502 4503
				EXT4_ERROR_INODE(inode,
						 "Read failure block=%llu",
						 (unsigned long long) nr);
4504 4505 4506 4507 4508
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4509
			ext4_free_branches(handle, inode, bh,
4510 4511 4512
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4513 4514 4515 4516 4517

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
4518
			 * jbd2_journal_revoke().
4519 4520 4521
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
4522
			 * transaction then jbd2_journal_forget() will simply
4523
			 * brelse() it.  That means that if the underlying
4524
			 * block is reallocated in ext4_get_block(),
4525 4526 4527 4528 4529 4530 4531 4532
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
4533
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4551
			if (ext4_handle_is_aborted(handle))
4552 4553
				return;
			if (try_to_extend_transaction(handle, inode)) {
4554
				ext4_mark_inode_dirty(handle, inode);
4555 4556
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4557 4558
			}

4559 4560
			ext4_free_blocks(handle, inode, 0, nr, 1,
					 EXT4_FREE_BLOCKS_METADATA);
4561 4562 4563 4564 4565 4566 4567

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4568
				if (!ext4_journal_get_write_access(handle,
4569 4570 4571
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4572 4573 4574 4575
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4576 4577 4578 4579 4580 4581
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4582
		ext4_free_data(handle, inode, parent_bh, first, last);
4583 4584 4585
	}
}

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4599
/*
4600
 * ext4_truncate()
4601
 *
4602 4603
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4620
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4621
 * that this inode's truncate did not complete and it will again call
4622 4623
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4624
 * that's fine - as long as they are linked from the inode, the post-crash
4625
 * ext4_truncate() run will find them and release them.
4626
 */
4627
void ext4_truncate(struct inode *inode)
4628 4629
{
	handle_t *handle;
4630
	struct ext4_inode_info *ei = EXT4_I(inode);
4631
	__le32 *i_data = ei->i_data;
4632
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4633
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4634
	ext4_lblk_t offsets[4];
4635 4636 4637 4638
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4639
	ext4_lblk_t last_block;
4640 4641
	unsigned blocksize = inode->i_sb->s_blocksize;

4642
	if (!ext4_can_truncate(inode))
4643 4644
		return;

4645
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4646

4647
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4648
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4649

4650
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4651
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4652 4653
		return;
	}
A
Alex Tomas 已提交
4654

4655
	handle = start_transaction(inode);
4656
	if (IS_ERR(handle))
4657 4658 4659
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4660
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4661

4662 4663 4664
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4665

4666
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4679
	if (ext4_orphan_add(handle, inode))
4680 4681
		goto out_stop;

4682 4683 4684 4685 4686
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4687

4688
	ext4_discard_preallocations(inode);
4689

4690 4691 4692 4693 4694
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4695
	 * ext4 *really* writes onto the disk inode.
4696 4697 4698 4699
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4700 4701
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4702 4703 4704
		goto do_indirects;
	}

4705
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4706 4707 4708 4709
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4710
			ext4_free_branches(handle, inode, NULL,
4711 4712 4713 4714 4715 4716 4717 4718 4719
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4720
			ext4_free_branches(handle, inode, partial->bh,
4721 4722 4723 4724 4725 4726
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4727
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4728 4729 4730
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4731
		brelse(partial->bh);
4732 4733 4734 4735 4736 4737
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4738
		nr = i_data[EXT4_IND_BLOCK];
4739
		if (nr) {
4740 4741
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4742
		}
4743 4744
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4745
		if (nr) {
4746 4747
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4748
		}
4749 4750
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4751
		if (nr) {
4752 4753
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4754
		}
4755
	case EXT4_TIND_BLOCK:
4756 4757 4758
		;
	}

4759
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4760
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4761
	ext4_mark_inode_dirty(handle, inode);
4762 4763 4764 4765 4766 4767

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4768
		ext4_handle_sync(handle);
4769 4770 4771 4772 4773
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4774
	 * ext4_delete_inode(), and we allow that function to clean up the
4775 4776 4777
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4778
		ext4_orphan_del(handle, inode);
4779

4780
	ext4_journal_stop(handle);
4781 4782 4783
}

/*
4784
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4785 4786 4787 4788
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4789 4790
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4791
{
4792 4793 4794 4795 4796 4797
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4798
	iloc->bh = NULL;
4799 4800
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4801

4802 4803 4804
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4805 4806
		return -EIO;

4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4817
	if (!bh) {
4818 4819
		EXT4_ERROR_INODE(inode, "unable to read inode block - "
				 "block %llu", block);
4820 4821 4822 4823
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4847
			int i, start;
4848

4849
			start = inode_offset & ~(inodes_per_block - 1);
4850

4851 4852
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4865
			for (i = start; i < start + inodes_per_block; i++) {
4866 4867
				if (i == inode_offset)
					continue;
4868
				if (ext4_test_bit(i, bitmap_bh->b_data))
4869 4870 4871
					break;
			}
			brelse(bitmap_bh);
4872
			if (i == start + inodes_per_block) {
4873 4874 4875 4876 4877 4878 4879 4880 4881
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4882 4883 4884 4885 4886 4887 4888 4889 4890
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4891
			/* s_inode_readahead_blks is always a power of 2 */
4892 4893 4894 4895 4896 4897 4898
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4899
				num -= ext4_itable_unused_count(sb, gdp);
4900 4901 4902 4903 4904 4905 4906
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4917 4918
			EXT4_ERROR_INODE(inode, "unable to read inode "
					 "block %llu", block);
4919 4920 4921 4922 4923 4924 4925 4926 4927
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4928
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4929 4930
{
	/* We have all inode data except xattrs in memory here. */
4931
	return __ext4_get_inode_loc(inode, iloc,
4932
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4933 4934
}

4935
void ext4_set_inode_flags(struct inode *inode)
4936
{
4937
	unsigned int flags = EXT4_I(inode)->i_flags;
4938 4939

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4940
	if (flags & EXT4_SYNC_FL)
4941
		inode->i_flags |= S_SYNC;
4942
	if (flags & EXT4_APPEND_FL)
4943
		inode->i_flags |= S_APPEND;
4944
	if (flags & EXT4_IMMUTABLE_FL)
4945
		inode->i_flags |= S_IMMUTABLE;
4946
	if (flags & EXT4_NOATIME_FL)
4947
		inode->i_flags |= S_NOATIME;
4948
	if (flags & EXT4_DIRSYNC_FL)
4949 4950 4951
		inode->i_flags |= S_DIRSYNC;
}

4952 4953 4954
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4975
}
4976

4977
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4978
				  struct ext4_inode_info *ei)
4979 4980
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4981 4982
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4983 4984 4985 4986 4987 4988

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4989 4990 4991 4992 4993 4994
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4995 4996 4997 4998
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4999

5000
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
5001
{
5002 5003
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
5004 5005
	struct ext4_inode_info *ei;
	struct inode *inode;
5006
	journal_t *journal = EXT4_SB(sb)->s_journal;
5007
	long ret;
5008 5009
	int block;

5010 5011 5012 5013 5014 5015 5016
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
5017
	iloc.bh = 0;
5018

5019 5020
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
5021
		goto bad_inode;
5022
	raw_inode = ext4_raw_inode(&iloc);
5023 5024 5025
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5026
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5027 5028 5029 5030 5031
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

5032
	ei->i_state_flags = 0;
5033 5034 5035 5036 5037 5038 5039 5040 5041
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
5042
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5043
			/* this inode is deleted */
5044
			ret = -ESTALE;
5045 5046 5047 5048 5049 5050 5051 5052
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5053
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5054
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5055
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
5056 5057
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5058
	inode->i_size = ext4_isize(raw_inode);
5059
	ei->i_disksize = inode->i_size;
5060 5061 5062
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
5063 5064
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
5065
	ei->i_last_alloc_group = ~0;
5066 5067 5068 5069
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
5070
	for (block = 0; block < EXT4_N_BLOCKS; block++)
5071 5072 5073
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

		spin_lock(&journal->j_state_lock);
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
		spin_unlock(&journal->j_state_lock);
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

5099
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5100
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5101
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5102
		    EXT4_INODE_SIZE(inode->i_sb)) {
5103
			ret = -EIO;
5104
			goto bad_inode;
5105
		}
5106 5107
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
5108 5109
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
5110 5111
		} else {
			__le32 *magic = (void *)raw_inode +
5112
					EXT4_GOOD_OLD_INODE_SIZE +
5113
					ei->i_extra_isize;
5114
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5115
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5116 5117 5118 5119
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
5120 5121 5122 5123 5124
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

5125 5126 5127 5128 5129 5130 5131
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

5132
	ret = 0;
5133
	if (ei->i_file_acl &&
5134
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5135 5136
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
5137 5138 5139
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
5140 5141 5142 5143 5144
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
5145
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5146 5147
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
5148
		/* Validate block references which are part of inode */
5149 5150
		ret = ext4_check_inode_blockref(inode);
	}
5151
	if (ret)
5152
		goto bad_inode;
5153

5154
	if (S_ISREG(inode->i_mode)) {
5155 5156 5157
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
5158
	} else if (S_ISDIR(inode->i_mode)) {
5159 5160
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
5161
	} else if (S_ISLNK(inode->i_mode)) {
5162
		if (ext4_inode_is_fast_symlink(inode)) {
5163
			inode->i_op = &ext4_fast_symlink_inode_operations;
5164 5165 5166
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
5167 5168
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5169
		}
5170 5171
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5172
		inode->i_op = &ext4_special_inode_operations;
5173 5174 5175 5176 5177 5178
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5179 5180
	} else {
		ret = -EIO;
5181
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5182
		goto bad_inode;
5183
	}
5184
	brelse(iloc.bh);
5185
	ext4_set_inode_flags(inode);
5186 5187
	unlock_new_inode(inode);
	return inode;
5188 5189

bad_inode:
5190
	brelse(iloc.bh);
5191 5192
	iget_failed(inode);
	return ERR_PTR(ret);
5193 5194
}

5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5208
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5209
		raw_inode->i_blocks_high = 0;
5210
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5211 5212 5213 5214 5215 5216
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5217 5218 5219 5220
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5221
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5222
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5223
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5224
	} else {
5225
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5226 5227 5228 5229
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5230
	}
5231
	return 0;
5232 5233
}

5234 5235 5236 5237 5238 5239 5240
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5241
static int ext4_do_update_inode(handle_t *handle,
5242
				struct inode *inode,
5243
				struct ext4_iloc *iloc)
5244
{
5245 5246
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5247 5248 5249 5250 5251
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5252
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5253
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5254

5255
	ext4_get_inode_flags(ei);
5256
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5257
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5258 5259 5260 5261 5262 5263
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5264
		if (!ei->i_dtime) {
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5282 5283 5284 5285 5286 5287

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5288 5289
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5290
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5291
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5292 5293
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5294 5295
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5296
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5313
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5314
			sb->s_dirt = 1;
5315
			ext4_handle_sync(handle);
5316
			err = ext4_handle_dirty_metadata(handle, NULL,
5317
					EXT4_SB(sb)->s_sbh);
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5332 5333 5334
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5335

5336 5337 5338 5339 5340
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5341
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5342 5343
	}

5344
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5345
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5346 5347
	if (!err)
		err = rc;
5348
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5349

5350
	ext4_update_inode_fsync_trans(handle, inode, 0);
5351
out_brelse:
5352
	brelse(bh);
5353
	ext4_std_error(inode->i_sb, err);
5354 5355 5356 5357
	return err;
}

/*
5358
 * ext4_write_inode()
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5375
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5392
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5393
{
5394 5395
	int err;

5396 5397 5398
	if (current->flags & PF_MEMALLOC)
		return 0;

5399 5400 5401 5402 5403 5404
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5405

5406
		if (wbc->sync_mode != WB_SYNC_ALL)
5407 5408 5409 5410 5411
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5412

5413
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5414 5415
		if (err)
			return err;
5416
		if (wbc->sync_mode == WB_SYNC_ALL)
5417 5418
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5419 5420 5421
			EXT4_ERROR_INODE(inode,
				"IO error syncing inode (block=%llu)",
				(unsigned long long) iloc.bh->b_blocknr);
5422 5423
			err = -EIO;
		}
5424
		brelse(iloc.bh);
5425 5426
	}
	return err;
5427 5428 5429
}

/*
5430
 * ext4_setattr()
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5444 5445 5446 5447 5448 5449 5450 5451
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5452
 */
5453
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5454 5455 5456 5457 5458 5459 5460 5461 5462
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5463
	if (is_quota_modification(inode, attr))
5464
		dquot_initialize(inode);
5465 5466 5467 5468 5469 5470
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5471
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5472
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5473 5474 5475 5476
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5477
		error = dquot_transfer(inode, attr);
5478
		if (error) {
5479
			ext4_journal_stop(handle);
5480 5481 5482 5483 5484 5485 5486 5487
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5488 5489
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5490 5491
	}

5492
	if (attr->ia_valid & ATTR_SIZE) {
5493
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5494 5495 5496 5497 5498 5499 5500 5501 5502
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

5503
	if (S_ISREG(inode->i_mode) &&
5504 5505
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
5506
	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5507 5508
		handle_t *handle;

5509
		handle = ext4_journal_start(inode, 3);
5510 5511 5512 5513 5514
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

5515 5516 5517
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5518 5519
		if (!error)
			error = rc;
5520
		ext4_journal_stop(handle);
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5537
		/* ext4_truncate will clear the flag */
5538
		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5539
			ext4_truncate(inode);
5540 5541 5542 5543
	}

	rc = inode_setattr(inode, attr);

5544
	/* If inode_setattr's call to ext4_truncate failed to get a
5545 5546 5547
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
5548
		ext4_orphan_del(NULL, inode);
5549 5550

	if (!rc && (ia_valid & ATTR_MODE))
5551
		rc = ext4_acl_chmod(inode);
5552 5553

err_out:
5554
	ext4_std_error(inode->i_sb, error);
5555 5556 5557 5558 5559
	if (!error)
		error = rc;
	return error;
}

5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5586

5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5614
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5615 5616
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5617
}
5618

5619
/*
5620 5621 5622
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5623
 *
5624
 * If datablocks are discontiguous, they are possible to spread over
5625
 * different block groups too. If they are contiuguous, with flexbg,
5626
 * they could still across block group boundary.
5627
 *
5628 5629 5630 5631
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5632 5633
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5660 5661
	if (groups > ngroups)
		groups = ngroups;
5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5676 5677
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5678
 *
5679
 * This could be called via ext4_write_begin()
5680
 *
5681
 * We need to consider the worse case, when
5682
 * one new block per extent.
5683
 */
A
Alex Tomas 已提交
5684
int ext4_writepage_trans_blocks(struct inode *inode)
5685
{
5686
	int bpp = ext4_journal_blocks_per_page(inode);
5687 5688
	int ret;

5689
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5690

5691
	/* Account for data blocks for journalled mode */
5692
	if (ext4_should_journal_data(inode))
5693
		ret += bpp;
5694 5695
	return ret;
}
5696 5697 5698 5699 5700

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5701
 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5702 5703 5704 5705 5706 5707 5708 5709 5710
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5711
/*
5712
 * The caller must have previously called ext4_reserve_inode_write().
5713 5714
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5715
int ext4_mark_iloc_dirty(handle_t *handle,
5716
			 struct inode *inode, struct ext4_iloc *iloc)
5717 5718 5719
{
	int err = 0;

5720 5721 5722
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5723 5724 5725
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5726
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5727
	err = ext4_do_update_inode(handle, inode, iloc);
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5738 5739
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5740
{
5741 5742 5743 5744 5745 5746 5747 5748 5749
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5750 5751
		}
	}
5752
	ext4_std_error(inode->i_sb, err);
5753 5754 5755
	return err;
}

5756 5757 5758 5759
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5760 5761 5762 5763
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
5778 5779
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5812
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5813
{
5814
	struct ext4_iloc iloc;
5815 5816 5817
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5818 5819

	might_sleep();
5820
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5821 5822
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5823
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5837 5838
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5839 5840
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5841
					ext4_warning(inode->i_sb,
5842 5843 5844
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5845 5846
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5847 5848 5849 5850
				}
			}
		}
	}
5851
	if (!err)
5852
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5853 5854 5855 5856
	return err;
}

/*
5857
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5858 5859 5860 5861 5862
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5863
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5864 5865 5866 5867 5868 5869
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5870
void ext4_dirty_inode(struct inode *inode)
5871 5872 5873
{
	handle_t *handle;

5874
	handle = ext4_journal_start(inode, 2);
5875 5876
	if (IS_ERR(handle))
		goto out;
5877 5878 5879

	ext4_mark_inode_dirty(handle, inode);

5880
	ext4_journal_stop(handle);
5881 5882 5883 5884 5885 5886 5887 5888
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5889
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5890 5891 5892
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5893
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5894
{
5895
	struct ext4_iloc iloc;
5896 5897 5898

	int err = 0;
	if (handle) {
5899
		err = ext4_get_inode_loc(inode, &iloc);
5900 5901
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5902
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5903
			if (!err)
5904
				err = ext4_handle_dirty_metadata(handle,
5905
								 NULL,
5906
								 iloc.bh);
5907 5908 5909
			brelse(iloc.bh);
		}
	}
5910
	ext4_std_error(inode->i_sb, err);
5911 5912 5913 5914
	return err;
}
#endif

5915
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5931
	journal = EXT4_JOURNAL(inode);
5932 5933
	if (!journal)
		return 0;
5934
	if (is_journal_aborted(journal))
5935 5936
		return -EROFS;

5937 5938
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5949
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5950
	else
5951
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5952
	ext4_set_aops(inode);
5953

5954
	jbd2_journal_unlock_updates(journal);
5955 5956 5957

	/* Finally we can mark the inode as dirty. */

5958
	handle = ext4_journal_start(inode, 1);
5959 5960 5961
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5962
	err = ext4_mark_inode_dirty(handle, inode);
5963
	ext4_handle_sync(handle);
5964 5965
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5966 5967 5968

	return err;
}
5969 5970 5971 5972 5973 5974

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5975
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5976
{
5977
	struct page *page = vmf->page;
5978 5979 5980
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5981
	void *fsdata;
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

6006 6007 6008 6009 6010 6011 6012
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
6013 6014
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
6015 6016
					ext4_bh_unmapped)) {
			unlock_page(page);
6017
			goto out_unlock;
6018
		}
6019
	}
6020
	unlock_page(page);
6021 6022 6023 6024 6025 6026 6027 6028
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6029
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6030 6031 6032
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6033
			len, len, page, fsdata);
6034 6035 6036 6037
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
6038 6039
	if (ret)
		ret = VM_FAULT_SIGBUS;
6040 6041 6042
	up_read(&inode->i_alloc_sem);
	return ret;
}