inode.c 176.0 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45 46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49 50
#include <trace/events/ext4.h>

51 52
#define MPAGE_DA_EXTENT_TAIL 0x01

53 54 55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56 57 58 59
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
60 61
}

62 63
static void ext4_invalidatepage(struct page *page, unsigned long offset);

64 65 66
/*
 * Test whether an inode is a fast symlink.
 */
67
static int ext4_inode_is_fast_symlink(struct inode *inode)
68
{
69
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
70 71 72 73 74 75 76 77 78 79 80
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
81
	ext4_lblk_t needed;
82 83 84 85 86 87

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
88
	 * like a regular file for ext4 to try to delete it.  Things
89 90 91 92 93 94 95
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
96 97
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
98

99
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

116
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
117 118 119
	if (!IS_ERR(result))
		return result;

120
	ext4_std_error(inode->i_sb, PTR_ERR(result));
121 122 123 124 125 126 127 128 129 130 131
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
132 133 134
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135
		return 0;
136
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137 138 139 140 141 142 143 144 145
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
146
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147
				 int nblocks)
148
{
149 150 151
	int ret;

	/*
152
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
153 154 155 156
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
157
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
158
	jbd_debug(2, "restarting handle %p\n", handle);
159 160 161
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
162
	ext4_discard_preallocations(inode);
163 164

	return ret;
165 166 167 168 169
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
170
void ext4_delete_inode(struct inode *inode)
171 172
{
	handle_t *handle;
173
	int err;
174

175
	if (!is_bad_inode(inode))
176
		dquot_initialize(inode);
177

178 179
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
180 181 182 183 184
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

185
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186
	if (IS_ERR(handle)) {
187
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
188 189 190 191 192
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
193
		ext4_orphan_del(NULL, inode);
194 195 196 197
		goto no_delete;
	}

	if (IS_SYNC(inode))
198
		ext4_handle_sync(handle);
199
	inode->i_size = 0;
200 201
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
202
		ext4_warning(inode->i_sb,
203 204 205
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
206
	if (inode->i_blocks)
207
		ext4_truncate(inode);
208 209 210 211 212 213 214

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
215
	if (!ext4_handle_has_enough_credits(handle, 3)) {
216 217 218 219
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
220
			ext4_warning(inode->i_sb,
221 222 223 224 225 226 227
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

228
	/*
229
	 * Kill off the orphan record which ext4_truncate created.
230
	 * AKPM: I think this can be inside the above `if'.
231
	 * Note that ext4_orphan_del() has to be able to cope with the
232
	 * deletion of a non-existent orphan - this is because we don't
233
	 * know if ext4_truncate() actually created an orphan record.
234 235
	 * (Well, we could do this if we need to, but heck - it works)
	 */
236 237
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
238 239 240 241 242 243 244 245

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
246
	if (ext4_mark_inode_dirty(handle, inode))
247 248 249
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
250 251
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
270
 *	ext4_block_to_path - parse the block number into array of offsets
271 272 273
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
274 275
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
276
 *
277
 *	To store the locations of file's data ext4 uses a data structure common
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

300
static int ext4_block_to_path(struct inode *inode,
301 302
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
303
{
304 305 306
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
307 308 309 310 311
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

312
	if (i_block < direct_blocks) {
313 314
		offsets[n++] = i_block;
		final = direct_blocks;
315
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
316
		offsets[n++] = EXT4_IND_BLOCK;
317 318 319
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
320
		offsets[n++] = EXT4_DIND_BLOCK;
321 322 323 324
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325
		offsets[n++] = EXT4_TIND_BLOCK;
326 327 328 329 330
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
331
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
332 333
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
334 335 336 337 338 339
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

340
static int __ext4_check_blockref(const char *function, struct inode *inode,
341 342
				 __le32 *p, unsigned int max)
{
343
	__le32 *bref = p;
344 345
	unsigned int blk;

346
	while (bref < p+max) {
347
		blk = le32_to_cpu(*bref++);
348 349
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
350
						    blk, 1))) {
351
			__ext4_error(inode->i_sb, function,
352 353
				   "invalid block reference %u "
				   "in inode #%lu", blk, inode->i_ino);
354 355 356 357
			return -EIO;
		}
	}
	return 0;
358 359 360 361
}


#define ext4_check_indirect_blockref(inode, bh)                         \
362
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
363 364 365
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
366
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
367 368
			      EXT4_NDIR_BLOCKS)

369
/**
370
 *	ext4_get_branch - read the chain of indirect blocks leading to data
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
395 396
 *
 *      Need to be called with
397
 *      down_read(&EXT4_I(inode)->i_data_sem)
398
 */
A
Aneesh Kumar K.V 已提交
399 400
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
401 402 403 404 405 406 407 408
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
409
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
410 411 412
	if (!p->key)
		goto no_block;
	while (--depth) {
413 414
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
415
			goto failure;
416

417 418 419 420 421 422 423 424 425 426 427
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
428

429
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
430 431 432 433 434 435 436 437 438 439 440 441 442
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
443
 *	ext4_find_near - find a place for allocation with sufficient locality
444 445 446
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
447
 *	This function returns the preferred place for block allocation.
448 449 450 451 452 453 454 455 456 457 458 459 460 461
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
462
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
463
{
464
	struct ext4_inode_info *ei = EXT4_I(inode);
465
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
466
	__le32 *p;
467
	ext4_fsblk_t bg_start;
468
	ext4_fsblk_t last_block;
469
	ext4_grpblk_t colour;
470 471
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
487 488 489 490 491 492 493
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
494 495
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

496 497 498 499 500 501 502
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

503 504
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
505
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
506 507
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
508 509 510 511
	return bg_start + colour;
}

/**
512
 *	ext4_find_goal - find a preferred place for allocation.
513 514 515 516
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
517
 *	Normally this function find the preferred place for block allocation,
518
 *	returns it.
519 520
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
521
 */
A
Aneesh Kumar K.V 已提交
522
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
523
				   Indirect *partial)
524
{
525 526
	ext4_fsblk_t goal;

527
	/*
528
	 * XXX need to get goal block from mballoc's data structures
529 530
	 */

531 532 533
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
534 535 536
}

/**
537
 *	ext4_blks_to_allocate: Look up the block map and count the number
538 539 540 541 542 543 544 545 546 547
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
548
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
549
				 int blocks_to_boundary)
550
{
551
	unsigned int count = 0;
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
575
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
576 577 578 579 580 581 582 583
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
584
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
585 586 587
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
588
{
589
	struct ext4_allocation_request ar;
590
	int target, i;
591
	unsigned long count = 0, blk_allocated = 0;
592
	int index = 0;
593
	ext4_fsblk_t current_block = 0;
594 595 596 597 598 599 600 601 602 603
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
604 605 606
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
607 608
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
609 610
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
611 612 613
		if (*err)
			goto failed_out;

614 615 616 617 618 619 620 621
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
622

623 624 625 626 627 628
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
629 630 631 632 633 634 635 636 637
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
638
			break;
639
		}
640 641
	}

642 643 644 645 646
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
647 648 649 650 651 652 653 654 655 656
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
657 658 659 660 661 662 663 664
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
665

666 667 668 669 670 671 672 673 674
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
675 676 677 678
			/*
			 * save the new block number
			 * for the first direct block
			 */
679 680
			new_blocks[index] = current_block;
		}
681
		blk_allocated += ar.len;
682 683
	}
allocated:
684
	/* total number of blocks allocated for direct blocks */
685
	ret = blk_allocated;
686 687 688
	*err = 0;
	return ret;
failed_out:
689
	for (i = 0; i < index; i++)
690
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
691 692 693 694
	return ret;
}

/**
695
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
696 697 698 699 700 701 702 703 704 705
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
706
 *	the same format as ext4_get_branch() would do. We are calling it after
707 708
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
709
 *	picture as after the successful ext4_get_block(), except that in one
710 711 712 713 714 715
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
716
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
717 718
 *	as described above and return 0.
 */
719
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
720 721 722
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
723 724 725 726 727 728
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
729 730
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
731

732
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
751
		err = ext4_journal_get_create_access(handle, bh);
752
		if (err) {
753 754
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
755 756 757 758 759 760 761 762
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
763
		if (n == indirect_blks) {
764 765 766 767 768 769
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
770
			for (i = 1; i < num; i++)
771 772 773 774 775 776
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

777 778
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
779 780 781 782 783 784 785
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
786
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
787
	for (i = 1; i <= n ; i++) {
788
		/* 
789 790 791
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
792
		 */
793 794
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
795
	}
796 797
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
798

799
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
800 801 802 803 804

	return err;
}

/**
805
 * ext4_splice_branch - splice the allocated branch onto inode.
806 807 808
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
809
 *	ext4_alloc_branch)
810 811 812 813 814 815 816 817
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
818
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
819 820
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
821 822 823
{
	int i;
	int err = 0;
824
	ext4_fsblk_t current_block;
825 826 827 828 829 830 831 832

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
833
		err = ext4_journal_get_write_access(handle, where->bh);
834 835 836 837 838 839 840 841 842 843 844 845 846 847
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
848
			*(where->p + i) = cpu_to_le32(current_block++);
849 850 851 852 853 854 855 856 857 858 859
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
860
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
861 862
		 */
		jbd_debug(5, "splicing indirect only\n");
863 864
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
865 866 867 868 869 870
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
871
		ext4_mark_inode_dirty(handle, inode);
872 873 874 875 876 877
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
878
		/* 
879 880 881
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
882
		 */
883 884
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
885
	}
886 887
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
888 889 890 891 892

	return err;
}

/*
893
 * The ext4_ind_map_blocks() function handles non-extents inodes
894
 * (i.e., using the traditional indirect/double-indirect i_blocks
895
 * scheme) for ext4_map_blocks().
896
 *
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
913
 *
914 915 916 917 918
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
919
 */
920 921
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
922
			       int flags)
923 924
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
925
	ext4_lblk_t offsets[4];
926 927
	Indirect chain[4];
	Indirect *partial;
928
	ext4_fsblk_t goal;
929 930 931 932
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
933
	ext4_fsblk_t first_block = 0;
934

A
Alex Tomas 已提交
935
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
936
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
937
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
938
				   &blocks_to_boundary);
939 940 941 942

	if (depth == 0)
		goto out;

943
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
944 945 946 947 948 949

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
950
		while (count < map->m_len && count <= blocks_to_boundary) {
951
			ext4_fsblk_t blk;
952 953 954 955 956 957 958 959

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
960
		goto got_it;
961 962 963
	}

	/* Next simple case - plain lookup or failed read of indirect block */
964
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
965 966 967
		goto cleanup;

	/*
968
	 * Okay, we need to do block allocation.
969
	*/
970
	goal = ext4_find_goal(inode, map->m_lblk, partial);
971 972 973 974 975 976 977 978

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
979
	count = ext4_blks_to_allocate(partial, indirect_blks,
980
				      map->m_len, blocks_to_boundary);
981
	/*
982
	 * Block out ext4_truncate while we alter the tree
983
	 */
984
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
985 986
				&count, goal,
				offsets + (partial - chain), partial);
987 988

	/*
989
	 * The ext4_splice_branch call will free and forget any buffers
990 991 992 993 994 995
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
996
		err = ext4_splice_branch(handle, inode, map->m_lblk,
997
					 partial, indirect_blks, count);
998
	if (err)
999 1000
		goto cleanup;

1001
	map->m_flags |= EXT4_MAP_NEW;
1002 1003

	ext4_update_inode_fsync_trans(handle, inode, 1);
1004
got_it:
1005 1006 1007
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1008
	if (count > blocks_to_boundary)
1009
		map->m_flags |= EXT4_MAP_BOUNDARY;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
	return err;
}

1023 1024
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1025
{
1026
	return &EXT4_I(inode)->i_reserved_quota;
1027
}
1028
#endif
1029

1030 1031
/*
 * Calculate the number of metadata blocks need to reserve
1032
 * to allocate a new block at @lblocks for non extent file based file
1033
 */
1034 1035
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1036
{
1037
	struct ext4_inode_info *ei = EXT4_I(inode);
1038
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1039
	int blk_bits;
1040

1041 1042
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1043

1044
	lblock -= EXT4_NDIR_BLOCKS;
1045

1046 1047 1048 1049 1050 1051 1052
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1053
	blk_bits = order_base_2(lblock);
1054
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1055 1056 1057 1058
}

/*
 * Calculate the number of metadata blocks need to reserve
1059
 * to allocate a block located at @lblock
1060
 */
1061
static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1062 1063
{
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1064
		return ext4_ext_calc_metadata_amount(inode, lblock);
1065

1066
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1067 1068
}

1069 1070 1071 1072
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1073 1074
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1075 1076
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1077 1078 1079
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1080
	trace_ext4_da_update_reserve_space(inode, used);
1081 1082 1083 1084 1085 1086 1087 1088
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1089

1090 1091 1092
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1093 1094
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1095
	ei->i_allocated_meta_blocks = 0;
1096

1097 1098 1099 1100 1101 1102
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1103 1104
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1105
		ei->i_reserved_meta_blocks = 0;
1106
		ei->i_da_metadata_calc_len = 0;
1107
	}
1108
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1109

1110 1111
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1112
		dquot_claim_block(inode, used);
1113
	else {
1114 1115 1116
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1117
		 * not re-claim the quota for fallocated blocks.
1118
		 */
1119
		dquot_release_reservation_block(inode, used);
1120
	}
1121 1122 1123 1124 1125 1126

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1127 1128
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1129
		ext4_discard_preallocations(inode);
1130 1131
}

1132 1133
static int check_block_validity(struct inode *inode, const char *msg,
				sector_t logical, sector_t phys, int len)
1134 1135
{
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1136
		__ext4_error(inode->i_sb, msg,
1137 1138 1139 1140 1141 1142 1143 1144 1145
			   "inode #%lu logical block %llu mapped to %llu "
			   "(size %d)", inode->i_ino,
			   (unsigned long long) logical,
			   (unsigned long long) phys, len);
		return -EIO;
	}
	return 0;
}

1146
/*
1147 1148
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1182 1183 1184 1185 1186 1187 1188 1189 1190
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
			if (num >= max_pages)
				break;
		}
		pagevec_release(&pvec);
	}
	return num;
}

1204
/*
1205
 * The ext4_map_blocks() function tries to look up the requested blocks,
1206
 * and returns if the blocks are already mapped.
1207 1208 1209 1210 1211
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1212 1213
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1226 1227
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1228 1229
{
	int retval;
1230

1231 1232 1233 1234
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1235
	/*
1236 1237
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1238 1239 1240
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1241
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1242
	} else {
1243
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1244
	}
1245
	up_read((&EXT4_I(inode)->i_data_sem));
1246

1247
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1248
		int ret = check_block_validity(inode, "file system corruption",
1249
					map->m_lblk, map->m_pblk, retval);
1250 1251 1252 1253
		if (ret != 0)
			return ret;
	}

1254
	/* If it is only a block(s) look up */
1255
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1256 1257 1258 1259 1260 1261 1262 1263 1264
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1265
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1266 1267
		return retval;

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1278
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1279

1280
	/*
1281 1282 1283 1284
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1285 1286
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1287 1288 1289 1290 1291 1292 1293

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1294
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1295
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1296 1297 1298 1299
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1300
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1301
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1302
	} else {
1303
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1304

1305
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1306 1307 1308 1309 1310
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1311
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1312
		}
1313

1314 1315 1316 1317 1318 1319 1320
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1321
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1322 1323
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1324
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1325
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1326

1327
	up_write((&EXT4_I(inode)->i_data_sem));
1328
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1329 1330
		int ret = check_block_validity(inode, "file system "
					       "corruption after allocation",
1331 1332
					       map->m_lblk, map->m_pblk,
					       retval);
1333 1334 1335
		if (ret != 0)
			return ret;
	}
1336 1337 1338
	return retval;
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
		    unsigned int max_blocks, struct buffer_head *bh,
		    int flags)
{
	struct ext4_map_blocks map;
	int ret;

	map.m_lblk = block;
	map.m_len = max_blocks;

	ret = ext4_map_blocks(handle, inode, &map, flags);
	if (ret < 0)
		return ret;

	bh->b_blocknr = map.m_pblk;
	bh->b_size = inode->i_sb->s_blocksize * map.m_len;
	bh->b_bdev = inode->i_sb->s_bdev;
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
	return ret;
}

1360 1361 1362
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1363 1364
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1365
{
1366
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1367
	int ret = 0, started = 0;
1368
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1369
	int dio_credits;
1370

J
Jan Kara 已提交
1371 1372 1373 1374
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1375 1376
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1377
		if (IS_ERR(handle)) {
1378
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1379
			goto out;
1380
		}
J
Jan Kara 已提交
1381
		started = 1;
1382 1383
	}

1384
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1385
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
J
Jan Kara 已提交
1386 1387 1388
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1389
	}
J
Jan Kara 已提交
1390 1391 1392
	if (started)
		ext4_journal_stop(handle);
out:
1393 1394 1395 1396 1397 1398
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1399
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1400
				ext4_lblk_t block, int create, int *errp)
1401 1402 1403
{
	struct buffer_head dummy;
	int fatal = 0, err;
1404
	int flags = 0;
1405 1406 1407 1408 1409 1410

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
1411 1412 1413
	if (create)
		flags |= EXT4_GET_BLOCKS_CREATE;
	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1414
	/*
1415 1416
	 * ext4_get_blocks() returns number of blocks mapped. 0 in
	 * case of a HOLE.
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1433
			J_ASSERT(handle != NULL);
1434 1435 1436 1437 1438

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1439
			 * writes use ext4_get_block instead, so it's not a
1440 1441 1442 1443
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1444
			fatal = ext4_journal_get_create_access(handle, bh);
1445
			if (!fatal && !buffer_uptodate(bh)) {
1446
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1447 1448 1449
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1450 1451
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1468
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1469
			       ext4_lblk_t block, int create, int *err)
1470
{
1471
	struct buffer_head *bh;
1472

1473
	bh = ext4_getblk(handle, inode, block, create, err);
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1487 1488 1489 1490 1491 1492 1493
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1494 1495 1496 1497 1498 1499 1500
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1501 1502
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1503
	     block_start = block_end, bh = next) {
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1521
 * close off a transaction and start a new one between the ext4_get_block()
1522
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1523 1524
 * prepare_write() is the right place.
 *
1525 1526
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1527 1528 1529 1530
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1531
 * By accident, ext4 can be reentered when a transaction is open via
1532 1533 1534 1535 1536 1537
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1538
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1539 1540 1541 1542 1543
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1544
				       struct buffer_head *bh)
1545 1546 1547
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1548
	return ext4_journal_get_write_access(handle, bh);
1549 1550
}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1561 1562
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1563
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1564 1565
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1566
{
1567
	struct inode *inode = mapping->host;
1568
	int ret, needed_blocks;
1569 1570
	handle_t *handle;
	int retries = 0;
1571
	struct page *page;
1572
	pgoff_t index;
1573
	unsigned from, to;
N
Nick Piggin 已提交
1574

1575
	trace_ext4_write_begin(inode, pos, len, flags);
1576 1577 1578 1579 1580
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1581
	index = pos >> PAGE_CACHE_SHIFT;
1582 1583
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1584 1585

retry:
1586 1587 1588 1589
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1590
	}
1591

1592 1593 1594 1595
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1596
	page = grab_cache_page_write_begin(mapping, index, flags);
1597 1598 1599 1600 1601 1602 1603
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1604 1605 1606 1607 1608 1609
	if (ext4_should_dioread_nolock(inode))
		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
				fsdata, ext4_get_block_write);
	else
		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
				fsdata, ext4_get_block);
N
Nick Piggin 已提交
1610 1611

	if (!ret && ext4_should_journal_data(inode)) {
1612 1613 1614
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1615 1616

	if (ret) {
1617 1618
		unlock_page(page);
		page_cache_release(page);
1619 1620 1621 1622
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1623 1624 1625
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1626
		 */
1627
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1628 1629 1630 1631
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1632
			ext4_truncate_failed_write(inode);
1633
			/*
1634
			 * If truncate failed early the inode might
1635 1636 1637 1638 1639 1640 1641
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1642 1643
	}

1644
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1645
		goto retry;
1646
out:
1647 1648 1649
	return ret;
}

N
Nick Piggin 已提交
1650 1651
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1652 1653 1654 1655
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1656
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1657 1658
}

1659
static int ext4_generic_write_end(struct file *file,
1660 1661 1662
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1705 1706 1707 1708
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1709
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1710 1711
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1712
static int ext4_ordered_write_end(struct file *file,
1713 1714 1715
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1716
{
1717
	handle_t *handle = ext4_journal_current_handle();
1718
	struct inode *inode = mapping->host;
1719 1720
	int ret = 0, ret2;

1721
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1722
	ret = ext4_jbd2_file_inode(handle, inode);
1723 1724

	if (ret == 0) {
1725
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1726
							page, fsdata);
1727
		copied = ret2;
1728
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1729 1730 1731 1732 1733
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1734 1735
		if (ret2 < 0)
			ret = ret2;
1736
	}
1737
	ret2 = ext4_journal_stop(handle);
1738 1739
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1740

1741
	if (pos + len > inode->i_size) {
1742
		ext4_truncate_failed_write(inode);
1743
		/*
1744
		 * If truncate failed early the inode might still be
1745 1746 1747 1748 1749 1750 1751 1752
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1753
	return ret ? ret : copied;
1754 1755
}

N
Nick Piggin 已提交
1756
static int ext4_writeback_write_end(struct file *file,
1757 1758 1759
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1760
{
1761
	handle_t *handle = ext4_journal_current_handle();
1762
	struct inode *inode = mapping->host;
1763 1764
	int ret = 0, ret2;

1765
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1766
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1767
							page, fsdata);
1768
	copied = ret2;
1769
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1770 1771 1772 1773 1774 1775
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1776 1777
	if (ret2 < 0)
		ret = ret2;
1778

1779
	ret2 = ext4_journal_stop(handle);
1780 1781
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1782

1783
	if (pos + len > inode->i_size) {
1784
		ext4_truncate_failed_write(inode);
1785
		/*
1786
		 * If truncate failed early the inode might still be
1787 1788 1789 1790 1791 1792 1793
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1794
	return ret ? ret : copied;
1795 1796
}

N
Nick Piggin 已提交
1797
static int ext4_journalled_write_end(struct file *file,
1798 1799 1800
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1801
{
1802
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1803
	struct inode *inode = mapping->host;
1804 1805
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1806
	unsigned from, to;
1807
	loff_t new_i_size;
1808

1809
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1810 1811 1812 1813 1814 1815 1816 1817
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1818 1819

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1820
				to, &partial, write_end_fn);
1821 1822
	if (!partial)
		SetPageUptodate(page);
1823 1824
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1825
		i_size_write(inode, pos+copied);
1826
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1827 1828
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1829
		ret2 = ext4_mark_inode_dirty(handle, inode);
1830 1831 1832
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1833

1834
	unlock_page(page);
1835
	page_cache_release(page);
1836
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1837 1838 1839 1840 1841 1842
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1843
	ret2 = ext4_journal_stop(handle);
1844 1845
	if (!ret)
		ret = ret2;
1846
	if (pos + len > inode->i_size) {
1847
		ext4_truncate_failed_write(inode);
1848
		/*
1849
		 * If truncate failed early the inode might still be
1850 1851 1852 1853 1854 1855
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1856 1857

	return ret ? ret : copied;
1858
}
1859

1860 1861 1862 1863
/*
 * Reserve a single block located at lblock
 */
static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1864
{
A
Aneesh Kumar K.V 已提交
1865
	int retries = 0;
1866
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1867
	struct ext4_inode_info *ei = EXT4_I(inode);
1868
	unsigned long md_needed;
1869
	int ret;
1870 1871 1872 1873 1874 1875

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1876
repeat:
1877
	spin_lock(&ei->i_block_reservation_lock);
1878
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1879
	trace_ext4_da_reserve_space(inode, md_needed);
1880
	spin_unlock(&ei->i_block_reservation_lock);
1881

1882
	/*
1883 1884 1885
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1886
	 */
1887
	ret = dquot_reserve_block(inode, 1);
1888 1889
	if (ret)
		return ret;
1890 1891 1892 1893
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1894
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1895
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1896 1897 1898 1899
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1900 1901
		return -ENOSPC;
	}
1902
	spin_lock(&ei->i_block_reservation_lock);
1903
	ei->i_reserved_data_blocks++;
1904 1905
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1906

1907 1908 1909
	return 0;       /* success */
}

1910
static void ext4_da_release_space(struct inode *inode, int to_free)
1911 1912
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1913
	struct ext4_inode_info *ei = EXT4_I(inode);
1914

1915 1916 1917
	if (!to_free)
		return;		/* Nothing to release, exit */

1918
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1919

1920
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1921
		/*
1922 1923 1924 1925
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1926
		 */
1927 1928 1929 1930 1931 1932
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1933
	}
1934
	ei->i_reserved_data_blocks -= to_free;
1935

1936 1937 1938 1939 1940 1941
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1942 1943
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1944
		ei->i_reserved_meta_blocks = 0;
1945
		ei->i_da_metadata_calc_len = 0;
1946
	}
1947

1948
	/* update fs dirty data blocks counter */
1949
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1950 1951

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1952

1953
	dquot_release_reservation_block(inode, to_free);
1954 1955 1956
}

static void ext4_da_page_release_reservation(struct page *page,
1957
					     unsigned long offset)
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1974
	ext4_da_release_space(page->mapping->host, to_release);
1975
}
1976

1977 1978 1979 1980 1981 1982
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1983
 * them with writepage() call back
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1996
	long pages_skipped;
1997 1998 1999 2000 2001
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2002 2003

	BUG_ON(mpd->next_page <= mpd->first_page);
2004 2005 2006
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
2007
	 * If we look at mpd->b_blocknr we would only be looking
2008 2009
	 * at the currently mapped buffer_heads.
	 */
2010 2011 2012
	index = mpd->first_page;
	end = mpd->next_page - 1;

2013
	pagevec_init(&pvec, 0);
2014
	while (index <= end) {
2015
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2016 2017 2018 2019 2020
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

2021 2022 2023 2024 2025 2026 2027 2028
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2029
			pages_skipped = mpd->wbc->pages_skipped;
2030
			err = mapping->a_ops->writepage(page, mpd->wbc);
2031 2032 2033 2034 2035
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
2036
				mpd->pages_written++;
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
2059
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2060 2061 2062 2063 2064 2065 2066 2067 2068
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
2069
	pgoff_t index, end;
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

				if (buffer_delay(bh) ||
						buffer_unwritten(bh)) {

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2127
				} else if (buffer_mapped(bh))
2128 2129
					BUG_ON(bh->b_blocknr != pblock);

2130 2131
				if (buffer_uninit(exbh))
					set_buffer_uninit(bh);
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2174
			if (page->index > end)
2175 2176 2177 2178 2179 2180 2181
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2182 2183
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2184 2185 2186 2187
	}
	return;
}

2188 2189 2190
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2203 2204 2205
	return;
}

2206 2207 2208
/*
 * mpage_da_map_blocks - go through given space
 *
2209
 * @mpd - bh describing space
2210 2211 2212 2213
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2214
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2215
{
2216
	int err, blks, get_blocks_flags;
A
Aneesh Kumar K.V 已提交
2217
	struct buffer_head new;
2218 2219 2220 2221
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2222 2223 2224 2225

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2226
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2227 2228
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2229
		return 0;
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2240
	/*
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	 * Call ext4_get_blocks() to allocate any delayed allocation
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
	 * want to change *many* call functions, so ext4_get_blocks()
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2257
	 */
2258
	new.b_state = 0;
2259
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2260 2261
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2262
	if (mpd->b_state & (1 << BH_Delay))
2263 2264
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2265
	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2266
			       &new, get_blocks_flags);
2267 2268
	if (blks < 0) {
		err = blks;
2269 2270 2271 2272
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2273 2274 2275
		 */
		if (err == -EAGAIN)
			return 0;
2276 2277

		if (err == -ENOSPC &&
2278
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2279 2280 2281 2282
			mpd->retval = err;
			return 0;
		}

2283
		/*
2284 2285 2286 2287 2288
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2289
		 */
2290 2291 2292
		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
			 "delayed block allocation failed for inode %lu at "
			 "logical offset %llu with max blocks %zd with "
2293
			 "error %d", mpd->inode->i_ino,
2294 2295 2296 2297
			 (unsigned long long) next,
			 mpd->b_size >> mpd->inode->i_blkbits, err);
		printk(KERN_CRIT "This should not happen!!  "
		       "Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2298
		if (err == -ENOSPC) {
2299
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2300
		}
2301
		/* invalidate all the pages */
2302
		ext4_da_block_invalidatepages(mpd, next,
2303
				mpd->b_size >> mpd->inode->i_blkbits);
2304 2305
		return err;
	}
2306 2307 2308
	BUG_ON(blks == 0);

	new.b_size = (blks << mpd->inode->i_blkbits);
2309

2310 2311
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2312

2313 2314 2315 2316
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2317 2318
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2319
		mpage_put_bnr_to_bhs(mpd, next, &new);
2320

2321 2322 2323 2324 2325 2326 2327
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2328
	 * Update on-disk size along with block allocation.
2329 2330 2331 2332 2333 2334 2335 2336 2337
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2338
	return 0;
2339 2340
}

2341 2342
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2354 2355
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2356 2357
{
	sector_t next;
2358
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2359

2360 2361 2362 2363 2364 2365 2366 2367 2368
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
	 * ext4_get_blocks() multiple times in a loop
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2391 2392 2393
	/*
	 * First block in the extent
	 */
2394 2395 2396 2397
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2398 2399 2400
		return;
	}

2401
	next = mpd->b_blocknr + nrblocks;
2402 2403 2404
	/*
	 * Can we merge the block to our big extent?
	 */
2405 2406
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2407 2408 2409
		return;
	}

2410
flush_it:
2411 2412 2413 2414
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2415 2416
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2417 2418
	mpd->io_done = 1;
	return;
2419 2420
}

2421
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2422
{
2423
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2424 2425
}

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2440
	struct buffer_head *bh, *head;
2441 2442 2443 2444 2445 2446 2447 2448
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2449
		 * and start IO on them using writepage()
2450 2451
		 */
		if (mpd->next_page != mpd->first_page) {
2452 2453
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2454 2455 2456 2457 2458 2459 2460
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2471 2472 2473
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2474 2475 2476 2477 2478 2479 2480
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2481 2482
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2483 2484
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2485 2486 2487 2488 2489 2490 2491 2492
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2493 2494 2495 2496
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2497
			 * with the page in ext4_writepage
2498
			 */
2499
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2500 2501 2502
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2503 2504
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2505 2506 2507 2508 2509 2510 2511 2512 2513
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2514 2515
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2516
			}
2517 2518 2519 2520 2521 2522 2523 2524
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2525 2526 2527
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2528 2529 2530 2531 2532 2533 2534
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2535 2536 2537 2538 2539
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;
2540 2541 2542 2543
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2544 2545 2546 2547 2548 2549 2550 2551 2552

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2553
	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2554 2555
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2556 2557 2558 2559
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2560
		ret = ext4_da_reserve_space(inode, iblock);
2561 2562 2563 2564
		if (ret)
			/* not enough space to reserve */
			return ret;

2565
		map_bh(bh_result, inode->i_sb, invalid_block);
2566 2567 2568 2569
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
2570 2571 2572 2573 2574 2575 2576 2577
		if (buffer_unwritten(bh_result)) {
			/* A delayed write to unwritten bh should
			 * be marked new and mapped.  Mapped ensures
			 * that we don't do get_block multiple times
			 * when we write to the same offset and new
			 * ensures that we do proper zero out for
			 * partial write.
			 */
2578
			set_buffer_new(bh_result);
2579 2580
			set_buffer_mapped(bh_result);
		}
2581 2582 2583 2584 2585
		ret = 0;
	}

	return ret;
}
2586

2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
 * callback function for block_prepare_write(), nobh_writepage(), and
 * block_write_full_page().  These functions should only try to map a
 * single block at a time.
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
 * delayed allocation before calling nobh_writepage() or
 * block_write_full_page().  Otherwise, b_blocknr could be left
 * unitialized, and the page write functions will be taken by
 * surprise.
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2604 2605 2606 2607 2608
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

2609 2610
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

2611 2612 2613 2614
	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
2615
	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2616 2617 2618 2619 2620
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2621 2622
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2670
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2671 2672 2673 2674
out:
	return ret;
}

2675 2676 2677
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2678
/*
2679 2680 2681 2682 2683 2684 2685 2686 2687
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2688 2689 2690 2691 2692
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2718
 */
2719
static int ext4_writepage(struct page *page,
2720
			  struct writeback_control *wbc)
2721 2722
{
	int ret = 0;
2723
	loff_t size;
2724
	unsigned int len;
2725
	struct buffer_head *page_bufs = NULL;
2726 2727
	struct inode *inode = page->mapping->host;

2728
	trace_ext4_writepage(inode, page);
2729 2730 2731 2732 2733
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2734

2735
	if (page_has_buffers(page)) {
2736
		page_bufs = page_buffers(page);
2737
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2738
					ext4_bh_delay_or_unwritten)) {
2739
			/*
2740 2741
			 * We don't want to do  block allocation
			 * So redirty the page and return
2742 2743 2744
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2765
		ret = block_prepare_write(page, 0, len,
2766
					  noalloc_get_block_write);
2767 2768 2769 2770
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2771
						ext4_bh_delay_or_unwritten)) {
2772 2773 2774 2775 2776 2777 2778 2779 2780
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2781 2782 2783 2784 2785
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2786
		/* now mark the buffer_heads as dirty and uptodate */
2787
		block_commit_write(page, 0, len);
2788 2789
	}

2790 2791 2792 2793 2794 2795
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
2796
		return __ext4_journalled_writepage(page, len);
2797 2798
	}

2799
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2800
		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2801 2802 2803 2804 2805
	else if (page_bufs && buffer_uninit(page_bufs)) {
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2806 2807
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2808 2809 2810 2811

	return ret;
}

2812
/*
2813 2814 2815 2816 2817
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2818
 */
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2830
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2831 2832 2833 2834 2835
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2836

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
 * address space and call the callback function (which usually writes
 * the pages).
 *
 * This is a forked version of write_cache_pages().  Differences:
 *	Range cyclic is ignored.
 *	no_nrwrite_index_update is always presumed true
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
				struct mpage_da_data *mpd)
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	long nr_to_write = wbc->nr_to_write;

	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

	while (!done && (index <= end)) {
		int i;

		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
			      PAGECACHE_TAG_DIRTY,
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				done = 1;
				break;
			}

			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

			ret = __mpage_da_writepage(page, wbc, mpd);
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					done = 1;
					break;
				}
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
				    wbc->sync_mode == WB_SYNC_NONE) {
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
					done = 1;
					break;
				}
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	return ret;
}


2955
static int ext4_da_writepages(struct address_space *mapping,
2956
			      struct writeback_control *wbc)
2957
{
2958 2959
	pgoff_t	index;
	int range_whole = 0;
2960
	handle_t *handle = NULL;
2961
	struct mpage_da_data mpd;
2962
	struct inode *inode = mapping->host;
2963 2964
	int pages_written = 0;
	long pages_skipped;
2965
	unsigned int max_pages;
2966
	int range_cyclic, cycled = 1, io_done = 0;
2967 2968
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2969
	loff_t range_start = wbc->range_start;
2970
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2971

2972
	trace_ext4_da_writepages(inode, wbc);
2973

2974 2975 2976 2977 2978
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2979
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2980
		return 0;
2981 2982 2983 2984 2985

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2986
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2987 2988 2989 2990 2991
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2992
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2993 2994
		return -EROFS;

2995 2996
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2997

2998 2999
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
3000
		index = mapping->writeback_index;
3001 3002 3003 3004 3005 3006
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
3007
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3008

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
	if (!range_cyclic && range_whole)
		desired_nr_to_write = wbc->nr_to_write * 8;
	else
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

3039 3040 3041
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

3042 3043
	pages_skipped = wbc->pages_skipped;

3044
retry:
3045
	while (!ret && wbc->nr_to_write > 0) {
3046 3047 3048 3049 3050 3051 3052 3053

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
3054
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3055

3056 3057 3058 3059
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
3060
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3061
			       "%ld pages, ino %lu; err %d", __func__,
3062
				wbc->nr_to_write, inode->i_ino, ret);
3063 3064
			goto out_writepages;
		}
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
3083
		ret = write_cache_pages_da(mapping, wbc, &mpd);
3084
		/*
3085
		 * If we have a contiguous extent of pages and we
3086 3087 3088 3089 3090 3091 3092 3093 3094
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3095
		trace_ext4_da_write_pages(inode, &mpd);
3096
		wbc->nr_to_write -= mpd.pages_written;
3097

3098
		ext4_journal_stop(handle);
3099

3100
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3101 3102 3103 3104
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3105
			jbd2_journal_force_commit_nested(sbi->s_journal);
3106 3107 3108
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3109 3110 3111 3112
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3113 3114
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
3115
			ret = 0;
3116
			io_done = 1;
3117
		} else if (wbc->nr_to_write)
3118 3119 3120 3121 3122 3123
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3124
	}
3125 3126 3127 3128 3129 3130 3131
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3132
	if (pages_skipped != wbc->pages_skipped)
3133 3134
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
3135
			 "with nr_to_write = %ld ret = %d",
3136
			 __func__, wbc->nr_to_write, ret);
3137 3138 3139

	/* Update index */
	index += pages_written;
3140
	wbc->range_cyclic = range_cyclic;
3141 3142 3143 3144 3145 3146
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
3147

3148
out_writepages:
3149
	wbc->nr_to_write -= nr_to_writebump;
3150
	wbc->range_start = range_start;
3151
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3152
	return ret;
3153 3154
}

3155 3156 3157 3158 3159 3160 3161 3162 3163
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3164
	 * counters can get slightly wrong with percpu_counter_batch getting
3165 3166 3167 3168 3169 3170 3171 3172 3173
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3174 3175
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3176 3177 3178
		 */
		return 1;
	}
3179 3180 3181 3182 3183 3184 3185
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3186 3187 3188
	return 0;
}

3189
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3190 3191
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3192
{
3193
	int ret, retries = 0;
3194 3195 3196 3197 3198 3199 3200 3201 3202
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
3203 3204 3205 3206 3207 3208 3209

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3210
	trace_ext4_da_write_begin(inode, pos, len, flags);
3211
retry:
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3223 3224 3225
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3226

3227
	page = grab_cache_page_write_begin(mapping, index, flags);
3228 3229 3230 3231 3232
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3233 3234 3235
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3236
				ext4_da_get_block_prep);
3237 3238 3239 3240
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3241 3242 3243 3244 3245 3246
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3247
			ext4_truncate_failed_write(inode);
3248 3249
	}

3250 3251
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3252 3253 3254 3255
out:
	return ret;
}

3256 3257 3258 3259 3260
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3261
					    unsigned long offset)
3262 3263 3264 3265 3266 3267 3268 3269 3270
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3271
	for (i = 0; i < idx; i++)
3272 3273
		bh = bh->b_this_page;

3274
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3275 3276 3277 3278
		return 0;
	return 1;
}

3279
static int ext4_da_write_end(struct file *file,
3280 3281 3282
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3283 3284 3285 3286 3287
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3288
	unsigned long start, end;
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3302

3303
	trace_ext4_da_write_end(inode, pos, len, copied);
3304
	start = pos & (PAGE_CACHE_SIZE - 1);
3305
	end = start + copied - 1;
3306 3307 3308 3309 3310 3311 3312 3313

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3325

3326 3327 3328
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3329 3330 3331 3332 3333
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3334
		}
3335
	}
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3357
	ext4_da_page_release_reservation(page, offset);
3358 3359 3360 3361 3362 3363 3364

out:
	ext4_invalidatepage(page, offset);

	return;
}

3365 3366 3367 3368 3369
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3370 3371
	trace_ext4_alloc_da_blocks(inode);

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3382
	 *
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3402
	 *
3403 3404 3405 3406 3407 3408
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3409

3410 3411 3412 3413 3414
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3415
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3416 3417 3418 3419 3420 3421 3422 3423
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3424
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3425 3426 3427 3428 3429
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3440 3441
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3453
		 * NB. EXT4_STATE_JDATA is not set on files other than
3454 3455 3456 3457 3458 3459
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3460
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3461
		journal = EXT4_JOURNAL(inode);
3462 3463 3464
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3465 3466 3467 3468 3469

		if (err)
			return 0;
	}

3470
	return generic_block_bmap(mapping, block, ext4_get_block);
3471 3472
}

3473
static int ext4_readpage(struct file *file, struct page *page)
3474
{
3475
	return mpage_readpage(page, ext4_get_block);
3476 3477 3478
}

static int
3479
ext4_readpages(struct file *file, struct address_space *mapping,
3480 3481
		struct list_head *pages, unsigned nr_pages)
{
3482
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3483 3484
}

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
static void ext4_free_io_end(ext4_io_end_t *io)
{
	BUG_ON(!io);
	if (io->page)
		put_page(io->page);
	iput(io->inode);
	kfree(io);
}

static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3514
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3515
{
3516
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3517

3518 3519 3520 3521 3522
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3523 3524 3525 3526 3527 3528
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3529 3530 3531 3532
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3533 3534
}

3535
static int ext4_releasepage(struct page *page, gfp_t wait)
3536
{
3537
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3538 3539 3540 3541

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3542 3543 3544 3545
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3546 3547 3548
}

/*
3549 3550
 * O_DIRECT for ext3 (or indirect map) based files
 *
3551 3552 3553 3554 3555
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3556 3557
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3558
 */
3559
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3560 3561
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3562 3563 3564
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3565
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3566
	handle_t *handle;
3567 3568 3569
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3570
	int retries = 0;
3571 3572 3573 3574 3575

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3576 3577 3578 3579 3580 3581
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3582
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3583 3584 3585 3586
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3587 3588
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3589
			ext4_journal_stop(handle);
3590 3591 3592
		}
	}

3593
retry:
3594 3595 3596 3597 3598 3599 3600 3601
	if (rw == READ && ext4_should_dioread_nolock(inode))
		ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
				 ext4_get_block, NULL);
	else
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3602
				 offset, nr_segs,
3603
				 ext4_get_block, NULL);
3604 3605
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3606

J
Jan Kara 已提交
3607
	if (orphan) {
3608 3609
		int err;

J
Jan Kara 已提交
3610 3611 3612 3613 3614 3615 3616
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3617 3618 3619
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3620 3621 3622
			goto out;
		}
		if (inode->i_nlink)
3623
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3624
		if (ret > 0) {
3625 3626 3627 3628 3629 3630 3631 3632
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3633
				 * ext4_mark_inode_dirty() to userspace.  So
3634 3635
				 * ignore it.
				 */
3636
				ext4_mark_inode_dirty(handle, inode);
3637 3638
			}
		}
3639
		err = ext4_journal_stop(handle);
3640 3641 3642 3643 3644 3645 3646
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3647
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3648 3649
		   struct buffer_head *bh_result, int create)
{
3650
	handle_t *handle = ext4_journal_current_handle();
3651 3652 3653
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	int dio_credits;
3654
	int started = 0;
3655

3656
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3657
		   inode->i_ino, create);
3658
	/*
3659 3660 3661
	 * ext4_get_block in prepare for a DIO write or buffer write.
	 * We allocate an uinitialized extent if blocks haven't been allocated.
	 * The extent will be converted to initialized after IO complete.
3662
	 */
3663
	create = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3664

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
	if (!handle) {
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
			goto out;
		}
		started = 1;
3675
	}
3676

3677 3678 3679 3680 3681 3682
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
			      create);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
3683 3684
	if (started)
		ext4_journal_stop(handle);
3685 3686 3687 3688
out:
	return ret;
}

3689
static void dump_completed_IO(struct inode * inode)
3690 3691 3692 3693
{
#ifdef	EXT4_DEBUG
	struct list_head *cur, *before, *after;
	ext4_io_end_t *io, *io0, *io1;
3694
	unsigned long flags;
3695

3696 3697
	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3698 3699 3700
		return;
	}

3701
	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3702
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3703
	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3704 3705 3706 3707 3708 3709 3710 3711 3712
		cur = &io->list;
		before = cur->prev;
		io0 = container_of(before, ext4_io_end_t, list);
		after = cur->next;
		io1 = container_of(after, ext4_io_end_t, list);

		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
			    io, inode->i_ino, io0, io1);
	}
3713
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3714 3715
#endif
}
3716 3717 3718 3719

/*
 * check a range of space and convert unwritten extents to written.
 */
3720
static int ext4_end_io_nolock(ext4_io_end_t *io)
3721 3722 3723
{
	struct inode *inode = io->inode;
	loff_t offset = io->offset;
3724
	ssize_t size = io->size;
3725 3726
	int ret = 0;

3727
	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3728 3729 3730 3731 3732 3733
		   "list->prev 0x%p\n",
	           io, inode->i_ino, io->list.next, io->list.prev);

	if (list_empty(&io->list))
		return ret;

3734
	if (io->flag != EXT4_IO_UNWRITTEN)
3735 3736
		return ret;

3737
	ret = ext4_convert_unwritten_extents(inode, offset, size);
3738
	if (ret < 0) {
3739
		printk(KERN_EMERG "%s: failed to convert unwritten"
3740 3741 3742 3743 3744
			"extents to written extents, error is %d"
			" io is still on inode %lu aio dio list\n",
                       __func__, ret, inode->i_ino);
		return ret;
	}
3745

3746 3747 3748
	/* clear the DIO AIO unwritten flag */
	io->flag = 0;
	return ret;
3749
}
3750

3751 3752 3753
/*
 * work on completed aio dio IO, to convert unwritten extents to extents
 */
3754
static void ext4_end_io_work(struct work_struct *work)
3755
{
3756 3757 3758 3759 3760
	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
	struct inode		*inode = io->inode;
	struct ext4_inode_info	*ei = EXT4_I(inode);
	unsigned long		flags;
	int			ret;
3761

3762
	mutex_lock(&inode->i_mutex);
3763
	ret = ext4_end_io_nolock(io);
3764 3765 3766
	if (ret < 0) {
		mutex_unlock(&inode->i_mutex);
		return;
3767
	}
3768 3769 3770 3771 3772

	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	if (!list_empty(&io->list))
		list_del_init(&io->list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3773
	mutex_unlock(&inode->i_mutex);
3774
	ext4_free_io_end(io);
3775
}
3776

3777 3778 3779
/*
 * This function is called from ext4_sync_file().
 *
3780 3781
 * When IO is completed, the work to convert unwritten extents to
 * written is queued on workqueue but may not get immediately
3782 3783
 * scheduled. When fsync is called, we need to ensure the
 * conversion is complete before fsync returns.
3784 3785 3786 3787 3788
 * The inode keeps track of a list of pending/completed IO that
 * might needs to do the conversion. This function walks through
 * the list and convert the related unwritten extents for completed IO
 * to written.
 * The function return the number of pending IOs on success.
3789
 */
3790
int flush_completed_IO(struct inode *inode)
3791 3792
{
	ext4_io_end_t *io;
3793 3794
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned long flags;
3795 3796 3797
	int ret = 0;
	int ret2 = 0;

3798
	if (list_empty(&ei->i_completed_io_list))
3799 3800
		return ret;

3801
	dump_completed_IO(inode);
3802 3803 3804
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	while (!list_empty(&ei->i_completed_io_list)){
		io = list_entry(ei->i_completed_io_list.next,
3805 3806
				ext4_io_end_t, list);
		/*
3807
		 * Calling ext4_end_io_nolock() to convert completed
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
		 * IO to written.
		 *
		 * When ext4_sync_file() is called, run_queue() may already
		 * about to flush the work corresponding to this io structure.
		 * It will be upset if it founds the io structure related
		 * to the work-to-be schedule is freed.
		 *
		 * Thus we need to keep the io structure still valid here after
		 * convertion finished. The io structure has a flag to
		 * avoid double converting from both fsync and background work
		 * queue work.
		 */
3820
		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3821
		ret = ext4_end_io_nolock(io);
3822
		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3823 3824 3825 3826 3827
		if (ret < 0)
			ret2 = ret;
		else
			list_del_init(&io->list);
	}
3828
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3829 3830 3831
	return (ret2 < 0) ? ret2 : 0;
}

3832
static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3833 3834 3835
{
	ext4_io_end_t *io = NULL;

3836
	io = kmalloc(sizeof(*io), flags);
3837 3838

	if (io) {
3839
		igrab(inode);
3840
		io->inode = inode;
3841
		io->flag = 0;
3842 3843
		io->offset = 0;
		io->size = 0;
3844
		io->page = NULL;
3845
		INIT_WORK(&io->work, ext4_end_io_work);
3846
		INIT_LIST_HEAD(&io->list);
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
	}

	return io;
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
			    ssize_t size, void *private)
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3857 3858
	unsigned long flags;
	struct ext4_inode_info *ei;
3859

3860 3861 3862 3863
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
		return;

3864 3865 3866 3867 3868 3869
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3870
	if (io_end->flag != EXT4_IO_UNWRITTEN){
3871 3872
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3873
		return;
3874 3875
	}

3876 3877
	io_end->offset = offset;
	io_end->size = size;
3878
	io_end->flag = EXT4_IO_UNWRITTEN;
3879 3880
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3881
	/* queue the work to convert unwritten extents to written */
3882 3883
	queue_work(wq, &io_end->work);

3884
	/* Add the io_end to per-inode completed aio dio list*/
3885 3886 3887 3888
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3889 3890
	iocb->private = NULL;
}
3891

3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

	io_end->flag = EXT4_IO_UNWRITTEN;
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
		if (printk_ratelimit())
			printk(KERN_WARNING "%s: allocation fail\n", __func__);
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3957 3958 3959 3960 3961 3962 3963 3964 3965
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3966 3967 3968 3969
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3988 3989 3990
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3991 3992
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3993 3994
		 *
 		 * As to previously fallocated extents, ext4 get_block
3995 3996 3997
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3998 3999 4000 4001 4002 4003 4004 4005
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
4006
 		 */
4007 4008 4009
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
4010
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
			 * direct IO, so that later ext4_get_blocks()
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

4023 4024 4025
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
4026
					 ext4_get_block_write,
4027
					 ext4_end_io_dio);
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
4047 4048
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
4049
			int err;
4050 4051 4052 4053
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
4054 4055 4056 4057
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
4058
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4059
		}
4060 4061
		return ret;
	}
4062 4063

	/* for write the the end of file case, we fall back to old way */
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

4080
/*
4081
 * Pages can be marked dirty completely asynchronously from ext4's journalling
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
4093
static int ext4_journalled_set_page_dirty(struct page *page)
4094 4095 4096 4097 4098
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

4099
static const struct address_space_operations ext4_ordered_aops = {
4100 4101
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4102
	.writepage		= ext4_writepage,
4103 4104 4105 4106 4107 4108 4109 4110 4111
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4112
	.error_remove_page	= generic_error_remove_page,
4113 4114
};

4115
static const struct address_space_operations ext4_writeback_aops = {
4116 4117
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4118
	.writepage		= ext4_writepage,
4119 4120 4121 4122 4123 4124 4125 4126 4127
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4128
	.error_remove_page	= generic_error_remove_page,
4129 4130
};

4131
static const struct address_space_operations ext4_journalled_aops = {
4132 4133
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4134
	.writepage		= ext4_writepage,
4135 4136 4137 4138 4139 4140 4141 4142
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
4143
	.error_remove_page	= generic_error_remove_page,
4144 4145
};

4146
static const struct address_space_operations ext4_da_aops = {
4147 4148
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4149
	.writepage		= ext4_writepage,
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4160
	.error_remove_page	= generic_error_remove_page,
4161 4162
};

4163
void ext4_set_aops(struct inode *inode)
4164
{
4165 4166 4167 4168
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
4169
		inode->i_mapping->a_ops = &ext4_ordered_aops;
4170 4171 4172
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
4173 4174
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
4175
	else
4176
		inode->i_mapping->a_ops = &ext4_journalled_aops;
4177 4178 4179
}

/*
4180
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4181 4182 4183 4184
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
4185
int ext4_block_truncate_page(handle_t *handle,
4186 4187
		struct address_space *mapping, loff_t from)
{
4188
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4189
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
4190 4191
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
4192 4193
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
4194
	struct page *page;
4195 4196
	int err = 0;

4197 4198
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4199 4200 4201
	if (!page)
		return -EINVAL;

4202 4203 4204 4205 4206 4207 4208 4209 4210
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4211
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
4212
		zero_user(page, offset, length);
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4237
		ext4_get_block(inode, iblock, bh, 0);
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4258
	if (ext4_should_journal_data(inode)) {
4259
		BUFFER_TRACE(bh, "get write access");
4260
		err = ext4_journal_get_write_access(handle, bh);
4261 4262 4263 4264
		if (err)
			goto unlock;
	}

4265
	zero_user(page, offset, length);
4266 4267 4268 4269

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4270
	if (ext4_should_journal_data(inode)) {
4271
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4272
	} else {
4273
		if (ext4_should_order_data(inode))
4274
			err = ext4_jbd2_file_inode(handle, inode);
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4298
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4299 4300
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4301
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4302 4303 4304
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4305
 *	This is a helper function used by ext4_truncate().
4306 4307 4308 4309 4310 4311 4312
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4313
 *	past the truncation point is possible until ext4_truncate()
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4332
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4333 4334
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4335 4336 4337 4338 4339
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4340
	/* Make k index the deepest non-null offset + 1 */
4341 4342
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4343
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4354
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4366
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4367 4368 4369 4370 4371 4372
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4373
	while (partial > p) {
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4389 4390 4391 4392 4393
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4394 4395
{
	__le32 *p;
4396
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4397 4398 4399

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4400

4401 4402
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4403
		ext4_error(inode->i_sb, "inode #%lu: "
4404 4405 4406 4407 4408 4409
			   "attempt to clear blocks %llu len %lu, invalid",
			   inode->i_ino, (unsigned long long) block_to_free,
			   count);
		return 1;
	}

4410 4411
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4412 4413
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4414
		}
4415
		ext4_mark_inode_dirty(handle, inode);
4416 4417
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4418 4419
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4420
			ext4_journal_get_write_access(handle, bh);
4421 4422 4423
		}
	}

4424 4425
	for (p = first; p < last; p++)
		*p = 0;
4426

4427
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4428
	return 0;
4429 4430 4431
}

/**
4432
 * ext4_free_data - free a list of data blocks
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4450
static void ext4_free_data(handle_t *handle, struct inode *inode,
4451 4452 4453
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4454
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4455 4456 4457 4458
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4459
	ext4_fsblk_t nr;		    /* Current block # */
4460 4461 4462 4463 4464 4465
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4466
		err = ext4_journal_get_write_access(handle, this_bh);
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4484 4485 4486 4487
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4488 4489 4490 4491 4492 4493 4494 4495
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4496
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4497 4498 4499
				  count, block_to_free_p, p);

	if (this_bh) {
4500
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4501 4502 4503 4504 4505 4506 4507

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4508
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4509
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4510
		else
4511
			ext4_error(inode->i_sb,
4512 4513 4514 4515
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
4516 4517 4518 4519
	}
}

/**
4520
 *	ext4_free_branches - free an array of branches
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4532
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4533 4534 4535
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4536
	ext4_fsblk_t nr;
4537 4538
	__le32 *p;

4539
	if (ext4_handle_is_aborted(handle))
4540 4541 4542 4543
		return;

	if (depth--) {
		struct buffer_head *bh;
4544
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4545 4546 4547 4548 4549 4550
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4551 4552
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4553
				ext4_error(inode->i_sb,
4554 4555 4556 4557 4558 4559 4560
					   "indirect mapped block in inode "
					   "#%lu invalid (level %d, blk #%lu)",
					   inode->i_ino, depth,
					   (unsigned long) nr);
				break;
			}

4561 4562 4563 4564 4565 4566 4567 4568
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4569
				ext4_error(inode->i_sb,
4570
					   "Read failure, inode=%lu, block=%llu",
4571 4572 4573 4574 4575 4576
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4577
			ext4_free_branches(handle, inode, bh,
4578 4579 4580
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4581 4582 4583 4584 4585

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
4586
			 * jbd2_journal_revoke().
4587 4588 4589
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
4590
			 * transaction then jbd2_journal_forget() will simply
4591
			 * brelse() it.  That means that if the underlying
4592
			 * block is reallocated in ext4_get_block(),
4593 4594 4595 4596 4597 4598 4599 4600
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
4601
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4619
			if (ext4_handle_is_aborted(handle))
4620 4621
				return;
			if (try_to_extend_transaction(handle, inode)) {
4622
				ext4_mark_inode_dirty(handle, inode);
4623 4624
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4625 4626
			}

4627 4628
			ext4_free_blocks(handle, inode, 0, nr, 1,
					 EXT4_FREE_BLOCKS_METADATA);
4629 4630 4631 4632 4633 4634 4635

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4636
				if (!ext4_journal_get_write_access(handle,
4637 4638 4639
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4640 4641 4642 4643
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4644 4645 4646 4647 4648 4649
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4650
		ext4_free_data(handle, inode, parent_bh, first, last);
4651 4652 4653
	}
}

4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4667
/*
4668
 * ext4_truncate()
4669
 *
4670 4671
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4688
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4689
 * that this inode's truncate did not complete and it will again call
4690 4691
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4692
 * that's fine - as long as they are linked from the inode, the post-crash
4693
 * ext4_truncate() run will find them and release them.
4694
 */
4695
void ext4_truncate(struct inode *inode)
4696 4697
{
	handle_t *handle;
4698
	struct ext4_inode_info *ei = EXT4_I(inode);
4699
	__le32 *i_data = ei->i_data;
4700
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4701
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4702
	ext4_lblk_t offsets[4];
4703 4704 4705 4706
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4707
	ext4_lblk_t last_block;
4708 4709
	unsigned blocksize = inode->i_sb->s_blocksize;

4710
	if (!ext4_can_truncate(inode))
4711 4712
		return;

4713 4714
	EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;

4715
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4716
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4717

A
Aneesh Kumar K.V 已提交
4718
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4719
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4720 4721
		return;
	}
A
Alex Tomas 已提交
4722

4723
	handle = start_transaction(inode);
4724
	if (IS_ERR(handle))
4725 4726 4727
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4728
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4729

4730 4731 4732
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4733

4734
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4747
	if (ext4_orphan_add(handle, inode))
4748 4749
		goto out_stop;

4750 4751 4752 4753 4754
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4755

4756
	ext4_discard_preallocations(inode);
4757

4758 4759 4760 4761 4762
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4763
	 * ext4 *really* writes onto the disk inode.
4764 4765 4766 4767
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4768 4769
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4770 4771 4772
		goto do_indirects;
	}

4773
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4774 4775 4776 4777
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4778
			ext4_free_branches(handle, inode, NULL,
4779 4780 4781 4782 4783 4784 4785 4786 4787
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4788
			ext4_free_branches(handle, inode, partial->bh,
4789 4790 4791 4792 4793 4794
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4795
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4796 4797 4798
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4799
		brelse(partial->bh);
4800 4801 4802 4803 4804 4805
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4806
		nr = i_data[EXT4_IND_BLOCK];
4807
		if (nr) {
4808 4809
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4810
		}
4811 4812
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4813
		if (nr) {
4814 4815
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4816
		}
4817 4818
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4819
		if (nr) {
4820 4821
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4822
		}
4823
	case EXT4_TIND_BLOCK:
4824 4825 4826
		;
	}

4827
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4828
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4829
	ext4_mark_inode_dirty(handle, inode);
4830 4831 4832 4833 4834 4835

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4836
		ext4_handle_sync(handle);
4837 4838 4839 4840 4841
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4842
	 * ext4_delete_inode(), and we allow that function to clean up the
4843 4844 4845
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4846
		ext4_orphan_del(handle, inode);
4847

4848
	ext4_journal_stop(handle);
4849 4850 4851
}

/*
4852
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4853 4854 4855 4856
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4857 4858
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4859
{
4860 4861 4862 4863 4864 4865
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4866
	iloc->bh = NULL;
4867 4868
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4869

4870 4871 4872
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4873 4874
		return -EIO;

4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4885
	if (!bh) {
4886 4887
		ext4_error(sb, "unable to read inode block - "
			   "inode=%lu, block=%llu", inode->i_ino, block);
4888 4889 4890 4891
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4915
			int i, start;
4916

4917
			start = inode_offset & ~(inodes_per_block - 1);
4918

4919 4920
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4933
			for (i = start; i < start + inodes_per_block; i++) {
4934 4935
				if (i == inode_offset)
					continue;
4936
				if (ext4_test_bit(i, bitmap_bh->b_data))
4937 4938 4939
					break;
			}
			brelse(bitmap_bh);
4940
			if (i == start + inodes_per_block) {
4941 4942 4943 4944 4945 4946 4947 4948 4949
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4950 4951 4952 4953 4954 4955 4956 4957 4958
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4959
			/* s_inode_readahead_blks is always a power of 2 */
4960 4961 4962 4963 4964 4965 4966
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4967
				num -= ext4_itable_unused_count(sb, gdp);
4968 4969 4970 4971 4972 4973 4974
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4985 4986
			ext4_error(sb, "unable to read inode block - inode=%lu,"
				   " block=%llu", inode->i_ino, block);
4987 4988 4989 4990 4991 4992 4993 4994 4995
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4996
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4997 4998
{
	/* We have all inode data except xattrs in memory here. */
4999
	return __ext4_get_inode_loc(inode, iloc,
5000
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
5001 5002
}

5003
void ext4_set_inode_flags(struct inode *inode)
5004
{
5005
	unsigned int flags = EXT4_I(inode)->i_flags;
5006 5007

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
5008
	if (flags & EXT4_SYNC_FL)
5009
		inode->i_flags |= S_SYNC;
5010
	if (flags & EXT4_APPEND_FL)
5011
		inode->i_flags |= S_APPEND;
5012
	if (flags & EXT4_IMMUTABLE_FL)
5013
		inode->i_flags |= S_IMMUTABLE;
5014
	if (flags & EXT4_NOATIME_FL)
5015
		inode->i_flags |= S_NOATIME;
5016
	if (flags & EXT4_DIRSYNC_FL)
5017 5018 5019
		inode->i_flags |= S_DIRSYNC;
}

5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
5038

5039
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
5040
				  struct ext4_inode_info *ei)
5041 5042
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
5043 5044
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
5045 5046 5047 5048 5049 5050

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
5051 5052 5053 5054 5055 5056
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
5057 5058 5059 5060
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
5061

5062
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
5063
{
5064 5065
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
5066 5067
	struct ext4_inode_info *ei;
	struct inode *inode;
5068
	journal_t *journal = EXT4_SB(sb)->s_journal;
5069
	long ret;
5070 5071
	int block;

5072 5073 5074 5075 5076 5077 5078
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
5079
	iloc.bh = 0;
5080

5081 5082
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
5083
		goto bad_inode;
5084
	raw_inode = ext4_raw_inode(&iloc);
5085 5086 5087
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5088
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5089 5090 5091 5092 5093
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

5094
	ei->i_state_flags = 0;
5095 5096 5097 5098 5099 5100 5101 5102 5103
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
5104
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5105
			/* this inode is deleted */
5106
			ret = -ESTALE;
5107 5108 5109 5110 5111 5112 5113 5114
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5115
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5116
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5117
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
5118 5119
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5120
	inode->i_size = ext4_isize(raw_inode);
5121
	ei->i_disksize = inode->i_size;
5122 5123 5124
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
5125 5126
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
5127
	ei->i_last_alloc_group = ~0;
5128 5129 5130 5131
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
5132
	for (block = 0; block < EXT4_N_BLOCKS; block++)
5133 5134 5135
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

		spin_lock(&journal->j_state_lock);
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
		spin_unlock(&journal->j_state_lock);
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

5161
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5162
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5163
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5164
		    EXT4_INODE_SIZE(inode->i_sb)) {
5165
			ret = -EIO;
5166
			goto bad_inode;
5167
		}
5168 5169
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
5170 5171
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
5172 5173
		} else {
			__le32 *magic = (void *)raw_inode +
5174
					EXT4_GOOD_OLD_INODE_SIZE +
5175
					ei->i_extra_isize;
5176
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5177
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5178 5179 5180 5181
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
5182 5183 5184 5185 5186
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

5187 5188 5189 5190 5191 5192 5193
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

5194
	ret = 0;
5195
	if (ei->i_file_acl &&
5196
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5197
		ext4_error(sb, "bad extended attribute block %llu inode #%lu",
5198 5199 5200 5201
			   ei->i_file_acl, inode->i_ino);
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
5202 5203 5204 5205 5206
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
5207
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5208 5209
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
5210
		/* Validate block references which are part of inode */
5211 5212
		ret = ext4_check_inode_blockref(inode);
	}
5213
	if (ret)
5214
		goto bad_inode;
5215

5216
	if (S_ISREG(inode->i_mode)) {
5217 5218 5219
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
5220
	} else if (S_ISDIR(inode->i_mode)) {
5221 5222
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
5223
	} else if (S_ISLNK(inode->i_mode)) {
5224
		if (ext4_inode_is_fast_symlink(inode)) {
5225
			inode->i_op = &ext4_fast_symlink_inode_operations;
5226 5227 5228
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
5229 5230
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5231
		}
5232 5233
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5234
		inode->i_op = &ext4_special_inode_operations;
5235 5236 5237 5238 5239 5240
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5241 5242
	} else {
		ret = -EIO;
5243
		ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
5244 5245
			   inode->i_mode, inode->i_ino);
		goto bad_inode;
5246
	}
5247
	brelse(iloc.bh);
5248
	ext4_set_inode_flags(inode);
5249 5250
	unlock_new_inode(inode);
	return inode;
5251 5252

bad_inode:
5253
	brelse(iloc.bh);
5254 5255
	iget_failed(inode);
	return ERR_PTR(ret);
5256 5257
}

5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5271
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5272
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
5273
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5274 5275 5276 5277 5278 5279
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5280 5281 5282 5283
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5284
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5285
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
5286
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5287
	} else {
A
Aneesh Kumar K.V 已提交
5288 5289 5290 5291 5292
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5293
	}
5294
	return 0;
5295 5296
}

5297 5298 5299 5300 5301 5302 5303
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5304
static int ext4_do_update_inode(handle_t *handle,
5305
				struct inode *inode,
5306
				struct ext4_iloc *iloc)
5307
{
5308 5309
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5310 5311 5312 5313 5314
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5315
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5316
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5317

5318
	ext4_get_inode_flags(ei);
5319
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5320
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5321 5322 5323 5324 5325 5326
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5327
		if (!ei->i_dtime) {
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5345 5346 5347 5348 5349 5350

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5351 5352
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5353
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5354
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5355 5356
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5357 5358
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5359
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5376
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5377
			sb->s_dirt = 1;
5378
			ext4_handle_sync(handle);
5379
			err = ext4_handle_dirty_metadata(handle, NULL,
5380
					EXT4_SB(sb)->s_sbh);
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5395 5396 5397
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5398

5399 5400 5401 5402 5403
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5404
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5405 5406
	}

5407
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5408
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5409 5410
	if (!err)
		err = rc;
5411
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5412

5413
	ext4_update_inode_fsync_trans(handle, inode, 0);
5414
out_brelse:
5415
	brelse(bh);
5416
	ext4_std_error(inode->i_sb, err);
5417 5418 5419 5420
	return err;
}

/*
5421
 * ext4_write_inode()
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5438
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5455
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5456
{
5457 5458
	int err;

5459 5460 5461
	if (current->flags & PF_MEMALLOC)
		return 0;

5462 5463 5464 5465 5466 5467
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5468

5469
		if (wbc->sync_mode != WB_SYNC_ALL)
5470 5471 5472 5473 5474
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5475

5476
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5477 5478
		if (err)
			return err;
5479
		if (wbc->sync_mode == WB_SYNC_ALL)
5480 5481
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5482 5483
			ext4_error(inode->i_sb, "IO error syncing inode, "
				   "inode=%lu, block=%llu", inode->i_ino,
5484 5485 5486
				   (unsigned long long)iloc.bh->b_blocknr);
			err = -EIO;
		}
5487
		brelse(iloc.bh);
5488 5489
	}
	return err;
5490 5491 5492
}

/*
5493
 * ext4_setattr()
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5507 5508 5509 5510 5511 5512 5513 5514
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5515
 */
5516
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5517 5518 5519 5520 5521 5522 5523 5524 5525
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5526
	if (ia_valid & ATTR_SIZE)
5527
		dquot_initialize(inode);
5528 5529 5530 5531 5532 5533
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5534
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5535
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5536 5537 5538 5539
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5540
		error = dquot_transfer(inode, attr);
5541
		if (error) {
5542
			ext4_journal_stop(handle);
5543 5544 5545 5546 5547 5548 5549 5550
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5551 5552
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5553 5554
	}

5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

5566
	if (S_ISREG(inode->i_mode) &&
5567 5568 5569
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
	     (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
5570 5571
		handle_t *handle;

5572
		handle = ext4_journal_start(inode, 3);
5573 5574 5575 5576 5577
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

5578 5579 5580
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5581 5582
		if (!error)
			error = rc;
5583
		ext4_journal_stop(handle);
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5600 5601 5602
		/* ext4_truncate will clear the flag */
		if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
			ext4_truncate(inode);
5603 5604 5605 5606
	}

	rc = inode_setattr(inode, attr);

5607
	/* If inode_setattr's call to ext4_truncate failed to get a
5608 5609 5610
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
5611
		ext4_orphan_del(NULL, inode);
5612 5613

	if (!rc && (ia_valid & ATTR_MODE))
5614
		rc = ext4_acl_chmod(inode);
5615 5616

err_out:
5617
	ext4_std_error(inode->i_sb, error);
5618 5619 5620 5621 5622
	if (!error)
		error = rc;
	return error;
}

5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5649

5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5678 5679
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5680
}
5681

5682
/*
5683 5684 5685
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5686
 *
5687
 * If datablocks are discontiguous, they are possible to spread over
5688
 * different block groups too. If they are contiuguous, with flexbg,
5689
 * they could still across block group boundary.
5690
 *
5691 5692 5693 5694
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5695 5696
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5723 5724
	if (groups > ngroups)
		groups = ngroups;
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5739 5740
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5741
 *
5742
 * This could be called via ext4_write_begin()
5743
 *
5744
 * We need to consider the worse case, when
5745
 * one new block per extent.
5746
 */
A
Alex Tomas 已提交
5747
int ext4_writepage_trans_blocks(struct inode *inode)
5748
{
5749
	int bpp = ext4_journal_blocks_per_page(inode);
5750 5751
	int ret;

5752
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5753

5754
	/* Account for data blocks for journalled mode */
5755
	if (ext4_should_journal_data(inode))
5756
		ret += bpp;
5757 5758
	return ret;
}
5759 5760 5761 5762 5763

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5764
 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5765 5766 5767 5768 5769 5770 5771 5772 5773
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5774
/*
5775
 * The caller must have previously called ext4_reserve_inode_write().
5776 5777
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5778
int ext4_mark_iloc_dirty(handle_t *handle,
5779
			 struct inode *inode, struct ext4_iloc *iloc)
5780 5781 5782
{
	int err = 0;

5783 5784 5785
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5786 5787 5788
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5789
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5790
	err = ext4_do_update_inode(handle, inode, iloc);
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5801 5802
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5803
{
5804 5805 5806 5807 5808 5809 5810 5811 5812
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5813 5814
		}
	}
5815
	ext4_std_error(inode->i_sb, err);
5816 5817 5818
	return err;
}

5819 5820 5821 5822
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5823 5824 5825 5826
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
5841 5842
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5875
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5876
{
5877
	struct ext4_iloc iloc;
5878 5879 5880
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5881 5882

	might_sleep();
5883
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5884 5885
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5886
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5900 5901
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5902 5903
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5904
					ext4_warning(inode->i_sb,
5905 5906 5907
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5908 5909
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5910 5911 5912 5913
				}
			}
		}
	}
5914
	if (!err)
5915
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5916 5917 5918 5919
	return err;
}

/*
5920
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5921 5922 5923 5924 5925
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5926
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5927 5928 5929 5930 5931 5932
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5933
void ext4_dirty_inode(struct inode *inode)
5934 5935 5936
{
	handle_t *handle;

5937
	handle = ext4_journal_start(inode, 2);
5938 5939
	if (IS_ERR(handle))
		goto out;
5940 5941 5942

	ext4_mark_inode_dirty(handle, inode);

5943
	ext4_journal_stop(handle);
5944 5945 5946 5947 5948 5949 5950 5951
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5952
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5953 5954 5955
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5956
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5957
{
5958
	struct ext4_iloc iloc;
5959 5960 5961

	int err = 0;
	if (handle) {
5962
		err = ext4_get_inode_loc(inode, &iloc);
5963 5964
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5965
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5966
			if (!err)
5967
				err = ext4_handle_dirty_metadata(handle,
5968
								 NULL,
5969
								 iloc.bh);
5970 5971 5972
			brelse(iloc.bh);
		}
	}
5973
	ext4_std_error(inode->i_sb, err);
5974 5975 5976 5977
	return err;
}
#endif

5978
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5994
	journal = EXT4_JOURNAL(inode);
5995 5996
	if (!journal)
		return 0;
5997
	if (is_journal_aborted(journal))
5998 5999
		return -EROFS;

6000 6001
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
6012
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
6013
	else
6014 6015
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
6016

6017
	jbd2_journal_unlock_updates(journal);
6018 6019 6020

	/* Finally we can mark the inode as dirty. */

6021
	handle = ext4_journal_start(inode, 1);
6022 6023 6024
	if (IS_ERR(handle))
		return PTR_ERR(handle);

6025
	err = ext4_mark_inode_dirty(handle, inode);
6026
	ext4_handle_sync(handle);
6027 6028
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
6029 6030 6031

	return err;
}
6032 6033 6034 6035 6036 6037

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

6038
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6039
{
6040
	struct page *page = vmf->page;
6041 6042 6043
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
6044
	void *fsdata;
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

6069 6070 6071 6072 6073 6074 6075
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
6076 6077
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
6078 6079
					ext4_bh_unmapped)) {
			unlock_page(page);
6080
			goto out_unlock;
6081
		}
6082
	}
6083
	unlock_page(page);
6084 6085 6086 6087 6088 6089 6090 6091
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6092
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6093 6094 6095
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6096
			len, len, page, fsdata);
6097 6098 6099 6100
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
6101 6102
	if (ret)
		ret = VM_FAULT_SIGBUS;
6103 6104 6105
	up_read(&inode->i_alloc_sem);
	return ret;
}