inode.c 173.5 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45 46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49 50
#include <trace/events/ext4.h>

51 52
#define MPAGE_DA_EXTENT_TAIL 0x01

53 54 55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56 57 58 59
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
60 61
}

62 63
static void ext4_invalidatepage(struct page *page, unsigned long offset);

64 65 66
/*
 * Test whether an inode is a fast symlink.
 */
67
static int ext4_inode_is_fast_symlink(struct inode *inode)
68
{
69
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
70 71 72 73 74 75 76 77 78 79 80
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
81
	ext4_lblk_t needed;
82 83 84 85 86 87

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
88
	 * like a regular file for ext4 to try to delete it.  Things
89 90 91 92 93 94 95
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
96 97
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
98

99
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

116
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
117 118 119
	if (!IS_ERR(result))
		return result;

120
	ext4_std_error(inode->i_sb, PTR_ERR(result));
121 122 123 124 125 126 127 128 129 130 131
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
132 133 134
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135
		return 0;
136
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137 138 139 140 141 142 143 144 145
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
146
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147
				 int nblocks)
148
{
149 150 151
	int ret;

	/*
152
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
153 154 155 156
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
157
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
158
	jbd_debug(2, "restarting handle %p\n", handle);
159 160 161
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
162
	ext4_discard_preallocations(inode);
163 164

	return ret;
165 166 167 168 169
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
170
void ext4_delete_inode(struct inode *inode)
171 172
{
	handle_t *handle;
173
	int err;
174

175
	if (!is_bad_inode(inode))
176
		dquot_initialize(inode);
177

178 179
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
180 181 182 183 184
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

185
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186
	if (IS_ERR(handle)) {
187
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
188 189 190 191 192
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
193
		ext4_orphan_del(NULL, inode);
194 195 196 197
		goto no_delete;
	}

	if (IS_SYNC(inode))
198
		ext4_handle_sync(handle);
199
	inode->i_size = 0;
200 201
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
202
		ext4_warning(inode->i_sb,
203 204 205
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
206
	if (inode->i_blocks)
207
		ext4_truncate(inode);
208 209 210 211 212 213 214

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
215
	if (!ext4_handle_has_enough_credits(handle, 3)) {
216 217 218 219
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
220
			ext4_warning(inode->i_sb,
221 222 223 224 225 226 227
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

228
	/*
229
	 * Kill off the orphan record which ext4_truncate created.
230
	 * AKPM: I think this can be inside the above `if'.
231
	 * Note that ext4_orphan_del() has to be able to cope with the
232
	 * deletion of a non-existent orphan - this is because we don't
233
	 * know if ext4_truncate() actually created an orphan record.
234 235
	 * (Well, we could do this if we need to, but heck - it works)
	 */
236 237
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
238 239 240 241 242 243 244 245

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
246
	if (ext4_mark_inode_dirty(handle, inode))
247 248 249
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
250 251
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
270
 *	ext4_block_to_path - parse the block number into array of offsets
271 272 273
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
274 275
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
276
 *
277
 *	To store the locations of file's data ext4 uses a data structure common
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

300
static int ext4_block_to_path(struct inode *inode,
301 302
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
303
{
304 305 306
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
307 308 309 310 311
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

312
	if (i_block < direct_blocks) {
313 314
		offsets[n++] = i_block;
		final = direct_blocks;
315
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
316
		offsets[n++] = EXT4_IND_BLOCK;
317 318 319
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
320
		offsets[n++] = EXT4_DIND_BLOCK;
321 322 323 324
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325
		offsets[n++] = EXT4_TIND_BLOCK;
326 327 328 329 330
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
331
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
332 333
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
334 335 336 337 338 339
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

340
static int __ext4_check_blockref(const char *function, struct inode *inode,
341 342
				 __le32 *p, unsigned int max)
{
343
	__le32 *bref = p;
344 345
	unsigned int blk;

346
	while (bref < p+max) {
347
		blk = le32_to_cpu(*bref++);
348 349
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
350
						    blk, 1))) {
351 352
			ext4_error_inode(function, inode,
					 "invalid block reference %u", blk);
353 354 355 356
			return -EIO;
		}
	}
	return 0;
357 358 359 360
}


#define ext4_check_indirect_blockref(inode, bh)                         \
361
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
362 363 364
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
365
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
366 367
			      EXT4_NDIR_BLOCKS)

368
/**
369
 *	ext4_get_branch - read the chain of indirect blocks leading to data
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
394 395
 *
 *      Need to be called with
396
 *      down_read(&EXT4_I(inode)->i_data_sem)
397
 */
A
Aneesh Kumar K.V 已提交
398 399
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
400 401 402 403 404 405 406 407
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
408
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
409 410 411
	if (!p->key)
		goto no_block;
	while (--depth) {
412 413
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
414
			goto failure;
415

416 417 418 419 420 421 422 423 424 425 426
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
427

428
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
429 430 431 432 433 434 435 436 437 438 439 440 441
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
442
 *	ext4_find_near - find a place for allocation with sufficient locality
443 444 445
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
446
 *	This function returns the preferred place for block allocation.
447 448 449 450 451 452 453 454 455 456 457 458 459 460
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
461
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
462
{
463
	struct ext4_inode_info *ei = EXT4_I(inode);
464
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
465
	__le32 *p;
466
	ext4_fsblk_t bg_start;
467
	ext4_fsblk_t last_block;
468
	ext4_grpblk_t colour;
469 470
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
486 487 488 489 490 491 492
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
493 494
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

495 496 497 498 499 500 501
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

502 503
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
504
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
505 506
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
507 508 509 510
	return bg_start + colour;
}

/**
511
 *	ext4_find_goal - find a preferred place for allocation.
512 513 514 515
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
516
 *	Normally this function find the preferred place for block allocation,
517
 *	returns it.
518 519
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
520
 */
A
Aneesh Kumar K.V 已提交
521
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
522
				   Indirect *partial)
523
{
524 525
	ext4_fsblk_t goal;

526
	/*
527
	 * XXX need to get goal block from mballoc's data structures
528 529
	 */

530 531 532
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
533 534 535
}

/**
536
 *	ext4_blks_to_allocate: Look up the block map and count the number
537 538 539 540 541 542 543 544 545 546
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
547
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
548
				 int blocks_to_boundary)
549
{
550
	unsigned int count = 0;
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
574
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
575 576 577 578 579 580 581 582
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
583
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
584 585 586
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
587
{
588
	struct ext4_allocation_request ar;
589
	int target, i;
590
	unsigned long count = 0, blk_allocated = 0;
591
	int index = 0;
592
	ext4_fsblk_t current_block = 0;
593 594 595 596 597 598 599 600 601 602
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
603 604 605
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
606 607
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
608 609
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
610 611 612
		if (*err)
			goto failed_out;

613 614 615 616 617 618 619 620
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
621

622 623 624 625 626 627
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
628 629 630 631 632 633 634 635 636
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
637
			break;
638
		}
639 640
	}

641 642 643 644 645
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
646 647 648 649 650 651 652 653 654 655
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
656 657 658 659 660 661 662 663
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
664

665 666 667 668 669 670 671 672 673
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
674 675 676 677
			/*
			 * save the new block number
			 * for the first direct block
			 */
678 679
			new_blocks[index] = current_block;
		}
680
		blk_allocated += ar.len;
681 682
	}
allocated:
683
	/* total number of blocks allocated for direct blocks */
684
	ret = blk_allocated;
685 686 687
	*err = 0;
	return ret;
failed_out:
688
	for (i = 0; i < index; i++)
689
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
690 691 692 693
	return ret;
}

/**
694
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
695 696 697 698 699 700 701 702 703 704
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
705
 *	the same format as ext4_get_branch() would do. We are calling it after
706 707
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
708
 *	picture as after the successful ext4_get_block(), except that in one
709 710 711 712 713 714
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
715
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
716 717
 *	as described above and return 0.
 */
718
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
719 720 721
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
722 723 724 725 726 727
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
728 729
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
730

731
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
750
		err = ext4_journal_get_create_access(handle, bh);
751
		if (err) {
752 753
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
754 755 756 757 758 759 760 761
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
762
		if (n == indirect_blks) {
763 764 765 766 767 768
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
769
			for (i = 1; i < num; i++)
770 771 772 773 774 775
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

776 777
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
778 779 780 781 782 783 784
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
785
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
786
	for (i = 1; i <= n ; i++) {
787
		/*
788 789 790
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
791
		 */
792 793
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
794
	}
795 796
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
797

798
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
799 800 801 802 803

	return err;
}

/**
804
 * ext4_splice_branch - splice the allocated branch onto inode.
805 806 807
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
808
 *	ext4_alloc_branch)
809 810 811 812 813 814 815 816
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
817
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
818 819
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
820 821 822
{
	int i;
	int err = 0;
823
	ext4_fsblk_t current_block;
824 825 826 827 828 829 830 831

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
832
		err = ext4_journal_get_write_access(handle, where->bh);
833 834 835 836 837 838 839 840 841 842 843 844 845 846
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
847
			*(where->p + i) = cpu_to_le32(current_block++);
848 849 850 851 852 853 854 855 856 857 858
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
859
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
860 861
		 */
		jbd_debug(5, "splicing indirect only\n");
862 863
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
864 865 866 867 868 869
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
870
		ext4_mark_inode_dirty(handle, inode);
871 872 873 874 875 876
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
877
		/*
878 879 880
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
881
		 */
882 883
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
884
	}
885 886
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
887 888 889 890 891

	return err;
}

/*
892
 * The ext4_ind_map_blocks() function handles non-extents inodes
893
 * (i.e., using the traditional indirect/double-indirect i_blocks
894
 * scheme) for ext4_map_blocks().
895
 *
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
912
 *
913 914 915 916 917
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
918
 */
919 920
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
921
			       int flags)
922 923
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
924
	ext4_lblk_t offsets[4];
925 926
	Indirect chain[4];
	Indirect *partial;
927
	ext4_fsblk_t goal;
928 929 930 931
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
932
	ext4_fsblk_t first_block = 0;
933

934
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
935
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
936
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
937
				   &blocks_to_boundary);
938 939 940 941

	if (depth == 0)
		goto out;

942
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
943 944 945 946 947 948

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
949
		while (count < map->m_len && count <= blocks_to_boundary) {
950
			ext4_fsblk_t blk;
951 952 953 954 955 956 957 958

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
959
		goto got_it;
960 961 962
	}

	/* Next simple case - plain lookup or failed read of indirect block */
963
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
964 965 966
		goto cleanup;

	/*
967
	 * Okay, we need to do block allocation.
968
	*/
969
	goal = ext4_find_goal(inode, map->m_lblk, partial);
970 971 972 973 974 975 976 977

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
978
	count = ext4_blks_to_allocate(partial, indirect_blks,
979
				      map->m_len, blocks_to_boundary);
980
	/*
981
	 * Block out ext4_truncate while we alter the tree
982
	 */
983
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
984 985
				&count, goal,
				offsets + (partial - chain), partial);
986 987

	/*
988
	 * The ext4_splice_branch call will free and forget any buffers
989 990 991 992 993 994
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
995
		err = ext4_splice_branch(handle, inode, map->m_lblk,
996
					 partial, indirect_blks, count);
997
	if (err)
998 999
		goto cleanup;

1000
	map->m_flags |= EXT4_MAP_NEW;
1001 1002

	ext4_update_inode_fsync_trans(handle, inode, 1);
1003
got_it:
1004 1005 1006
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1007
	if (count > blocks_to_boundary)
1008
		map->m_flags |= EXT4_MAP_BOUNDARY;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
	return err;
}

1022 1023
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1024
{
1025
	return &EXT4_I(inode)->i_reserved_quota;
1026
}
1027
#endif
1028

1029 1030
/*
 * Calculate the number of metadata blocks need to reserve
1031
 * to allocate a new block at @lblocks for non extent file based file
1032
 */
1033 1034
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1035
{
1036
	struct ext4_inode_info *ei = EXT4_I(inode);
1037
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1038
	int blk_bits;
1039

1040 1041
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1042

1043
	lblock -= EXT4_NDIR_BLOCKS;
1044

1045 1046 1047 1048 1049 1050 1051
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1052
	blk_bits = order_base_2(lblock);
1053
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1054 1055 1056 1057
}

/*
 * Calculate the number of metadata blocks need to reserve
1058
 * to allocate a block located at @lblock
1059
 */
1060
static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1061
{
1062
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1063
		return ext4_ext_calc_metadata_amount(inode, lblock);
1064

1065
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1066 1067
}

1068 1069 1070 1071
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1072 1073
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1074 1075
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1076 1077 1078
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1079
	trace_ext4_da_update_reserve_space(inode, used);
1080 1081 1082 1083 1084 1085 1086 1087
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1088

1089 1090 1091
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1092 1093
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1094
	ei->i_allocated_meta_blocks = 0;
1095

1096 1097 1098 1099 1100 1101
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1102 1103
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1104
		ei->i_reserved_meta_blocks = 0;
1105
		ei->i_da_metadata_calc_len = 0;
1106
	}
1107
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1108

1109 1110
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1111
		dquot_claim_block(inode, used);
1112
	else {
1113 1114 1115
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1116
		 * not re-claim the quota for fallocated blocks.
1117
		 */
1118
		dquot_release_reservation_block(inode, used);
1119
	}
1120 1121 1122 1123 1124 1125

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1126 1127
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1128
		ext4_discard_preallocations(inode);
1129 1130
}

1131 1132
static int __check_block_validity(struct inode *inode, const char *func,
				  struct ext4_map_blocks *map)
1133
{
1134 1135 1136 1137 1138 1139
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
		ext4_error_inode(func, inode,
			   "lblock %lu mapped to illegal pblock %llu "
			   "(length %d)", (unsigned long) map->m_lblk,
				 map->m_pblk, map->m_len);
1140 1141 1142 1143 1144
		return -EIO;
	}
	return 0;
}

1145 1146 1147
#define check_block_validity(inode, map)	\
	__check_block_validity((inode), __func__, (map))

1148
/*
1149 1150
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1184 1185 1186 1187 1188 1189 1190 1191 1192
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
			if (num >= max_pages)
				break;
		}
		pagevec_release(&pvec);
	}
	return num;
}

1206
/*
1207
 * The ext4_map_blocks() function tries to look up the requested blocks,
1208
 * and returns if the blocks are already mapped.
1209 1210 1211 1212 1213
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1214 1215
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1228 1229
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1230 1231
{
	int retval;
1232

1233 1234 1235 1236
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1237
	/*
1238 1239
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1240 1241
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1242
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1243
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1244
	} else {
1245
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1246
	}
1247
	up_read((&EXT4_I(inode)->i_data_sem));
1248

1249
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1250
		int ret = check_block_validity(inode, map);
1251 1252 1253 1254
		if (ret != 0)
			return ret;
	}

1255
	/* If it is only a block(s) look up */
1256
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1257 1258 1259 1260 1261 1262 1263 1264 1265
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1266
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1267 1268
		return retval;

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1279
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1280

1281
	/*
1282 1283 1284 1285
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1286 1287
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1288 1289 1290 1291 1292 1293 1294

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1295
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1296
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1297 1298 1299 1300
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1301
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1302
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1303
	} else {
1304
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1305

1306
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1307 1308 1309 1310 1311
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1312
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1313
		}
1314

1315 1316 1317 1318 1319 1320 1321
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1322
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1323 1324
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1325
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1326
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1327

1328
	up_write((&EXT4_I(inode)->i_data_sem));
1329
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1330
		int ret = check_block_validity(inode, map);
1331 1332 1333
		if (ret != 0)
			return ret;
	}
1334 1335 1336
	return retval;
}

1337 1338 1339
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1340 1341
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1342
{
1343
	handle_t *handle = ext4_journal_current_handle();
1344
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1345
	int ret = 0, started = 0;
1346
	int dio_credits;
1347

1348 1349 1350 1351
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1352
		/* Direct IO write... */
1353 1354 1355
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1356
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1357
		if (IS_ERR(handle)) {
1358
			ret = PTR_ERR(handle);
1359
			return ret;
1360
		}
J
Jan Kara 已提交
1361
		started = 1;
1362 1363
	}

1364
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1365
	if (ret > 0) {
1366 1367 1368
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1369
		ret = 0;
1370
	}
J
Jan Kara 已提交
1371 1372
	if (started)
		ext4_journal_stop(handle);
1373 1374 1375
	return ret;
}

1376 1377 1378 1379 1380 1381 1382
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1383 1384 1385
/*
 * `handle' can be NULL if create is zero
 */
1386
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1387
				ext4_lblk_t block, int create, int *errp)
1388
{
1389 1390
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1391 1392 1393 1394
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1395 1396 1397 1398
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1410
	}
1411 1412 1413
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1414

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1428
		}
1429 1430 1431 1432 1433 1434 1435
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1436
	}
1437 1438 1439 1440 1441 1442
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1443 1444
}

1445
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1446
			       ext4_lblk_t block, int create, int *err)
1447
{
1448
	struct buffer_head *bh;
1449

1450
	bh = ext4_getblk(handle, inode, block, create, err);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1464 1465 1466 1467 1468 1469 1470
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1471 1472 1473 1474 1475 1476 1477
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1478 1479
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1480
	     block_start = block_end, bh = next) {
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1498
 * close off a transaction and start a new one between the ext4_get_block()
1499
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1500 1501
 * prepare_write() is the right place.
 *
1502 1503
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1504 1505 1506 1507
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1508
 * By accident, ext4 can be reentered when a transaction is open via
1509 1510 1511 1512 1513 1514
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1515
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1516 1517 1518 1519 1520
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1521
				       struct buffer_head *bh)
1522 1523 1524
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1525
	return ext4_journal_get_write_access(handle, bh);
1526 1527
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1538 1539
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1540
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1541 1542
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1543
{
1544
	struct inode *inode = mapping->host;
1545
	int ret, needed_blocks;
1546 1547
	handle_t *handle;
	int retries = 0;
1548
	struct page *page;
1549
	pgoff_t index;
1550
	unsigned from, to;
N
Nick Piggin 已提交
1551

1552
	trace_ext4_write_begin(inode, pos, len, flags);
1553 1554 1555 1556 1557
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1558
	index = pos >> PAGE_CACHE_SHIFT;
1559 1560
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1561 1562

retry:
1563 1564 1565 1566
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1567
	}
1568

1569 1570 1571 1572
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1573
	page = grab_cache_page_write_begin(mapping, index, flags);
1574 1575 1576 1577 1578 1579 1580
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1581 1582 1583 1584 1585 1586
	if (ext4_should_dioread_nolock(inode))
		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
				fsdata, ext4_get_block_write);
	else
		ret = block_write_begin(file, mapping, pos, len, flags, pagep,
				fsdata, ext4_get_block);
N
Nick Piggin 已提交
1587 1588

	if (!ret && ext4_should_journal_data(inode)) {
1589 1590 1591
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1592 1593

	if (ret) {
1594 1595
		unlock_page(page);
		page_cache_release(page);
1596 1597 1598 1599
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1600 1601 1602
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1603
		 */
1604
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1605 1606 1607 1608
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1609
			ext4_truncate_failed_write(inode);
1610
			/*
1611
			 * If truncate failed early the inode might
1612 1613 1614 1615 1616 1617 1618
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1619 1620
	}

1621
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1622
		goto retry;
1623
out:
1624 1625 1626
	return ret;
}

N
Nick Piggin 已提交
1627 1628
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1629 1630 1631 1632
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1633
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1634 1635
}

1636
static int ext4_generic_write_end(struct file *file,
1637 1638 1639
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1682 1683 1684 1685
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1686
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1687 1688
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1689
static int ext4_ordered_write_end(struct file *file,
1690 1691 1692
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1693
{
1694
	handle_t *handle = ext4_journal_current_handle();
1695
	struct inode *inode = mapping->host;
1696 1697
	int ret = 0, ret2;

1698
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1699
	ret = ext4_jbd2_file_inode(handle, inode);
1700 1701

	if (ret == 0) {
1702
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1703
							page, fsdata);
1704
		copied = ret2;
1705
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1706 1707 1708 1709 1710
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1711 1712
		if (ret2 < 0)
			ret = ret2;
1713
	}
1714
	ret2 = ext4_journal_stop(handle);
1715 1716
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1717

1718
	if (pos + len > inode->i_size) {
1719
		ext4_truncate_failed_write(inode);
1720
		/*
1721
		 * If truncate failed early the inode might still be
1722 1723 1724 1725 1726 1727 1728 1729
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1730
	return ret ? ret : copied;
1731 1732
}

N
Nick Piggin 已提交
1733
static int ext4_writeback_write_end(struct file *file,
1734 1735 1736
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1737
{
1738
	handle_t *handle = ext4_journal_current_handle();
1739
	struct inode *inode = mapping->host;
1740 1741
	int ret = 0, ret2;

1742
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1743
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1744
							page, fsdata);
1745
	copied = ret2;
1746
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1747 1748 1749 1750 1751 1752
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1753 1754
	if (ret2 < 0)
		ret = ret2;
1755

1756
	ret2 = ext4_journal_stop(handle);
1757 1758
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1759

1760
	if (pos + len > inode->i_size) {
1761
		ext4_truncate_failed_write(inode);
1762
		/*
1763
		 * If truncate failed early the inode might still be
1764 1765 1766 1767 1768 1769 1770
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1771
	return ret ? ret : copied;
1772 1773
}

N
Nick Piggin 已提交
1774
static int ext4_journalled_write_end(struct file *file,
1775 1776 1777
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1778
{
1779
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1780
	struct inode *inode = mapping->host;
1781 1782
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1783
	unsigned from, to;
1784
	loff_t new_i_size;
1785

1786
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1787 1788 1789 1790 1791 1792 1793 1794
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1795 1796

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1797
				to, &partial, write_end_fn);
1798 1799
	if (!partial)
		SetPageUptodate(page);
1800 1801
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1802
		i_size_write(inode, pos+copied);
1803
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1804 1805
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1806
		ret2 = ext4_mark_inode_dirty(handle, inode);
1807 1808 1809
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1810

1811
	unlock_page(page);
1812
	page_cache_release(page);
1813
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1814 1815 1816 1817 1818 1819
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1820
	ret2 = ext4_journal_stop(handle);
1821 1822
	if (!ret)
		ret = ret2;
1823
	if (pos + len > inode->i_size) {
1824
		ext4_truncate_failed_write(inode);
1825
		/*
1826
		 * If truncate failed early the inode might still be
1827 1828 1829 1830 1831 1832
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1833 1834

	return ret ? ret : copied;
1835
}
1836

1837 1838 1839 1840
/*
 * Reserve a single block located at lblock
 */
static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1841
{
A
Aneesh Kumar K.V 已提交
1842
	int retries = 0;
1843
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1844
	struct ext4_inode_info *ei = EXT4_I(inode);
1845
	unsigned long md_needed;
1846
	int ret;
1847 1848 1849 1850 1851 1852

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1853
repeat:
1854
	spin_lock(&ei->i_block_reservation_lock);
1855
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1856
	trace_ext4_da_reserve_space(inode, md_needed);
1857
	spin_unlock(&ei->i_block_reservation_lock);
1858

1859
	/*
1860 1861 1862
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1863
	 */
1864
	ret = dquot_reserve_block(inode, 1);
1865 1866
	if (ret)
		return ret;
1867 1868 1869 1870
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1871
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1872
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1873 1874 1875 1876
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1877 1878
		return -ENOSPC;
	}
1879
	spin_lock(&ei->i_block_reservation_lock);
1880
	ei->i_reserved_data_blocks++;
1881 1882
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1883

1884 1885 1886
	return 0;       /* success */
}

1887
static void ext4_da_release_space(struct inode *inode, int to_free)
1888 1889
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1890
	struct ext4_inode_info *ei = EXT4_I(inode);
1891

1892 1893 1894
	if (!to_free)
		return;		/* Nothing to release, exit */

1895
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1896

L
Li Zefan 已提交
1897
	trace_ext4_da_release_space(inode, to_free);
1898
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1899
		/*
1900 1901 1902 1903
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1904
		 */
1905 1906 1907 1908 1909 1910
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1911
	}
1912
	ei->i_reserved_data_blocks -= to_free;
1913

1914 1915 1916 1917 1918 1919
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1920 1921
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1922
		ei->i_reserved_meta_blocks = 0;
1923
		ei->i_da_metadata_calc_len = 0;
1924
	}
1925

1926
	/* update fs dirty data blocks counter */
1927
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1928 1929

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1930

1931
	dquot_release_reservation_block(inode, to_free);
1932 1933 1934
}

static void ext4_da_page_release_reservation(struct page *page,
1935
					     unsigned long offset)
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1952
	ext4_da_release_space(page->mapping->host, to_release);
1953
}
1954

1955 1956 1957 1958 1959 1960
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1961
 * them with writepage() call back
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1974
	long pages_skipped;
1975 1976 1977 1978 1979
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1980 1981

	BUG_ON(mpd->next_page <= mpd->first_page);
1982 1983 1984
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1985
	 * If we look at mpd->b_blocknr we would only be looking
1986 1987
	 * at the currently mapped buffer_heads.
	 */
1988 1989 1990
	index = mpd->first_page;
	end = mpd->next_page - 1;

1991
	pagevec_init(&pvec, 0);
1992
	while (index <= end) {
1993
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1994 1995 1996 1997 1998
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1999 2000 2001 2002 2003 2004 2005 2006
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2007
			pages_skipped = mpd->wbc->pages_skipped;
2008
			err = mapping->a_ops->writepage(page, mpd->wbc);
2009 2010 2011 2012 2013
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
2014
				mpd->pages_written++;
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * the function goes through all passed space and put actual disk
2032
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2033
 */
2034 2035
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
				 struct ext4_map_blocks *map)
2036 2037 2038
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2039 2040
	int blocks = map->m_len;
	sector_t pblock = map->m_pblk, cur_logical;
2041
	struct buffer_head *head, *bh;
2042
	pgoff_t index, end;
2043 2044 2045
	struct pagevec pvec;
	int nr_pages, i;

2046 2047
	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
2074
				if (cur_logical >= map->m_lblk)
2075 2076 2077 2078 2079
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
2080
				if (cur_logical >= map->m_lblk + blocks)
2081
					break;
2082

2083
				if (buffer_delay(bh) || buffer_unwritten(bh)) {
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2099
				} else if (buffer_mapped(bh))
2100 2101
					BUG_ON(bh->b_blocknr != pblock);

2102
				if (map->m_flags & EXT4_MAP_UNINIT)
2103
					set_buffer_uninit(bh);
2104 2105 2106 2107 2108 2109 2110 2111 2112
				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2131
			if (page->index > end)
2132 2133 2134 2135 2136 2137 2138
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2139 2140
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2141 2142 2143 2144
	}
	return;
}

2145 2146 2147
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2160 2161 2162
	return;
}

2163 2164 2165
/*
 * mpage_da_map_blocks - go through given space
 *
2166
 * @mpd - bh describing space
2167 2168 2169 2170
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2171
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2172
{
2173
	int err, blks, get_blocks_flags;
2174
	struct ext4_map_blocks map;
2175 2176 2177 2178
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2179 2180 2181 2182

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2183
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2184 2185
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2186
		return 0;
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2197
	/*
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	 * Call ext4_get_blocks() to allocate any delayed allocation
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
	 * want to change *many* call functions, so ext4_get_blocks()
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2214
	 */
2215 2216
	map.m_lblk = next;
	map.m_len = max_blocks;
2217
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2218 2219
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2220
	if (mpd->b_state & (1 << BH_Delay))
2221 2222
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2223
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2224 2225
	if (blks < 0) {
		err = blks;
2226 2227 2228 2229
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2230 2231 2232
		 */
		if (err == -EAGAIN)
			return 0;
2233 2234

		if (err == -ENOSPC &&
2235
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2236 2237 2238 2239
			mpd->retval = err;
			return 0;
		}

2240
		/*
2241 2242 2243 2244 2245
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2246
		 */
2247 2248 2249
		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
			 "delayed block allocation failed for inode %lu at "
			 "logical offset %llu with max blocks %zd with "
2250
			 "error %d", mpd->inode->i_ino,
2251 2252 2253 2254
			 (unsigned long long) next,
			 mpd->b_size >> mpd->inode->i_blkbits, err);
		printk(KERN_CRIT "This should not happen!!  "
		       "Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2255
		if (err == -ENOSPC) {
2256
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2257
		}
2258
		/* invalidate all the pages */
2259
		ext4_da_block_invalidatepages(mpd, next,
2260
				mpd->b_size >> mpd->inode->i_blkbits);
2261 2262
		return err;
	}
2263 2264
	BUG_ON(blks == 0);

2265 2266 2267
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2268

2269 2270 2271
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2272

2273 2274 2275 2276
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2277 2278
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2279
		mpage_put_bnr_to_bhs(mpd, &map);
2280

2281 2282 2283 2284 2285 2286 2287
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2288
	 * Update on-disk size along with block allocation.
2289 2290 2291 2292 2293 2294 2295 2296 2297
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2298
	return 0;
2299 2300
}

2301 2302
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2314 2315
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2316 2317
{
	sector_t next;
2318
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2319

2320 2321 2322 2323 2324 2325 2326 2327 2328
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
	 * ext4_get_blocks() multiple times in a loop
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2329
	/* check if thereserved journal credits might overflow */
2330
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2351 2352 2353
	/*
	 * First block in the extent
	 */
2354 2355 2356 2357
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2358 2359 2360
		return;
	}

2361
	next = mpd->b_blocknr + nrblocks;
2362 2363 2364
	/*
	 * Can we merge the block to our big extent?
	 */
2365 2366
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2367 2368 2369
		return;
	}

2370
flush_it:
2371 2372 2373 2374
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2375 2376
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2377 2378
	mpd->io_done = 1;
	return;
2379 2380
}

2381
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2382
{
2383
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2384 2385
}

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2400
	struct buffer_head *bh, *head;
2401 2402 2403 2404 2405 2406 2407 2408
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2409
		 * and start IO on them using writepage()
2410 2411
		 */
		if (mpd->next_page != mpd->first_page) {
2412 2413
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2414 2415 2416 2417 2418 2419 2420
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2431 2432 2433
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2434 2435 2436 2437 2438 2439 2440
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2441 2442
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2443 2444
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2445 2446 2447 2448 2449 2450 2451 2452
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2453 2454 2455 2456
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2457
			 * with the page in ext4_writepage
2458
			 */
2459
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2460 2461 2462
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2463 2464
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2465 2466 2467 2468 2469 2470 2471 2472 2473
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2474 2475
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2476
			}
2477 2478 2479 2480 2481 2482 2483 2484
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2485 2486 2487
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2488 2489 2490 2491 2492 2493 2494
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2495 2496
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2497
				  struct buffer_head *bh, int create)
2498
{
2499
	struct ext4_map_blocks map;
2500
	int ret = 0;
2501 2502 2503 2504
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2505 2506

	BUG_ON(create == 0);
2507 2508 2509 2510
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2511 2512 2513 2514 2515 2516

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2517 2518 2519 2520 2521 2522
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2523 2524 2525 2526
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2527
		ret = ext4_da_reserve_space(inode, iblock);
2528 2529 2530 2531
		if (ret)
			/* not enough space to reserve */
			return ret;

2532 2533 2534 2535
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2536 2537
	}

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
		set_buffer_mapped(bh);
	}
	return 0;
2552
}
2553

2554 2555 2556
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
2557 2558
 * callback function for block_prepare_write() and block_write_full_page().
 * These functions should only try to map a single block at a time.
2559 2560 2561 2562 2563
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2564 2565 2566
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2567 2568
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2569 2570
				   struct buffer_head *bh_result, int create)
{
2571
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2572
	return _ext4_get_block(inode, iblock, bh_result, 0);
2573 2574
}

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2622
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2623 2624 2625 2626
out:
	return ret;
}

2627 2628 2629
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2630
/*
2631 2632 2633 2634 2635 2636 2637 2638 2639
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2640 2641 2642 2643 2644
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2670
 */
2671
static int ext4_writepage(struct page *page,
2672
			  struct writeback_control *wbc)
2673 2674
{
	int ret = 0;
2675
	loff_t size;
2676
	unsigned int len;
2677
	struct buffer_head *page_bufs = NULL;
2678 2679
	struct inode *inode = page->mapping->host;

2680
	trace_ext4_writepage(inode, page);
2681 2682 2683 2684 2685
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2686

2687
	if (page_has_buffers(page)) {
2688
		page_bufs = page_buffers(page);
2689
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2690
					ext4_bh_delay_or_unwritten)) {
2691
			/*
2692 2693
			 * We don't want to do  block allocation
			 * So redirty the page and return
2694 2695 2696
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2717
		ret = block_prepare_write(page, 0, len,
2718
					  noalloc_get_block_write);
2719 2720 2721 2722
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2723
						ext4_bh_delay_or_unwritten)) {
2724 2725 2726 2727 2728 2729 2730 2731 2732
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2733 2734 2735 2736 2737
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2738
		/* now mark the buffer_heads as dirty and uptodate */
2739
		block_commit_write(page, 0, len);
2740 2741
	}

2742 2743 2744 2745 2746 2747
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
2748
		return __ext4_journalled_writepage(page, len);
2749 2750
	}

2751
	if (page_bufs && buffer_uninit(page_bufs)) {
2752 2753 2754 2755
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2756 2757
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2758 2759 2760 2761

	return ret;
}

2762
/*
2763 2764 2765 2766 2767
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2768
 */
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2780
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2781 2782 2783 2784 2785
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2786

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
 * address space and call the callback function (which usually writes
 * the pages).
 *
 * This is a forked version of write_cache_pages().  Differences:
 *	Range cyclic is ignored.
 *	no_nrwrite_index_update is always presumed true
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
				struct mpage_da_data *mpd)
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	long nr_to_write = wbc->nr_to_write;

	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

	while (!done && (index <= end)) {
		int i;

		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
			      PAGECACHE_TAG_DIRTY,
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				done = 1;
				break;
			}

			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

			ret = __mpage_da_writepage(page, wbc, mpd);
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					done = 1;
					break;
				}
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
				    wbc->sync_mode == WB_SYNC_NONE) {
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
					done = 1;
					break;
				}
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	return ret;
}


2905
static int ext4_da_writepages(struct address_space *mapping,
2906
			      struct writeback_control *wbc)
2907
{
2908 2909
	pgoff_t	index;
	int range_whole = 0;
2910
	handle_t *handle = NULL;
2911
	struct mpage_da_data mpd;
2912
	struct inode *inode = mapping->host;
2913 2914
	int pages_written = 0;
	long pages_skipped;
2915
	unsigned int max_pages;
2916
	int range_cyclic, cycled = 1, io_done = 0;
2917 2918
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2919
	loff_t range_start = wbc->range_start;
2920
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2921

2922
	trace_ext4_da_writepages(inode, wbc);
2923

2924 2925 2926 2927 2928
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2929
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2930
		return 0;
2931 2932 2933 2934 2935

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2936
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2937 2938 2939 2940 2941
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2942
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2943 2944
		return -EROFS;

2945 2946
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2947

2948 2949
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2950
		index = mapping->writeback_index;
2951 2952 2953 2954 2955 2956
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2957
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2958

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
	if (!range_cyclic && range_whole)
		desired_nr_to_write = wbc->nr_to_write * 8;
	else
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2989 2990 2991
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2992 2993
	pages_skipped = wbc->pages_skipped;

2994
retry:
2995
	while (!ret && wbc->nr_to_write > 0) {
2996 2997 2998 2999 3000 3001 3002 3003

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
3004
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3005

3006 3007 3008 3009
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
3010
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3011
			       "%ld pages, ino %lu; err %d", __func__,
3012
				wbc->nr_to_write, inode->i_ino, ret);
3013 3014
			goto out_writepages;
		}
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
3033
		ret = write_cache_pages_da(mapping, wbc, &mpd);
3034
		/*
3035
		 * If we have a contiguous extent of pages and we
3036 3037 3038 3039 3040 3041 3042 3043 3044
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3045
		trace_ext4_da_write_pages(inode, &mpd);
3046
		wbc->nr_to_write -= mpd.pages_written;
3047

3048
		ext4_journal_stop(handle);
3049

3050
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3051 3052 3053 3054
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3055
			jbd2_journal_force_commit_nested(sbi->s_journal);
3056 3057 3058
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3059 3060 3061 3062
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3063 3064
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
3065
			ret = 0;
3066
			io_done = 1;
3067
		} else if (wbc->nr_to_write)
3068 3069 3070 3071 3072 3073
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3074
	}
3075 3076 3077 3078 3079 3080 3081
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3082
	if (pages_skipped != wbc->pages_skipped)
3083 3084
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
3085
			 "with nr_to_write = %ld ret = %d",
3086
			 __func__, wbc->nr_to_write, ret);
3087 3088 3089

	/* Update index */
	index += pages_written;
3090
	wbc->range_cyclic = range_cyclic;
3091 3092 3093 3094 3095 3096
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
3097

3098
out_writepages:
3099
	wbc->nr_to_write -= nr_to_writebump;
3100
	wbc->range_start = range_start;
3101
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3102
	return ret;
3103 3104
}

3105 3106 3107 3108 3109 3110 3111 3112 3113
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3114
	 * counters can get slightly wrong with percpu_counter_batch getting
3115 3116 3117 3118 3119 3120 3121 3122 3123
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3124 3125
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3126 3127 3128
		 */
		return 1;
	}
3129 3130 3131 3132 3133 3134 3135
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3136 3137 3138
	return 0;
}

3139
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3140 3141
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3142
{
3143
	int ret, retries = 0;
3144 3145 3146 3147 3148 3149
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3150 3151 3152 3153 3154 3155 3156

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3157
	trace_ext4_da_write_begin(inode, pos, len, flags);
3158
retry:
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3170 3171 3172
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3173

3174
	page = grab_cache_page_write_begin(mapping, index, flags);
3175 3176 3177 3178 3179
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3180 3181 3182
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3183
				ext4_da_get_block_prep);
3184 3185 3186 3187
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3188 3189 3190 3191 3192 3193
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3194
			ext4_truncate_failed_write(inode);
3195 3196
	}

3197 3198
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3199 3200 3201 3202
out:
	return ret;
}

3203 3204 3205 3206 3207
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3208
					    unsigned long offset)
3209 3210 3211 3212 3213 3214 3215 3216 3217
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3218
	for (i = 0; i < idx; i++)
3219 3220
		bh = bh->b_this_page;

3221
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3222 3223 3224 3225
		return 0;
	return 1;
}

3226
static int ext4_da_write_end(struct file *file,
3227 3228 3229
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3230 3231 3232 3233 3234
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3235
	unsigned long start, end;
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3249

3250
	trace_ext4_da_write_end(inode, pos, len, copied);
3251
	start = pos & (PAGE_CACHE_SIZE - 1);
3252
	end = start + copied - 1;
3253 3254 3255 3256 3257 3258 3259 3260

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3272

3273 3274 3275
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3276 3277 3278 3279 3280
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3281
		}
3282
	}
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3304
	ext4_da_page_release_reservation(page, offset);
3305 3306 3307 3308 3309 3310 3311

out:
	ext4_invalidatepage(page, offset);

	return;
}

3312 3313 3314 3315 3316
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3317 3318
	trace_ext4_alloc_da_blocks(inode);

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3329
	 *
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3349
	 *
3350 3351 3352 3353 3354 3355
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3356

3357 3358 3359 3360 3361
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3362
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3363 3364 3365 3366 3367 3368 3369 3370
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3371
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3372 3373 3374 3375 3376
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3387 3388
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3400
		 * NB. EXT4_STATE_JDATA is not set on files other than
3401 3402 3403 3404 3405 3406
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3407
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3408
		journal = EXT4_JOURNAL(inode);
3409 3410 3411
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3412 3413 3414 3415 3416

		if (err)
			return 0;
	}

3417
	return generic_block_bmap(mapping, block, ext4_get_block);
3418 3419
}

3420
static int ext4_readpage(struct file *file, struct page *page)
3421
{
3422
	return mpage_readpage(page, ext4_get_block);
3423 3424 3425
}

static int
3426
ext4_readpages(struct file *file, struct address_space *mapping,
3427 3428
		struct list_head *pages, unsigned nr_pages)
{
3429
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3430 3431
}

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
static void ext4_free_io_end(ext4_io_end_t *io)
{
	BUG_ON(!io);
	if (io->page)
		put_page(io->page);
	iput(io->inode);
	kfree(io);
}

static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3461
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3462
{
3463
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3464

3465 3466 3467 3468 3469
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3470 3471 3472 3473 3474 3475
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3476 3477 3478 3479
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3480 3481
}

3482
static int ext4_releasepage(struct page *page, gfp_t wait)
3483
{
3484
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3485 3486 3487 3488

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3489 3490 3491 3492
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3493 3494 3495
}

/*
3496 3497
 * O_DIRECT for ext3 (or indirect map) based files
 *
3498 3499 3500 3501 3502
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3503 3504
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3505
 */
3506
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3507 3508
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3509 3510 3511
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3512
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3513
	handle_t *handle;
3514 3515 3516
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3517
	int retries = 0;
3518 3519 3520 3521 3522

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3523 3524 3525 3526 3527 3528
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3529
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3530 3531 3532 3533
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3534 3535
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3536
			ext4_journal_stop(handle);
3537 3538 3539
		}
	}

3540
retry:
3541 3542 3543 3544 3545 3546 3547 3548
	if (rw == READ && ext4_should_dioread_nolock(inode))
		ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
				 ext4_get_block, NULL);
	else
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3549
				 offset, nr_segs,
3550
				 ext4_get_block, NULL);
3551 3552
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3553

J
Jan Kara 已提交
3554
	if (orphan) {
3555 3556
		int err;

J
Jan Kara 已提交
3557 3558 3559 3560 3561 3562 3563
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3564 3565 3566
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3567 3568 3569
			goto out;
		}
		if (inode->i_nlink)
3570
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3571
		if (ret > 0) {
3572 3573 3574 3575 3576 3577 3578 3579
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3580
				 * ext4_mark_inode_dirty() to userspace.  So
3581 3582
				 * ignore it.
				 */
3583
				ext4_mark_inode_dirty(handle, inode);
3584 3585
			}
		}
3586
		err = ext4_journal_stop(handle);
3587 3588 3589 3590 3591 3592 3593
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3594 3595 3596 3597 3598
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3599
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3600 3601
		   struct buffer_head *bh_result, int create)
{
3602
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3603
		   inode->i_ino, create);
3604 3605
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3606 3607
}

3608
static void dump_completed_IO(struct inode * inode)
3609 3610 3611 3612
{
#ifdef	EXT4_DEBUG
	struct list_head *cur, *before, *after;
	ext4_io_end_t *io, *io0, *io1;
3613
	unsigned long flags;
3614

3615 3616
	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3617 3618 3619
		return;
	}

3620
	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3621
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3622
	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3623 3624 3625 3626 3627 3628 3629 3630 3631
		cur = &io->list;
		before = cur->prev;
		io0 = container_of(before, ext4_io_end_t, list);
		after = cur->next;
		io1 = container_of(after, ext4_io_end_t, list);

		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
			    io, inode->i_ino, io0, io1);
	}
3632
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3633 3634
#endif
}
3635 3636 3637 3638

/*
 * check a range of space and convert unwritten extents to written.
 */
3639
static int ext4_end_io_nolock(ext4_io_end_t *io)
3640 3641 3642
{
	struct inode *inode = io->inode;
	loff_t offset = io->offset;
3643
	ssize_t size = io->size;
3644 3645
	int ret = 0;

3646
	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3647 3648 3649 3650 3651 3652
		   "list->prev 0x%p\n",
	           io, inode->i_ino, io->list.next, io->list.prev);

	if (list_empty(&io->list))
		return ret;

3653
	if (io->flag != EXT4_IO_UNWRITTEN)
3654 3655
		return ret;

3656
	ret = ext4_convert_unwritten_extents(inode, offset, size);
3657
	if (ret < 0) {
3658
		printk(KERN_EMERG "%s: failed to convert unwritten"
3659 3660 3661 3662 3663
			"extents to written extents, error is %d"
			" io is still on inode %lu aio dio list\n",
                       __func__, ret, inode->i_ino);
		return ret;
	}
3664

3665 3666 3667
	/* clear the DIO AIO unwritten flag */
	io->flag = 0;
	return ret;
3668
}
3669

3670 3671 3672
/*
 * work on completed aio dio IO, to convert unwritten extents to extents
 */
3673
static void ext4_end_io_work(struct work_struct *work)
3674
{
3675 3676 3677 3678 3679
	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
	struct inode		*inode = io->inode;
	struct ext4_inode_info	*ei = EXT4_I(inode);
	unsigned long		flags;
	int			ret;
3680

3681
	mutex_lock(&inode->i_mutex);
3682
	ret = ext4_end_io_nolock(io);
3683 3684 3685
	if (ret < 0) {
		mutex_unlock(&inode->i_mutex);
		return;
3686
	}
3687 3688 3689 3690 3691

	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	if (!list_empty(&io->list))
		list_del_init(&io->list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3692
	mutex_unlock(&inode->i_mutex);
3693
	ext4_free_io_end(io);
3694
}
3695

3696 3697 3698
/*
 * This function is called from ext4_sync_file().
 *
3699 3700
 * When IO is completed, the work to convert unwritten extents to
 * written is queued on workqueue but may not get immediately
3701 3702
 * scheduled. When fsync is called, we need to ensure the
 * conversion is complete before fsync returns.
3703 3704 3705 3706 3707
 * The inode keeps track of a list of pending/completed IO that
 * might needs to do the conversion. This function walks through
 * the list and convert the related unwritten extents for completed IO
 * to written.
 * The function return the number of pending IOs on success.
3708
 */
3709
int flush_completed_IO(struct inode *inode)
3710 3711
{
	ext4_io_end_t *io;
3712 3713
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned long flags;
3714 3715 3716
	int ret = 0;
	int ret2 = 0;

3717
	if (list_empty(&ei->i_completed_io_list))
3718 3719
		return ret;

3720
	dump_completed_IO(inode);
3721 3722 3723
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	while (!list_empty(&ei->i_completed_io_list)){
		io = list_entry(ei->i_completed_io_list.next,
3724 3725
				ext4_io_end_t, list);
		/*
3726
		 * Calling ext4_end_io_nolock() to convert completed
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
		 * IO to written.
		 *
		 * When ext4_sync_file() is called, run_queue() may already
		 * about to flush the work corresponding to this io structure.
		 * It will be upset if it founds the io structure related
		 * to the work-to-be schedule is freed.
		 *
		 * Thus we need to keep the io structure still valid here after
		 * convertion finished. The io structure has a flag to
		 * avoid double converting from both fsync and background work
		 * queue work.
		 */
3739
		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3740
		ret = ext4_end_io_nolock(io);
3741
		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3742 3743 3744 3745 3746
		if (ret < 0)
			ret2 = ret;
		else
			list_del_init(&io->list);
	}
3747
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3748 3749 3750
	return (ret2 < 0) ? ret2 : 0;
}

3751
static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3752 3753 3754
{
	ext4_io_end_t *io = NULL;

3755
	io = kmalloc(sizeof(*io), flags);
3756 3757

	if (io) {
3758
		igrab(inode);
3759
		io->inode = inode;
3760
		io->flag = 0;
3761 3762
		io->offset = 0;
		io->size = 0;
3763
		io->page = NULL;
3764
		INIT_WORK(&io->work, ext4_end_io_work);
3765
		INIT_LIST_HEAD(&io->list);
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
	}

	return io;
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
			    ssize_t size, void *private)
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3776 3777
	unsigned long flags;
	struct ext4_inode_info *ei;
3778

3779 3780 3781 3782
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
		return;

3783 3784 3785 3786 3787 3788
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3789
	if (io_end->flag != EXT4_IO_UNWRITTEN){
3790 3791
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3792
		return;
3793 3794
	}

3795 3796
	io_end->offset = offset;
	io_end->size = size;
3797
	io_end->flag = EXT4_IO_UNWRITTEN;
3798 3799
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3800
	/* queue the work to convert unwritten extents to written */
3801 3802
	queue_work(wq, &io_end->work);

3803
	/* Add the io_end to per-inode completed aio dio list*/
3804 3805 3806 3807
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3808 3809
	iocb->private = NULL;
}
3810

3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

	io_end->flag = EXT4_IO_UNWRITTEN;
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
		if (printk_ratelimit())
			printk(KERN_WARNING "%s: allocation fail\n", __func__);
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3876 3877 3878 3879 3880 3881 3882 3883 3884
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3885 3886 3887 3888
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3907 3908 3909
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3910 3911
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3912 3913
		 *
 		 * As to previously fallocated extents, ext4 get_block
3914 3915 3916
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3917 3918 3919 3920 3921 3922 3923 3924
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3925
 		 */
3926 3927 3928
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3929
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
			 * direct IO, so that later ext4_get_blocks()
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3942 3943 3944
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3945
					 ext4_get_block_write,
3946
					 ext4_end_io_dio);
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3966 3967
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3968
			int err;
3969 3970 3971 3972
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3973 3974 3975 3976
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3977
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3978
		}
3979 3980
		return ret;
	}
3981 3982

	/* for write the the end of file case, we fall back to old way */
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

3993
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3994 3995 3996 3997 3998
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

3999
/*
4000
 * Pages can be marked dirty completely asynchronously from ext4's journalling
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
4012
static int ext4_journalled_set_page_dirty(struct page *page)
4013 4014 4015 4016 4017
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

4018
static const struct address_space_operations ext4_ordered_aops = {
4019 4020
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4021
	.writepage		= ext4_writepage,
4022 4023 4024 4025 4026 4027 4028 4029 4030
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4031
	.error_remove_page	= generic_error_remove_page,
4032 4033
};

4034
static const struct address_space_operations ext4_writeback_aops = {
4035 4036
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4037
	.writepage		= ext4_writepage,
4038 4039 4040 4041 4042 4043 4044 4045 4046
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4047
	.error_remove_page	= generic_error_remove_page,
4048 4049
};

4050
static const struct address_space_operations ext4_journalled_aops = {
4051 4052
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4053
	.writepage		= ext4_writepage,
4054 4055 4056 4057 4058 4059 4060 4061
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
4062
	.error_remove_page	= generic_error_remove_page,
4063 4064
};

4065
static const struct address_space_operations ext4_da_aops = {
4066 4067
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4068
	.writepage		= ext4_writepage,
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4079
	.error_remove_page	= generic_error_remove_page,
4080 4081
};

4082
void ext4_set_aops(struct inode *inode)
4083
{
4084 4085 4086 4087
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
4088
		inode->i_mapping->a_ops = &ext4_ordered_aops;
4089 4090 4091
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
4092 4093
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
4094
	else
4095
		inode->i_mapping->a_ops = &ext4_journalled_aops;
4096 4097 4098
}

/*
4099
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4100 4101 4102 4103
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
4104
int ext4_block_truncate_page(handle_t *handle,
4105 4106
		struct address_space *mapping, loff_t from)
{
4107
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4108
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
4109 4110
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
4111 4112
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
4113
	struct page *page;
4114 4115
	int err = 0;

4116 4117
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4118 4119 4120
	if (!page)
		return -EINVAL;

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4145
		ext4_get_block(inode, iblock, bh, 0);
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4166
	if (ext4_should_journal_data(inode)) {
4167
		BUFFER_TRACE(bh, "get write access");
4168
		err = ext4_journal_get_write_access(handle, bh);
4169 4170 4171 4172
		if (err)
			goto unlock;
	}

4173
	zero_user(page, offset, length);
4174 4175 4176 4177

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4178
	if (ext4_should_journal_data(inode)) {
4179
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4180
	} else {
4181
		if (ext4_should_order_data(inode))
4182
			err = ext4_jbd2_file_inode(handle, inode);
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4206
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4207 4208
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4209
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4210 4211 4212
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4213
 *	This is a helper function used by ext4_truncate().
4214 4215 4216 4217 4218 4219 4220
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4221
 *	past the truncation point is possible until ext4_truncate()
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4240
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4241 4242
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4243 4244 4245 4246 4247
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4248
	/* Make k index the deepest non-null offset + 1 */
4249 4250
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4251
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4262
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4274
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4275 4276 4277 4278 4279 4280
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4281
	while (partial > p) {
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4297 4298 4299 4300 4301
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4302 4303
{
	__le32 *p;
4304
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4305 4306 4307

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4308

4309 4310
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4311 4312 4313
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4314 4315 4316
		return 1;
	}

4317 4318
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4319 4320
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4321
		}
4322
		ext4_mark_inode_dirty(handle, inode);
4323 4324
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4325 4326
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4327
			ext4_journal_get_write_access(handle, bh);
4328 4329 4330
		}
	}

4331 4332
	for (p = first; p < last; p++)
		*p = 0;
4333

4334
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4335
	return 0;
4336 4337 4338
}

/**
4339
 * ext4_free_data - free a list of data blocks
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4357
static void ext4_free_data(handle_t *handle, struct inode *inode,
4358 4359 4360
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4361
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4362 4363 4364 4365
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4366
	ext4_fsblk_t nr;		    /* Current block # */
4367 4368 4369 4370 4371 4372
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4373
		err = ext4_journal_get_write_access(handle, this_bh);
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4391 4392 4393 4394
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4395 4396 4397 4398 4399 4400 4401 4402
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4403
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4404 4405 4406
				  count, block_to_free_p, p);

	if (this_bh) {
4407
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4408 4409 4410 4411 4412 4413 4414

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4415
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4416
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4417
		else
4418 4419 4420 4421
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4422 4423 4424 4425
	}
}

/**
4426
 *	ext4_free_branches - free an array of branches
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4438
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4439 4440 4441
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4442
	ext4_fsblk_t nr;
4443 4444
	__le32 *p;

4445
	if (ext4_handle_is_aborted(handle))
4446 4447 4448 4449
		return;

	if (depth--) {
		struct buffer_head *bh;
4450
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4451 4452 4453 4454 4455 4456
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4457 4458
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4459 4460 4461 4462
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4463 4464 4465
				break;
			}

4466 4467 4468 4469 4470 4471 4472 4473
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4474 4475 4476
				EXT4_ERROR_INODE(inode,
						 "Read failure block=%llu",
						 (unsigned long long) nr);
4477 4478 4479 4480 4481
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4482
			ext4_free_branches(handle, inode, bh,
4483 4484 4485
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4486 4487 4488 4489 4490

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
4491
			 * jbd2_journal_revoke().
4492 4493 4494
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
4495
			 * transaction then jbd2_journal_forget() will simply
4496
			 * brelse() it.  That means that if the underlying
4497
			 * block is reallocated in ext4_get_block(),
4498 4499 4500 4501 4502 4503 4504 4505
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
4506
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4524
			if (ext4_handle_is_aborted(handle))
4525 4526
				return;
			if (try_to_extend_transaction(handle, inode)) {
4527
				ext4_mark_inode_dirty(handle, inode);
4528 4529
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4530 4531
			}

4532 4533
			ext4_free_blocks(handle, inode, 0, nr, 1,
					 EXT4_FREE_BLOCKS_METADATA);
4534 4535 4536 4537 4538 4539 4540

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4541
				if (!ext4_journal_get_write_access(handle,
4542 4543 4544
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4545 4546 4547 4548
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4549 4550 4551 4552 4553 4554
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4555
		ext4_free_data(handle, inode, parent_bh, first, last);
4556 4557 4558
	}
}

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4572
/*
4573
 * ext4_truncate()
4574
 *
4575 4576
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4593
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4594
 * that this inode's truncate did not complete and it will again call
4595 4596
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4597
 * that's fine - as long as they are linked from the inode, the post-crash
4598
 * ext4_truncate() run will find them and release them.
4599
 */
4600
void ext4_truncate(struct inode *inode)
4601 4602
{
	handle_t *handle;
4603
	struct ext4_inode_info *ei = EXT4_I(inode);
4604
	__le32 *i_data = ei->i_data;
4605
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4606
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4607
	ext4_lblk_t offsets[4];
4608 4609 4610 4611
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4612
	ext4_lblk_t last_block;
4613 4614
	unsigned blocksize = inode->i_sb->s_blocksize;

4615
	if (!ext4_can_truncate(inode))
4616 4617
		return;

4618
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4619

4620
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4621
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4622

4623
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4624
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4625 4626
		return;
	}
A
Alex Tomas 已提交
4627

4628
	handle = start_transaction(inode);
4629
	if (IS_ERR(handle))
4630 4631 4632
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4633
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4634

4635 4636 4637
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4638

4639
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4652
	if (ext4_orphan_add(handle, inode))
4653 4654
		goto out_stop;

4655 4656 4657 4658 4659
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4660

4661
	ext4_discard_preallocations(inode);
4662

4663 4664 4665 4666 4667
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4668
	 * ext4 *really* writes onto the disk inode.
4669 4670 4671 4672
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4673 4674
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4675 4676 4677
		goto do_indirects;
	}

4678
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4679 4680 4681 4682
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4683
			ext4_free_branches(handle, inode, NULL,
4684 4685 4686 4687 4688 4689 4690 4691 4692
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4693
			ext4_free_branches(handle, inode, partial->bh,
4694 4695 4696 4697 4698 4699
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4700
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4701 4702 4703
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4704
		brelse(partial->bh);
4705 4706 4707 4708 4709 4710
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4711
		nr = i_data[EXT4_IND_BLOCK];
4712
		if (nr) {
4713 4714
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4715
		}
4716 4717
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4718
		if (nr) {
4719 4720
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4721
		}
4722 4723
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4724
		if (nr) {
4725 4726
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4727
		}
4728
	case EXT4_TIND_BLOCK:
4729 4730 4731
		;
	}

4732
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4733
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4734
	ext4_mark_inode_dirty(handle, inode);
4735 4736 4737 4738 4739 4740

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4741
		ext4_handle_sync(handle);
4742 4743 4744 4745 4746
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4747
	 * ext4_delete_inode(), and we allow that function to clean up the
4748 4749 4750
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4751
		ext4_orphan_del(handle, inode);
4752

4753
	ext4_journal_stop(handle);
4754 4755 4756
}

/*
4757
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4758 4759 4760 4761
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4762 4763
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4764
{
4765 4766 4767 4768 4769 4770
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4771
	iloc->bh = NULL;
4772 4773
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4774

4775 4776 4777
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4778 4779
		return -EIO;

4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4790
	if (!bh) {
4791 4792
		EXT4_ERROR_INODE(inode, "unable to read inode block - "
				 "block %llu", block);
4793 4794 4795 4796
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4820
			int i, start;
4821

4822
			start = inode_offset & ~(inodes_per_block - 1);
4823

4824 4825
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4838
			for (i = start; i < start + inodes_per_block; i++) {
4839 4840
				if (i == inode_offset)
					continue;
4841
				if (ext4_test_bit(i, bitmap_bh->b_data))
4842 4843 4844
					break;
			}
			brelse(bitmap_bh);
4845
			if (i == start + inodes_per_block) {
4846 4847 4848 4849 4850 4851 4852 4853 4854
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4855 4856 4857 4858 4859 4860 4861 4862 4863
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4864
			/* s_inode_readahead_blks is always a power of 2 */
4865 4866 4867 4868 4869 4870 4871
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4872
				num -= ext4_itable_unused_count(sb, gdp);
4873 4874 4875 4876 4877 4878 4879
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4890 4891
			EXT4_ERROR_INODE(inode, "unable to read inode "
					 "block %llu", block);
4892 4893 4894 4895 4896 4897 4898 4899 4900
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4901
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4902 4903
{
	/* We have all inode data except xattrs in memory here. */
4904
	return __ext4_get_inode_loc(inode, iloc,
4905
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4906 4907
}

4908
void ext4_set_inode_flags(struct inode *inode)
4909
{
4910
	unsigned int flags = EXT4_I(inode)->i_flags;
4911 4912

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4913
	if (flags & EXT4_SYNC_FL)
4914
		inode->i_flags |= S_SYNC;
4915
	if (flags & EXT4_APPEND_FL)
4916
		inode->i_flags |= S_APPEND;
4917
	if (flags & EXT4_IMMUTABLE_FL)
4918
		inode->i_flags |= S_IMMUTABLE;
4919
	if (flags & EXT4_NOATIME_FL)
4920
		inode->i_flags |= S_NOATIME;
4921
	if (flags & EXT4_DIRSYNC_FL)
4922 4923 4924
		inode->i_flags |= S_DIRSYNC;
}

4925 4926 4927
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4948
}
4949

4950
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4951
				  struct ext4_inode_info *ei)
4952 4953
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4954 4955
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4956 4957 4958 4959 4960 4961

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4962
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4963 4964 4965 4966 4967
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4968 4969 4970 4971
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4972

4973
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4974
{
4975 4976
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4977 4978
	struct ext4_inode_info *ei;
	struct inode *inode;
4979
	journal_t *journal = EXT4_SB(sb)->s_journal;
4980
	long ret;
4981 4982
	int block;

4983 4984 4985 4986 4987 4988 4989
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4990
	iloc.bh = 0;
4991

4992 4993
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4994
		goto bad_inode;
4995
	raw_inode = ext4_raw_inode(&iloc);
4996 4997 4998
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4999
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5000 5001 5002 5003 5004
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

5005
	ei->i_state_flags = 0;
5006 5007 5008 5009 5010 5011 5012 5013 5014
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
5015
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5016
			/* this inode is deleted */
5017
			ret = -ESTALE;
5018 5019 5020 5021 5022 5023 5024 5025
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5026
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5027
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5028
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
5029 5030
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5031
	inode->i_size = ext4_isize(raw_inode);
5032
	ei->i_disksize = inode->i_size;
5033 5034 5035
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
5036 5037
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
5038
	ei->i_last_alloc_group = ~0;
5039 5040 5041 5042
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
5043
	for (block = 0; block < EXT4_N_BLOCKS; block++)
5044 5045 5046
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

		spin_lock(&journal->j_state_lock);
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
		spin_unlock(&journal->j_state_lock);
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

5072
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5073
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5074
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5075
		    EXT4_INODE_SIZE(inode->i_sb)) {
5076
			ret = -EIO;
5077
			goto bad_inode;
5078
		}
5079 5080
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
5081 5082
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
5083 5084
		} else {
			__le32 *magic = (void *)raw_inode +
5085
					EXT4_GOOD_OLD_INODE_SIZE +
5086
					ei->i_extra_isize;
5087
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5088
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5089 5090 5091 5092
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
5093 5094 5095 5096 5097
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

5098 5099 5100 5101 5102 5103 5104
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

5105
	ret = 0;
5106
	if (ei->i_file_acl &&
5107
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5108 5109
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
5110 5111
		ret = -EIO;
		goto bad_inode;
5112
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5113 5114 5115 5116 5117
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
5118
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5119 5120
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
5121
		/* Validate block references which are part of inode */
5122 5123
		ret = ext4_check_inode_blockref(inode);
	}
5124
	if (ret)
5125
		goto bad_inode;
5126

5127
	if (S_ISREG(inode->i_mode)) {
5128 5129 5130
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
5131
	} else if (S_ISDIR(inode->i_mode)) {
5132 5133
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
5134
	} else if (S_ISLNK(inode->i_mode)) {
5135
		if (ext4_inode_is_fast_symlink(inode)) {
5136
			inode->i_op = &ext4_fast_symlink_inode_operations;
5137 5138 5139
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
5140 5141
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5142
		}
5143 5144
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5145
		inode->i_op = &ext4_special_inode_operations;
5146 5147 5148 5149 5150 5151
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5152 5153
	} else {
		ret = -EIO;
5154
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5155
		goto bad_inode;
5156
	}
5157
	brelse(iloc.bh);
5158
	ext4_set_inode_flags(inode);
5159 5160
	unlock_new_inode(inode);
	return inode;
5161 5162

bad_inode:
5163
	brelse(iloc.bh);
5164 5165
	iget_failed(inode);
	return ERR_PTR(ret);
5166 5167
}

5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5181
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5182
		raw_inode->i_blocks_high = 0;
5183
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5184 5185 5186 5187 5188 5189
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5190 5191 5192 5193
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5194
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5195
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5196
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5197
	} else {
5198
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5199 5200 5201 5202
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5203
	}
5204
	return 0;
5205 5206
}

5207 5208 5209 5210 5211 5212 5213
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5214
static int ext4_do_update_inode(handle_t *handle,
5215
				struct inode *inode,
5216
				struct ext4_iloc *iloc)
5217
{
5218 5219
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5220 5221 5222 5223 5224
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5225
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5226
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5227

5228
	ext4_get_inode_flags(ei);
5229
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5230
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5231 5232 5233 5234 5235 5236
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5237
		if (!ei->i_dtime) {
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5255 5256 5257 5258 5259 5260

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5261 5262
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5263
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5264
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5265 5266
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5267 5268
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5269
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5286
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5287
			sb->s_dirt = 1;
5288
			ext4_handle_sync(handle);
5289
			err = ext4_handle_dirty_metadata(handle, NULL,
5290
					EXT4_SB(sb)->s_sbh);
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5305 5306 5307
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5308

5309 5310 5311 5312 5313
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5314
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5315 5316
	}

5317
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5318
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5319 5320
	if (!err)
		err = rc;
5321
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5322

5323
	ext4_update_inode_fsync_trans(handle, inode, 0);
5324
out_brelse:
5325
	brelse(bh);
5326
	ext4_std_error(inode->i_sb, err);
5327 5328 5329 5330
	return err;
}

/*
5331
 * ext4_write_inode()
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5348
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5365
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5366
{
5367 5368
	int err;

5369 5370 5371
	if (current->flags & PF_MEMALLOC)
		return 0;

5372 5373 5374 5375 5376 5377
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5378

5379
		if (wbc->sync_mode != WB_SYNC_ALL)
5380 5381 5382 5383 5384
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5385

5386
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5387 5388
		if (err)
			return err;
5389
		if (wbc->sync_mode == WB_SYNC_ALL)
5390 5391
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5392 5393 5394
			EXT4_ERROR_INODE(inode,
				"IO error syncing inode (block=%llu)",
				(unsigned long long) iloc.bh->b_blocknr);
5395 5396
			err = -EIO;
		}
5397
		brelse(iloc.bh);
5398 5399
	}
	return err;
5400 5401 5402
}

/*
5403
 * ext4_setattr()
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5417 5418 5419 5420 5421 5422 5423 5424
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5425
 */
5426
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5427 5428 5429 5430 5431 5432 5433 5434 5435
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5436
	if (is_quota_modification(inode, attr))
5437
		dquot_initialize(inode);
5438 5439 5440 5441 5442 5443
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5444
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5445
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5446 5447 5448 5449
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5450
		error = dquot_transfer(inode, attr);
5451
		if (error) {
5452
			ext4_journal_stop(handle);
5453 5454 5455 5456 5457 5458 5459 5460
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5461 5462
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5463 5464
	}

5465
	if (attr->ia_valid & ATTR_SIZE) {
5466
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5467 5468 5469 5470 5471 5472 5473 5474 5475
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

5476
	if (S_ISREG(inode->i_mode) &&
5477 5478
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
5479
	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5480 5481
		handle_t *handle;

5482
		handle = ext4_journal_start(inode, 3);
5483 5484 5485 5486 5487
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

5488 5489 5490
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5491 5492
		if (!error)
			error = rc;
5493
		ext4_journal_stop(handle);
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5510
		/* ext4_truncate will clear the flag */
5511
		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5512
			ext4_truncate(inode);
5513 5514 5515 5516
	}

	rc = inode_setattr(inode, attr);

5517
	/* If inode_setattr's call to ext4_truncate failed to get a
5518 5519 5520
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
5521
		ext4_orphan_del(NULL, inode);
5522 5523

	if (!rc && (ia_valid & ATTR_MODE))
5524
		rc = ext4_acl_chmod(inode);
5525 5526

err_out:
5527
	ext4_std_error(inode->i_sb, error);
5528 5529 5530 5531 5532
	if (!error)
		error = rc;
	return error;
}

5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5559

5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5587
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5588 5589
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5590
}
5591

5592
/*
5593 5594 5595
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5596
 *
5597
 * If datablocks are discontiguous, they are possible to spread over
5598
 * different block groups too. If they are contiuguous, with flexbg,
5599
 * they could still across block group boundary.
5600
 *
5601 5602 5603 5604
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5605 5606
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5633 5634
	if (groups > ngroups)
		groups = ngroups;
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5649 5650
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5651
 *
5652
 * This could be called via ext4_write_begin()
5653
 *
5654
 * We need to consider the worse case, when
5655
 * one new block per extent.
5656
 */
A
Alex Tomas 已提交
5657
int ext4_writepage_trans_blocks(struct inode *inode)
5658
{
5659
	int bpp = ext4_journal_blocks_per_page(inode);
5660 5661
	int ret;

5662
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5663

5664
	/* Account for data blocks for journalled mode */
5665
	if (ext4_should_journal_data(inode))
5666
		ret += bpp;
5667 5668
	return ret;
}
5669 5670 5671 5672 5673

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5674
 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5675 5676 5677 5678 5679 5680 5681 5682 5683
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5684
/*
5685
 * The caller must have previously called ext4_reserve_inode_write().
5686 5687
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5688
int ext4_mark_iloc_dirty(handle_t *handle,
5689
			 struct inode *inode, struct ext4_iloc *iloc)
5690 5691 5692
{
	int err = 0;

5693 5694 5695
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5696 5697 5698
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5699
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5700
	err = ext4_do_update_inode(handle, inode, iloc);
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5711 5712
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5713
{
5714 5715 5716 5717 5718 5719 5720 5721 5722
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5723 5724
		}
	}
5725
	ext4_std_error(inode->i_sb, err);
5726 5727 5728
	return err;
}

5729 5730 5731 5732
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5733 5734 5735 5736
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5749 5750
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5783
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5784
{
5785
	struct ext4_iloc iloc;
5786 5787 5788
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5789 5790

	might_sleep();
5791
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5792 5793
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5794
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5808 5809
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5810 5811
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5812
					ext4_warning(inode->i_sb,
5813 5814 5815
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5816 5817
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5818 5819 5820 5821
				}
			}
		}
	}
5822
	if (!err)
5823
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5824 5825 5826 5827
	return err;
}

/*
5828
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5829 5830 5831 5832 5833
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5834
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5835 5836 5837 5838 5839 5840
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5841
void ext4_dirty_inode(struct inode *inode)
5842 5843 5844
{
	handle_t *handle;

5845
	handle = ext4_journal_start(inode, 2);
5846 5847
	if (IS_ERR(handle))
		goto out;
5848 5849 5850

	ext4_mark_inode_dirty(handle, inode);

5851
	ext4_journal_stop(handle);
5852 5853 5854 5855 5856 5857 5858 5859
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5860
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5861 5862 5863
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5864
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5865
{
5866
	struct ext4_iloc iloc;
5867 5868 5869

	int err = 0;
	if (handle) {
5870
		err = ext4_get_inode_loc(inode, &iloc);
5871 5872
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5873
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5874
			if (!err)
5875
				err = ext4_handle_dirty_metadata(handle,
5876
								 NULL,
5877
								 iloc.bh);
5878 5879 5880
			brelse(iloc.bh);
		}
	}
5881
	ext4_std_error(inode->i_sb, err);
5882 5883 5884 5885
	return err;
}
#endif

5886
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5902
	journal = EXT4_JOURNAL(inode);
5903 5904
	if (!journal)
		return 0;
5905
	if (is_journal_aborted(journal))
5906 5907
		return -EROFS;

5908 5909
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5920
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5921
	else
5922
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5923
	ext4_set_aops(inode);
5924

5925
	jbd2_journal_unlock_updates(journal);
5926 5927 5928

	/* Finally we can mark the inode as dirty. */

5929
	handle = ext4_journal_start(inode, 1);
5930 5931 5932
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5933
	err = ext4_mark_inode_dirty(handle, inode);
5934
	ext4_handle_sync(handle);
5935 5936
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5937 5938 5939

	return err;
}
5940 5941 5942 5943 5944 5945

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5946
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5947
{
5948
	struct page *page = vmf->page;
5949 5950 5951
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5952
	void *fsdata;
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5977 5978 5979 5980 5981 5982 5983
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5984 5985
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5986 5987
					ext4_bh_unmapped)) {
			unlock_page(page);
5988
			goto out_unlock;
5989
		}
5990
	}
5991
	unlock_page(page);
5992 5993 5994 5995 5996 5997 5998 5999
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6000
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6001 6002 6003
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6004
			len, len, page, fsdata);
6005 6006 6007 6008
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
6009 6010
	if (ret)
		ret = VM_FAULT_SIGBUS;
6011 6012 6013
	up_read(&inode->i_alloc_sem);
	return ret;
}