inode.c 153.8 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "ext4_extents.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53
static int __ext4_journalled_writepage(struct page *page,
				       struct writeback_control *wbc,
				       unsigned int len);

54 55 56
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
57 58 59 60
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
61 62
}

63 64
static void ext4_invalidatepage(struct page *page, unsigned long offset);

65 66 67
/*
 * Test whether an inode is a fast symlink.
 */
68
static int ext4_inode_is_fast_symlink(struct inode *inode)
69
{
70
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
71 72 73 74 75 76
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
77
 * The ext4 forget function must perform a revoke if we are freeing data
78 79 80 81 82 83
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
84 85
 *
 * If the handle isn't valid we're not journaling so there's nothing to do.
86
 */
87
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
88
		struct buffer_head *bh, ext4_fsblk_t blocknr)
89 90 91
{
	int err;

92 93 94
	if (!ext4_handle_valid(handle))
		return 0;

95 96 97 98 99
	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
100
		  "data mode %x\n",
101 102 103 104 105 106 107 108
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

109 110
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
111
		if (bh) {
112
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
113
			return ext4_journal_forget(handle, bh);
114 115 116 117 118 119 120
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
121 122
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
123
	if (err)
124
		ext4_abort(inode->i_sb, __func__,
125 126 127 128 129 130 131 132 133 134 135
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
136
	ext4_lblk_t needed;
137 138 139 140 141 142

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
143
	 * like a regular file for ext4 to try to delete it.  Things
144 145 146 147 148 149 150
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
151 152
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
153

154
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

171
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
172 173 174
	if (!IS_ERR(result))
		return result;

175
	ext4_std_error(inode->i_sb, PTR_ERR(result));
176 177 178 179 180 181 182 183 184 185 186
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
187 188 189
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
190
		return 0;
191
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
192 193 194 195 196 197 198 199 200
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
201
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
202
{
203
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
204
	jbd_debug(2, "restarting handle %p\n", handle);
205
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
206 207 208 209 210
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
211
void ext4_delete_inode(struct inode *inode)
212 213
{
	handle_t *handle;
214
	int err;
215

216 217
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
218 219 220 221 222
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

223
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
224
	if (IS_ERR(handle)) {
225
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
226 227 228 229 230
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
231
		ext4_orphan_del(NULL, inode);
232 233 234 235
		goto no_delete;
	}

	if (IS_SYNC(inode))
236
		ext4_handle_sync(handle);
237
	inode->i_size = 0;
238 239 240 241 242 243
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
244
	if (inode->i_blocks)
245
		ext4_truncate(inode);
246 247 248 249 250 251 252

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
253
	if (!ext4_handle_has_enough_credits(handle, 3)) {
254 255 256 257 258 259 260 261 262 263 264 265
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

266
	/*
267
	 * Kill off the orphan record which ext4_truncate created.
268
	 * AKPM: I think this can be inside the above `if'.
269
	 * Note that ext4_orphan_del() has to be able to cope with the
270
	 * deletion of a non-existent orphan - this is because we don't
271
	 * know if ext4_truncate() actually created an orphan record.
272 273
	 * (Well, we could do this if we need to, but heck - it works)
	 */
274 275
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
276 277 278 279 280 281 282 283

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
284
	if (ext4_mark_inode_dirty(handle, inode))
285 286 287
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
288 289
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
308
 *	ext4_block_to_path - parse the block number into array of offsets
309 310 311
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
312 313
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
314
 *
315
 *	To store the locations of file's data ext4 uses a data structure common
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

338
static int ext4_block_to_path(struct inode *inode,
339 340
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
341
{
342 343 344
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
345 346 347 348 349 350
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
351
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
352 353 354
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
355
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
356
		offsets[n++] = EXT4_IND_BLOCK;
357 358 359
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
360
		offsets[n++] = EXT4_DIND_BLOCK;
361 362 363 364
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
365
		offsets[n++] = EXT4_TIND_BLOCK;
366 367 368 369 370
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
371
		ext4_warning(inode->i_sb, "ext4_block_to_path",
372 373 374
			     "block %lu > max in inode %lu",
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
375 376 377 378 379 380
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

381
static int __ext4_check_blockref(const char *function, struct inode *inode,
382 383
				 __le32 *p, unsigned int max)
{
384
	__le32 *bref = p;
385 386
	unsigned int blk;

387
	while (bref < p+max) {
388
		blk = le32_to_cpu(*bref++);
389 390
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
391
						    blk, 1))) {
392
			ext4_error(inode->i_sb, function,
393 394
				   "invalid block reference %u "
				   "in inode #%lu", blk, inode->i_ino);
395 396 397 398
			return -EIO;
		}
	}
	return 0;
399 400 401 402
}


#define ext4_check_indirect_blockref(inode, bh)                         \
403
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
404 405 406
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
407
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
408 409
			      EXT4_NDIR_BLOCKS)

410
/**
411
 *	ext4_get_branch - read the chain of indirect blocks leading to data
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
436 437
 *
 *      Need to be called with
438
 *      down_read(&EXT4_I(inode)->i_data_sem)
439
 */
A
Aneesh Kumar K.V 已提交
440 441
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
442 443 444 445 446 447 448 449
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
450
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
451 452 453
	if (!p->key)
		goto no_block;
	while (--depth) {
454 455
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
456
			goto failure;
457

458 459 460 461 462 463 464 465 466 467 468
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
469

470
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
471 472 473 474 475 476 477 478 479 480 481 482 483
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
484
 *	ext4_find_near - find a place for allocation with sufficient locality
485 486 487
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
488
 *	This function returns the preferred place for block allocation.
489 490 491 492 493 494 495 496 497 498 499 500 501 502
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
503
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
504
{
505
	struct ext4_inode_info *ei = EXT4_I(inode);
506
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
507
	__le32 *p;
508
	ext4_fsblk_t bg_start;
509
	ext4_fsblk_t last_block;
510
	ext4_grpblk_t colour;
511 512
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
528 529 530 531 532 533 534
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
535 536
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

537 538 539 540 541 542 543
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

544 545
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
546
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
547 548
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
549 550 551 552
	return bg_start + colour;
}

/**
553
 *	ext4_find_goal - find a preferred place for allocation.
554 555 556 557
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
558
 *	Normally this function find the preferred place for block allocation,
559
 *	returns it.
560
 */
A
Aneesh Kumar K.V 已提交
561
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
562
				   Indirect *partial)
563 564
{
	/*
565
	 * XXX need to get goal block from mballoc's data structures
566 567
	 */

568
	return ext4_find_near(inode, partial);
569 570 571
}

/**
572
 *	ext4_blks_to_allocate: Look up the block map and count the number
573 574 575 576 577 578 579 580 581 582
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
583
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
584
				 int blocks_to_boundary)
585
{
586
	unsigned int count = 0;
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
610
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
611 612 613 614 615 616 617 618
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
619
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
620 621 622
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
623
{
624
	struct ext4_allocation_request ar;
625
	int target, i;
626
	unsigned long count = 0, blk_allocated = 0;
627
	int index = 0;
628
	ext4_fsblk_t current_block = 0;
629 630 631 632 633 634 635 636 637 638
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
639 640 641
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
642 643
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
644 645
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
646 647 648 649 650 651 652 653 654
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
655 656 657 658 659 660 661 662 663
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
664
			break;
665
		}
666 667
	}

668 669 670 671 672
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
673 674 675 676 677 678 679 680 681 682 683
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

684 685 686 687 688 689 690 691 692
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
693 694 695 696
			/*
			 * save the new block number
			 * for the first direct block
			 */
697 698
			new_blocks[index] = current_block;
		}
699
		blk_allocated += ar.len;
700 701
	}
allocated:
702
	/* total number of blocks allocated for direct blocks */
703
	ret = blk_allocated;
704 705 706
	*err = 0;
	return ret;
failed_out:
707
	for (i = 0; i < index; i++)
708
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
709 710 711 712
	return ret;
}

/**
713
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
714 715 716 717 718 719 720 721 722 723
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
724
 *	the same format as ext4_get_branch() would do. We are calling it after
725 726
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
727
 *	picture as after the successful ext4_get_block(), except that in one
728 729 730 731 732 733
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
734
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
735 736
 *	as described above and return 0.
 */
737
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
738 739 740
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
741 742 743 744 745 746
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
747 748
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
749

750
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
769
		err = ext4_journal_get_create_access(handle, bh);
770 771 772 773 774 775 776 777 778 779
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
780
		if (n == indirect_blks) {
781 782 783 784 785 786
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
787
			for (i = 1; i < num; i++)
788 789 790 791 792 793
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

794 795
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
796 797 798 799 800 801 802 803
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
804
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
805
		ext4_journal_forget(handle, branch[i].bh);
806
	}
807
	for (i = 0; i < indirect_blks; i++)
808
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
809

810
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
811 812 813 814 815

	return err;
}

/**
816
 * ext4_splice_branch - splice the allocated branch onto inode.
817 818 819
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
820
 *	ext4_alloc_branch)
821 822 823 824 825 826 827 828
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
829
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
830 831
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
832 833 834
{
	int i;
	int err = 0;
835
	ext4_fsblk_t current_block;
836 837 838 839 840 841 842 843

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
844
		err = ext4_journal_get_write_access(handle, where->bh);
845 846 847 848 849 850 851 852 853 854 855 856 857 858
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
859
			*(where->p + i) = cpu_to_le32(current_block++);
860 861 862 863 864 865 866 867 868 869 870
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
871
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
872 873
		 */
		jbd_debug(5, "splicing indirect only\n");
874 875
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
876 877 878 879 880 881
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
882
		ext4_mark_inode_dirty(handle, inode);
883 884 885 886 887 888
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
889
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
890
		ext4_journal_forget(handle, where[i].bh);
891 892
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
893
	}
894
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
895 896 897 898 899

	return err;
}

/*
900 901 902 903
 * The ext4_ind_get_blocks() function handles non-extents inodes
 * (i.e., using the traditional indirect/double-indirect i_blocks
 * scheme) for ext4_get_blocks().
 *
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
920
 *
921 922 923 924 925
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
926
 */
927
static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
928 929 930
			       ext4_lblk_t iblock, unsigned int maxblocks,
			       struct buffer_head *bh_result,
			       int flags)
931 932
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
933
	ext4_lblk_t offsets[4];
934 935
	Indirect chain[4];
	Indirect *partial;
936
	ext4_fsblk_t goal;
937 938 939 940
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
941
	ext4_fsblk_t first_block = 0;
942

A
Alex Tomas 已提交
943
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
944
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
A
Aneesh Kumar K.V 已提交
945
	depth = ext4_block_to_path(inode, iblock, offsets,
946
				   &blocks_to_boundary);
947 948 949 950

	if (depth == 0)
		goto out;

951
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
952 953 954 955 956 957 958 959

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
960
			ext4_fsblk_t blk;
961 962 963 964 965 966 967 968

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
969
		goto got_it;
970 971 972
	}

	/* Next simple case - plain lookup or failed read of indirect block */
973
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
974 975 976
		goto cleanup;

	/*
977
	 * Okay, we need to do block allocation.
978
	*/
979
	goal = ext4_find_goal(inode, iblock, partial);
980 981 982 983 984 985 986 987

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
988
	count = ext4_blks_to_allocate(partial, indirect_blks,
989 990
					maxblocks, blocks_to_boundary);
	/*
991
	 * Block out ext4_truncate while we alter the tree
992
	 */
993
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
994 995
				&count, goal,
				offsets + (partial - chain), partial);
996 997

	/*
998
	 * The ext4_splice_branch call will free and forget any buffers
999 1000 1001 1002 1003 1004
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1005
		err = ext4_splice_branch(handle, inode, iblock,
1006 1007
					 partial, indirect_blks, count);
	else
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
qsize_t ext4_get_reserved_space(struct inode *inode)
{
	unsigned long long total;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks +
		EXT4_I(inode)->i_reserved_meta_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	return total;
}
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1065 1066 1067
	if (!blocks)
		return 0;

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1088 1089 1090 1091 1092 1093 1094 1095 1096
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1097 1098 1099 1100 1101

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1102 1103 1104 1105 1106 1107

	/*
	 * free those over-booking quota for metadata blocks
	 */
	if (mdb_free)
		vfs_dq_release_reservation_block(inode, mdb_free);
1108 1109 1110 1111 1112 1113 1114 1115

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
	if (!total && (atomic_read(&inode->i_writecount) == 0))
		ext4_discard_preallocations(inode);
1116 1117
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
static int check_block_validity(struct inode *inode, sector_t logical,
				sector_t phys, int len)
{
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
		ext4_error(inode->i_sb, "check_block_validity",
			   "inode #%lu logical block %llu mapped to %llu "
			   "(size %d)", inode->i_ino,
			   (unsigned long long) logical,
			   (unsigned long long) phys, len);
		WARN_ON(1);
		return -EIO;
	}
	return 0;
}

1133
/*
1134
 * The ext4_get_blocks() function tries to look up the requested blocks,
1135
 * and returns if the blocks are already mapped.
1136 1137 1138 1139 1140 1141
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
1142
 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1155 1156
int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
		    unsigned int max_blocks, struct buffer_head *bh,
1157
		    int flags)
1158 1159
{
	int retval;
1160 1161

	clear_buffer_mapped(bh);
1162
	clear_buffer_unwritten(bh);
1163

1164
	/*
1165 1166
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1167 1168 1169 1170
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1171
				bh, 0);
1172
	} else {
1173
		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1174
					     bh, 0);
1175
	}
1176
	up_read((&EXT4_I(inode)->i_data_sem));
1177

1178
	if (retval > 0 && buffer_mapped(bh)) {
1179
		int ret = check_block_validity(inode, block,
1180 1181 1182 1183 1184
					       bh->b_blocknr, retval);
		if (ret != 0)
			return ret;
	}

1185
	/* If it is only a block(s) look up */
1186
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1197 1198
		return retval;

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
	clear_buffer_unwritten(bh);

1211
	/*
1212 1213 1214 1215
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1216 1217
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1218 1219 1220 1221 1222 1223 1224

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1225
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1226
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1227 1228 1229 1230
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1231 1232
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1233
					      bh, flags);
1234
	} else {
1235
		retval = ext4_ind_get_blocks(handle, inode, block,
1236
					     max_blocks, bh, flags);
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1247
	}
1248

1249
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1250
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1251 1252 1253 1254 1255 1256 1257

	/*
	 * Update reserved blocks/metadata blocks after successful
	 * block allocation which had been deferred till now.
	 */
	if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
		ext4_da_update_reserve_space(inode, retval);
1258

1259
	up_write((&EXT4_I(inode)->i_data_sem));
1260
	if (retval > 0 && buffer_mapped(bh)) {
1261
		int ret = check_block_validity(inode, block,
1262 1263 1264 1265
					       bh->b_blocknr, retval);
		if (ret != 0)
			return ret;
	}
1266 1267 1268
	return retval;
}

1269 1270 1271
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1272 1273
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1274
{
1275
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1276
	int ret = 0, started = 0;
1277
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1278
	int dio_credits;
1279

J
Jan Kara 已提交
1280 1281 1282 1283
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1284 1285
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1286
		if (IS_ERR(handle)) {
1287
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1288
			goto out;
1289
		}
J
Jan Kara 已提交
1290
		started = 1;
1291 1292
	}

1293
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1294
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
J
Jan Kara 已提交
1295 1296 1297
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1298
	}
J
Jan Kara 已提交
1299 1300 1301
	if (started)
		ext4_journal_stop(handle);
out:
1302 1303 1304 1305 1306 1307
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1308
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1309
				ext4_lblk_t block, int create, int *errp)
1310 1311 1312
{
	struct buffer_head dummy;
	int fatal = 0, err;
1313
	int flags = 0;
1314 1315 1316 1317 1318 1319

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
1320 1321 1322
	if (create)
		flags |= EXT4_GET_BLOCKS_CREATE;
	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1323
	/*
1324 1325
	 * ext4_get_blocks() returns number of blocks mapped. 0 in
	 * case of a HOLE.
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1342
			J_ASSERT(handle != NULL);
1343 1344 1345 1346 1347

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1348
			 * writes use ext4_get_block instead, so it's not a
1349 1350 1351 1352
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1353
			fatal = ext4_journal_get_create_access(handle, bh);
1354
			if (!fatal && !buffer_uptodate(bh)) {
1355
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1356 1357 1358
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1359 1360
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1377
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1378
			       ext4_lblk_t block, int create, int *err)
1379
{
1380
	struct buffer_head *bh;
1381

1382
	bh = ext4_getblk(handle, inode, block, create, err);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1396 1397 1398 1399 1400 1401 1402
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1403 1404 1405 1406 1407 1408 1409
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1410 1411
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1412
	     block_start = block_end, bh = next) {
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1430
 * close off a transaction and start a new one between the ext4_get_block()
1431
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1432 1433
 * prepare_write() is the right place.
 *
1434 1435
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1436 1437 1438 1439
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1440
 * By accident, ext4 can be reentered when a transaction is open via
1441 1442 1443 1444 1445 1446
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1447
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1448 1449 1450 1451 1452
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1453
				       struct buffer_head *bh)
1454 1455 1456
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1457
	return ext4_journal_get_write_access(handle, bh);
1458 1459
}

N
Nick Piggin 已提交
1460
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1461 1462
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1463
{
1464
	struct inode *inode = mapping->host;
1465
	int ret, needed_blocks;
1466 1467
	handle_t *handle;
	int retries = 0;
1468
	struct page *page;
1469
	pgoff_t index;
1470
	unsigned from, to;
N
Nick Piggin 已提交
1471

1472
	trace_ext4_write_begin(inode, pos, len, flags);
1473 1474 1475 1476 1477
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1478
	index = pos >> PAGE_CACHE_SHIFT;
1479 1480
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1481 1482

retry:
1483 1484 1485 1486
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1487
	}
1488

1489 1490 1491 1492
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1493
	page = grab_cache_page_write_begin(mapping, index, flags);
1494 1495 1496 1497 1498 1499 1500
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1501
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1502
				ext4_get_block);
N
Nick Piggin 已提交
1503 1504

	if (!ret && ext4_should_journal_data(inode)) {
1505 1506 1507
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1508 1509

	if (ret) {
1510 1511
		unlock_page(page);
		page_cache_release(page);
1512 1513 1514 1515
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1516 1517 1518
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1519
		 */
1520
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1521 1522 1523 1524
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1525
			ext4_truncate(inode);
1526
			/*
1527
			 * If truncate failed early the inode might
1528 1529 1530 1531 1532 1533 1534
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1535 1536
	}

1537
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1538
		goto retry;
1539
out:
1540 1541 1542
	return ret;
}

N
Nick Piggin 已提交
1543 1544
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1545 1546 1547 1548
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1549
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1550 1551
}

1552
static int ext4_generic_write_end(struct file *file,
1553 1554 1555
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1598 1599 1600 1601
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1602
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1603 1604
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1605
static int ext4_ordered_write_end(struct file *file,
1606 1607 1608
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1609
{
1610
	handle_t *handle = ext4_journal_current_handle();
1611
	struct inode *inode = mapping->host;
1612 1613
	int ret = 0, ret2;

1614
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1615
	ret = ext4_jbd2_file_inode(handle, inode);
1616 1617

	if (ret == 0) {
1618
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1619
							page, fsdata);
1620
		copied = ret2;
1621
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1622 1623 1624 1625 1626
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1627 1628
		if (ret2 < 0)
			ret = ret2;
1629
	}
1630
	ret2 = ext4_journal_stop(handle);
1631 1632
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1633

1634
	if (pos + len > inode->i_size) {
1635
		ext4_truncate(inode);
1636
		/*
1637
		 * If truncate failed early the inode might still be
1638 1639 1640 1641 1642 1643 1644 1645
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1646
	return ret ? ret : copied;
1647 1648
}

N
Nick Piggin 已提交
1649
static int ext4_writeback_write_end(struct file *file,
1650 1651 1652
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1653
{
1654
	handle_t *handle = ext4_journal_current_handle();
1655
	struct inode *inode = mapping->host;
1656 1657
	int ret = 0, ret2;

1658
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1659
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1660
							page, fsdata);
1661
	copied = ret2;
1662
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1663 1664 1665 1666 1667 1668
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1669 1670
	if (ret2 < 0)
		ret = ret2;
1671

1672
	ret2 = ext4_journal_stop(handle);
1673 1674
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1675

1676
	if (pos + len > inode->i_size) {
1677
		ext4_truncate(inode);
1678
		/*
1679
		 * If truncate failed early the inode might still be
1680 1681 1682 1683 1684 1685 1686
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1687
	return ret ? ret : copied;
1688 1689
}

N
Nick Piggin 已提交
1690
static int ext4_journalled_write_end(struct file *file,
1691 1692 1693
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1694
{
1695
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1696
	struct inode *inode = mapping->host;
1697 1698
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1699
	unsigned from, to;
1700
	loff_t new_i_size;
1701

1702
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1703 1704 1705 1706 1707 1708 1709 1710
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1711 1712

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1713
				to, &partial, write_end_fn);
1714 1715
	if (!partial)
		SetPageUptodate(page);
1716 1717
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1718
		i_size_write(inode, pos+copied);
1719
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1720 1721
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1722
		ret2 = ext4_mark_inode_dirty(handle, inode);
1723 1724 1725
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1726

1727
	unlock_page(page);
1728
	page_cache_release(page);
1729
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1730 1731 1732 1733 1734 1735
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1736
	ret2 = ext4_journal_stop(handle);
1737 1738
	if (!ret)
		ret = ret2;
1739
	if (pos + len > inode->i_size) {
1740
		ext4_truncate(inode);
1741
		/*
1742
		 * If truncate failed early the inode might still be
1743 1744 1745 1746 1747 1748
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1749 1750

	return ret ? ret : copied;
1751
}
1752 1753 1754

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1755
	int retries = 0;
1756 1757
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	unsigned long md_needed, mdblocks, total = 0;
1758 1759 1760 1761 1762 1763

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1764
repeat:
1765 1766 1767 1768 1769 1770 1771 1772
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
	if (vfs_dq_reserve_block(inode, total)) {
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return -EDQUOT;
	}

1783
	if (ext4_claim_free_blocks(sbi, total)) {
1784
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1785 1786 1787 1788
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1789
		vfs_dq_release_reservation_block(inode, total);
1790 1791 1792 1793 1794 1795 1796 1797 1798
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1799
static void ext4_da_release_space(struct inode *inode, int to_free)
1800 1801 1802 1803
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1804 1805 1806
	if (!to_free)
		return;		/* Nothing to release, exit */

1807
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1823
	/* recalculate the number of metablocks still need to be reserved */
1824
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1825 1826 1827 1828 1829 1830 1831 1832
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1833 1834
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1835 1836

	/* update per-inode reservations */
1837 1838
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1839 1840 1841 1842

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1843 1844

	vfs_dq_release_reservation_block(inode, release);
1845 1846 1847
}

static void ext4_da_page_release_reservation(struct page *page,
1848
					     unsigned long offset)
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1865
	ext4_da_release_space(page->mapping->host, to_release);
1866
}
1867

1868 1869 1870 1871 1872 1873
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
1874 1875 1876
	sector_t b_blocknr;		/* start block number of extent */
	size_t b_size;			/* size of extent */
	unsigned long b_state;		/* state of the extent */
1877 1878
	unsigned long first_page, next_page;	/* extent of pages */
	struct writeback_control *wbc;
1879
	int io_done;
1880
	int pages_written;
1881
	int retval;
1882 1883 1884 1885
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1886
 * them with writepage() call back
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1899
	long pages_skipped;
1900 1901 1902 1903 1904
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1905 1906

	BUG_ON(mpd->next_page <= mpd->first_page);
1907 1908 1909
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1910
	 * If we look at mpd->b_blocknr we would only be looking
1911 1912
	 * at the currently mapped buffer_heads.
	 */
1913 1914 1915
	index = mpd->first_page;
	end = mpd->next_page - 1;

1916
	pagevec_init(&pvec, 0);
1917
	while (index <= end) {
1918
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1919 1920 1921 1922 1923
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1924 1925 1926 1927 1928 1929 1930 1931
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1932
			pages_skipped = mpd->wbc->pages_skipped;
1933
			err = mapping->a_ops->writepage(page, mpd->wbc);
1934 1935 1936 1937 1938
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1939
				mpd->pages_written++;
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
1962
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1963 1964 1965 1966 1967 1968 1969 1970 1971
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1972
	pgoff_t index, end;
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

				if (buffer_delay(bh) ||
						buffer_unwritten(bh)) {

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2030
				} else if (buffer_mapped(bh))
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

2090 2091 2092 2093 2094 2095 2096
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	printk(KERN_EMERG "Total free blocks count %lld\n",
			ext4_count_free_blocks(inode->i_sb));
	printk(KERN_EMERG "Free/Dirty block details\n");
	printk(KERN_EMERG "free_blocks=%lld\n",
2097
			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2098
	printk(KERN_EMERG "dirty_blocks=%lld\n",
2099
			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2100
	printk(KERN_EMERG "Block reservation details\n");
2101
	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2102
			EXT4_I(inode)->i_reserved_data_blocks);
2103
	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2104 2105 2106 2107
			EXT4_I(inode)->i_reserved_meta_blocks);
	return;
}

2108 2109 2110
/*
 * mpage_da_map_blocks - go through given space
 *
2111
 * @mpd - bh describing space
2112 2113 2114 2115
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2116
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2117
{
2118
	int err, blks, get_blocks_flags;
A
Aneesh Kumar K.V 已提交
2119
	struct buffer_head new;
2120 2121 2122 2123
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2124 2125 2126 2127

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2128
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2129 2130
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2131
		return 0;
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2142
	/*
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	 * Call ext4_get_blocks() to allocate any delayed allocation
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
	 * want to change *many* call functions, so ext4_get_blocks()
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2159
	 */
2160 2161 2162 2163 2164
	new.b_state = 0;
	get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
			    EXT4_GET_BLOCKS_DELALLOC_RESERVE);
	if (mpd->b_state & (1 << BH_Delay))
		get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2165
	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2166
			       &new, get_blocks_flags);
2167 2168
	if (blks < 0) {
		err = blks;
2169 2170 2171 2172
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2173 2174 2175
		 */
		if (err == -EAGAIN)
			return 0;
2176 2177

		if (err == -ENOSPC &&
2178
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2179 2180 2181 2182
			mpd->retval = err;
			return 0;
		}

2183
		/*
2184 2185 2186 2187 2188
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2189 2190 2191 2192 2193 2194
		 */
		printk(KERN_EMERG "%s block allocation failed for inode %lu "
				  "at logical offset %llu with max blocks "
				  "%zd with error %d\n",
				  __func__, mpd->inode->i_ino,
				  (unsigned long long)next,
2195
				  mpd->b_size >> mpd->inode->i_blkbits, err);
2196 2197
		printk(KERN_EMERG "This should not happen.!! "
					"Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2198
		if (err == -ENOSPC) {
2199
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2200
		}
2201
		/* invalidate all the pages */
2202
		ext4_da_block_invalidatepages(mpd, next,
2203
				mpd->b_size >> mpd->inode->i_blkbits);
2204 2205
		return err;
	}
2206 2207 2208
	BUG_ON(blks == 0);

	new.b_size = (blks << mpd->inode->i_blkbits);
2209

2210 2211
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2212

2213 2214 2215 2216
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2217 2218
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2219
		mpage_put_bnr_to_bhs(mpd, next, &new);
2220

2221 2222 2223 2224 2225 2226 2227
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2228
	 * Update on-disk size along with block allocation.
2229 2230 2231 2232 2233 2234 2235 2236 2237
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2238
	return 0;
2239 2240
}

2241 2242
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2254 2255
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2256 2257
{
	sector_t next;
2258
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2259

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2282 2283 2284
	/*
	 * First block in the extent
	 */
2285 2286 2287 2288
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2289 2290 2291
		return;
	}

2292
	next = mpd->b_blocknr + nrblocks;
2293 2294 2295
	/*
	 * Can we merge the block to our big extent?
	 */
2296 2297
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2298 2299 2300
		return;
	}

2301
flush_it:
2302 2303 2304 2305
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2306 2307
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2308 2309
	mpd->io_done = 1;
	return;
2310 2311
}

2312
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2313
{
2314
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2315 2316
}

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2331
	struct buffer_head *bh, *head;
2332 2333
	sector_t logical;

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
		 * try to to write them again after
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2345 2346 2347 2348 2349 2350
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2351
		 * and start IO on them using writepage()
2352 2353
		 */
		if (mpd->next_page != mpd->first_page) {
2354 2355
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2356 2357 2358 2359 2360 2361 2362
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2373 2374 2375
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2376 2377 2378 2379 2380 2381 2382
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2383 2384
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2385 2386
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2387 2388 2389 2390 2391 2392 2393 2394
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2395 2396 2397 2398
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2399
			 * with the page in ext4_writepage
2400
			 */
2401
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2402 2403 2404
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2405 2406
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2407 2408 2409 2410 2411 2412 2413 2414 2415
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2416 2417
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2418
			}
2419 2420 2421 2422 2423 2424 2425 2426
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2427 2428 2429
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2430 2431 2432 2433 2434 2435 2436
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2437 2438 2439 2440 2441
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;
2442 2443 2444 2445
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2446 2447 2448 2449 2450 2451 2452 2453 2454

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2455
	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2456 2457
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2458 2459 2460 2461
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2462 2463 2464 2465 2466
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2467
		map_bh(bh_result, inode->i_sb, invalid_block);
2468 2469 2470 2471
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
2472 2473 2474 2475 2476 2477 2478 2479
		if (buffer_unwritten(bh_result)) {
			/* A delayed write to unwritten bh should
			 * be marked new and mapped.  Mapped ensures
			 * that we don't do get_block multiple times
			 * when we write to the same offset and new
			 * ensures that we do proper zero out for
			 * partial write.
			 */
2480
			set_buffer_new(bh_result);
2481 2482
			set_buffer_mapped(bh_result);
		}
2483 2484 2485 2486 2487
		ret = 0;
	}

	return ret;
}
2488

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
 * callback function for block_prepare_write(), nobh_writepage(), and
 * block_write_full_page().  These functions should only try to map a
 * single block at a time.
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
 * delayed allocation before calling nobh_writepage() or
 * block_write_full_page().  Otherwise, b_blocknr could be left
 * unitialized, and the page write functions will be taken by
 * surprise.
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2506 2507 2508 2509 2510
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

2511 2512
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

2513 2514 2515 2516
	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
2517
	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2518 2519 2520 2521 2522
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2523 2524 2525
}

/*
2526 2527 2528 2529 2530 2531 2532 2533 2534
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2535 2536 2537 2538 2539
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2565
 */
2566
static int ext4_writepage(struct page *page,
2567
			     struct writeback_control *wbc)
2568 2569
{
	int ret = 0;
2570
	loff_t size;
2571
	unsigned int len;
2572 2573 2574
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2575
	trace_ext4_writepage(inode, page);
2576 2577 2578 2579 2580
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2581

2582
	if (page_has_buffers(page)) {
2583
		page_bufs = page_buffers(page);
2584
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2585
					ext4_bh_delay_or_unwritten)) {
2586
			/*
2587 2588
			 * We don't want to do  block allocation
			 * So redirty the page and return
2589 2590 2591
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2612
		ret = block_prepare_write(page, 0, len,
2613
					  noalloc_get_block_write);
2614 2615 2616 2617
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2618
						ext4_bh_delay_or_unwritten)) {
2619 2620 2621 2622 2623 2624 2625 2626 2627
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2628 2629 2630 2631 2632
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2633
		/* now mark the buffer_heads as dirty and uptodate */
2634
		block_commit_write(page, 0, len);
2635 2636
	}

2637 2638 2639 2640 2641 2642 2643 2644 2645
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
		return __ext4_journalled_writepage(page, wbc, len);
	}

2646
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2647
		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2648
	else
2649 2650
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2651 2652 2653 2654

	return ret;
}

2655
/*
2656 2657 2658 2659 2660
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2661
 */
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2679

2680
static int ext4_da_writepages(struct address_space *mapping,
2681
			      struct writeback_control *wbc)
2682
{
2683 2684
	pgoff_t	index;
	int range_whole = 0;
2685
	handle_t *handle = NULL;
2686
	struct mpage_da_data mpd;
2687
	struct inode *inode = mapping->host;
2688
	int no_nrwrite_index_update;
2689 2690
	int pages_written = 0;
	long pages_skipped;
2691
	int range_cyclic, cycled = 1, io_done = 0;
2692 2693
	int needed_blocks, ret = 0, nr_to_writebump = 0;
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2694

2695
	trace_ext4_da_writepages(inode, wbc);
2696

2697 2698 2699 2700 2701
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2702
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2703
		return 0;
2704 2705 2706 2707 2708

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2709
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2710 2711 2712 2713 2714
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2715
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2716 2717
		return -EROFS;

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	/*
	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
	 * This make sure small files blocks are allocated in
	 * single attempt. This ensure that small files
	 * get less fragmented.
	 */
	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
		wbc->nr_to_write = sbi->s_mb_stream_request;
	}
2728 2729
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2730

2731 2732
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2733
		index = mapping->writeback_index;
2734 2735 2736 2737 2738 2739
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2740
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2741

2742 2743 2744
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2745 2746 2747 2748 2749 2750 2751 2752
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2753
retry:
2754
	while (!ret && wbc->nr_to_write > 0) {
2755 2756 2757 2758 2759 2760 2761 2762

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2763
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2764

2765 2766 2767 2768
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2769
			printk(KERN_CRIT "%s: jbd2_start: "
2770 2771 2772
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
			dump_stack();
2773 2774
			goto out_writepages;
		}
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
		 * If we have a contigous extent of pages and we
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
		wbc->nr_to_write -= mpd.pages_written;
2807

2808
		ext4_journal_stop(handle);
2809

2810
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2811 2812 2813 2814
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2815
			jbd2_journal_force_commit_nested(sbi->s_journal);
2816 2817 2818
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2819 2820 2821 2822
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2823 2824
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2825
			ret = 0;
2826
			io_done = 1;
2827
		} else if (wbc->nr_to_write)
2828 2829 2830 2831 2832 2833
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2834
	}
2835 2836 2837 2838 2839 2840 2841
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2842 2843 2844 2845 2846 2847 2848
	if (pages_skipped != wbc->pages_skipped)
		printk(KERN_EMERG "This should not happen leaving %s "
				"with nr_to_write = %ld ret = %d\n",
				__func__, wbc->nr_to_write, ret);

	/* Update index */
	index += pages_written;
2849
	wbc->range_cyclic = range_cyclic;
2850 2851 2852 2853 2854 2855
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2856

2857
out_writepages:
2858 2859 2860
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
	wbc->nr_to_write -= nr_to_writebump;
2861
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2862
	return ret;
2863 2864
}

2865 2866 2867 2868 2869 2870 2871 2872 2873
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2874
	 * counters can get slightly wrong with percpu_counter_batch getting
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2892
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2893 2894
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2895
{
2896
	int ret, retries = 0;
2897 2898 2899 2900 2901 2902 2903 2904 2905
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
2906 2907 2908 2909 2910 2911 2912

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2913
	trace_ext4_da_write_begin(inode, pos, len, flags);
2914
retry:
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2926 2927 2928
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2929

2930
	page = grab_cache_page_write_begin(mapping, index, flags);
2931 2932 2933 2934 2935
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2936 2937 2938
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2939
				ext4_da_get_block_prep);
2940 2941 2942 2943
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2944 2945 2946 2947 2948 2949
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2950
			ext4_truncate(inode);
2951 2952
	}

2953 2954
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2955 2956 2957 2958
out:
	return ret;
}

2959 2960 2961 2962 2963
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2964
					    unsigned long offset)
2965 2966 2967 2968 2969 2970 2971 2972 2973
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2974
	for (i = 0; i < idx; i++)
2975 2976
		bh = bh->b_this_page;

2977
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2978 2979 2980 2981
		return 0;
	return 1;
}

2982
static int ext4_da_write_end(struct file *file,
2983 2984 2985
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2986 2987 2988 2989 2990
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2991
	unsigned long start, end;
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3005

3006
	trace_ext4_da_write_end(inode, pos, len, copied);
3007
	start = pos & (PAGE_CACHE_SIZE - 1);
3008
	end = start + copied - 1;
3009 3010 3011 3012 3013 3014 3015 3016

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3028

3029 3030 3031
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3032 3033 3034 3035 3036
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3037
		}
3038
	}
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3060
	ext4_da_page_release_reservation(page, offset);
3061 3062 3063 3064 3065 3066 3067

out:
	ext4_invalidatepage(page, offset);

	return;
}

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3083
	 *
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3103
	 *
3104 3105 3106 3107 3108 3109
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3110

3111 3112 3113 3114 3115
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3116
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3117 3118 3119 3120 3121 3122 3123 3124
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3125
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3126 3127 3128 3129 3130
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3141
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3153
		 * NB. EXT4_STATE_JDATA is not set on files other than
3154 3155 3156 3157 3158 3159
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3160 3161
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
3162 3163 3164
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3165 3166 3167 3168 3169

		if (err)
			return 0;
	}

3170
	return generic_block_bmap(mapping, block, ext4_get_block);
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

3185
static int __ext4_journalled_writepage(struct page *page,
3186 3187
				       struct writeback_control *wbc,
				       unsigned int len)
3188 3189 3190 3191
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
3192 3193 3194 3195
	handle_t *handle = NULL;
	int ret = 0;
	int err;

3196
	page_bufs = page_buffers(page);
3197
	BUG_ON(!page_bufs);
3198
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
3199 3200 3201
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
3202

3203
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3204 3205
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
3206
		goto out;
3207 3208
	}

3209 3210
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);
3211

3212 3213
	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
3214 3215
	if (ret == 0)
		ret = err;
3216
	err = ext4_journal_stop(handle);
3217 3218 3219
	if (!ret)
		ret = err;

3220
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
3221 3222
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
out:
3223 3224 3225
	return ret;
}

3226
static int ext4_readpage(struct file *file, struct page *page)
3227
{
3228
	return mpage_readpage(page, ext4_get_block);
3229 3230 3231
}

static int
3232
ext4_readpages(struct file *file, struct address_space *mapping,
3233 3234
		struct list_head *pages, unsigned nr_pages)
{
3235
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3236 3237
}

3238
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3239
{
3240
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3241 3242 3243 3244 3245 3246 3247

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3248 3249 3250 3251
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3252 3253
}

3254
static int ext4_releasepage(struct page *page, gfp_t wait)
3255
{
3256
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3257 3258 3259 3260

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3261 3262 3263 3264
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3265 3266 3267 3268 3269 3270 3271 3272
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3273 3274
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3275
 */
3276
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3277 3278
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3279 3280 3281
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3282
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3283
	handle_t *handle;
3284 3285 3286 3287 3288 3289 3290 3291
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3292 3293 3294 3295 3296 3297
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3298
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3299 3300 3301 3302
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3303 3304
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3305
			ext4_journal_stop(handle);
3306 3307 3308 3309 3310
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3311
				 ext4_get_block, NULL);
3312

J
Jan Kara 已提交
3313
	if (orphan) {
3314 3315
		int err;

J
Jan Kara 已提交
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3326
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3327
		if (ret > 0) {
3328 3329 3330 3331 3332 3333 3334 3335
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3336
				 * ext4_mark_inode_dirty() to userspace.  So
3337 3338
				 * ignore it.
				 */
3339
				ext4_mark_inode_dirty(handle, inode);
3340 3341
			}
		}
3342
		err = ext4_journal_stop(handle);
3343 3344 3345 3346 3347 3348 3349 3350
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3351
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3363
static int ext4_journalled_set_page_dirty(struct page *page)
3364 3365 3366 3367 3368
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3369
static const struct address_space_operations ext4_ordered_aops = {
3370 3371
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3372
	.writepage		= ext4_writepage,
3373 3374 3375 3376 3377 3378 3379 3380 3381
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3382 3383
};

3384
static const struct address_space_operations ext4_writeback_aops = {
3385 3386
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3387
	.writepage		= ext4_writepage,
3388 3389 3390 3391 3392 3393 3394 3395 3396
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3397 3398
};

3399
static const struct address_space_operations ext4_journalled_aops = {
3400 3401
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3402
	.writepage		= ext4_writepage,
3403 3404 3405 3406 3407 3408 3409 3410
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3411 3412
};

3413
static const struct address_space_operations ext4_da_aops = {
3414 3415
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3416
	.writepage		= ext4_writepage,
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3427 3428
};

3429
void ext4_set_aops(struct inode *inode)
3430
{
3431 3432 3433 3434
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3435
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3436 3437 3438
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3439 3440
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3441
	else
3442
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3443 3444 3445
}

/*
3446
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3447 3448 3449 3450
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3451
int ext4_block_truncate_page(handle_t *handle,
3452 3453
		struct address_space *mapping, loff_t from)
{
3454
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3455
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3456 3457
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3458 3459
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3460
	struct page *page;
3461 3462
	int err = 0;

3463 3464
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3465 3466 3467
	if (!page)
		return -EINVAL;

3468 3469 3470 3471 3472 3473 3474 3475 3476
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3477
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3478
		zero_user(page, offset, length);
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3503
		ext4_get_block(inode, iblock, bh, 0);
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3524
	if (ext4_should_journal_data(inode)) {
3525
		BUFFER_TRACE(bh, "get write access");
3526
		err = ext4_journal_get_write_access(handle, bh);
3527 3528 3529 3530
		if (err)
			goto unlock;
	}

3531
	zero_user(page, offset, length);
3532 3533 3534 3535

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3536
	if (ext4_should_journal_data(inode)) {
3537
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3538
	} else {
3539
		if (ext4_should_order_data(inode))
3540
			err = ext4_jbd2_file_inode(handle, inode);
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3564
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3565 3566
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3567
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3568 3569 3570
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3571
 *	This is a helper function used by ext4_truncate().
3572 3573 3574 3575 3576 3577 3578
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3579
 *	past the truncation point is possible until ext4_truncate()
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3598
static Indirect *ext4_find_shared(struct inode *inode, int depth,
3599 3600
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
3601 3602 3603 3604 3605 3606 3607 3608
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3609
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3620
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3632
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3633 3634 3635 3636 3637 3638
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3639
	while (partial > p) {
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3655
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3656 3657 3658 3659
			      struct buffer_head *bh,
			      ext4_fsblk_t block_to_free,
			      unsigned long count, __le32 *first,
			      __le32 *last)
3660 3661 3662 3663
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3664 3665
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
3666
		}
3667 3668
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3669 3670
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3671
			ext4_journal_get_write_access(handle, bh);
3672 3673 3674 3675
		}
	}

	/*
3676 3677 3678 3679 3680
	 * Any buffers which are on the journal will be in memory. We
	 * find them on the hash table so jbd2_journal_revoke() will
	 * run jbd2_journal_forget() on them.  We've already detached
	 * each block from the file, so bforget() in
	 * jbd2_journal_forget() should be safe.
3681
	 *
3682
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3683 3684 3685 3686
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3687
			struct buffer_head *tbh;
3688 3689

			*p = 0;
A
Aneesh Kumar K.V 已提交
3690 3691
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3692 3693 3694
		}
	}

3695
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3696 3697 3698
}

/**
3699
 * ext4_free_data - free a list of data blocks
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3717
static void ext4_free_data(handle_t *handle, struct inode *inode,
3718 3719 3720
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3721
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3722 3723 3724 3725
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3726
	ext4_fsblk_t nr;		    /* Current block # */
3727 3728 3729 3730 3731 3732
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3733
		err = ext4_journal_get_write_access(handle, this_bh);
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3751
				ext4_clear_blocks(handle, inode, this_bh,
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3762
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3763 3764 3765
				  count, block_to_free_p, p);

	if (this_bh) {
3766
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3767 3768 3769 3770 3771 3772 3773

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
3774
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3775
			ext4_handle_dirty_metadata(handle, inode, this_bh);
3776 3777 3778 3779 3780 3781
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3782 3783 3784 3785
	}
}

/**
3786
 *	ext4_free_branches - free an array of branches
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3798
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3799 3800 3801
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3802
	ext4_fsblk_t nr;
3803 3804
	__le32 *p;

3805
	if (ext4_handle_is_aborted(handle))
3806 3807 3808 3809
		return;

	if (depth--) {
		struct buffer_head *bh;
3810
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3825
				ext4_error(inode->i_sb, "ext4_free_branches",
3826
					   "Read failure, inode=%lu, block=%llu",
3827 3828 3829 3830 3831 3832
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3833
			ext4_free_branches(handle, inode, bh,
3834 3835 3836
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
3837 3838 3839 3840 3841

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3842
			 * jbd2_journal_revoke().
3843 3844 3845
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3846
			 * transaction then jbd2_journal_forget() will simply
3847
			 * brelse() it.  That means that if the underlying
3848
			 * block is reallocated in ext4_get_block(),
3849 3850 3851 3852 3853 3854 3855 3856
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3857
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
3875
			if (ext4_handle_is_aborted(handle))
3876 3877
				return;
			if (try_to_extend_transaction(handle, inode)) {
3878 3879
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
3880 3881
			}

3882
			ext4_free_blocks(handle, inode, nr, 1, 1);
3883 3884 3885 3886 3887 3888 3889

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
3890
				if (!ext4_journal_get_write_access(handle,
3891 3892 3893
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
3894 3895 3896 3897
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
3898 3899 3900 3901 3902 3903
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
3904
		ext4_free_data(handle, inode, parent_bh, first, last);
3905 3906 3907
	}
}

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3921
/*
3922
 * ext4_truncate()
3923
 *
3924 3925
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3942
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3943
 * that this inode's truncate did not complete and it will again call
3944 3945
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3946
 * that's fine - as long as they are linked from the inode, the post-crash
3947
 * ext4_truncate() run will find them and release them.
3948
 */
3949
void ext4_truncate(struct inode *inode)
3950 3951
{
	handle_t *handle;
3952
	struct ext4_inode_info *ei = EXT4_I(inode);
3953
	__le32 *i_data = ei->i_data;
3954
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3955
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
3956
	ext4_lblk_t offsets[4];
3957 3958 3959 3960
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
3961
	ext4_lblk_t last_block;
3962 3963
	unsigned blocksize = inode->i_sb->s_blocksize;

3964
	if (!ext4_can_truncate(inode))
3965 3966
		return;

3967 3968
	if (ei->i_disksize && inode->i_size == 0 &&
	    !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3969 3970
		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;

A
Aneesh Kumar K.V 已提交
3971
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3972
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
3973 3974
		return;
	}
A
Alex Tomas 已提交
3975

3976
	handle = start_transaction(inode);
3977
	if (IS_ERR(handle))
3978 3979 3980
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
3981
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3982

3983 3984 3985
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
3986

3987
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4000
	if (ext4_orphan_add(handle, inode))
4001 4002
		goto out_stop;

4003 4004 4005 4006 4007
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4008

4009
	ext4_discard_preallocations(inode);
4010

4011 4012 4013 4014 4015
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4016
	 * ext4 *really* writes onto the disk inode.
4017 4018 4019 4020
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4021 4022
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4023 4024 4025
		goto do_indirects;
	}

4026
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4027 4028 4029 4030
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4031
			ext4_free_branches(handle, inode, NULL,
4032 4033 4034 4035 4036 4037 4038 4039 4040
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4041
			ext4_free_branches(handle, inode, partial->bh,
4042 4043 4044 4045 4046 4047
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4048
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4049 4050 4051
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4052
		brelse(partial->bh);
4053 4054 4055 4056 4057 4058
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4059
		nr = i_data[EXT4_IND_BLOCK];
4060
		if (nr) {
4061 4062
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4063
		}
4064 4065
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4066
		if (nr) {
4067 4068
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4069
		}
4070 4071
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4072
		if (nr) {
4073 4074
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4075
		}
4076
	case EXT4_TIND_BLOCK:
4077 4078 4079
		;
	}

4080
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4081
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4082
	ext4_mark_inode_dirty(handle, inode);
4083 4084 4085 4086 4087 4088

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4089
		ext4_handle_sync(handle);
4090 4091 4092 4093 4094
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4095
	 * ext4_delete_inode(), and we allow that function to clean up the
4096 4097 4098
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4099
		ext4_orphan_del(handle, inode);
4100

4101
	ext4_journal_stop(handle);
4102 4103 4104
}

/*
4105
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4106 4107 4108 4109
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4110 4111
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4112
{
4113 4114 4115 4116 4117 4118
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4119
	iloc->bh = NULL;
4120 4121
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4122

4123 4124 4125
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4126 4127
		return -EIO;

4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4138
	if (!bh) {
4139 4140 4141
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
4142 4143 4144 4145
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4169
			int i, start;
4170

4171
			start = inode_offset & ~(inodes_per_block - 1);
4172

4173 4174
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4187
			for (i = start; i < start + inodes_per_block; i++) {
4188 4189
				if (i == inode_offset)
					continue;
4190
				if (ext4_test_bit(i, bitmap_bh->b_data))
4191 4192 4193
					break;
			}
			brelse(bitmap_bh);
4194
			if (i == start + inodes_per_block) {
4195 4196 4197 4198 4199 4200 4201 4202 4203
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4204 4205 4206 4207 4208 4209 4210 4211 4212
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4213
			/* s_inode_readahead_blks is always a power of 2 */
4214 4215 4216 4217 4218 4219 4220
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4221
				num -= ext4_itable_unused_count(sb, gdp);
4222 4223 4224 4225 4226 4227 4228
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4239 4240 4241
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4242 4243 4244 4245 4246 4247 4248 4249 4250
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4251
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4252 4253
{
	/* We have all inode data except xattrs in memory here. */
4254 4255
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4256 4257
}

4258
void ext4_set_inode_flags(struct inode *inode)
4259
{
4260
	unsigned int flags = EXT4_I(inode)->i_flags;
4261 4262

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4263
	if (flags & EXT4_SYNC_FL)
4264
		inode->i_flags |= S_SYNC;
4265
	if (flags & EXT4_APPEND_FL)
4266
		inode->i_flags |= S_APPEND;
4267
	if (flags & EXT4_IMMUTABLE_FL)
4268
		inode->i_flags |= S_IMMUTABLE;
4269
	if (flags & EXT4_NOATIME_FL)
4270
		inode->i_flags |= S_NOATIME;
4271
	if (flags & EXT4_DIRSYNC_FL)
4272 4273 4274
		inode->i_flags |= S_DIRSYNC;
}

4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4293

4294
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4295
				  struct ext4_inode_info *ei)
4296 4297
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4298 4299
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4300 4301 4302 4303 4304 4305

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4306 4307 4308 4309 4310 4311
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4312 4313 4314 4315
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4316

4317
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4318
{
4319 4320
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4321
	struct ext4_inode_info *ei;
4322
	struct buffer_head *bh;
4323 4324
	struct inode *inode;
	long ret;
4325 4326
	int block;

4327 4328 4329 4330 4331 4332 4333
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4334

4335 4336
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4337 4338
		goto bad_inode;
	bh = iloc.bh;
4339
	raw_inode = ext4_raw_inode(&iloc);
4340 4341 4342
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4343
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4359
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4360
			/* this inode is deleted */
4361
			brelse(bh);
4362
			ret = -ESTALE;
4363 4364 4365 4366 4367 4368 4369 4370
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4371
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4372
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4373
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4374 4375
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4376
	inode->i_size = ext4_isize(raw_inode);
4377 4378 4379
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4380
	ei->i_last_alloc_group = ~0;
4381 4382 4383 4384
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4385
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4386 4387 4388
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4389
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4390
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4391
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4392
		    EXT4_INODE_SIZE(inode->i_sb)) {
4393
			brelse(bh);
4394
			ret = -EIO;
4395
			goto bad_inode;
4396
		}
4397 4398
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4399 4400
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4401 4402
		} else {
			__le32 *magic = (void *)raw_inode +
4403
					EXT4_GOOD_OLD_INODE_SIZE +
4404
					ei->i_extra_isize;
4405
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4406
				ei->i_state |= EXT4_STATE_XATTR;
4407 4408 4409 4410
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4411 4412 4413 4414 4415
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4416 4417 4418 4419 4420 4421 4422
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4423
	ret = 0;
4424
	if (ei->i_file_acl &&
4425
	    ((ei->i_file_acl <
4426 4427 4428 4429 4430 4431 4432 4433 4434
	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
	       EXT4_SB(sb)->s_gdb_count)) ||
	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
		ext4_error(sb, __func__,
			   "bad extended attribute block %llu in inode #%lu",
			   ei->i_file_acl, inode->i_ino);
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4435 4436 4437 4438 4439
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4440
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4441 4442
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4443
		/* Validate block references which are part of inode */
4444 4445 4446
		ret = ext4_check_inode_blockref(inode);
	}
	if (ret) {
4447 4448
		brelse(bh);
		goto bad_inode;
4449 4450
	}

4451
	if (S_ISREG(inode->i_mode)) {
4452 4453 4454
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4455
	} else if (S_ISDIR(inode->i_mode)) {
4456 4457
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4458
	} else if (S_ISLNK(inode->i_mode)) {
4459
		if (ext4_inode_is_fast_symlink(inode)) {
4460
			inode->i_op = &ext4_fast_symlink_inode_operations;
4461 4462 4463
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4464 4465
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4466
		}
4467 4468
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4469
		inode->i_op = &ext4_special_inode_operations;
4470 4471 4472 4473 4474 4475
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4476 4477 4478
	} else {
		brelse(bh);
		ret = -EIO;
4479
		ext4_error(inode->i_sb, __func__,
4480 4481 4482
			   "bogus i_mode (%o) for inode=%lu",
			   inode->i_mode, inode->i_ino);
		goto bad_inode;
4483
	}
4484
	brelse(iloc.bh);
4485
	ext4_set_inode_flags(inode);
4486 4487
	unlock_new_inode(inode);
	return inode;
4488 4489

bad_inode:
4490 4491
	iget_failed(inode);
	return ERR_PTR(ret);
4492 4493
}

4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4507
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4508
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4509
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4510 4511 4512 4513 4514 4515
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4516 4517 4518 4519
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4520
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4521
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4522
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4523
	} else {
A
Aneesh Kumar K.V 已提交
4524 4525 4526 4527 4528
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4529
	}
4530
	return 0;
4531 4532
}

4533 4534 4535 4536 4537 4538 4539
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4540
static int ext4_do_update_inode(handle_t *handle,
4541
				struct inode *inode,
4542
				struct ext4_iloc *iloc)
4543
{
4544 4545
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4546 4547 4548 4549 4550
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4551 4552
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4553

4554
	ext4_get_inode_flags(ei);
4555
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4556
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4557 4558 4559 4560 4561 4562
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4563
		if (!ei->i_dtime) {
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4581 4582 4583 4584 4585 4586

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4587 4588
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4589
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4590 4591
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4592 4593
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4594 4595
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4596
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4613
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4614
			sb->s_dirt = 1;
4615 4616
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
4617
					EXT4_SB(sb)->s_sbh);
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4632 4633 4634
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4635

4636 4637 4638 4639 4640
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4641
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4642 4643
	}

4644 4645
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4646 4647
	if (!err)
		err = rc;
4648
	ei->i_state &= ~EXT4_STATE_NEW;
4649 4650

out_brelse:
4651
	brelse(bh);
4652
	ext4_std_error(inode->i_sb, err);
4653 4654 4655 4656
	return err;
}

/*
4657
 * ext4_write_inode()
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4674
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4691
int ext4_write_inode(struct inode *inode, int wait)
4692 4693 4694 4695
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4696
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4697
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4698 4699 4700 4701 4702 4703 4704
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4705
	return ext4_force_commit(inode->i_sb);
4706 4707 4708
}

/*
4709
 * ext4_setattr()
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4723 4724 4725 4726 4727 4728 4729 4730
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4731
 */
4732
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4748 4749
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4750 4751 4752 4753
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4754
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4755
		if (error) {
4756
			ext4_journal_stop(handle);
4757 4758 4759 4760 4761 4762 4763 4764
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4765 4766
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4767 4768
	}

4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4780 4781 4782 4783
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4784
		handle = ext4_journal_start(inode, 3);
4785 4786 4787 4788 4789
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4790 4791 4792
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4793 4794
		if (!error)
			error = rc;
4795
		ext4_journal_stop(handle);
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4812 4813 4814 4815
	}

	rc = inode_setattr(inode, attr);

4816
	/* If inode_setattr's call to ext4_truncate failed to get a
4817 4818 4819
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4820
		ext4_orphan_del(NULL, inode);
4821 4822

	if (!rc && (ia_valid & ATTR_MODE))
4823
		rc = ext4_acl_chmod(inode);
4824 4825

err_out:
4826
	ext4_std_error(inode->i_sb, error);
4827 4828 4829 4830 4831
	if (!error)
		error = rc;
	return error;
}

4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4858

4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4887 4888
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4889
}
4890

4891
/*
4892 4893 4894
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4895
 *
4896 4897 4898
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
4899
 *
4900 4901 4902 4903
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4904 4905
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4932 4933
	if (groups > ngroups)
		groups = ngroups;
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
4948 4949
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4950
 *
4951
 * This could be called via ext4_write_begin()
4952
 *
4953
 * We need to consider the worse case, when
4954
 * one new block per extent.
4955
 */
A
Alex Tomas 已提交
4956
int ext4_writepage_trans_blocks(struct inode *inode)
4957
{
4958
	int bpp = ext4_journal_blocks_per_page(inode);
4959 4960
	int ret;

4961
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4962

4963
	/* Account for data blocks for journalled mode */
4964
	if (ext4_should_journal_data(inode))
4965
		ret += bpp;
4966 4967
	return ret;
}
4968 4969 4970 4971 4972

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4973
 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
4974 4975 4976 4977 4978 4979 4980 4981 4982
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4983
/*
4984
 * The caller must have previously called ext4_reserve_inode_write().
4985 4986
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4987
int ext4_mark_iloc_dirty(handle_t *handle,
4988
			 struct inode *inode, struct ext4_iloc *iloc)
4989 4990 4991
{
	int err = 0;

4992 4993 4994
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4995 4996 4997
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4998
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4999
	err = ext4_do_update_inode(handle, inode, iloc);
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5010 5011
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5012
{
5013 5014 5015 5016 5017 5018 5019 5020 5021
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5022 5023
		}
	}
5024
	ext4_std_error(inode->i_sb, err);
5025 5026 5027
	return err;
}

5028 5029 5030 5031
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5032 5033 5034 5035
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5084
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5085
{
5086
	struct ext4_iloc iloc;
5087 5088 5089
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5090 5091

	might_sleep();
5092
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5093 5094
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
5110 5111
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5112
					ext4_warning(inode->i_sb, __func__,
5113 5114 5115
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5116 5117
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5118 5119 5120 5121
				}
			}
		}
	}
5122
	if (!err)
5123
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5124 5125 5126 5127
	return err;
}

/*
5128
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5129 5130 5131 5132 5133
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5134
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5135 5136 5137 5138 5139 5140
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5141
void ext4_dirty_inode(struct inode *inode)
5142
{
5143
	handle_t *current_handle = ext4_journal_current_handle();
5144 5145
	handle_t *handle;

5146 5147 5148 5149 5150
	if (!ext4_handle_valid(current_handle)) {
		ext4_mark_inode_dirty(current_handle, inode);
		return;
	}

5151
	handle = ext4_journal_start(inode, 2);
5152 5153 5154 5155 5156 5157
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
5158
		       __func__);
5159 5160 5161
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
5162
		ext4_mark_inode_dirty(handle, inode);
5163
	}
5164
	ext4_journal_stop(handle);
5165 5166 5167 5168 5169 5170 5171 5172
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5173
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5174 5175 5176
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5177
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5178
{
5179
	struct ext4_iloc iloc;
5180 5181 5182

	int err = 0;
	if (handle) {
5183
		err = ext4_get_inode_loc(inode, &iloc);
5184 5185
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5186
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5187
			if (!err)
5188 5189 5190
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5191 5192 5193
			brelse(iloc.bh);
		}
	}
5194
	ext4_std_error(inode->i_sb, err);
5195 5196 5197 5198
	return err;
}
#endif

5199
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5215
	journal = EXT4_JOURNAL(inode);
5216 5217
	if (!journal)
		return 0;
5218
	if (is_journal_aborted(journal))
5219 5220
		return -EROFS;

5221 5222
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5233
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5234
	else
5235 5236
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5237

5238
	jbd2_journal_unlock_updates(journal);
5239 5240 5241

	/* Finally we can mark the inode as dirty. */

5242
	handle = ext4_journal_start(inode, 1);
5243 5244 5245
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5246
	err = ext4_mark_inode_dirty(handle, inode);
5247
	ext4_handle_sync(handle);
5248 5249
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5250 5251 5252

	return err;
}
5253 5254 5255 5256 5257 5258

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5259
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5260
{
5261
	struct page *page = vmf->page;
5262 5263 5264
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5265
	void *fsdata;
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5304
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5305 5306 5307
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5308
			len, len, page, fsdata);
5309 5310 5311 5312
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5313 5314
	if (ret)
		ret = VM_FAULT_SIGBUS;
5315 5316 5317
	up_read(&inode->i_alloc_sem);
	return ret;
}