inode.c 171.1 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/printk.h>
43
#include <linux/slab.h>
44
#include <linux/ratelimit.h>
45

46
#include "ext4_jbd2.h"
47 48
#include "xattr.h"
#include "acl.h"
49
#include "ext4_extents.h"
50

51 52
#include <trace/events/ext4.h>

53 54
#define MPAGE_DA_EXTENT_TAIL 0x01

55 56 57
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
58
	trace_ext4_begin_ordered_truncate(inode, new_size);
59 60 61 62 63 64 65 66 67 68 69
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
70 71
}

72
static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 74 75 76 77 78
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79

80 81 82
/*
 * Test whether an inode is a fast symlink.
 */
83
static int ext4_inode_is_fast_symlink(struct inode *inode)
84
{
85
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
86 87 88 89 90 91 92 93 94 95 96
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
97
	ext4_lblk_t needed;
98 99 100 101 102 103

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
104
	 * like a regular file for ext4 to try to delete it.  Things
105 106 107 108 109 110 111
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
112 113
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
114

115
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

132
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
133 134 135
	if (!IS_ERR(result))
		return result;

136
	ext4_std_error(inode->i_sb, PTR_ERR(result));
137 138 139 140 141 142 143 144 145 146 147
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
148 149 150
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151
		return 0;
152
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153 154 155 156 157 158 159 160 161
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
162
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163
				 int nblocks)
164
{
165 166 167
	int ret;

	/*
168
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169 170 171 172
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
173
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
174
	jbd_debug(2, "restarting handle %p\n", handle);
175 176 177
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
178
	ext4_discard_preallocations(inode);
179 180

	return ret;
181 182 183 184 185
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
186
void ext4_evict_inode(struct inode *inode)
187 188
{
	handle_t *handle;
189
	int err;
190

191
	trace_ext4_evict_inode(inode);
A
Al Viro 已提交
192 193 194 195 196
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

197
	if (!is_bad_inode(inode))
198
		dquot_initialize(inode);
199

200 201
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
202 203 204 205 206
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

207
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208
	if (IS_ERR(handle)) {
209
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
210 211 212 213 214
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
215
		ext4_orphan_del(NULL, inode);
216 217 218 219
		goto no_delete;
	}

	if (IS_SYNC(inode))
220
		ext4_handle_sync(handle);
221
	inode->i_size = 0;
222 223
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
224
		ext4_warning(inode->i_sb,
225 226 227
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
228
	if (inode->i_blocks)
229
		ext4_truncate(inode);
230 231 232 233 234 235 236

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
237
	if (!ext4_handle_has_enough_credits(handle, 3)) {
238 239 240 241
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
242
			ext4_warning(inode->i_sb,
243 244 245
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
246
			ext4_orphan_del(NULL, inode);
247 248 249 250
			goto no_delete;
		}
	}

251
	/*
252
	 * Kill off the orphan record which ext4_truncate created.
253
	 * AKPM: I think this can be inside the above `if'.
254
	 * Note that ext4_orphan_del() has to be able to cope with the
255
	 * deletion of a non-existent orphan - this is because we don't
256
	 * know if ext4_truncate() actually created an orphan record.
257 258
	 * (Well, we could do this if we need to, but heck - it works)
	 */
259 260
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
261 262 263 264 265 266 267 268

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
269
	if (ext4_mark_inode_dirty(handle, inode))
270
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
271
		ext4_clear_inode(inode);
272
	else
273 274
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
275 276
	return;
no_delete:
A
Al Viro 已提交
277
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
293
 *	ext4_block_to_path - parse the block number into array of offsets
294 295 296
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
297 298
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
299
 *
300
 *	To store the locations of file's data ext4 uses a data structure common
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

323
static int ext4_block_to_path(struct inode *inode,
324 325
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
326
{
327 328 329
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
330 331 332 333 334
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

335
	if (i_block < direct_blocks) {
336 337
		offsets[n++] = i_block;
		final = direct_blocks;
338
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
339
		offsets[n++] = EXT4_IND_BLOCK;
340 341 342
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
343
		offsets[n++] = EXT4_DIND_BLOCK;
344 345 346 347
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348
		offsets[n++] = EXT4_TIND_BLOCK;
349 350 351 352 353
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
354
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355 356
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
357 358 359 360 361 362
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

363 364
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
365 366
				 __le32 *p, unsigned int max)
{
367
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
368
	__le32 *bref = p;
369 370
	unsigned int blk;

371
	while (bref < p+max) {
372
		blk = le32_to_cpu(*bref++);
373 374
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
375
						    blk, 1))) {
376
			es->s_last_error_block = cpu_to_le64(blk);
377 378
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
379 380 381 382
			return -EIO;
		}
	}
	return 0;
383 384 385 386
}


#define ext4_check_indirect_blockref(inode, bh)                         \
387 388
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
389 390 391
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
392 393
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
394 395
			      EXT4_NDIR_BLOCKS)

396
/**
397
 *	ext4_get_branch - read the chain of indirect blocks leading to data
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
422 423
 *
 *      Need to be called with
424
 *      down_read(&EXT4_I(inode)->i_data_sem)
425
 */
A
Aneesh Kumar K.V 已提交
426 427
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
428 429 430 431 432 433 434 435
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
436
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
437 438 439
	if (!p->key)
		goto no_block;
	while (--depth) {
440 441
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
442
			goto failure;
443

444 445 446 447 448 449 450 451 452 453 454
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
455

456
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
457 458 459 460 461 462 463 464 465 466 467 468 469
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
470
 *	ext4_find_near - find a place for allocation with sufficient locality
471 472 473
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
474
 *	This function returns the preferred place for block allocation.
475 476 477 478 479 480 481 482 483 484 485 486 487 488
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
489
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
490
{
491
	struct ext4_inode_info *ei = EXT4_I(inode);
492
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
493
	__le32 *p;
494
	ext4_fsblk_t bg_start;
495
	ext4_fsblk_t last_block;
496
	ext4_grpblk_t colour;
497 498
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
514 515 516 517 518 519 520
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
521 522
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

523 524 525 526 527 528 529
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

530 531
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
532
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
533 534
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
535 536 537 538
	return bg_start + colour;
}

/**
539
 *	ext4_find_goal - find a preferred place for allocation.
540 541 542 543
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
544
 *	Normally this function find the preferred place for block allocation,
545
 *	returns it.
546 547
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
548
 */
A
Aneesh Kumar K.V 已提交
549
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
550
				   Indirect *partial)
551
{
552 553
	ext4_fsblk_t goal;

554
	/*
555
	 * XXX need to get goal block from mballoc's data structures
556 557
	 */

558 559 560
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
561 562 563
}

/**
T
Theodore Ts'o 已提交
564
 *	ext4_blks_to_allocate - Look up the block map and count the number
565 566 567 568 569 570 571 572 573 574
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
575
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576
				 int blocks_to_boundary)
577
{
578
	unsigned int count = 0;
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
602
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
T
Theodore Ts'o 已提交
603 604 605 606
 *	@handle: handle for this transaction
 *	@inode: inode which needs allocated blocks
 *	@iblock: the logical block to start allocated at
 *	@goal: preferred physical block of allocation
607 608
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
T
Theodore Ts'o 已提交
609
 *	@blks: number of desired blocks
610 611
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
T
Theodore Ts'o 已提交
612 613 614 615
 *	@err: on return it will store the error code
 *
 *	This function will return the number of blocks allocated as
 *	requested by the passed-in parameters.
616
 */
617
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
618 619 620
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
621
{
622
	struct ext4_allocation_request ar;
623
	int target, i;
624
	unsigned long count = 0, blk_allocated = 0;
625
	int index = 0;
626
	ext4_fsblk_t current_block = 0;
627 628 629 630 631 632 633 634 635 636
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
637 638 639
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
640 641
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
642 643
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
644 645 646
		if (*err)
			goto failed_out;

647 648 649 650 651 652 653 654
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
655

656 657 658 659 660 661
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
662 663 664 665 666 667 668 669 670
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
671
			break;
672
		}
673 674
	}

675 676 677 678 679
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
680 681 682 683 684 685 686 687 688 689
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
690 691 692 693 694 695 696 697
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
698

699 700 701 702 703 704 705 706 707
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
708 709 710 711
			/*
			 * save the new block number
			 * for the first direct block
			 */
712 713
			new_blocks[index] = current_block;
		}
714
		blk_allocated += ar.len;
715 716
	}
allocated:
717
	/* total number of blocks allocated for direct blocks */
718
	ret = blk_allocated;
719 720 721
	*err = 0;
	return ret;
failed_out:
722
	for (i = 0; i < index; i++)
723
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
724 725 726 727
	return ret;
}

/**
728
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
T
Theodore Ts'o 已提交
729
 *	@handle: handle for this transaction
730 731 732
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
T
Theodore Ts'o 已提交
733
 *	@goal: preferred place for allocation
734 735 736 737 738 739 740
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
741
 *	the same format as ext4_get_branch() would do. We are calling it after
742 743
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
744
 *	picture as after the successful ext4_get_block(), except that in one
745 746 747 748 749 750
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
751
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752 753
 *	as described above and return 0.
 */
754
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755 756 757
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
758 759 760 761 762 763
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
764 765
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
766

767
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783 784 785 786 787
		if (unlikely(!bh)) {
			err = -EIO;
			goto failed;
		}

788 789 790
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
791
		err = ext4_journal_get_create_access(handle, bh);
792
		if (err) {
793 794
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
795 796 797 798 799 800 801 802
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
803
		if (n == indirect_blks) {
804 805 806 807 808 809
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
810
			for (i = 1; i < num; i++)
811 812 813 814 815 816
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

817 818
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
819 820 821 822 823 824 825
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
826
	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
827
	for (i = 1; i <= n ; i++) {
828
		/*
829 830 831
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
832
		 */
833
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
834
				 EXT4_FREE_BLOCKS_FORGET);
835
	}
836
	for (i = n+1; i < indirect_blks; i++)
837
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
838

839
	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
840 841 842 843 844

	return err;
}

/**
845
 * ext4_splice_branch - splice the allocated branch onto inode.
T
Theodore Ts'o 已提交
846
 * @handle: handle for this transaction
847 848 849
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
850
 *	ext4_alloc_branch)
851 852 853 854 855 856 857 858
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
859
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
860 861
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
862 863 864
{
	int i;
	int err = 0;
865
	ext4_fsblk_t current_block;
866 867 868 869 870 871 872 873

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
874
		err = ext4_journal_get_write_access(handle, where->bh);
875 876 877 878 879 880 881 882 883 884 885 886 887 888
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
889
			*(where->p + i) = cpu_to_le32(current_block++);
890 891 892 893 894 895 896 897 898 899 900
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
901
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
902 903
		 */
		jbd_debug(5, "splicing indirect only\n");
904 905
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
906 907 908 909 910 911
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
912
		ext4_mark_inode_dirty(handle, inode);
913 914 915 916 917 918
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
919
		/*
920 921 922
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
923
		 */
924 925
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
926
	}
927
	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
928
			 blks, 0);
929 930 931 932 933

	return err;
}

/*
934
 * The ext4_ind_map_blocks() function handles non-extents inodes
935
 * (i.e., using the traditional indirect/double-indirect i_blocks
936
 * scheme) for ext4_map_blocks().
937
 *
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
954
 *
955 956 957 958 959
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
960
 */
961 962
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
963
			       int flags)
964 965
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
966
	ext4_lblk_t offsets[4];
967 968
	Indirect chain[4];
	Indirect *partial;
969
	ext4_fsblk_t goal;
970 971 972 973
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
974
	ext4_fsblk_t first_block = 0;
975

976
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
977
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
978
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
979
				   &blocks_to_boundary);
980 981 982 983

	if (depth == 0)
		goto out;

984
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
985 986 987 988 989 990

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
991
		while (count < map->m_len && count <= blocks_to_boundary) {
992
			ext4_fsblk_t blk;
993 994 995 996 997 998 999 1000

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
1001
		goto got_it;
1002 1003 1004
	}

	/* Next simple case - plain lookup or failed read of indirect block */
1005
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1006 1007 1008
		goto cleanup;

	/*
1009
	 * Okay, we need to do block allocation.
1010
	*/
1011
	goal = ext4_find_goal(inode, map->m_lblk, partial);
1012 1013 1014 1015 1016 1017 1018 1019

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
1020
	count = ext4_blks_to_allocate(partial, indirect_blks,
1021
				      map->m_len, blocks_to_boundary);
1022
	/*
1023
	 * Block out ext4_truncate while we alter the tree
1024
	 */
1025
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1026 1027
				&count, goal,
				offsets + (partial - chain), partial);
1028 1029

	/*
1030
	 * The ext4_splice_branch call will free and forget any buffers
1031 1032 1033 1034 1035 1036
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1037
		err = ext4_splice_branch(handle, inode, map->m_lblk,
1038
					 partial, indirect_blks, count);
1039
	if (err)
1040 1041
		goto cleanup;

1042
	map->m_flags |= EXT4_MAP_NEW;
1043 1044

	ext4_update_inode_fsync_trans(handle, inode, 1);
1045
got_it:
1046 1047 1048
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1049
	if (count > blocks_to_boundary)
1050
		map->m_flags |= EXT4_MAP_BOUNDARY;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
	return err;
}

1064 1065
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1066
{
1067
	return &EXT4_I(inode)->i_reserved_quota;
1068
}
1069
#endif
1070

1071 1072
/*
 * Calculate the number of metadata blocks need to reserve
1073
 * to allocate a new block at @lblocks for non extent file based file
1074
 */
1075 1076
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1077
{
1078
	struct ext4_inode_info *ei = EXT4_I(inode);
1079
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1080
	int blk_bits;
1081

1082 1083
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1084

1085
	lblock -= EXT4_NDIR_BLOCKS;
1086

1087 1088 1089 1090 1091 1092 1093
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1094
	blk_bits = order_base_2(lblock);
1095
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1096 1097 1098 1099
}

/*
 * Calculate the number of metadata blocks need to reserve
1100
 * to allocate a block located at @lblock
1101
 */
1102
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1103
{
1104
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1105
		return ext4_ext_calc_metadata_amount(inode, lblock);
1106

1107
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1108 1109
}

1110 1111 1112 1113
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1114 1115
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1116 1117
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1118 1119 1120
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1121
	trace_ext4_da_update_reserve_space(inode, used);
1122 1123 1124 1125 1126 1127 1128 1129
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1130

1131 1132 1133
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1134 1135
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1136
	ei->i_allocated_meta_blocks = 0;
1137

1138 1139 1140 1141 1142 1143
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1144 1145
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1146
		ei->i_reserved_meta_blocks = 0;
1147
		ei->i_da_metadata_calc_len = 0;
1148
	}
1149
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1150

1151 1152
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1153
		dquot_claim_block(inode, used);
1154
	else {
1155 1156 1157
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1158
		 * not re-claim the quota for fallocated blocks.
1159
		 */
1160
		dquot_release_reservation_block(inode, used);
1161
	}
1162 1163 1164 1165 1166 1167

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1168 1169
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1170
		ext4_discard_preallocations(inode);
1171 1172
}

1173
static int __check_block_validity(struct inode *inode, const char *func,
1174 1175
				unsigned int line,
				struct ext4_map_blocks *map)
1176
{
1177 1178
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
1179 1180 1181 1182
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
1183 1184 1185 1186 1187
		return -EIO;
	}
	return 0;
}

1188
#define check_block_validity(inode, map)	\
1189
	__check_block_validity((inode), __func__, __LINE__, (map))
1190

1191
/*
1192 1193
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1227 1228 1229 1230 1231 1232 1233 1234 1235
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1236 1237 1238 1239 1240
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
1241 1242
			if (num >= max_pages) {
				done = 1;
1243
				break;
1244
			}
1245 1246 1247 1248 1249 1250
		}
		pagevec_release(&pvec);
	}
	return num;
}

1251
/*
1252
 * The ext4_map_blocks() function tries to look up the requested blocks,
1253
 * and returns if the blocks are already mapped.
1254 1255 1256 1257 1258
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1259 1260
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1273 1274
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1275 1276
{
	int retval;
1277

1278 1279 1280 1281
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1282
	/*
1283 1284
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1285 1286
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1287
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1288
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1289
	} else {
1290
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1291
	}
1292
	up_read((&EXT4_I(inode)->i_data_sem));
1293

1294
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1295
		int ret = check_block_validity(inode, map);
1296 1297 1298 1299
		if (ret != 0)
			return ret;
	}

1300
	/* If it is only a block(s) look up */
1301
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1302 1303 1304 1305 1306 1307 1308 1309 1310
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1311
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1312 1313
		return retval;

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1324
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1325

1326
	/*
1327 1328 1329 1330
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1331 1332
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1333 1334 1335 1336 1337 1338 1339

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1340
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1341
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1342 1343 1344 1345
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1346
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1347
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1348
	} else {
1349
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1350

1351
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1352 1353 1354 1355 1356
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1357
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1358
		}
1359

1360 1361 1362 1363 1364 1365 1366
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1367
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1368 1369
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1370
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1371
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1372

1373
	up_write((&EXT4_I(inode)->i_data_sem));
1374
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1375
		int ret = check_block_validity(inode, map);
1376 1377 1378
		if (ret != 0)
			return ret;
	}
1379 1380 1381
	return retval;
}

1382 1383 1384
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1385 1386
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1387
{
1388
	handle_t *handle = ext4_journal_current_handle();
1389
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1390
	int ret = 0, started = 0;
1391
	int dio_credits;
1392

1393 1394 1395 1396
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1397
		/* Direct IO write... */
1398 1399 1400
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1401
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1402
		if (IS_ERR(handle)) {
1403
			ret = PTR_ERR(handle);
1404
			return ret;
1405
		}
J
Jan Kara 已提交
1406
		started = 1;
1407 1408
	}

1409
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1410
	if (ret > 0) {
1411 1412 1413
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1414
		ret = 0;
1415
	}
J
Jan Kara 已提交
1416 1417
	if (started)
		ext4_journal_stop(handle);
1418 1419 1420
	return ret;
}

1421 1422 1423 1424 1425 1426 1427
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1428 1429 1430
/*
 * `handle' can be NULL if create is zero
 */
1431
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1432
				ext4_lblk_t block, int create, int *errp)
1433
{
1434 1435
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1436 1437 1438 1439
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1440 1441 1442 1443
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1455
	}
1456 1457 1458
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1459

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1473
		}
1474 1475 1476 1477 1478 1479 1480
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1481
	}
1482 1483 1484 1485 1486 1487
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1488 1489
}

1490
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1491
			       ext4_lblk_t block, int create, int *err)
1492
{
1493
	struct buffer_head *bh;
1494

1495
	bh = ext4_getblk(handle, inode, block, create, err);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1509 1510 1511 1512 1513 1514 1515
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1516 1517 1518 1519 1520 1521 1522
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1523 1524
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1525
	     block_start = block_end, bh = next) {
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1543
 * close off a transaction and start a new one between the ext4_get_block()
1544
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1545 1546
 * prepare_write() is the right place.
 *
1547 1548
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1549 1550 1551 1552
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1553
 * By accident, ext4 can be reentered when a transaction is open via
1554 1555 1556 1557 1558 1559
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1560
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1561 1562 1563 1564 1565
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1566
				       struct buffer_head *bh)
1567
{
1568 1569 1570
	int dirty = buffer_dirty(bh);
	int ret;

1571 1572
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1573
	/*
C
Christoph Hellwig 已提交
1574
	 * __block_write_begin() could have dirtied some buffers. Clean
1575 1576
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
1577
	 * by __block_write_begin() isn't a real problem here as we clear
1578 1579 1580 1581 1582 1583 1584 1585 1586
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
1587 1588
}

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1599 1600
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1601
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1602 1603
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1604
{
1605
	struct inode *inode = mapping->host;
1606
	int ret, needed_blocks;
1607 1608
	handle_t *handle;
	int retries = 0;
1609
	struct page *page;
1610
	pgoff_t index;
1611
	unsigned from, to;
N
Nick Piggin 已提交
1612

1613
	trace_ext4_write_begin(inode, pos, len, flags);
1614 1615 1616 1617 1618
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1619
	index = pos >> PAGE_CACHE_SHIFT;
1620 1621
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1622 1623

retry:
1624 1625 1626 1627
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1628
	}
1629

1630 1631 1632 1633
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1634
	page = grab_cache_page_write_begin(mapping, index, flags);
1635 1636 1637 1638 1639 1640 1641
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1642
	if (ext4_should_dioread_nolock(inode))
1643
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1644
	else
1645
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1646 1647

	if (!ret && ext4_should_journal_data(inode)) {
1648 1649 1650
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1651 1652

	if (ret) {
1653 1654
		unlock_page(page);
		page_cache_release(page);
1655
		/*
1656
		 * __block_write_begin may have instantiated a few blocks
1657 1658
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1659 1660 1661
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1662
		 */
1663
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1664 1665 1666 1667
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1668
			ext4_truncate_failed_write(inode);
1669
			/*
1670
			 * If truncate failed early the inode might
1671 1672 1673 1674 1675 1676 1677
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1678 1679
	}

1680
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1681
		goto retry;
1682
out:
1683 1684 1685
	return ret;
}

N
Nick Piggin 已提交
1686 1687
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1688 1689 1690 1691
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1692
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1693 1694
}

1695
static int ext4_generic_write_end(struct file *file,
1696 1697 1698
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1741 1742 1743 1744
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1745
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1746 1747
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1748
static int ext4_ordered_write_end(struct file *file,
1749 1750 1751
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1752
{
1753
	handle_t *handle = ext4_journal_current_handle();
1754
	struct inode *inode = mapping->host;
1755 1756
	int ret = 0, ret2;

1757
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1758
	ret = ext4_jbd2_file_inode(handle, inode);
1759 1760

	if (ret == 0) {
1761
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1762
							page, fsdata);
1763
		copied = ret2;
1764
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1765 1766 1767 1768 1769
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1770 1771
		if (ret2 < 0)
			ret = ret2;
1772
	}
1773
	ret2 = ext4_journal_stop(handle);
1774 1775
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1776

1777
	if (pos + len > inode->i_size) {
1778
		ext4_truncate_failed_write(inode);
1779
		/*
1780
		 * If truncate failed early the inode might still be
1781 1782 1783 1784 1785 1786 1787 1788
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1789
	return ret ? ret : copied;
1790 1791
}

N
Nick Piggin 已提交
1792
static int ext4_writeback_write_end(struct file *file,
1793 1794 1795
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1796
{
1797
	handle_t *handle = ext4_journal_current_handle();
1798
	struct inode *inode = mapping->host;
1799 1800
	int ret = 0, ret2;

1801
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1802
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1803
							page, fsdata);
1804
	copied = ret2;
1805
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1806 1807 1808 1809 1810 1811
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1812 1813
	if (ret2 < 0)
		ret = ret2;
1814

1815
	ret2 = ext4_journal_stop(handle);
1816 1817
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1818

1819
	if (pos + len > inode->i_size) {
1820
		ext4_truncate_failed_write(inode);
1821
		/*
1822
		 * If truncate failed early the inode might still be
1823 1824 1825 1826 1827 1828 1829
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1830
	return ret ? ret : copied;
1831 1832
}

N
Nick Piggin 已提交
1833
static int ext4_journalled_write_end(struct file *file,
1834 1835 1836
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1837
{
1838
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1839
	struct inode *inode = mapping->host;
1840 1841
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1842
	unsigned from, to;
1843
	loff_t new_i_size;
1844

1845
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1846 1847 1848 1849 1850 1851 1852 1853
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1854 1855

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1856
				to, &partial, write_end_fn);
1857 1858
	if (!partial)
		SetPageUptodate(page);
1859 1860
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1861
		i_size_write(inode, pos+copied);
1862
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1863 1864
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1865
		ret2 = ext4_mark_inode_dirty(handle, inode);
1866 1867 1868
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1869

1870
	unlock_page(page);
1871
	page_cache_release(page);
1872
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1873 1874 1875 1876 1877 1878
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1879
	ret2 = ext4_journal_stop(handle);
1880 1881
	if (!ret)
		ret = ret2;
1882
	if (pos + len > inode->i_size) {
1883
		ext4_truncate_failed_write(inode);
1884
		/*
1885
		 * If truncate failed early the inode might still be
1886 1887 1888 1889 1890 1891
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1892 1893

	return ret ? ret : copied;
1894
}
1895

1896 1897 1898
/*
 * Reserve a single block located at lblock
 */
1899
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1900
{
A
Aneesh Kumar K.V 已提交
1901
	int retries = 0;
1902
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1903
	struct ext4_inode_info *ei = EXT4_I(inode);
1904
	unsigned long md_needed;
1905
	int ret;
1906 1907 1908 1909 1910 1911

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1912
repeat:
1913
	spin_lock(&ei->i_block_reservation_lock);
1914
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1915
	trace_ext4_da_reserve_space(inode, md_needed);
1916
	spin_unlock(&ei->i_block_reservation_lock);
1917

1918
	/*
1919 1920 1921
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1922
	 */
1923
	ret = dquot_reserve_block(inode, 1);
1924 1925
	if (ret)
		return ret;
1926 1927 1928 1929
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1930
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1931
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1932 1933 1934 1935
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1936 1937
		return -ENOSPC;
	}
1938
	spin_lock(&ei->i_block_reservation_lock);
1939
	ei->i_reserved_data_blocks++;
1940 1941
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1942

1943 1944 1945
	return 0;       /* success */
}

1946
static void ext4_da_release_space(struct inode *inode, int to_free)
1947 1948
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1949
	struct ext4_inode_info *ei = EXT4_I(inode);
1950

1951 1952 1953
	if (!to_free)
		return;		/* Nothing to release, exit */

1954
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1955

L
Li Zefan 已提交
1956
	trace_ext4_da_release_space(inode, to_free);
1957
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1958
		/*
1959 1960 1961 1962
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1963
		 */
1964 1965 1966 1967 1968 1969
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1970
	}
1971
	ei->i_reserved_data_blocks -= to_free;
1972

1973 1974 1975 1976 1977 1978
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1979 1980
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1981
		ei->i_reserved_meta_blocks = 0;
1982
		ei->i_da_metadata_calc_len = 0;
1983
	}
1984

1985
	/* update fs dirty data blocks counter */
1986
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1987 1988

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1989

1990
	dquot_release_reservation_block(inode, to_free);
1991 1992 1993
}

static void ext4_da_page_release_reservation(struct page *page,
1994
					     unsigned long offset)
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
2011
	ext4_da_release_space(page->mapping->host, to_release);
2012
}
2013

2014 2015 2016 2017 2018 2019
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
2020
 * them with writepage() call back
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
2031 2032
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
2033
{
2034 2035 2036 2037 2038
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2039
	loff_t size = i_size_read(inode);
2040 2041
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
2042
	int journal_data = ext4_should_journal_data(inode);
2043
	sector_t pblock = 0, cur_logical = 0;
2044
	struct ext4_io_submit io_submit;
2045 2046

	BUG_ON(mpd->next_page <= mpd->first_page);
2047
	memset(&io_submit, 0, sizeof(io_submit));
2048 2049 2050
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
2051
	 * If we look at mpd->b_blocknr we would only be looking
2052 2053
	 * at the currently mapped buffer_heads.
	 */
2054 2055 2056
	index = mpd->first_page;
	end = mpd->next_page - 1;

2057
	pagevec_init(&pvec, 0);
2058
	while (index <= end) {
2059
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2060 2061 2062
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
2063
			int commit_write = 0, redirty_page = 0;
2064 2065
			struct page *page = pvec.pages[i];

2066 2067 2068
			index = page->index;
			if (index > end)
				break;
2069 2070 2071 2072 2073

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
2074 2075 2076 2077 2078 2079
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
2080 2081 2082 2083 2084
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2085
			/*
2086 2087
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
2088
			 * __block_write_begin.  If this fails,
2089
			 * redirty the page and move on.
2090
			 */
2091
			if (!page_has_buffers(page)) {
2092
				if (__block_write_begin(page, 0, len,
2093 2094 2095 2096 2097 2098 2099 2100 2101
						noalloc_get_block_write)) {
				redirty_page:
					redirty_page_for_writepage(mpd->wbc,
								   page);
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
2102

2103 2104
			bh = page_bufs = page_buffers(page);
			block_start = 0;
2105
			do {
2106
				if (!bh)
2107
					goto redirty_page;
2108 2109 2110
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
2111 2112 2113 2114
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
2115 2116 2117 2118 2119 2120 2121
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
2122

2123 2124 2125
				/* redirty page if block allocation undone */
				if (buffer_delay(bh) || buffer_unwritten(bh))
					redirty_page = 1;
2126 2127
				bh = bh->b_this_page;
				block_start += bh->b_size;
2128 2129
				cur_logical++;
				pblock++;
2130 2131 2132 2133
			} while (bh != page_bufs);

			if (redirty_page)
				goto redirty_page;
2134 2135 2136 2137 2138

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

2139 2140 2141 2142 2143 2144
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
2145
				err = __ext4_journalled_writepage(page, len);
2146
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2147 2148
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
2149 2150 2151
			else
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
2152 2153

			if (!err)
2154
				mpd->pages_written++;
2155 2156 2157 2158 2159 2160 2161 2162 2163
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
2164
	ext4_io_submit(&io_submit);
2165 2166 2167
	return ret;
}

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2186
			if (page->index > end)
2187 2188 2189 2190 2191 2192 2193
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2194 2195
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2196 2197 2198 2199
	}
	return;
}

2200 2201 2202
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2215 2216 2217
	return;
}

2218
/*
2219 2220
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
2221
 *
2222
 * @mpd - bh describing space
2223 2224 2225 2226
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2227
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2228
{
2229
	int err, blks, get_blocks_flags;
2230
	struct ext4_map_blocks map, *mapp = NULL;
2231 2232 2233 2234
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2235 2236

	/*
2237 2238
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
2239
	 */
2240 2241 2242 2243 2244
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
2245 2246 2247 2248

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2249
	/*
2250
	 * Call ext4_map_blocks() to allocate any delayed allocation
2251 2252 2253 2254 2255 2256 2257 2258
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
2259
	 * want to change *many* call functions, so ext4_map_blocks()
2260
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2261 2262 2263 2264 2265
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2266
	 */
2267 2268
	map.m_lblk = next;
	map.m_len = max_blocks;
2269
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2270 2271
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2272
	if (mpd->b_state & (1 << BH_Delay))
2273 2274
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2275
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2276
	if (blks < 0) {
2277 2278
		struct super_block *sb = mpd->inode->i_sb;

2279
		err = blks;
2280
		/*
2281 2282 2283 2284
		 * If get block returns EAGAIN or ENOSPC and there
		 * appears to be free blocks we will call
		 * ext4_writepage() for all of the pages which will
		 * just redirty the pages.
2285 2286
		 */
		if (err == -EAGAIN)
2287
			goto submit_io;
2288 2289

		if (err == -ENOSPC &&
2290
		    ext4_count_free_blocks(sb)) {
2291
			mpd->retval = err;
2292
			goto submit_io;
2293 2294
		}

2295
		/*
2296 2297 2298 2299 2300
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2301
		 */
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2313
		}
2314
		/* invalidate all the pages */
2315
		ext4_da_block_invalidatepages(mpd, next,
2316
				mpd->b_size >> mpd->inode->i_blkbits);
2317
		return;
2318
	}
2319 2320
	BUG_ON(blks == 0);

2321
	mapp = &map;
2322 2323 2324
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2325

2326 2327 2328
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2329

2330 2331 2332
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
2333 2334
			/* This only happens if the journal is aborted */
			return;
2335 2336 2337
	}

	/*
2338
	 * Update on-disk size along with block allocation.
2339 2340 2341 2342 2343 2344
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
2345 2346 2347 2348 2349
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
2350 2351
	}

2352
submit_io:
2353
	mpage_da_submit_io(mpd, mapp);
2354
	mpd->io_done = 1;
2355 2356
}

2357 2358
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2370 2371
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2372 2373
{
	sector_t next;
2374
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2375

2376 2377 2378 2379
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
2380
	 * ext4_map_blocks() multiple times in a loop
2381 2382 2383 2384
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2385
	/* check if thereserved journal credits might overflow */
2386
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2407 2408 2409
	/*
	 * First block in the extent
	 */
2410 2411 2412 2413
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2414 2415 2416
		return;
	}

2417
	next = mpd->b_blocknr + nrblocks;
2418 2419 2420
	/*
	 * Can we merge the block to our big extent?
	 */
2421 2422
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2423 2424 2425
		return;
	}

2426
flush_it:
2427 2428 2429 2430
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2431
	mpage_da_map_and_submit(mpd);
2432
	return;
2433 2434
}

2435
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2436
{
2437
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2438 2439
}

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
2450 2451
				struct writeback_control *wbc,
				struct mpage_da_data *mpd)
2452 2453
{
	struct inode *inode = mpd->inode;
2454
	struct buffer_head *bh, *head;
2455 2456 2457 2458 2459 2460 2461 2462
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2463
		 * and start IO on them
2464 2465
		 */
		if (mpd->next_page != mpd->first_page) {
2466
			mpage_da_map_and_submit(mpd);
2467 2468 2469 2470 2471 2472
			/*
			 * skip rest of the page in the page_vec
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2483 2484 2485
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2486 2487 2488 2489 2490 2491 2492
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2493 2494
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2495 2496
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2497 2498 2499 2500 2501 2502 2503 2504
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2505 2506 2507 2508
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2509
			 * with the page in ext4_writepage
2510
			 */
2511
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2512 2513 2514
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2515 2516
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2517 2518 2519 2520 2521 2522 2523 2524 2525
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2526 2527
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2528
			}
2529 2530 2531 2532 2533 2534 2535 2536
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2537 2538 2539
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2540 2541 2542 2543 2544 2545 2546
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2547 2548
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2549
				  struct buffer_head *bh, int create)
2550
{
2551
	struct ext4_map_blocks map;
2552
	int ret = 0;
2553 2554 2555 2556
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2557 2558

	BUG_ON(create == 0);
2559 2560 2561 2562
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2563 2564 2565 2566 2567 2568

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2569 2570 2571 2572 2573 2574
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2575
		/*
C
Christoph Hellwig 已提交
2576
		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2577
		 */
2578
		ret = ext4_da_reserve_space(inode, iblock);
2579 2580 2581 2582
		if (ret)
			/* not enough space to reserve */
			return ret;

2583 2584 2585 2586
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2587 2588
	}

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
		set_buffer_mapped(bh);
	}
	return 0;
2603
}
2604

2605 2606 2607
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
2608
 * callback function for block_write_begin() and block_write_full_page().
2609
 * These functions should only try to map a single block at a time.
2610 2611 2612 2613 2614
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2615 2616 2617
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2618 2619
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2620 2621
				   struct buffer_head *bh_result, int create)
{
2622
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2623
	return _ext4_get_block(inode, iblock, bh_result, 0);
2624 2625
}

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2648
	ClearPageChecked(page);
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2674
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2675 2676 2677 2678
out:
	return ret;
}

2679 2680 2681
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2682
/*
2683 2684 2685 2686 2687 2688 2689 2690 2691
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2692 2693 2694 2695 2696
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2722
 */
2723
static int ext4_writepage(struct page *page,
2724
			  struct writeback_control *wbc)
2725
{
T
Theodore Ts'o 已提交
2726
	int ret = 0, commit_write = 0;
2727
	loff_t size;
2728
	unsigned int len;
2729
	struct buffer_head *page_bufs = NULL;
2730 2731
	struct inode *inode = page->mapping->host;

2732
	trace_ext4_writepage(inode, page);
2733 2734 2735 2736 2737
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2738

T
Theodore Ts'o 已提交
2739 2740
	/*
	 * If the page does not have buffers (for whatever reason),
2741
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
2742 2743
	 * fails, redirty the page and move on.
	 */
2744
	if (!page_has_buffers(page)) {
2745
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2746 2747
					noalloc_get_block_write)) {
		redirty_page:
2748 2749 2750 2751
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2752 2753 2754 2755 2756
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2757
		/*
2758 2759 2760 2761
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
2762
		 */
T
Theodore Ts'o 已提交
2763 2764 2765
		goto redirty_page;
	}
	if (commit_write)
2766
		/* now mark the buffer_heads as dirty and uptodate */
2767
		block_commit_write(page, 0, len);
2768

2769
	if (PageChecked(page) && ext4_should_journal_data(inode))
2770 2771 2772 2773
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2774
		return __ext4_journalled_writepage(page, len);
2775

T
Theodore Ts'o 已提交
2776
	if (buffer_uninit(page_bufs)) {
2777 2778 2779 2780
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2781 2782
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2783 2784 2785 2786

	return ret;
}

2787
/*
2788 2789 2790 2791 2792
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2793
 */
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2805
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2806 2807 2808 2809 2810
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2811

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
 * address space and call the callback function (which usually writes
 * the pages).
 *
 * This is a forked version of write_cache_pages().  Differences:
 *	Range cyclic is ignored.
 *	no_nrwrite_index_update is always presumed true
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2823 2824
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2825 2826 2827 2828
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
2829
	unsigned nr_pages;
2830 2831 2832
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	long nr_to_write = wbc->nr_to_write;
2833
	int tag;
2834 2835 2836 2837 2838

	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2839 2840 2841 2842 2843
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2844
	*done_index = index;
2845 2846 2847
	while (!done && (index <= end)) {
		int i;

2848
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				done = 1;
				break;
			}

2868 2869
			*done_index = page->index + 1;

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

			ret = __mpage_da_writepage(page, wbc, mpd);
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					done = 1;
					break;
				}
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
				    wbc->sync_mode == WB_SYNC_NONE) {
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
					done = 1;
					break;
				}
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	return ret;
}


2939
static int ext4_da_writepages(struct address_space *mapping,
2940
			      struct writeback_control *wbc)
2941
{
2942 2943
	pgoff_t	index;
	int range_whole = 0;
2944
	handle_t *handle = NULL;
2945
	struct mpage_da_data mpd;
2946
	struct inode *inode = mapping->host;
2947 2948
	int pages_written = 0;
	long pages_skipped;
2949
	unsigned int max_pages;
2950
	int range_cyclic, cycled = 1, io_done = 0;
2951 2952
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2953
	loff_t range_start = wbc->range_start;
2954
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2955
	pgoff_t done_index = 0;
2956
	pgoff_t end;
2957

2958
	trace_ext4_da_writepages(inode, wbc);
2959

2960 2961 2962 2963 2964
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2965
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2966
		return 0;
2967 2968 2969 2970 2971

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2972
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2973 2974 2975 2976 2977
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2978
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2979 2980
		return -EROFS;

2981 2982
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2983

2984 2985
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2986
		index = mapping->writeback_index;
2987 2988 2989 2990 2991
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2992 2993
		end = -1;
	} else {
2994
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2995 2996
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2997

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3015 3016 3017 3018 3019 3020
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

3031 3032 3033
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

3034 3035
	pages_skipped = wbc->pages_skipped;

3036
retry:
3037 3038 3039
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);

3040
	while (!ret && wbc->nr_to_write > 0) {
3041 3042 3043 3044 3045 3046 3047 3048

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
3049
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3050

3051 3052 3053 3054
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
3055
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3056
			       "%ld pages, ino %lu; err %d", __func__,
3057
				wbc->nr_to_write, inode->i_ino, ret);
3058 3059
			goto out_writepages;
		}
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
3078
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3079
		/*
3080
		 * If we have a contiguous extent of pages and we
3081 3082 3083 3084
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3085
			mpage_da_map_and_submit(&mpd);
3086 3087
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3088
		trace_ext4_da_write_pages(inode, &mpd);
3089
		wbc->nr_to_write -= mpd.pages_written;
3090

3091
		ext4_journal_stop(handle);
3092

3093
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3094 3095 3096 3097
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3098
			jbd2_journal_force_commit_nested(sbi->s_journal);
3099 3100 3101
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3102 3103 3104 3105
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3106 3107
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
3108
			ret = 0;
3109
			io_done = 1;
3110
		} else if (wbc->nr_to_write)
3111 3112 3113 3114 3115 3116
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3117
	}
3118 3119 3120 3121 3122 3123 3124
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3125
	if (pages_skipped != wbc->pages_skipped)
3126 3127
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
3128
			 "with nr_to_write = %ld ret = %d",
3129
			 __func__, wbc->nr_to_write, ret);
3130 3131

	/* Update index */
3132
	wbc->range_cyclic = range_cyclic;
3133 3134 3135 3136 3137
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
3138
		mapping->writeback_index = done_index;
3139

3140
out_writepages:
3141
	wbc->nr_to_write -= nr_to_writebump;
3142
	wbc->range_start = range_start;
3143
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3144
	return ret;
3145 3146
}

3147 3148 3149 3150 3151 3152 3153 3154 3155
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3156
	 * counters can get slightly wrong with percpu_counter_batch getting
3157 3158 3159 3160 3161 3162 3163 3164 3165
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3166 3167
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3168 3169 3170
		 */
		return 1;
	}
3171 3172 3173 3174 3175 3176 3177
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3178 3179 3180
	return 0;
}

3181
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3182 3183
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3184
{
3185
	int ret, retries = 0;
3186 3187 3188 3189 3190 3191
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3192 3193 3194 3195 3196 3197 3198

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3199
	trace_ext4_da_write_begin(inode, pos, len, flags);
3200
retry:
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3212 3213 3214
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3215

3216
	page = grab_cache_page_write_begin(mapping, index, flags);
3217 3218 3219 3220 3221
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3222 3223
	*pagep = page;

3224
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3225 3226 3227 3228
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3229 3230 3231 3232 3233 3234
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3235
			ext4_truncate_failed_write(inode);
3236 3237
	}

3238 3239
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3240 3241 3242 3243
out:
	return ret;
}

3244 3245 3246 3247 3248
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3249
					    unsigned long offset)
3250 3251 3252 3253 3254 3255 3256 3257 3258
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3259
	for (i = 0; i < idx; i++)
3260 3261
		bh = bh->b_this_page;

3262
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3263 3264 3265 3266
		return 0;
	return 1;
}

3267
static int ext4_da_write_end(struct file *file,
3268 3269 3270
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3271 3272 3273 3274 3275
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3276
	unsigned long start, end;
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3290

3291
	trace_ext4_da_write_end(inode, pos, len, copied);
3292
	start = pos & (PAGE_CACHE_SIZE - 1);
3293
	end = start + copied - 1;
3294 3295 3296 3297 3298 3299 3300 3301

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3313

3314 3315 3316
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3317 3318 3319 3320 3321
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3322
		}
3323
	}
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3345
	ext4_da_page_release_reservation(page, offset);
3346 3347 3348 3349 3350 3351 3352

out:
	ext4_invalidatepage(page, offset);

	return;
}

3353 3354 3355 3356 3357
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3358 3359
	trace_ext4_alloc_da_blocks(inode);

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3370
	 *
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
3383
	 * the pages by calling redirty_page_for_writepage() but that
3384 3385 3386 3387 3388 3389
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3390
	 *
3391 3392 3393 3394 3395 3396
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3397

3398 3399 3400 3401 3402
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3403
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3404 3405 3406 3407 3408 3409 3410 3411
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3412
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3413 3414 3415 3416 3417
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3428 3429
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3441
		 * NB. EXT4_STATE_JDATA is not set on files other than
3442 3443 3444 3445 3446 3447
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3448
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3449
		journal = EXT4_JOURNAL(inode);
3450 3451 3452
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3453 3454 3455 3456 3457

		if (err)
			return 0;
	}

3458
	return generic_block_bmap(mapping, block, ext4_get_block);
3459 3460
}

3461
static int ext4_readpage(struct file *file, struct page *page)
3462
{
3463
	return mpage_readpage(page, ext4_get_block);
3464 3465 3466
}

static int
3467
ext4_readpages(struct file *file, struct address_space *mapping,
3468 3469
		struct list_head *pages, unsigned nr_pages)
{
3470
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3471 3472
}

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3493
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3494
{
3495
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3496

3497 3498 3499 3500 3501
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3502 3503 3504 3505 3506 3507
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3508 3509 3510 3511
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3512 3513
}

3514
static int ext4_releasepage(struct page *page, gfp_t wait)
3515
{
3516
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3517 3518 3519 3520

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3521 3522 3523 3524
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3525 3526 3527
}

/*
3528 3529
 * O_DIRECT for ext3 (or indirect map) based files
 *
3530 3531 3532 3533 3534
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3535 3536
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3537
 */
3538
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3539 3540
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3541 3542 3543
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3544
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3545
	handle_t *handle;
3546 3547 3548
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3549
	int retries = 0;
3550 3551 3552 3553 3554

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3555 3556 3557 3558 3559 3560
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3561
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3562 3563 3564 3565
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3566 3567
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3568
			ext4_journal_stop(handle);
3569 3570 3571
		}
	}

3572
retry:
3573
	if (rw == READ && ext4_should_dioread_nolock(inode))
3574
		ret = __blockdev_direct_IO(rw, iocb, inode,
3575 3576
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3577 3578
				 ext4_get_block, NULL, NULL, 0);
	else {
3579 3580
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3581
				 offset, nr_segs,
3582
				 ext4_get_block, NULL);
3583 3584 3585 3586 3587 3588 3589 3590 3591

		if (unlikely((rw & WRITE) && ret < 0)) {
			loff_t isize = i_size_read(inode);
			loff_t end = offset + iov_length(iov, nr_segs);

			if (end > isize)
				vmtruncate(inode, isize);
		}
	}
3592 3593
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3594

J
Jan Kara 已提交
3595
	if (orphan) {
3596 3597
		int err;

J
Jan Kara 已提交
3598 3599 3600 3601 3602 3603 3604
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3605 3606 3607
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3608 3609 3610
			goto out;
		}
		if (inode->i_nlink)
3611
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3612
		if (ret > 0) {
3613 3614 3615 3616 3617 3618 3619 3620
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3621
				 * ext4_mark_inode_dirty() to userspace.  So
3622 3623
				 * ignore it.
				 */
3624
				ext4_mark_inode_dirty(handle, inode);
3625 3626
			}
		}
3627
		err = ext4_journal_stop(handle);
3628 3629 3630 3631 3632 3633 3634
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3635 3636 3637 3638 3639
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3640
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3641 3642
		   struct buffer_head *bh_result, int create)
{
3643
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3644
		   inode->i_ino, create);
3645 3646
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3647 3648 3649
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3650 3651
			    ssize_t size, void *private, int ret,
			    bool is_async)
3652 3653 3654
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3655 3656
	unsigned long flags;
	struct ext4_inode_info *ei;
3657

3658 3659
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3660
		goto out;
3661

3662 3663 3664 3665 3666 3667
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3668
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3669 3670
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3671 3672 3673 3674
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3675 3676
	}

3677 3678
	io_end->offset = offset;
	io_end->size = size;
3679 3680 3681 3682
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3683 3684
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3685
	/* Add the io_end to per-inode completed aio dio list*/
3686 3687 3688 3689
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3690 3691 3692

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
3693 3694
	iocb->private = NULL;
}
3695

3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

3713
	io_end->flag = EXT4_IO_END_UNWRITTEN;
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
3741
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3760 3761 3762 3763 3764
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
3765
 * For holes, we fallocate those blocks, mark them as uninitialized
3766
 * If those blocks were preallocated, we mark sure they are splited, but
3767
 * still keep the range to write as uninitialized.
3768
 *
3769 3770 3771 3772
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3791 3792 3793
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3794 3795
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3796 3797
		 *
 		 * As to previously fallocated extents, ext4 get_block
3798 3799 3800
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3801 3802 3803 3804 3805 3806 3807 3808
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3809
 		 */
3810 3811 3812
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3813
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3814 3815 3816 3817
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
3818
			 * direct IO, so that later ext4_map_blocks()
3819 3820 3821 3822 3823 3824 3825
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3826 3827 3828
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3829
					 ext4_get_block_write,
3830
					 ext4_end_io_dio);
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3850 3851
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3852
			int err;
3853 3854 3855 3856
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3857 3858 3859 3860
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3861
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3862
		}
3863 3864
		return ret;
	}
3865 3866

	/* for write the the end of file case, we fall back to old way */
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

3877
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3878 3879 3880 3881 3882
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

3883
/*
3884
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3896
static int ext4_journalled_set_page_dirty(struct page *page)
3897 3898 3899 3900 3901
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3902
static const struct address_space_operations ext4_ordered_aops = {
3903 3904
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3905
	.writepage		= ext4_writepage,
3906 3907 3908 3909 3910 3911 3912 3913 3914
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3915
	.error_remove_page	= generic_error_remove_page,
3916 3917
};

3918
static const struct address_space_operations ext4_writeback_aops = {
3919 3920
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3921
	.writepage		= ext4_writepage,
3922 3923 3924 3925 3926 3927 3928 3929 3930
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3931
	.error_remove_page	= generic_error_remove_page,
3932 3933
};

3934
static const struct address_space_operations ext4_journalled_aops = {
3935 3936
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3937
	.writepage		= ext4_writepage,
3938 3939 3940 3941 3942 3943 3944 3945
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3946
	.error_remove_page	= generic_error_remove_page,
3947 3948
};

3949
static const struct address_space_operations ext4_da_aops = {
3950 3951
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3952
	.writepage		= ext4_writepage,
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3963
	.error_remove_page	= generic_error_remove_page,
3964 3965
};

3966
void ext4_set_aops(struct inode *inode)
3967
{
3968 3969 3970 3971
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3972
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3973 3974 3975
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3976 3977
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3978
	else
3979
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3980 3981 3982
}

/*
3983
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3984 3985 3986 3987
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3988
int ext4_block_truncate_page(handle_t *handle,
3989 3990
		struct address_space *mapping, loff_t from)
{
3991
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3992
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3993 3994
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3995 3996
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3997
	struct page *page;
3998 3999
	int err = 0;

4000 4001
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4002 4003 4004
	if (!page)
		return -EINVAL;

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4029
		ext4_get_block(inode, iblock, bh, 0);
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4050
	if (ext4_should_journal_data(inode)) {
4051
		BUFFER_TRACE(bh, "get write access");
4052
		err = ext4_journal_get_write_access(handle, bh);
4053 4054 4055 4056
		if (err)
			goto unlock;
	}

4057
	zero_user(page, offset, length);
4058 4059 4060 4061

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4062
	if (ext4_should_journal_data(inode)) {
4063
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4064
	} else {
4065
		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
4066
			err = ext4_jbd2_file_inode(handle, inode);
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4090
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4091 4092
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4093
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4094 4095 4096
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4097
 *	This is a helper function used by ext4_truncate().
4098 4099 4100 4101 4102 4103 4104
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4105
 *	past the truncation point is possible until ext4_truncate()
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4124
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4125 4126
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4127 4128 4129 4130 4131
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4132
	/* Make k index the deepest non-null offset + 1 */
4133 4134
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4135
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4146
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4158
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4159 4160 4161 4162 4163 4164
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4165
	while (partial > p) {
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4181 4182 4183 4184 4185
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4186 4187
{
	__le32 *p;
4188
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4189
	int	err;
4190 4191 4192

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4193

4194 4195
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4196 4197 4198
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4199 4200 4201
		return 1;
	}

4202 4203
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4204
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
			err = ext4_handle_dirty_metadata(handle, inode, bh);
			if (unlikely(err)) {
				ext4_std_error(inode->i_sb, err);
				return 1;
			}
		}
		err = ext4_mark_inode_dirty(handle, inode);
		if (unlikely(err)) {
			ext4_std_error(inode->i_sb, err);
			return 1;
		}
		err = ext4_truncate_restart_trans(handle, inode,
						  blocks_for_truncate(inode));
		if (unlikely(err)) {
			ext4_std_error(inode->i_sb, err);
			return 1;
4221 4222 4223
		}
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4224
			ext4_journal_get_write_access(handle, bh);
4225 4226 4227
		}
	}

4228 4229
	for (p = first; p < last; p++)
		*p = 0;
4230

4231
	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4232
	return 0;
4233 4234 4235
}

/**
4236
 * ext4_free_data - free a list of data blocks
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4254
static void ext4_free_data(handle_t *handle, struct inode *inode,
4255 4256 4257
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4258
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4259 4260 4261 4262
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4263
	ext4_fsblk_t nr;		    /* Current block # */
4264 4265 4266 4267 4268 4269
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4270
		err = ext4_journal_get_write_access(handle, this_bh);
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4288 4289 4290 4291
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4292 4293 4294 4295 4296 4297 4298 4299
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4300
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4301 4302 4303
				  count, block_to_free_p, p);

	if (this_bh) {
4304
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4305 4306 4307 4308 4309 4310 4311

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4312
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4313
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4314
		else
4315 4316 4317 4318
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4319 4320 4321 4322
	}
}

/**
4323
 *	ext4_free_branches - free an array of branches
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4335
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4336 4337 4338
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4339
	ext4_fsblk_t nr;
4340 4341
	__le32 *p;

4342
	if (ext4_handle_is_aborted(handle))
4343 4344 4345 4346
		return;

	if (depth--) {
		struct buffer_head *bh;
4347
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4348 4349 4350 4351 4352 4353
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4354 4355
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4356 4357 4358 4359
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4360 4361 4362
				break;
			}

4363 4364 4365 4366 4367 4368 4369 4370
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4371 4372
				EXT4_ERROR_INODE_BLOCK(inode, nr,
						       "Read failure");
4373 4374 4375 4376 4377
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4378
			ext4_free_branches(handle, inode, bh,
4379 4380 4381
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4382
			brelse(bh);
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4400
			if (ext4_handle_is_aborted(handle))
4401 4402
				return;
			if (try_to_extend_transaction(handle, inode)) {
4403
				ext4_mark_inode_dirty(handle, inode);
4404 4405
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4406 4407
			}

4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
			/*
			 * The forget flag here is critical because if
			 * we are journaling (and not doing data
			 * journaling), we have to make sure a revoke
			 * record is written to prevent the journal
			 * replay from overwriting the (former)
			 * indirect block if it gets reallocated as a
			 * data block.  This must happen in the same
			 * transaction where the data blocks are
			 * actually freed.
			 */
4419
			ext4_free_blocks(handle, inode, NULL, nr, 1,
4420 4421
					 EXT4_FREE_BLOCKS_METADATA|
					 EXT4_FREE_BLOCKS_FORGET);
4422 4423 4424 4425 4426 4427 4428

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4429
				if (!ext4_journal_get_write_access(handle,
4430 4431 4432
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4433 4434 4435 4436
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4437 4438 4439 4440 4441 4442
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4443
		ext4_free_data(handle, inode, parent_bh, first, last);
4444 4445 4446
	}
}

4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4460
/*
4461
 * ext4_truncate()
4462
 *
4463 4464
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4481
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4482
 * that this inode's truncate did not complete and it will again call
4483 4484
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4485
 * that's fine - as long as they are linked from the inode, the post-crash
4486
 * ext4_truncate() run will find them and release them.
4487
 */
4488
void ext4_truncate(struct inode *inode)
4489 4490
{
	handle_t *handle;
4491
	struct ext4_inode_info *ei = EXT4_I(inode);
4492
	__le32 *i_data = ei->i_data;
4493
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4494
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4495
	ext4_lblk_t offsets[4];
4496 4497 4498 4499
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4500
	ext4_lblk_t last_block;
4501 4502
	unsigned blocksize = inode->i_sb->s_blocksize;

4503
	if (!ext4_can_truncate(inode))
4504 4505
		return;

4506
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4507

4508
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4509
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4510

4511
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4512
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4513 4514
		return;
	}
A
Alex Tomas 已提交
4515

4516
	handle = start_transaction(inode);
4517
	if (IS_ERR(handle))
4518 4519 4520
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4521
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4522

4523 4524 4525
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4526

4527
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4540
	if (ext4_orphan_add(handle, inode))
4541 4542
		goto out_stop;

4543 4544 4545 4546 4547
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4548

4549
	ext4_discard_preallocations(inode);
4550

4551 4552 4553 4554 4555
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4556
	 * ext4 *really* writes onto the disk inode.
4557 4558 4559 4560
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4561 4562
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4563 4564 4565
		goto do_indirects;
	}

4566
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4567 4568 4569 4570
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4571
			ext4_free_branches(handle, inode, NULL,
4572 4573 4574 4575 4576 4577 4578 4579 4580
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4581
			ext4_free_branches(handle, inode, partial->bh,
4582 4583 4584 4585 4586 4587
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4588
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4589 4590 4591
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4592
		brelse(partial->bh);
4593 4594 4595 4596 4597 4598
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4599
		nr = i_data[EXT4_IND_BLOCK];
4600
		if (nr) {
4601 4602
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4603
		}
4604 4605
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4606
		if (nr) {
4607 4608
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4609
		}
4610 4611
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4612
		if (nr) {
4613 4614
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4615
		}
4616
	case EXT4_TIND_BLOCK:
4617 4618 4619
		;
	}

4620
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4621
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4622
	ext4_mark_inode_dirty(handle, inode);
4623 4624 4625 4626 4627 4628

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4629
		ext4_handle_sync(handle);
4630 4631 4632 4633 4634
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4635
	 * ext4_delete_inode(), and we allow that function to clean up the
4636 4637 4638
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4639
		ext4_orphan_del(handle, inode);
4640

4641
	ext4_journal_stop(handle);
4642 4643 4644
}

/*
4645
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4646 4647 4648 4649
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4650 4651
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4652
{
4653 4654 4655 4656 4657 4658
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4659
	iloc->bh = NULL;
4660 4661
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4662

4663 4664 4665
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4666 4667
		return -EIO;

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4678
	if (!bh) {
4679 4680
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
4681 4682 4683 4684
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4708
			int i, start;
4709

4710
			start = inode_offset & ~(inodes_per_block - 1);
4711

4712 4713
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4726
			for (i = start; i < start + inodes_per_block; i++) {
4727 4728
				if (i == inode_offset)
					continue;
4729
				if (ext4_test_bit(i, bitmap_bh->b_data))
4730 4731 4732
					break;
			}
			brelse(bitmap_bh);
4733
			if (i == start + inodes_per_block) {
4734 4735 4736 4737 4738 4739 4740 4741 4742
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4743 4744 4745 4746 4747 4748 4749 4750 4751
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4752
			/* s_inode_readahead_blks is always a power of 2 */
4753 4754 4755 4756 4757 4758 4759
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4760
				num -= ext4_itable_unused_count(sb, gdp);
4761 4762 4763 4764 4765 4766 4767
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4778 4779
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4780 4781 4782 4783 4784 4785 4786 4787 4788
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4789
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4790 4791
{
	/* We have all inode data except xattrs in memory here. */
4792
	return __ext4_get_inode_loc(inode, iloc,
4793
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4794 4795
}

4796
void ext4_set_inode_flags(struct inode *inode)
4797
{
4798
	unsigned int flags = EXT4_I(inode)->i_flags;
4799 4800

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4801
	if (flags & EXT4_SYNC_FL)
4802
		inode->i_flags |= S_SYNC;
4803
	if (flags & EXT4_APPEND_FL)
4804
		inode->i_flags |= S_APPEND;
4805
	if (flags & EXT4_IMMUTABLE_FL)
4806
		inode->i_flags |= S_IMMUTABLE;
4807
	if (flags & EXT4_NOATIME_FL)
4808
		inode->i_flags |= S_NOATIME;
4809
	if (flags & EXT4_DIRSYNC_FL)
4810 4811 4812
		inode->i_flags |= S_DIRSYNC;
}

4813 4814 4815
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4836
}
4837

4838
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4839
				  struct ext4_inode_info *ei)
4840 4841
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4842 4843
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4844 4845 4846 4847 4848 4849

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4850
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4851 4852 4853 4854 4855
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4856 4857 4858 4859
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4860

4861
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4862
{
4863 4864
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4865 4866
	struct ext4_inode_info *ei;
	struct inode *inode;
4867
	journal_t *journal = EXT4_SB(sb)->s_journal;
4868
	long ret;
4869 4870
	int block;

4871 4872 4873 4874 4875 4876 4877
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4878
	iloc.bh = NULL;
4879

4880 4881
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4882
		goto bad_inode;
4883
	raw_inode = ext4_raw_inode(&iloc);
4884 4885 4886
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4887
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4888 4889 4890 4891 4892
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

4893
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4894 4895 4896 4897 4898 4899 4900 4901 4902
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4903
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4904
			/* this inode is deleted */
4905
			ret = -ESTALE;
4906 4907 4908 4909 4910 4911 4912 4913
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4914
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4915
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4916
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4917 4918
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4919
	inode->i_size = ext4_isize(raw_inode);
4920
	ei->i_disksize = inode->i_size;
4921 4922 4923
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4924 4925
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4926
	ei->i_last_alloc_group = ~0;
4927 4928 4929 4930
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4931
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4932 4933 4934
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4946
		read_lock(&journal->j_state_lock);
4947 4948 4949 4950 4951 4952 4953 4954
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4955
		read_unlock(&journal->j_state_lock);
4956 4957 4958 4959
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4960
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4961
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4962
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4963
		    EXT4_INODE_SIZE(inode->i_sb)) {
4964
			ret = -EIO;
4965
			goto bad_inode;
4966
		}
4967 4968
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4969 4970
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4971 4972
		} else {
			__le32 *magic = (void *)raw_inode +
4973
					EXT4_GOOD_OLD_INODE_SIZE +
4974
					ei->i_extra_isize;
4975
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4976
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4977 4978 4979 4980
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4981 4982 4983 4984 4985
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4986 4987 4988 4989 4990 4991 4992
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4993
	ret = 0;
4994
	if (ei->i_file_acl &&
4995
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4996 4997
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4998 4999
		ret = -EIO;
		goto bad_inode;
5000
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5001 5002 5003 5004 5005
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
5006
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5007 5008
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
5009
		/* Validate block references which are part of inode */
5010 5011
		ret = ext4_check_inode_blockref(inode);
	}
5012
	if (ret)
5013
		goto bad_inode;
5014

5015
	if (S_ISREG(inode->i_mode)) {
5016 5017 5018
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
5019
	} else if (S_ISDIR(inode->i_mode)) {
5020 5021
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
5022
	} else if (S_ISLNK(inode->i_mode)) {
5023
		if (ext4_inode_is_fast_symlink(inode)) {
5024
			inode->i_op = &ext4_fast_symlink_inode_operations;
5025 5026 5027
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
5028 5029
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5030
		}
5031 5032
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5033
		inode->i_op = &ext4_special_inode_operations;
5034 5035 5036 5037 5038 5039
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5040 5041
	} else {
		ret = -EIO;
5042
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5043
		goto bad_inode;
5044
	}
5045
	brelse(iloc.bh);
5046
	ext4_set_inode_flags(inode);
5047 5048
	unlock_new_inode(inode);
	return inode;
5049 5050

bad_inode:
5051
	brelse(iloc.bh);
5052 5053
	iget_failed(inode);
	return ERR_PTR(ret);
5054 5055
}

5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5069
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5070
		raw_inode->i_blocks_high = 0;
5071
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5072 5073 5074 5075 5076 5077
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5078 5079 5080 5081
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5082
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5083
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5084
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5085
	} else {
5086
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5087 5088 5089 5090
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5091
	}
5092
	return 0;
5093 5094
}

5095 5096 5097 5098 5099 5100 5101
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5102
static int ext4_do_update_inode(handle_t *handle,
5103
				struct inode *inode,
5104
				struct ext4_iloc *iloc)
5105
{
5106 5107
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5108 5109 5110 5111 5112
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5113
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5114
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5115

5116
	ext4_get_inode_flags(ei);
5117
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5118
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5119 5120 5121 5122 5123 5124
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5125
		if (!ei->i_dtime) {
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5143 5144 5145 5146 5147 5148

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5149 5150
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5151
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5152
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5153 5154
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5155 5156
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5157
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5174
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5175
			sb->s_dirt = 1;
5176
			ext4_handle_sync(handle);
5177
			err = ext4_handle_dirty_metadata(handle, NULL,
5178
					EXT4_SB(sb)->s_sbh);
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5193 5194 5195
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5196

5197 5198 5199 5200 5201
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5202
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5203 5204
	}

5205
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5206
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5207 5208
	if (!err)
		err = rc;
5209
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5210

5211
	ext4_update_inode_fsync_trans(handle, inode, 0);
5212
out_brelse:
5213
	brelse(bh);
5214
	ext4_std_error(inode->i_sb, err);
5215 5216 5217 5218
	return err;
}

/*
5219
 * ext4_write_inode()
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5236
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5253
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5254
{
5255 5256
	int err;

5257 5258 5259
	if (current->flags & PF_MEMALLOC)
		return 0;

5260 5261 5262 5263 5264 5265
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5266

5267
		if (wbc->sync_mode != WB_SYNC_ALL)
5268 5269 5270 5271 5272
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5273

5274
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5275 5276
		if (err)
			return err;
5277
		if (wbc->sync_mode == WB_SYNC_ALL)
5278 5279
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5280 5281
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
5282 5283
			err = -EIO;
		}
5284
		brelse(iloc.bh);
5285 5286
	}
	return err;
5287 5288 5289
}

/*
5290
 * ext4_setattr()
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5304 5305 5306 5307 5308 5309 5310 5311
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5312
 */
5313
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5314 5315 5316
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
5317
	int orphan = 0;
5318 5319 5320 5321 5322 5323
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5324
	if (is_quota_modification(inode, attr))
5325
		dquot_initialize(inode);
5326 5327 5328 5329 5330 5331
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5332
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5333
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5334 5335 5336 5337
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5338
		error = dquot_transfer(inode, attr);
5339
		if (error) {
5340
			ext4_journal_stop(handle);
5341 5342 5343 5344 5345 5346 5347 5348
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5349 5350
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5351 5352
	}

5353
	if (attr->ia_valid & ATTR_SIZE) {
5354
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5355 5356
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

5357 5358
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
5359 5360 5361
		}
	}

5362
	if (S_ISREG(inode->i_mode) &&
5363 5364
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
5365
	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5366 5367
		handle_t *handle;

5368
		handle = ext4_journal_start(inode, 3);
5369 5370 5371 5372
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5373 5374 5375 5376
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
5377 5378
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5379 5380
		if (!error)
			error = rc;
5381
		ext4_journal_stop(handle);
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
5394
				orphan = 0;
5395 5396 5397 5398
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5399
		/* ext4_truncate will clear the flag */
5400
		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5401
			ext4_truncate(inode);
5402 5403
	}

C
Christoph Hellwig 已提交
5404 5405 5406
	if ((attr->ia_valid & ATTR_SIZE) &&
	    attr->ia_size != i_size_read(inode))
		rc = vmtruncate(inode, attr->ia_size);
5407

C
Christoph Hellwig 已提交
5408 5409 5410 5411 5412 5413 5414 5415 5416
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
5417
	if (orphan && inode->i_nlink)
5418
		ext4_orphan_del(NULL, inode);
5419 5420

	if (!rc && (ia_valid & ATTR_MODE))
5421
		rc = ext4_acl_chmod(inode);
5422 5423

err_out:
5424
	ext4_std_error(inode->i_sb, error);
5425 5426 5427 5428 5429
	if (!error)
		error = rc;
	return error;
}

5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5454

5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5482
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5483 5484
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5485
}
5486

5487
/*
5488 5489 5490
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5491
 *
5492
 * If datablocks are discontiguous, they are possible to spread over
5493
 * different block groups too. If they are contiuguous, with flexbg,
5494
 * they could still across block group boundary.
5495
 *
5496 5497
 * Also account for superblock, inode, quota and xattr blocks
 */
5498
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5499
{
5500 5501
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5528 5529
	if (groups > ngroups)
		groups = ngroups;
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5544 5545
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5546
 *
5547
 * This could be called via ext4_write_begin()
5548
 *
5549
 * We need to consider the worse case, when
5550
 * one new block per extent.
5551
 */
A
Alex Tomas 已提交
5552
int ext4_writepage_trans_blocks(struct inode *inode)
5553
{
5554
	int bpp = ext4_journal_blocks_per_page(inode);
5555 5556
	int ret;

5557
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5558

5559
	/* Account for data blocks for journalled mode */
5560
	if (ext4_should_journal_data(inode))
5561
		ret += bpp;
5562 5563
	return ret;
}
5564 5565 5566 5567 5568

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5569
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5570 5571 5572 5573 5574 5575 5576 5577 5578
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5579
/*
5580
 * The caller must have previously called ext4_reserve_inode_write().
5581 5582
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5583
int ext4_mark_iloc_dirty(handle_t *handle,
5584
			 struct inode *inode, struct ext4_iloc *iloc)
5585 5586 5587
{
	int err = 0;

5588 5589 5590
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5591 5592 5593
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5594
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5595
	err = ext4_do_update_inode(handle, inode, iloc);
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5606 5607
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5608
{
5609 5610 5611 5612 5613 5614 5615 5616 5617
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5618 5619
		}
	}
5620
	ext4_std_error(inode->i_sb, err);
5621 5622 5623
	return err;
}

5624 5625 5626 5627
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5628 5629 5630 5631
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5644 5645
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5678
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5679
{
5680
	struct ext4_iloc iloc;
5681 5682 5683
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5684 5685

	might_sleep();
5686
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5687
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5688 5689
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5690
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5704 5705
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5706 5707
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5708
					ext4_warning(inode->i_sb,
5709 5710 5711
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5712 5713
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5714 5715 5716 5717
				}
			}
		}
	}
5718
	if (!err)
5719
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5720 5721 5722 5723
	return err;
}

/*
5724
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5725 5726 5727 5728 5729
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5730
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5731 5732 5733 5734 5735 5736
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5737
void ext4_dirty_inode(struct inode *inode)
5738 5739 5740
{
	handle_t *handle;

5741
	handle = ext4_journal_start(inode, 2);
5742 5743
	if (IS_ERR(handle))
		goto out;
5744 5745 5746

	ext4_mark_inode_dirty(handle, inode);

5747
	ext4_journal_stop(handle);
5748 5749 5750 5751 5752 5753 5754 5755
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5756
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5757 5758 5759
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5760
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5761
{
5762
	struct ext4_iloc iloc;
5763 5764 5765

	int err = 0;
	if (handle) {
5766
		err = ext4_get_inode_loc(inode, &iloc);
5767 5768
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5769
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5770
			if (!err)
5771
				err = ext4_handle_dirty_metadata(handle,
5772
								 NULL,
5773
								 iloc.bh);
5774 5775 5776
			brelse(iloc.bh);
		}
	}
5777
	ext4_std_error(inode->i_sb, err);
5778 5779 5780 5781
	return err;
}
#endif

5782
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5798
	journal = EXT4_JOURNAL(inode);
5799 5800
	if (!journal)
		return 0;
5801
	if (is_journal_aborted(journal))
5802 5803
		return -EROFS;

5804 5805
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5816
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5817
	else
5818
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5819
	ext4_set_aops(inode);
5820

5821
	jbd2_journal_unlock_updates(journal);
5822 5823 5824

	/* Finally we can mark the inode as dirty. */

5825
	handle = ext4_journal_start(inode, 1);
5826 5827 5828
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5829
	err = ext4_mark_inode_dirty(handle, inode);
5830
	ext4_handle_sync(handle);
5831 5832
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5833 5834 5835

	return err;
}
5836 5837 5838 5839 5840 5841

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5842
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5843
{
5844
	struct page *page = vmf->page;
5845 5846 5847
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5848
	void *fsdata;
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5873 5874 5875 5876 5877 5878 5879
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5880 5881
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5882 5883
					ext4_bh_unmapped)) {
			unlock_page(page);
5884
			goto out_unlock;
5885
		}
5886
	}
5887
	unlock_page(page);
5888 5889 5890 5891 5892 5893 5894 5895
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5896
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5897 5898 5899
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5900
			len, len, page, fsdata);
5901 5902 5903 5904
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5905 5906
	if (ret)
		ret = VM_FAULT_SIGBUS;
5907 5908 5909
	up_read(&inode->i_alloc_sem);
	return ret;
}