inode.c 170.5 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/printk.h>
43
#include <linux/slab.h>
44
#include <linux/ratelimit.h>
45

46
#include "ext4_jbd2.h"
47 48
#include "xattr.h"
#include "acl.h"
49
#include "ext4_extents.h"
50

51 52
#include <trace/events/ext4.h>

53 54
#define MPAGE_DA_EXTENT_TAIL 0x01

55 56 57
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
58
	trace_ext4_begin_ordered_truncate(inode, new_size);
59 60 61 62 63 64 65 66 67 68 69
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
70 71
}

72
static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 74 75 76 77 78
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79

80 81 82
/*
 * Test whether an inode is a fast symlink.
 */
83
static int ext4_inode_is_fast_symlink(struct inode *inode)
84
{
85
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
86 87 88 89 90 91 92 93 94 95 96
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
97
	ext4_lblk_t needed;
98 99 100 101 102 103

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
104
	 * like a regular file for ext4 to try to delete it.  Things
105 106 107 108 109 110 111
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
112 113
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
114

115
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

132
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
133 134 135
	if (!IS_ERR(result))
		return result;

136
	ext4_std_error(inode->i_sb, PTR_ERR(result));
137 138 139 140 141 142 143 144 145 146 147
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
148 149 150
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151
		return 0;
152
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153 154 155 156 157 158 159 160 161
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
162
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163
				 int nblocks)
164
{
165 166 167
	int ret;

	/*
168
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169 170 171 172
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
173
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
174
	jbd_debug(2, "restarting handle %p\n", handle);
175 176 177
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
178
	ext4_discard_preallocations(inode);
179 180

	return ret;
181 182 183 184 185
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
186
void ext4_evict_inode(struct inode *inode)
187 188
{
	handle_t *handle;
189
	int err;
190

191
	trace_ext4_evict_inode(inode);
A
Al Viro 已提交
192 193 194 195 196
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

197
	if (!is_bad_inode(inode))
198
		dquot_initialize(inode);
199

200 201
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
202 203 204 205 206
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

207
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208
	if (IS_ERR(handle)) {
209
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
210 211 212 213 214
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
215
		ext4_orphan_del(NULL, inode);
216 217 218 219
		goto no_delete;
	}

	if (IS_SYNC(inode))
220
		ext4_handle_sync(handle);
221
	inode->i_size = 0;
222 223
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
224
		ext4_warning(inode->i_sb,
225 226 227
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
228
	if (inode->i_blocks)
229
		ext4_truncate(inode);
230 231 232 233 234 235 236

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
237
	if (!ext4_handle_has_enough_credits(handle, 3)) {
238 239 240 241
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
242
			ext4_warning(inode->i_sb,
243 244 245
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
246
			ext4_orphan_del(NULL, inode);
247 248 249 250
			goto no_delete;
		}
	}

251
	/*
252
	 * Kill off the orphan record which ext4_truncate created.
253
	 * AKPM: I think this can be inside the above `if'.
254
	 * Note that ext4_orphan_del() has to be able to cope with the
255
	 * deletion of a non-existent orphan - this is because we don't
256
	 * know if ext4_truncate() actually created an orphan record.
257 258
	 * (Well, we could do this if we need to, but heck - it works)
	 */
259 260
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
261 262 263 264 265 266 267 268

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
269
	if (ext4_mark_inode_dirty(handle, inode))
270
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
271
		ext4_clear_inode(inode);
272
	else
273 274
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
275 276
	return;
no_delete:
A
Al Viro 已提交
277
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
293
 *	ext4_block_to_path - parse the block number into array of offsets
294 295 296
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
297 298
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
299
 *
300
 *	To store the locations of file's data ext4 uses a data structure common
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

323
static int ext4_block_to_path(struct inode *inode,
324 325
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
326
{
327 328 329
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
330 331 332 333 334
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

335
	if (i_block < direct_blocks) {
336 337
		offsets[n++] = i_block;
		final = direct_blocks;
338
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
339
		offsets[n++] = EXT4_IND_BLOCK;
340 341 342
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
343
		offsets[n++] = EXT4_DIND_BLOCK;
344 345 346 347
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348
		offsets[n++] = EXT4_TIND_BLOCK;
349 350 351 352 353
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
354
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355 356
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
357 358 359 360 361 362
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

363 364
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
365 366
				 __le32 *p, unsigned int max)
{
367
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
368
	__le32 *bref = p;
369 370
	unsigned int blk;

371
	while (bref < p+max) {
372
		blk = le32_to_cpu(*bref++);
373 374
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
375
						    blk, 1))) {
376
			es->s_last_error_block = cpu_to_le64(blk);
377 378
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
379 380 381 382
			return -EIO;
		}
	}
	return 0;
383 384 385 386
}


#define ext4_check_indirect_blockref(inode, bh)                         \
387 388
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
389 390 391
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
392 393
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
394 395
			      EXT4_NDIR_BLOCKS)

396
/**
397
 *	ext4_get_branch - read the chain of indirect blocks leading to data
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
422 423
 *
 *      Need to be called with
424
 *      down_read(&EXT4_I(inode)->i_data_sem)
425
 */
A
Aneesh Kumar K.V 已提交
426 427
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
428 429 430 431 432 433 434 435
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
436
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
437 438 439
	if (!p->key)
		goto no_block;
	while (--depth) {
440 441
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
442
			goto failure;
443

444 445 446 447 448 449 450 451 452 453 454
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
455

456
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
457 458 459 460 461 462 463 464 465 466 467 468 469
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
470
 *	ext4_find_near - find a place for allocation with sufficient locality
471 472 473
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
474
 *	This function returns the preferred place for block allocation.
475 476 477 478 479 480 481 482 483 484 485 486 487 488
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
489
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
490
{
491
	struct ext4_inode_info *ei = EXT4_I(inode);
492
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
493
	__le32 *p;
494
	ext4_fsblk_t bg_start;
495
	ext4_fsblk_t last_block;
496
	ext4_grpblk_t colour;
497 498
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
514 515 516 517 518 519 520
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
521 522
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

523 524 525 526 527 528 529
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

530 531
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
532
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
533 534
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
535 536 537 538
	return bg_start + colour;
}

/**
539
 *	ext4_find_goal - find a preferred place for allocation.
540 541 542 543
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
544
 *	Normally this function find the preferred place for block allocation,
545
 *	returns it.
546 547
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
548
 */
A
Aneesh Kumar K.V 已提交
549
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
550
				   Indirect *partial)
551
{
552 553
	ext4_fsblk_t goal;

554
	/*
555
	 * XXX need to get goal block from mballoc's data structures
556 557
	 */

558 559 560
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
561 562 563
}

/**
T
Theodore Ts'o 已提交
564
 *	ext4_blks_to_allocate - Look up the block map and count the number
565 566 567 568 569 570 571 572 573 574
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
575
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576
				 int blocks_to_boundary)
577
{
578
	unsigned int count = 0;
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
602
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
T
Theodore Ts'o 已提交
603 604 605 606
 *	@handle: handle for this transaction
 *	@inode: inode which needs allocated blocks
 *	@iblock: the logical block to start allocated at
 *	@goal: preferred physical block of allocation
607 608
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
T
Theodore Ts'o 已提交
609
 *	@blks: number of desired blocks
610 611
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
T
Theodore Ts'o 已提交
612 613 614 615
 *	@err: on return it will store the error code
 *
 *	This function will return the number of blocks allocated as
 *	requested by the passed-in parameters.
616
 */
617
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
618 619 620
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
621
{
622
	struct ext4_allocation_request ar;
623
	int target, i;
624
	unsigned long count = 0, blk_allocated = 0;
625
	int index = 0;
626
	ext4_fsblk_t current_block = 0;
627 628 629 630 631 632 633 634 635 636
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
637 638 639
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
640 641
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
642 643
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
644 645 646
		if (*err)
			goto failed_out;

647 648 649 650 651 652 653 654
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
655

656 657 658 659 660 661
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
662 663 664 665 666 667 668 669 670
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
671
			break;
672
		}
673 674
	}

675 676 677 678 679
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
680 681 682 683 684 685 686 687 688 689
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
690 691 692 693 694 695 696 697
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
698

699 700 701 702 703 704 705 706 707
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
708 709 710 711
			/*
			 * save the new block number
			 * for the first direct block
			 */
712 713
			new_blocks[index] = current_block;
		}
714
		blk_allocated += ar.len;
715 716
	}
allocated:
717
	/* total number of blocks allocated for direct blocks */
718
	ret = blk_allocated;
719 720 721
	*err = 0;
	return ret;
failed_out:
722
	for (i = 0; i < index; i++)
723
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
724 725 726 727
	return ret;
}

/**
728
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
T
Theodore Ts'o 已提交
729
 *	@handle: handle for this transaction
730 731 732
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
T
Theodore Ts'o 已提交
733
 *	@goal: preferred place for allocation
734 735 736 737 738 739 740
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
741
 *	the same format as ext4_get_branch() would do. We are calling it after
742 743
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
744
 *	picture as after the successful ext4_get_block(), except that in one
745 746 747 748 749 750
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
751
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752 753
 *	as described above and return 0.
 */
754
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755 756 757
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
758 759 760 761 762 763
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
764 765
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
766

767
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783 784 785 786 787
		if (unlikely(!bh)) {
			err = -EIO;
			goto failed;
		}

788 789 790
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
791
		err = ext4_journal_get_create_access(handle, bh);
792
		if (err) {
793 794
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
795 796 797 798 799 800 801 802
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
803
		if (n == indirect_blks) {
804 805 806 807 808 809
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
810
			for (i = 1; i < num; i++)
811 812 813 814 815 816
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

817 818
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
819 820 821 822 823 824 825
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
826
	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
827
	for (i = 1; i <= n ; i++) {
828
		/*
829 830 831
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
832
		 */
833
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
834
				 EXT4_FREE_BLOCKS_FORGET);
835
	}
836
	for (i = n+1; i < indirect_blks; i++)
837
		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
838

839
	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
840 841 842 843 844

	return err;
}

/**
845
 * ext4_splice_branch - splice the allocated branch onto inode.
T
Theodore Ts'o 已提交
846
 * @handle: handle for this transaction
847 848 849
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
850
 *	ext4_alloc_branch)
851 852 853 854 855 856 857 858
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
859
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
860 861
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
862 863 864
{
	int i;
	int err = 0;
865
	ext4_fsblk_t current_block;
866 867 868 869 870 871 872 873

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
874
		err = ext4_journal_get_write_access(handle, where->bh);
875 876 877 878 879 880 881 882 883 884 885 886 887 888
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
889
			*(where->p + i) = cpu_to_le32(current_block++);
890 891 892 893 894 895 896 897 898 899 900
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
901
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
902 903
		 */
		jbd_debug(5, "splicing indirect only\n");
904 905
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
906 907 908 909 910 911
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
912
		ext4_mark_inode_dirty(handle, inode);
913 914 915 916 917 918
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
919
		/*
920 921 922
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
923
		 */
924 925
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
926
	}
927
	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
928
			 blks, 0);
929 930 931 932 933

	return err;
}

/*
934
 * The ext4_ind_map_blocks() function handles non-extents inodes
935
 * (i.e., using the traditional indirect/double-indirect i_blocks
936
 * scheme) for ext4_map_blocks().
937
 *
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
954
 *
955 956 957 958 959
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
960
 */
961 962
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
963
			       int flags)
964 965
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
966
	ext4_lblk_t offsets[4];
967 968
	Indirect chain[4];
	Indirect *partial;
969
	ext4_fsblk_t goal;
970 971 972 973
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
974
	ext4_fsblk_t first_block = 0;
975

976
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
977
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
978
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
979
				   &blocks_to_boundary);
980 981 982 983

	if (depth == 0)
		goto out;

984
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
985 986 987 988 989 990

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
991
		while (count < map->m_len && count <= blocks_to_boundary) {
992
			ext4_fsblk_t blk;
993 994 995 996 997 998 999 1000

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
1001
		goto got_it;
1002 1003 1004
	}

	/* Next simple case - plain lookup or failed read of indirect block */
1005
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1006 1007 1008
		goto cleanup;

	/*
1009
	 * Okay, we need to do block allocation.
1010
	*/
1011
	goal = ext4_find_goal(inode, map->m_lblk, partial);
1012 1013 1014 1015 1016 1017 1018 1019

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
1020
	count = ext4_blks_to_allocate(partial, indirect_blks,
1021
				      map->m_len, blocks_to_boundary);
1022
	/*
1023
	 * Block out ext4_truncate while we alter the tree
1024
	 */
1025
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1026 1027
				&count, goal,
				offsets + (partial - chain), partial);
1028 1029

	/*
1030
	 * The ext4_splice_branch call will free and forget any buffers
1031 1032 1033 1034 1035 1036
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1037
		err = ext4_splice_branch(handle, inode, map->m_lblk,
1038
					 partial, indirect_blks, count);
1039
	if (err)
1040 1041
		goto cleanup;

1042
	map->m_flags |= EXT4_MAP_NEW;
1043 1044

	ext4_update_inode_fsync_trans(handle, inode, 1);
1045
got_it:
1046 1047 1048
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1049
	if (count > blocks_to_boundary)
1050
		map->m_flags |= EXT4_MAP_BOUNDARY;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
	return err;
}

1064 1065
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1066
{
1067
	return &EXT4_I(inode)->i_reserved_quota;
1068
}
1069
#endif
1070

1071 1072
/*
 * Calculate the number of metadata blocks need to reserve
1073
 * to allocate a new block at @lblocks for non extent file based file
1074
 */
1075 1076
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1077
{
1078
	struct ext4_inode_info *ei = EXT4_I(inode);
1079
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1080
	int blk_bits;
1081

1082 1083
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1084

1085
	lblock -= EXT4_NDIR_BLOCKS;
1086

1087 1088 1089 1090 1091 1092 1093
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1094
	blk_bits = order_base_2(lblock);
1095
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1096 1097 1098 1099
}

/*
 * Calculate the number of metadata blocks need to reserve
1100
 * to allocate a block located at @lblock
1101
 */
1102
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1103
{
1104
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1105
		return ext4_ext_calc_metadata_amount(inode, lblock);
1106

1107
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1108 1109
}

1110 1111 1112 1113
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1114 1115
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1116 1117
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1118 1119 1120
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1121
	trace_ext4_da_update_reserve_space(inode, used);
1122 1123 1124 1125 1126 1127 1128 1129
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1130

1131 1132 1133
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1134 1135
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1136
	ei->i_allocated_meta_blocks = 0;
1137

1138 1139 1140 1141 1142 1143
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1144 1145
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1146
		ei->i_reserved_meta_blocks = 0;
1147
		ei->i_da_metadata_calc_len = 0;
1148
	}
1149
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1150

1151 1152
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1153
		dquot_claim_block(inode, used);
1154
	else {
1155 1156 1157
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1158
		 * not re-claim the quota for fallocated blocks.
1159
		 */
1160
		dquot_release_reservation_block(inode, used);
1161
	}
1162 1163 1164 1165 1166 1167

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1168 1169
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1170
		ext4_discard_preallocations(inode);
1171 1172
}

1173
static int __check_block_validity(struct inode *inode, const char *func,
1174 1175
				unsigned int line,
				struct ext4_map_blocks *map)
1176
{
1177 1178
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
1179 1180 1181 1182
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
1183 1184 1185 1186 1187
		return -EIO;
	}
	return 0;
}

1188
#define check_block_validity(inode, map)	\
1189
	__check_block_validity((inode), __func__, __LINE__, (map))
1190

1191
/*
1192 1193
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1227 1228 1229 1230 1231 1232 1233 1234 1235
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1236 1237 1238 1239 1240
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
1241 1242
			if (num >= max_pages) {
				done = 1;
1243
				break;
1244
			}
1245 1246 1247 1248 1249 1250
		}
		pagevec_release(&pvec);
	}
	return num;
}

1251
/*
1252
 * The ext4_map_blocks() function tries to look up the requested blocks,
1253
 * and returns if the blocks are already mapped.
1254 1255 1256 1257 1258
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1259 1260
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1273 1274
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1275 1276
{
	int retval;
1277

1278 1279 1280 1281
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1282
	/*
1283 1284
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1285 1286
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1287
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1288
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1289
	} else {
1290
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1291
	}
1292
	up_read((&EXT4_I(inode)->i_data_sem));
1293

1294
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1295
		int ret = check_block_validity(inode, map);
1296 1297 1298 1299
		if (ret != 0)
			return ret;
	}

1300
	/* If it is only a block(s) look up */
1301
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1302 1303 1304 1305 1306 1307 1308 1309 1310
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1311
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1312 1313
		return retval;

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1324
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1325

1326
	/*
1327 1328 1329 1330
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1331 1332
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1333 1334 1335 1336 1337 1338 1339

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1340
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1341
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1342 1343 1344 1345
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1346
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1347
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1348
	} else {
1349
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1350

1351
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1352 1353 1354 1355 1356
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1357
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1358
		}
1359

1360 1361 1362 1363 1364 1365 1366
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1367
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1368 1369
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1370
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1371
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1372

1373
	up_write((&EXT4_I(inode)->i_data_sem));
1374
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1375
		int ret = check_block_validity(inode, map);
1376 1377 1378
		if (ret != 0)
			return ret;
	}
1379 1380 1381
	return retval;
}

1382 1383 1384
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1385 1386
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1387
{
1388
	handle_t *handle = ext4_journal_current_handle();
1389
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1390
	int ret = 0, started = 0;
1391
	int dio_credits;
1392

1393 1394 1395 1396
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1397
		/* Direct IO write... */
1398 1399 1400
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1401
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1402
		if (IS_ERR(handle)) {
1403
			ret = PTR_ERR(handle);
1404
			return ret;
1405
		}
J
Jan Kara 已提交
1406
		started = 1;
1407 1408
	}

1409
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1410
	if (ret > 0) {
1411 1412 1413
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1414
		ret = 0;
1415
	}
J
Jan Kara 已提交
1416 1417
	if (started)
		ext4_journal_stop(handle);
1418 1419 1420
	return ret;
}

1421 1422 1423 1424 1425 1426 1427
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1428 1429 1430
/*
 * `handle' can be NULL if create is zero
 */
1431
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1432
				ext4_lblk_t block, int create, int *errp)
1433
{
1434 1435
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1436 1437 1438 1439
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1440 1441 1442 1443
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1455
	}
1456 1457 1458
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1459

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1473
		}
1474 1475 1476 1477 1478 1479 1480
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1481
	}
1482 1483 1484 1485 1486 1487
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1488 1489
}

1490
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1491
			       ext4_lblk_t block, int create, int *err)
1492
{
1493
	struct buffer_head *bh;
1494

1495
	bh = ext4_getblk(handle, inode, block, create, err);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1509 1510 1511 1512 1513 1514 1515
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1516 1517 1518 1519 1520 1521 1522
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1523 1524
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1525
	     block_start = block_end, bh = next) {
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1543
 * close off a transaction and start a new one between the ext4_get_block()
1544
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1545 1546
 * prepare_write() is the right place.
 *
1547 1548
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1549 1550 1551 1552
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1553
 * By accident, ext4 can be reentered when a transaction is open via
1554 1555 1556 1557 1558 1559
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1560
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1561 1562 1563 1564 1565
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1566
				       struct buffer_head *bh)
1567
{
1568 1569 1570
	int dirty = buffer_dirty(bh);
	int ret;

1571 1572
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1573
	/*
C
Christoph Hellwig 已提交
1574
	 * __block_write_begin() could have dirtied some buffers. Clean
1575 1576
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
1577
	 * by __block_write_begin() isn't a real problem here as we clear
1578 1579 1580 1581 1582 1583 1584 1585 1586
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
1587 1588
}

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1599 1600
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1601
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1602 1603
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1604
{
1605
	struct inode *inode = mapping->host;
1606
	int ret, needed_blocks;
1607 1608
	handle_t *handle;
	int retries = 0;
1609
	struct page *page;
1610
	pgoff_t index;
1611
	unsigned from, to;
N
Nick Piggin 已提交
1612

1613
	trace_ext4_write_begin(inode, pos, len, flags);
1614 1615 1616 1617 1618
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1619
	index = pos >> PAGE_CACHE_SHIFT;
1620 1621
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1622 1623

retry:
1624 1625 1626 1627
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1628
	}
1629

1630 1631 1632 1633
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1634
	page = grab_cache_page_write_begin(mapping, index, flags);
1635 1636 1637 1638 1639 1640 1641
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1642
	if (ext4_should_dioread_nolock(inode))
1643
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1644
	else
1645
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1646 1647

	if (!ret && ext4_should_journal_data(inode)) {
1648 1649 1650
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1651 1652

	if (ret) {
1653 1654
		unlock_page(page);
		page_cache_release(page);
1655
		/*
1656
		 * __block_write_begin may have instantiated a few blocks
1657 1658
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1659 1660 1661
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1662
		 */
1663
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1664 1665 1666 1667
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1668
			ext4_truncate_failed_write(inode);
1669
			/*
1670
			 * If truncate failed early the inode might
1671 1672 1673 1674 1675 1676 1677
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1678 1679
	}

1680
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1681
		goto retry;
1682
out:
1683 1684 1685
	return ret;
}

N
Nick Piggin 已提交
1686 1687
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1688 1689 1690 1691
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1692
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1693 1694
}

1695
static int ext4_generic_write_end(struct file *file,
1696 1697 1698
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1741 1742 1743 1744
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1745
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1746 1747
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1748
static int ext4_ordered_write_end(struct file *file,
1749 1750 1751
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1752
{
1753
	handle_t *handle = ext4_journal_current_handle();
1754
	struct inode *inode = mapping->host;
1755 1756
	int ret = 0, ret2;

1757
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1758
	ret = ext4_jbd2_file_inode(handle, inode);
1759 1760

	if (ret == 0) {
1761
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1762
							page, fsdata);
1763
		copied = ret2;
1764
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1765 1766 1767 1768 1769
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1770 1771
		if (ret2 < 0)
			ret = ret2;
1772
	}
1773
	ret2 = ext4_journal_stop(handle);
1774 1775
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1776

1777
	if (pos + len > inode->i_size) {
1778
		ext4_truncate_failed_write(inode);
1779
		/*
1780
		 * If truncate failed early the inode might still be
1781 1782 1783 1784 1785 1786 1787 1788
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1789
	return ret ? ret : copied;
1790 1791
}

N
Nick Piggin 已提交
1792
static int ext4_writeback_write_end(struct file *file,
1793 1794 1795
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1796
{
1797
	handle_t *handle = ext4_journal_current_handle();
1798
	struct inode *inode = mapping->host;
1799 1800
	int ret = 0, ret2;

1801
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1802
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1803
							page, fsdata);
1804
	copied = ret2;
1805
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1806 1807 1808 1809 1810 1811
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1812 1813
	if (ret2 < 0)
		ret = ret2;
1814

1815
	ret2 = ext4_journal_stop(handle);
1816 1817
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1818

1819
	if (pos + len > inode->i_size) {
1820
		ext4_truncate_failed_write(inode);
1821
		/*
1822
		 * If truncate failed early the inode might still be
1823 1824 1825 1826 1827 1828 1829
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1830
	return ret ? ret : copied;
1831 1832
}

N
Nick Piggin 已提交
1833
static int ext4_journalled_write_end(struct file *file,
1834 1835 1836
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1837
{
1838
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1839
	struct inode *inode = mapping->host;
1840 1841
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1842
	unsigned from, to;
1843
	loff_t new_i_size;
1844

1845
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1846 1847 1848 1849 1850 1851 1852 1853
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1854 1855

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1856
				to, &partial, write_end_fn);
1857 1858
	if (!partial)
		SetPageUptodate(page);
1859 1860
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1861
		i_size_write(inode, pos+copied);
1862
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1863 1864
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1865
		ret2 = ext4_mark_inode_dirty(handle, inode);
1866 1867 1868
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1869

1870
	unlock_page(page);
1871
	page_cache_release(page);
1872
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1873 1874 1875 1876 1877 1878
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1879
	ret2 = ext4_journal_stop(handle);
1880 1881
	if (!ret)
		ret = ret2;
1882
	if (pos + len > inode->i_size) {
1883
		ext4_truncate_failed_write(inode);
1884
		/*
1885
		 * If truncate failed early the inode might still be
1886 1887 1888 1889 1890 1891
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1892 1893

	return ret ? ret : copied;
1894
}
1895

1896 1897 1898
/*
 * Reserve a single block located at lblock
 */
1899
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1900
{
A
Aneesh Kumar K.V 已提交
1901
	int retries = 0;
1902
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1903
	struct ext4_inode_info *ei = EXT4_I(inode);
1904
	unsigned long md_needed;
1905
	int ret;
1906 1907 1908 1909 1910 1911

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1912
repeat:
1913
	spin_lock(&ei->i_block_reservation_lock);
1914
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1915
	trace_ext4_da_reserve_space(inode, md_needed);
1916
	spin_unlock(&ei->i_block_reservation_lock);
1917

1918
	/*
1919 1920 1921
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1922
	 */
1923
	ret = dquot_reserve_block(inode, 1);
1924 1925
	if (ret)
		return ret;
1926 1927 1928 1929
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1930
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1931
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1932 1933 1934 1935
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1936 1937
		return -ENOSPC;
	}
1938
	spin_lock(&ei->i_block_reservation_lock);
1939
	ei->i_reserved_data_blocks++;
1940 1941
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1942

1943 1944 1945
	return 0;       /* success */
}

1946
static void ext4_da_release_space(struct inode *inode, int to_free)
1947 1948
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1949
	struct ext4_inode_info *ei = EXT4_I(inode);
1950

1951 1952 1953
	if (!to_free)
		return;		/* Nothing to release, exit */

1954
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1955

L
Li Zefan 已提交
1956
	trace_ext4_da_release_space(inode, to_free);
1957
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1958
		/*
1959 1960 1961 1962
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1963
		 */
1964 1965 1966 1967 1968 1969
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1970
	}
1971
	ei->i_reserved_data_blocks -= to_free;
1972

1973 1974 1975 1976 1977 1978
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1979 1980
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1981
		ei->i_reserved_meta_blocks = 0;
1982
		ei->i_da_metadata_calc_len = 0;
1983
	}
1984

1985
	/* update fs dirty data blocks counter */
1986
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1987 1988

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1989

1990
	dquot_release_reservation_block(inode, to_free);
1991 1992 1993
}

static void ext4_da_page_release_reservation(struct page *page,
1994
					     unsigned long offset)
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
2011
	ext4_da_release_space(page->mapping->host, to_release);
2012
}
2013

2014 2015 2016 2017 2018 2019
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
2020
 * them with writepage() call back
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
2031 2032
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
2033
{
2034 2035 2036 2037 2038
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2039
	loff_t size = i_size_read(inode);
2040 2041
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
2042
	int journal_data = ext4_should_journal_data(inode);
2043
	sector_t pblock = 0, cur_logical = 0;
2044
	struct ext4_io_submit io_submit;
2045 2046

	BUG_ON(mpd->next_page <= mpd->first_page);
2047
	memset(&io_submit, 0, sizeof(io_submit));
2048 2049 2050
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
2051
	 * If we look at mpd->b_blocknr we would only be looking
2052 2053
	 * at the currently mapped buffer_heads.
	 */
2054 2055 2056
	index = mpd->first_page;
	end = mpd->next_page - 1;

2057
	pagevec_init(&pvec, 0);
2058
	while (index <= end) {
2059
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2060 2061 2062
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
2063
			int commit_write = 0, redirty_page = 0;
2064 2065
			struct page *page = pvec.pages[i];

2066 2067 2068
			index = page->index;
			if (index > end)
				break;
2069 2070 2071 2072 2073

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
2074 2075 2076 2077 2078 2079
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
2080 2081 2082 2083 2084
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2085
			/*
2086 2087
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
2088
			 * __block_write_begin.  If this fails,
2089
			 * redirty the page and move on.
2090
			 */
2091
			if (!page_has_buffers(page)) {
2092
				if (__block_write_begin(page, 0, len,
2093 2094 2095 2096 2097 2098 2099 2100 2101
						noalloc_get_block_write)) {
				redirty_page:
					redirty_page_for_writepage(mpd->wbc,
								   page);
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
2102

2103 2104
			bh = page_bufs = page_buffers(page);
			block_start = 0;
2105
			do {
2106
				if (!bh)
2107
					goto redirty_page;
2108 2109 2110
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
2111 2112 2113 2114
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
2115 2116 2117 2118 2119 2120 2121
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
2122

2123 2124 2125
				/* redirty page if block allocation undone */
				if (buffer_delay(bh) || buffer_unwritten(bh))
					redirty_page = 1;
2126 2127
				bh = bh->b_this_page;
				block_start += bh->b_size;
2128 2129
				cur_logical++;
				pblock++;
2130 2131 2132 2133
			} while (bh != page_bufs);

			if (redirty_page)
				goto redirty_page;
2134 2135 2136 2137 2138

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

2139 2140 2141 2142 2143 2144
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
2145
				err = __ext4_journalled_writepage(page, len);
2146
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2147 2148
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
2149 2150 2151
			else
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
2152 2153

			if (!err)
2154
				mpd->pages_written++;
2155 2156 2157 2158 2159 2160 2161 2162 2163
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
2164
	ext4_io_submit(&io_submit);
2165 2166 2167
	return ret;
}

2168
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2169 2170 2171 2172 2173 2174 2175
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

2176 2177
	index = mpd->first_page;
	end   = mpd->next_page - 1;
2178 2179 2180 2181 2182 2183
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2184
			if (page->index > end)
2185 2186 2187 2188 2189 2190 2191
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2192 2193
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2194 2195 2196 2197
	}
	return;
}

2198 2199 2200
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2213 2214 2215
	return;
}

2216
/*
2217 2218
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
2219
 *
2220
 * @mpd - bh describing space
2221 2222 2223 2224
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2225
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2226
{
2227
	int err, blks, get_blocks_flags;
2228
	struct ext4_map_blocks map, *mapp = NULL;
2229 2230 2231 2232
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2233 2234

	/*
2235 2236
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
2237
	 */
2238 2239 2240 2241 2242
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
2243 2244 2245 2246

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2247
	/*
2248
	 * Call ext4_map_blocks() to allocate any delayed allocation
2249 2250 2251 2252 2253 2254 2255 2256
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
2257
	 * want to change *many* call functions, so ext4_map_blocks()
2258
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2259 2260 2261 2262 2263
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2264
	 */
2265 2266
	map.m_lblk = next;
	map.m_len = max_blocks;
2267
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2268 2269
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2270
	if (mpd->b_state & (1 << BH_Delay))
2271 2272
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2273
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2274
	if (blks < 0) {
2275 2276
		struct super_block *sb = mpd->inode->i_sb;

2277
		err = blks;
2278
		/*
2279 2280 2281 2282
		 * If get block returns EAGAIN or ENOSPC and there
		 * appears to be free blocks we will call
		 * ext4_writepage() for all of the pages which will
		 * just redirty the pages.
2283 2284
		 */
		if (err == -EAGAIN)
2285
			goto submit_io;
2286 2287

		if (err == -ENOSPC &&
2288
		    ext4_count_free_blocks(sb)) {
2289
			mpd->retval = err;
2290
			goto submit_io;
2291 2292
		}

2293
		/*
2294 2295 2296 2297 2298
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2299
		 */
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2311
		}
2312
		/* invalidate all the pages */
2313
		ext4_da_block_invalidatepages(mpd);
2314 2315 2316

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
2317
		return;
2318
	}
2319 2320
	BUG_ON(blks == 0);

2321
	mapp = &map;
2322 2323 2324
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2325

2326 2327 2328
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2329

2330 2331 2332
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
2333 2334
			/* This only happens if the journal is aborted */
			return;
2335 2336 2337
	}

	/*
2338
	 * Update on-disk size along with block allocation.
2339 2340 2341 2342 2343 2344
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
2345 2346 2347 2348 2349
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
2350 2351
	}

2352
submit_io:
2353
	mpage_da_submit_io(mpd, mapp);
2354
	mpd->io_done = 1;
2355 2356
}

2357 2358
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2370 2371
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2372 2373
{
	sector_t next;
2374
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2375

2376 2377 2378 2379
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
2380
	 * ext4_map_blocks() multiple times in a loop
2381 2382 2383 2384
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2385
	/* check if thereserved journal credits might overflow */
2386
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2407 2408 2409
	/*
	 * First block in the extent
	 */
2410 2411 2412 2413
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2414 2415 2416
		return;
	}

2417
	next = mpd->b_blocknr + nrblocks;
2418 2419 2420
	/*
	 * Can we merge the block to our big extent?
	 */
2421 2422
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2423 2424 2425
		return;
	}

2426
flush_it:
2427 2428 2429 2430
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2431
	mpage_da_map_and_submit(mpd);
2432
	return;
2433 2434
}

2435
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2436
{
2437
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2438 2439
}

2440
/*
2441 2442 2443
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2444 2445 2446 2447 2448 2449 2450
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2451 2452
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2453
				  struct buffer_head *bh, int create)
2454
{
2455
	struct ext4_map_blocks map;
2456
	int ret = 0;
2457 2458 2459 2460
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2461 2462

	BUG_ON(create == 0);
2463 2464 2465 2466
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2467 2468 2469 2470 2471 2472

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2473 2474 2475 2476 2477 2478
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2479
		/*
C
Christoph Hellwig 已提交
2480
		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2481
		 */
2482
		ret = ext4_da_reserve_space(inode, iblock);
2483 2484 2485 2486
		if (ret)
			/* not enough space to reserve */
			return ret;

2487 2488 2489 2490
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2491 2492
	}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
		set_buffer_mapped(bh);
	}
	return 0;
2507
}
2508

2509 2510 2511
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
2512
 * callback function for block_write_begin() and block_write_full_page().
2513
 * These functions should only try to map a single block at a time.
2514 2515 2516 2517 2518
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2519 2520 2521
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2522 2523
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2524 2525
				   struct buffer_head *bh_result, int create)
{
2526
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2527
	return _ext4_get_block(inode, iblock, bh_result, 0);
2528 2529
}

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2552
	ClearPageChecked(page);
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2578
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2579 2580 2581 2582
out:
	return ret;
}

2583 2584 2585
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2586
/*
2587 2588 2589 2590 2591 2592 2593 2594 2595
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2596 2597 2598 2599 2600
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2626
 */
2627
static int ext4_writepage(struct page *page,
2628
			  struct writeback_control *wbc)
2629
{
T
Theodore Ts'o 已提交
2630
	int ret = 0, commit_write = 0;
2631
	loff_t size;
2632
	unsigned int len;
2633
	struct buffer_head *page_bufs = NULL;
2634 2635
	struct inode *inode = page->mapping->host;

2636
	trace_ext4_writepage(inode, page);
2637 2638 2639 2640 2641
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2642

T
Theodore Ts'o 已提交
2643 2644
	/*
	 * If the page does not have buffers (for whatever reason),
2645
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
2646 2647
	 * fails, redirty the page and move on.
	 */
2648
	if (!page_has_buffers(page)) {
2649
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2650 2651
					noalloc_get_block_write)) {
		redirty_page:
2652 2653 2654 2655
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2656 2657 2658 2659 2660
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2661
		/*
2662 2663 2664 2665
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
2666
		 */
T
Theodore Ts'o 已提交
2667 2668 2669
		goto redirty_page;
	}
	if (commit_write)
2670
		/* now mark the buffer_heads as dirty and uptodate */
2671
		block_commit_write(page, 0, len);
2672

2673
	if (PageChecked(page) && ext4_should_journal_data(inode))
2674 2675 2676 2677
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2678
		return __ext4_journalled_writepage(page, len);
2679

T
Theodore Ts'o 已提交
2680
	if (buffer_uninit(page_bufs)) {
2681 2682 2683 2684
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2685 2686
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2687 2688 2689 2690

	return ret;
}

2691
/*
2692 2693 2694 2695 2696
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2697
 */
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2709
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2710 2711 2712 2713 2714
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2715

2716 2717
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2718 2719
 * address space and accumulate pages that need writing, and call
 * mpage_da_map_and_submit to map the pages and then write them.
2720 2721 2722
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2723 2724
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2725
{
2726 2727 2728
	struct inode *inode = mpd->inode;
	struct buffer_head *bh, *head;
	sector_t logical;
2729 2730 2731
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
2732
	unsigned nr_pages;
2733 2734 2735
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	long nr_to_write = wbc->nr_to_write;
2736
	int tag;
2737 2738 2739 2740 2741

	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2742 2743 2744 2745 2746
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2747
	*done_index = index;
2748 2749 2750
	while (!done && (index <= end)) {
		int i;

2751
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				done = 1;
				break;
			}

2771 2772
			*done_index = page->index + 1;

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
			/* BEGIN __mpage_da_writepage */

			/*
			 * Can we merge this page to current extent?
			 */
			if (mpd->next_page != page->index) {
				/*
				 * Nope, we can't. So, we map
				 * non-allocated blocks and start IO
				 * on them
				 */
				if (mpd->next_page != mpd->first_page) {
					mpage_da_map_and_submit(mpd);
					/*
					 * skip rest of the page in the page_vec
					 */
					redirty_page_for_writepage(wbc, page);
2822
					unlock_page(page);
2823 2824
					ret = MPAGE_DA_EXTENT_TAIL;
					goto out;
2825
				}
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882

				/*
				 * Start next extent of pages and blocks
				 */
				mpd->first_page = page->index;
				mpd->b_size = 0;
				mpd->b_state = 0;
				mpd->b_blocknr = 0;
			}

			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
				mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
				if (mpd->io_done) {
					ret = MPAGE_DA_EXTENT_TAIL;
					goto out;
				}
			} else {
				/*
				 * Page with regular buffer heads, just add all dirty ones
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
						if (mpd->io_done) {
							ret = MPAGE_DA_EXTENT_TAIL;
							goto out;
						}
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
						 * mapped dirty buffer. We need to update
						 * the b_state because we look at
						 * b_state in mpage_da_map_blocks. We don't
						 * update b_size because if we find an
						 * unmapped buffer_head later we need to
						 * use the b_state flag of that buffer_head.
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2883 2884
			}

2885 2886 2887 2888
			ret = 0;

			/* END __mpage_da_writepage */

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
				    wbc->sync_mode == WB_SYNC_NONE) {
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
					done = 1;
					break;
				}
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	return ret;
2912 2913 2914 2915
out:
	pagevec_release(&pvec);
	cond_resched();
	return ret;
2916 2917 2918
}


2919
static int ext4_da_writepages(struct address_space *mapping,
2920
			      struct writeback_control *wbc)
2921
{
2922 2923
	pgoff_t	index;
	int range_whole = 0;
2924
	handle_t *handle = NULL;
2925
	struct mpage_da_data mpd;
2926
	struct inode *inode = mapping->host;
2927 2928
	int pages_written = 0;
	long pages_skipped;
2929
	unsigned int max_pages;
2930
	int range_cyclic, cycled = 1, io_done = 0;
2931 2932
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2933
	loff_t range_start = wbc->range_start;
2934
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2935
	pgoff_t done_index = 0;
2936
	pgoff_t end;
2937

2938
	trace_ext4_da_writepages(inode, wbc);
2939

2940 2941 2942 2943 2944
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2945
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2946
		return 0;
2947 2948 2949 2950 2951

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2952
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2953 2954 2955 2956 2957
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2958
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2959 2960
		return -EROFS;

2961 2962
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2963

2964 2965
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2966
		index = mapping->writeback_index;
2967 2968 2969 2970 2971
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2972 2973
		end = -1;
	} else {
2974
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2975 2976
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2977

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2995 2996 2997 2998 2999 3000
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

3011 3012 3013
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

3014 3015
	pages_skipped = wbc->pages_skipped;

3016
retry:
3017 3018 3019
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);

3020
	while (!ret && wbc->nr_to_write > 0) {
3021 3022 3023 3024 3025 3026 3027 3028

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
3029
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3030

3031 3032 3033 3034
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
3035
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3036
			       "%ld pages, ino %lu; err %d", __func__,
3037
				wbc->nr_to_write, inode->i_ino, ret);
3038 3039
			goto out_writepages;
		}
3040 3041

		/*
3042
		 * Now call write_cache_pages_da() to find the next
3043
		 * contiguous region of logical blocks that need
3044
		 * blocks to be allocated by ext4 and submit them.
3045 3046 3047 3048 3049 3050 3051 3052 3053
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
3054
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3055
		/*
3056
		 * If we have a contiguous extent of pages and we
3057 3058 3059 3060
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3061
			mpage_da_map_and_submit(&mpd);
3062 3063
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3064
		trace_ext4_da_write_pages(inode, &mpd);
3065
		wbc->nr_to_write -= mpd.pages_written;
3066

3067
		ext4_journal_stop(handle);
3068

3069
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3070 3071 3072 3073
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3074
			jbd2_journal_force_commit_nested(sbi->s_journal);
3075 3076 3077
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3078 3079 3080 3081
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3082 3083
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
3084
			ret = 0;
3085
			io_done = 1;
3086
		} else if (wbc->nr_to_write)
3087 3088 3089 3090 3091 3092
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3093
	}
3094 3095 3096 3097 3098 3099 3100
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3101
	if (pages_skipped != wbc->pages_skipped)
3102 3103
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
3104
			 "with nr_to_write = %ld ret = %d",
3105
			 __func__, wbc->nr_to_write, ret);
3106 3107

	/* Update index */
3108
	wbc->range_cyclic = range_cyclic;
3109 3110 3111 3112 3113
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
3114
		mapping->writeback_index = done_index;
3115

3116
out_writepages:
3117
	wbc->nr_to_write -= nr_to_writebump;
3118
	wbc->range_start = range_start;
3119
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3120
	return ret;
3121 3122
}

3123 3124 3125 3126 3127 3128 3129 3130 3131
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3132
	 * counters can get slightly wrong with percpu_counter_batch getting
3133 3134 3135 3136 3137 3138 3139 3140 3141
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3142 3143
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3144 3145 3146
		 */
		return 1;
	}
3147 3148 3149 3150 3151 3152 3153
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3154 3155 3156
	return 0;
}

3157
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3158 3159
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3160
{
3161
	int ret, retries = 0;
3162 3163 3164 3165 3166 3167
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3168 3169 3170 3171 3172 3173 3174

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3175
	trace_ext4_da_write_begin(inode, pos, len, flags);
3176
retry:
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3188 3189 3190
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3191

3192
	page = grab_cache_page_write_begin(mapping, index, flags);
3193 3194 3195 3196 3197
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3198 3199
	*pagep = page;

3200
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3201 3202 3203 3204
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3205 3206 3207 3208 3209 3210
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3211
			ext4_truncate_failed_write(inode);
3212 3213
	}

3214 3215
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3216 3217 3218 3219
out:
	return ret;
}

3220 3221 3222 3223 3224
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3225
					    unsigned long offset)
3226 3227 3228 3229 3230 3231 3232 3233 3234
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3235
	for (i = 0; i < idx; i++)
3236 3237
		bh = bh->b_this_page;

3238
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3239 3240 3241 3242
		return 0;
	return 1;
}

3243
static int ext4_da_write_end(struct file *file,
3244 3245 3246
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3247 3248 3249 3250 3251
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3252
	unsigned long start, end;
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3266

3267
	trace_ext4_da_write_end(inode, pos, len, copied);
3268
	start = pos & (PAGE_CACHE_SIZE - 1);
3269
	end = start + copied - 1;
3270 3271 3272 3273 3274 3275 3276 3277

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3289

3290 3291 3292
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3293 3294 3295 3296 3297
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3298
		}
3299
	}
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3321
	ext4_da_page_release_reservation(page, offset);
3322 3323 3324 3325 3326 3327 3328

out:
	ext4_invalidatepage(page, offset);

	return;
}

3329 3330 3331 3332 3333
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3334 3335
	trace_ext4_alloc_da_blocks(inode);

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3346
	 *
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
3359
	 * the pages by calling redirty_page_for_writepage() but that
3360 3361 3362 3363 3364 3365
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3366
	 *
3367 3368 3369 3370 3371 3372
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3373

3374 3375 3376 3377 3378
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3379
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3380 3381 3382 3383 3384 3385 3386 3387
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3388
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3389 3390 3391 3392 3393
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3404 3405
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3417
		 * NB. EXT4_STATE_JDATA is not set on files other than
3418 3419 3420 3421 3422 3423
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3424
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3425
		journal = EXT4_JOURNAL(inode);
3426 3427 3428
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3429 3430 3431 3432 3433

		if (err)
			return 0;
	}

3434
	return generic_block_bmap(mapping, block, ext4_get_block);
3435 3436
}

3437
static int ext4_readpage(struct file *file, struct page *page)
3438
{
3439
	return mpage_readpage(page, ext4_get_block);
3440 3441 3442
}

static int
3443
ext4_readpages(struct file *file, struct address_space *mapping,
3444 3445
		struct list_head *pages, unsigned nr_pages)
{
3446
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3447 3448
}

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3469
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3470
{
3471
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3472

3473 3474 3475 3476 3477
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3478 3479 3480 3481 3482 3483
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3484 3485 3486 3487
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3488 3489
}

3490
static int ext4_releasepage(struct page *page, gfp_t wait)
3491
{
3492
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3493 3494 3495 3496

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3497 3498 3499 3500
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3501 3502 3503
}

/*
3504 3505
 * O_DIRECT for ext3 (or indirect map) based files
 *
3506 3507 3508 3509 3510
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3511 3512
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3513
 */
3514
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3515 3516
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3517 3518 3519
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3520
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3521
	handle_t *handle;
3522 3523 3524
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3525
	int retries = 0;
3526 3527 3528 3529 3530

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3531 3532 3533 3534 3535 3536
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3537
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3538 3539 3540 3541
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3542 3543
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3544
			ext4_journal_stop(handle);
3545 3546 3547
		}
	}

3548
retry:
3549
	if (rw == READ && ext4_should_dioread_nolock(inode))
3550
		ret = __blockdev_direct_IO(rw, iocb, inode,
3551 3552
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3553 3554
				 ext4_get_block, NULL, NULL, 0);
	else {
3555 3556
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3557
				 offset, nr_segs,
3558
				 ext4_get_block, NULL);
3559 3560 3561 3562 3563 3564 3565 3566 3567

		if (unlikely((rw & WRITE) && ret < 0)) {
			loff_t isize = i_size_read(inode);
			loff_t end = offset + iov_length(iov, nr_segs);

			if (end > isize)
				vmtruncate(inode, isize);
		}
	}
3568 3569
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3570

J
Jan Kara 已提交
3571
	if (orphan) {
3572 3573
		int err;

J
Jan Kara 已提交
3574 3575 3576 3577 3578 3579 3580
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3581 3582 3583
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3584 3585 3586
			goto out;
		}
		if (inode->i_nlink)
3587
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3588
		if (ret > 0) {
3589 3590 3591 3592 3593 3594 3595 3596
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3597
				 * ext4_mark_inode_dirty() to userspace.  So
3598 3599
				 * ignore it.
				 */
3600
				ext4_mark_inode_dirty(handle, inode);
3601 3602
			}
		}
3603
		err = ext4_journal_stop(handle);
3604 3605 3606 3607 3608 3609 3610
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3611 3612 3613 3614 3615
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3616
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3617 3618
		   struct buffer_head *bh_result, int create)
{
3619
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3620
		   inode->i_ino, create);
3621 3622
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3623 3624 3625
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3626 3627
			    ssize_t size, void *private, int ret,
			    bool is_async)
3628 3629 3630
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3631 3632
	unsigned long flags;
	struct ext4_inode_info *ei;
3633

3634 3635
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3636
		goto out;
3637

3638 3639 3640 3641 3642 3643
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3644
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3645 3646
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3647 3648 3649 3650
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3651 3652
	}

3653 3654
	io_end->offset = offset;
	io_end->size = size;
3655 3656 3657 3658
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3659 3660
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3661
	/* Add the io_end to per-inode completed aio dio list*/
3662 3663 3664 3665
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3666 3667 3668

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
3669 3670
	iocb->private = NULL;
}
3671

3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

3689
	io_end->flag = EXT4_IO_END_UNWRITTEN;
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
3717
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3736 3737 3738 3739 3740
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
3741
 * For holes, we fallocate those blocks, mark them as uninitialized
3742
 * If those blocks were preallocated, we mark sure they are splited, but
3743
 * still keep the range to write as uninitialized.
3744
 *
3745 3746 3747 3748
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3767 3768 3769
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3770 3771
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3772 3773
		 *
 		 * As to previously fallocated extents, ext4 get_block
3774 3775 3776
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3777 3778 3779 3780 3781 3782 3783 3784
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3785
 		 */
3786 3787 3788
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3789
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3790 3791 3792 3793
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
3794
			 * direct IO, so that later ext4_map_blocks()
3795 3796 3797 3798 3799 3800 3801
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3802 3803 3804
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3805
					 ext4_get_block_write,
3806
					 ext4_end_io_dio);
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3826 3827
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3828
			int err;
3829 3830 3831 3832
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3833 3834 3835 3836
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3837
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3838
		}
3839 3840
		return ret;
	}
3841 3842

	/* for write the the end of file case, we fall back to old way */
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

3853
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3854 3855 3856 3857 3858
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

3859
/*
3860
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3872
static int ext4_journalled_set_page_dirty(struct page *page)
3873 3874 3875 3876 3877
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3878
static const struct address_space_operations ext4_ordered_aops = {
3879 3880
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3881
	.writepage		= ext4_writepage,
3882 3883 3884 3885 3886 3887 3888 3889 3890
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3891
	.error_remove_page	= generic_error_remove_page,
3892 3893
};

3894
static const struct address_space_operations ext4_writeback_aops = {
3895 3896
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3897
	.writepage		= ext4_writepage,
3898 3899 3900 3901 3902 3903 3904 3905 3906
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3907
	.error_remove_page	= generic_error_remove_page,
3908 3909
};

3910
static const struct address_space_operations ext4_journalled_aops = {
3911 3912
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3913
	.writepage		= ext4_writepage,
3914 3915 3916 3917 3918 3919 3920 3921
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3922
	.error_remove_page	= generic_error_remove_page,
3923 3924
};

3925
static const struct address_space_operations ext4_da_aops = {
3926 3927
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3928
	.writepage		= ext4_writepage,
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3939
	.error_remove_page	= generic_error_remove_page,
3940 3941
};

3942
void ext4_set_aops(struct inode *inode)
3943
{
3944 3945 3946 3947
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3948
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3949 3950 3951
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3952 3953
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3954
	else
3955
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3956 3957 3958
}

/*
3959
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3960 3961 3962 3963
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3964
int ext4_block_truncate_page(handle_t *handle,
3965 3966
		struct address_space *mapping, loff_t from)
{
3967
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3968
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3969 3970
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3971 3972
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3973
	struct page *page;
3974 3975
	int err = 0;

3976 3977
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3978 3979 3980
	if (!page)
		return -EINVAL;

3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4005
		ext4_get_block(inode, iblock, bh, 0);
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4026
	if (ext4_should_journal_data(inode)) {
4027
		BUFFER_TRACE(bh, "get write access");
4028
		err = ext4_journal_get_write_access(handle, bh);
4029 4030 4031 4032
		if (err)
			goto unlock;
	}

4033
	zero_user(page, offset, length);
4034 4035 4036 4037

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4038
	if (ext4_should_journal_data(inode)) {
4039
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4040
	} else {
4041
		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
4042
			err = ext4_jbd2_file_inode(handle, inode);
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4066
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4067 4068
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4069
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4070 4071 4072
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4073
 *	This is a helper function used by ext4_truncate().
4074 4075 4076 4077 4078 4079 4080
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4081
 *	past the truncation point is possible until ext4_truncate()
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4100
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4101 4102
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4103 4104 4105 4106 4107
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4108
	/* Make k index the deepest non-null offset + 1 */
4109 4110
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4111
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4122
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4134
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4135 4136 4137 4138 4139 4140
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4141
	while (partial > p) {
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4157 4158 4159 4160 4161
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4162 4163
{
	__le32 *p;
4164
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4165
	int	err;
4166 4167 4168

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4169

4170 4171
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4172 4173 4174
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4175 4176 4177
		return 1;
	}

4178 4179
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4180
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
			err = ext4_handle_dirty_metadata(handle, inode, bh);
			if (unlikely(err)) {
				ext4_std_error(inode->i_sb, err);
				return 1;
			}
		}
		err = ext4_mark_inode_dirty(handle, inode);
		if (unlikely(err)) {
			ext4_std_error(inode->i_sb, err);
			return 1;
		}
		err = ext4_truncate_restart_trans(handle, inode,
						  blocks_for_truncate(inode));
		if (unlikely(err)) {
			ext4_std_error(inode->i_sb, err);
			return 1;
4197 4198 4199
		}
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4200
			ext4_journal_get_write_access(handle, bh);
4201 4202 4203
		}
	}

4204 4205
	for (p = first; p < last; p++)
		*p = 0;
4206

4207
	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4208
	return 0;
4209 4210 4211
}

/**
4212
 * ext4_free_data - free a list of data blocks
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4230
static void ext4_free_data(handle_t *handle, struct inode *inode,
4231 4232 4233
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4234
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4235 4236 4237 4238
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4239
	ext4_fsblk_t nr;		    /* Current block # */
4240 4241 4242 4243 4244 4245
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4246
		err = ext4_journal_get_write_access(handle, this_bh);
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4264 4265 4266 4267
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4268 4269 4270 4271 4272 4273 4274 4275
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4276
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4277 4278 4279
				  count, block_to_free_p, p);

	if (this_bh) {
4280
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4281 4282 4283 4284 4285 4286 4287

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4288
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4289
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4290
		else
4291 4292 4293 4294
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4295 4296 4297 4298
	}
}

/**
4299
 *	ext4_free_branches - free an array of branches
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4311
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4312 4313 4314
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4315
	ext4_fsblk_t nr;
4316 4317
	__le32 *p;

4318
	if (ext4_handle_is_aborted(handle))
4319 4320 4321 4322
		return;

	if (depth--) {
		struct buffer_head *bh;
4323
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4324 4325 4326 4327 4328 4329
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4330 4331
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4332 4333 4334 4335
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4336 4337 4338
				break;
			}

4339 4340 4341 4342 4343 4344 4345 4346
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4347 4348
				EXT4_ERROR_INODE_BLOCK(inode, nr,
						       "Read failure");
4349 4350 4351 4352 4353
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4354
			ext4_free_branches(handle, inode, bh,
4355 4356 4357
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4358
			brelse(bh);
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4376
			if (ext4_handle_is_aborted(handle))
4377 4378
				return;
			if (try_to_extend_transaction(handle, inode)) {
4379
				ext4_mark_inode_dirty(handle, inode);
4380 4381
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4382 4383
			}

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
			/*
			 * The forget flag here is critical because if
			 * we are journaling (and not doing data
			 * journaling), we have to make sure a revoke
			 * record is written to prevent the journal
			 * replay from overwriting the (former)
			 * indirect block if it gets reallocated as a
			 * data block.  This must happen in the same
			 * transaction where the data blocks are
			 * actually freed.
			 */
4395
			ext4_free_blocks(handle, inode, NULL, nr, 1,
4396 4397
					 EXT4_FREE_BLOCKS_METADATA|
					 EXT4_FREE_BLOCKS_FORGET);
4398 4399 4400 4401 4402 4403 4404

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4405
				if (!ext4_journal_get_write_access(handle,
4406 4407 4408
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4409 4410 4411 4412
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4413 4414 4415 4416 4417 4418
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4419
		ext4_free_data(handle, inode, parent_bh, first, last);
4420 4421 4422
	}
}

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4436
/*
4437
 * ext4_truncate()
4438
 *
4439 4440
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4457
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4458
 * that this inode's truncate did not complete and it will again call
4459 4460
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4461
 * that's fine - as long as they are linked from the inode, the post-crash
4462
 * ext4_truncate() run will find them and release them.
4463
 */
4464
void ext4_truncate(struct inode *inode)
4465 4466
{
	handle_t *handle;
4467
	struct ext4_inode_info *ei = EXT4_I(inode);
4468
	__le32 *i_data = ei->i_data;
4469
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4470
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4471
	ext4_lblk_t offsets[4];
4472 4473 4474 4475
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4476
	ext4_lblk_t last_block;
4477 4478
	unsigned blocksize = inode->i_sb->s_blocksize;

4479
	if (!ext4_can_truncate(inode))
4480 4481
		return;

4482
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4483

4484
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4485
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4486

4487
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4488
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4489 4490
		return;
	}
A
Alex Tomas 已提交
4491

4492
	handle = start_transaction(inode);
4493
	if (IS_ERR(handle))
4494 4495 4496
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4497
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4498

4499 4500 4501
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4502

4503
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4516
	if (ext4_orphan_add(handle, inode))
4517 4518
		goto out_stop;

4519 4520 4521 4522 4523
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4524

4525
	ext4_discard_preallocations(inode);
4526

4527 4528 4529 4530 4531
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4532
	 * ext4 *really* writes onto the disk inode.
4533 4534 4535 4536
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4537 4538
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4539 4540 4541
		goto do_indirects;
	}

4542
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4543 4544 4545 4546
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4547
			ext4_free_branches(handle, inode, NULL,
4548 4549 4550 4551 4552 4553 4554 4555 4556
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4557
			ext4_free_branches(handle, inode, partial->bh,
4558 4559 4560 4561 4562 4563
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4564
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4565 4566 4567
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4568
		brelse(partial->bh);
4569 4570 4571 4572 4573 4574
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4575
		nr = i_data[EXT4_IND_BLOCK];
4576
		if (nr) {
4577 4578
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4579
		}
4580 4581
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4582
		if (nr) {
4583 4584
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4585
		}
4586 4587
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4588
		if (nr) {
4589 4590
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4591
		}
4592
	case EXT4_TIND_BLOCK:
4593 4594 4595
		;
	}

4596
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4597
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4598
	ext4_mark_inode_dirty(handle, inode);
4599 4600 4601 4602 4603 4604

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4605
		ext4_handle_sync(handle);
4606 4607 4608 4609 4610
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4611
	 * ext4_delete_inode(), and we allow that function to clean up the
4612 4613 4614
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4615
		ext4_orphan_del(handle, inode);
4616

4617
	ext4_journal_stop(handle);
4618 4619 4620
}

/*
4621
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4622 4623 4624 4625
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4626 4627
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4628
{
4629 4630 4631 4632 4633 4634
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4635
	iloc->bh = NULL;
4636 4637
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4638

4639 4640 4641
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4642 4643
		return -EIO;

4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4654
	if (!bh) {
4655 4656
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
4657 4658 4659 4660
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4684
			int i, start;
4685

4686
			start = inode_offset & ~(inodes_per_block - 1);
4687

4688 4689
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4702
			for (i = start; i < start + inodes_per_block; i++) {
4703 4704
				if (i == inode_offset)
					continue;
4705
				if (ext4_test_bit(i, bitmap_bh->b_data))
4706 4707 4708
					break;
			}
			brelse(bitmap_bh);
4709
			if (i == start + inodes_per_block) {
4710 4711 4712 4713 4714 4715 4716 4717 4718
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4719 4720 4721 4722 4723 4724 4725 4726 4727
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4728
			/* s_inode_readahead_blks is always a power of 2 */
4729 4730 4731 4732 4733 4734 4735
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4736
				num -= ext4_itable_unused_count(sb, gdp);
4737 4738 4739 4740 4741 4742 4743
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4754 4755
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4756 4757 4758 4759 4760 4761 4762 4763 4764
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4765
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4766 4767
{
	/* We have all inode data except xattrs in memory here. */
4768
	return __ext4_get_inode_loc(inode, iloc,
4769
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4770 4771
}

4772
void ext4_set_inode_flags(struct inode *inode)
4773
{
4774
	unsigned int flags = EXT4_I(inode)->i_flags;
4775 4776

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4777
	if (flags & EXT4_SYNC_FL)
4778
		inode->i_flags |= S_SYNC;
4779
	if (flags & EXT4_APPEND_FL)
4780
		inode->i_flags |= S_APPEND;
4781
	if (flags & EXT4_IMMUTABLE_FL)
4782
		inode->i_flags |= S_IMMUTABLE;
4783
	if (flags & EXT4_NOATIME_FL)
4784
		inode->i_flags |= S_NOATIME;
4785
	if (flags & EXT4_DIRSYNC_FL)
4786 4787 4788
		inode->i_flags |= S_DIRSYNC;
}

4789 4790 4791
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4812
}
4813

4814
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4815
				  struct ext4_inode_info *ei)
4816 4817
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4818 4819
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4820 4821 4822 4823 4824 4825

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4826
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4827 4828 4829 4830 4831
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4832 4833 4834 4835
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4836

4837
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4838
{
4839 4840
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4841 4842
	struct ext4_inode_info *ei;
	struct inode *inode;
4843
	journal_t *journal = EXT4_SB(sb)->s_journal;
4844
	long ret;
4845 4846
	int block;

4847 4848 4849 4850 4851 4852 4853
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4854
	iloc.bh = NULL;
4855

4856 4857
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4858
		goto bad_inode;
4859
	raw_inode = ext4_raw_inode(&iloc);
4860 4861 4862
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4863
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4864 4865 4866 4867 4868
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

4869
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4870 4871 4872 4873 4874 4875 4876 4877 4878
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4879
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4880
			/* this inode is deleted */
4881
			ret = -ESTALE;
4882 4883 4884 4885 4886 4887 4888 4889
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4890
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4891
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4892
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4893 4894
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4895
	inode->i_size = ext4_isize(raw_inode);
4896
	ei->i_disksize = inode->i_size;
4897 4898 4899
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4900 4901
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4902
	ei->i_last_alloc_group = ~0;
4903 4904 4905 4906
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4907
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4908 4909 4910
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4922
		read_lock(&journal->j_state_lock);
4923 4924 4925 4926 4927 4928 4929 4930
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4931
		read_unlock(&journal->j_state_lock);
4932 4933 4934 4935
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4936
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4937
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4938
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4939
		    EXT4_INODE_SIZE(inode->i_sb)) {
4940
			ret = -EIO;
4941
			goto bad_inode;
4942
		}
4943 4944
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4945 4946
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4947 4948
		} else {
			__le32 *magic = (void *)raw_inode +
4949
					EXT4_GOOD_OLD_INODE_SIZE +
4950
					ei->i_extra_isize;
4951
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4952
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4953 4954 4955 4956
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4957 4958 4959 4960 4961
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4962 4963 4964 4965 4966 4967 4968
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4969
	ret = 0;
4970
	if (ei->i_file_acl &&
4971
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4972 4973
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4974 4975
		ret = -EIO;
		goto bad_inode;
4976
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4977 4978 4979 4980 4981
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4982
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4983 4984
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4985
		/* Validate block references which are part of inode */
4986 4987
		ret = ext4_check_inode_blockref(inode);
	}
4988
	if (ret)
4989
		goto bad_inode;
4990

4991
	if (S_ISREG(inode->i_mode)) {
4992 4993 4994
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4995
	} else if (S_ISDIR(inode->i_mode)) {
4996 4997
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4998
	} else if (S_ISLNK(inode->i_mode)) {
4999
		if (ext4_inode_is_fast_symlink(inode)) {
5000
			inode->i_op = &ext4_fast_symlink_inode_operations;
5001 5002 5003
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
5004 5005
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5006
		}
5007 5008
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5009
		inode->i_op = &ext4_special_inode_operations;
5010 5011 5012 5013 5014 5015
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5016 5017
	} else {
		ret = -EIO;
5018
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5019
		goto bad_inode;
5020
	}
5021
	brelse(iloc.bh);
5022
	ext4_set_inode_flags(inode);
5023 5024
	unlock_new_inode(inode);
	return inode;
5025 5026

bad_inode:
5027
	brelse(iloc.bh);
5028 5029
	iget_failed(inode);
	return ERR_PTR(ret);
5030 5031
}

5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5045
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5046
		raw_inode->i_blocks_high = 0;
5047
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5048 5049 5050 5051 5052 5053
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5054 5055 5056 5057
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5058
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5059
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5060
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5061
	} else {
5062
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5063 5064 5065 5066
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5067
	}
5068
	return 0;
5069 5070
}

5071 5072 5073 5074 5075 5076 5077
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5078
static int ext4_do_update_inode(handle_t *handle,
5079
				struct inode *inode,
5080
				struct ext4_iloc *iloc)
5081
{
5082 5083
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5084 5085 5086 5087 5088
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5089
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5090
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5091

5092
	ext4_get_inode_flags(ei);
5093
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5094
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5095 5096 5097 5098 5099 5100
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5101
		if (!ei->i_dtime) {
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5119 5120 5121 5122 5123 5124

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5125 5126
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5127
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5128
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5129 5130
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5131 5132
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5133
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5150
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5151
			sb->s_dirt = 1;
5152
			ext4_handle_sync(handle);
5153
			err = ext4_handle_dirty_metadata(handle, NULL,
5154
					EXT4_SB(sb)->s_sbh);
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5169 5170 5171
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5172

5173 5174 5175 5176 5177
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5178
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5179 5180
	}

5181
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5182
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5183 5184
	if (!err)
		err = rc;
5185
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5186

5187
	ext4_update_inode_fsync_trans(handle, inode, 0);
5188
out_brelse:
5189
	brelse(bh);
5190
	ext4_std_error(inode->i_sb, err);
5191 5192 5193 5194
	return err;
}

/*
5195
 * ext4_write_inode()
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5212
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5229
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5230
{
5231 5232
	int err;

5233 5234 5235
	if (current->flags & PF_MEMALLOC)
		return 0;

5236 5237 5238 5239 5240 5241
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5242

5243
		if (wbc->sync_mode != WB_SYNC_ALL)
5244 5245 5246 5247 5248
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5249

5250
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5251 5252
		if (err)
			return err;
5253
		if (wbc->sync_mode == WB_SYNC_ALL)
5254 5255
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5256 5257
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
5258 5259
			err = -EIO;
		}
5260
		brelse(iloc.bh);
5261 5262
	}
	return err;
5263 5264 5265
}

/*
5266
 * ext4_setattr()
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5280 5281 5282 5283 5284 5285 5286 5287
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5288
 */
5289
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5290 5291 5292
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
5293
	int orphan = 0;
5294 5295 5296 5297 5298 5299
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5300
	if (is_quota_modification(inode, attr))
5301
		dquot_initialize(inode);
5302 5303 5304 5305 5306 5307
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5308
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5309
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5310 5311 5312 5313
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5314
		error = dquot_transfer(inode, attr);
5315
		if (error) {
5316
			ext4_journal_stop(handle);
5317 5318 5319 5320 5321 5322 5323 5324
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5325 5326
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5327 5328
	}

5329
	if (attr->ia_valid & ATTR_SIZE) {
5330
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5331 5332
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

5333 5334
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
5335 5336 5337
		}
	}

5338
	if (S_ISREG(inode->i_mode) &&
5339 5340
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
5341
	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5342 5343
		handle_t *handle;

5344
		handle = ext4_journal_start(inode, 3);
5345 5346 5347 5348
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5349 5350 5351 5352
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
5353 5354
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5355 5356
		if (!error)
			error = rc;
5357
		ext4_journal_stop(handle);
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
5370
				orphan = 0;
5371 5372 5373 5374
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5375
		/* ext4_truncate will clear the flag */
5376
		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5377
			ext4_truncate(inode);
5378 5379
	}

C
Christoph Hellwig 已提交
5380 5381 5382
	if ((attr->ia_valid & ATTR_SIZE) &&
	    attr->ia_size != i_size_read(inode))
		rc = vmtruncate(inode, attr->ia_size);
5383

C
Christoph Hellwig 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
5393
	if (orphan && inode->i_nlink)
5394
		ext4_orphan_del(NULL, inode);
5395 5396

	if (!rc && (ia_valid & ATTR_MODE))
5397
		rc = ext4_acl_chmod(inode);
5398 5399

err_out:
5400
	ext4_std_error(inode->i_sb, error);
5401 5402 5403 5404 5405
	if (!error)
		error = rc;
	return error;
}

5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5430

5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5458
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5459 5460
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5461
}
5462

5463
/*
5464 5465 5466
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5467
 *
5468
 * If datablocks are discontiguous, they are possible to spread over
5469
 * different block groups too. If they are contiuguous, with flexbg,
5470
 * they could still across block group boundary.
5471
 *
5472 5473
 * Also account for superblock, inode, quota and xattr blocks
 */
5474
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5475
{
5476 5477
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5504 5505
	if (groups > ngroups)
		groups = ngroups;
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5520 5521
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5522
 *
5523
 * This could be called via ext4_write_begin()
5524
 *
5525
 * We need to consider the worse case, when
5526
 * one new block per extent.
5527
 */
A
Alex Tomas 已提交
5528
int ext4_writepage_trans_blocks(struct inode *inode)
5529
{
5530
	int bpp = ext4_journal_blocks_per_page(inode);
5531 5532
	int ret;

5533
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5534

5535
	/* Account for data blocks for journalled mode */
5536
	if (ext4_should_journal_data(inode))
5537
		ret += bpp;
5538 5539
	return ret;
}
5540 5541 5542 5543 5544

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5545
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5546 5547 5548 5549 5550 5551 5552 5553 5554
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5555
/*
5556
 * The caller must have previously called ext4_reserve_inode_write().
5557 5558
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5559
int ext4_mark_iloc_dirty(handle_t *handle,
5560
			 struct inode *inode, struct ext4_iloc *iloc)
5561 5562 5563
{
	int err = 0;

5564 5565 5566
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5567 5568 5569
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5570
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5571
	err = ext4_do_update_inode(handle, inode, iloc);
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5582 5583
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5584
{
5585 5586 5587 5588 5589 5590 5591 5592 5593
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5594 5595
		}
	}
5596
	ext4_std_error(inode->i_sb, err);
5597 5598 5599
	return err;
}

5600 5601 5602 5603
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5604 5605 5606 5607
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5620 5621
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5654
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5655
{
5656
	struct ext4_iloc iloc;
5657 5658 5659
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5660 5661

	might_sleep();
5662
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5663
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5664 5665
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5666
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5680 5681
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5682 5683
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5684
					ext4_warning(inode->i_sb,
5685 5686 5687
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5688 5689
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5690 5691 5692 5693
				}
			}
		}
	}
5694
	if (!err)
5695
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5696 5697 5698 5699
	return err;
}

/*
5700
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5701 5702 5703 5704 5705
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5706
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5707 5708 5709 5710 5711 5712
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5713
void ext4_dirty_inode(struct inode *inode)
5714 5715 5716
{
	handle_t *handle;

5717
	handle = ext4_journal_start(inode, 2);
5718 5719
	if (IS_ERR(handle))
		goto out;
5720 5721 5722

	ext4_mark_inode_dirty(handle, inode);

5723
	ext4_journal_stop(handle);
5724 5725 5726 5727 5728 5729 5730 5731
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5732
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5733 5734 5735
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5736
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5737
{
5738
	struct ext4_iloc iloc;
5739 5740 5741

	int err = 0;
	if (handle) {
5742
		err = ext4_get_inode_loc(inode, &iloc);
5743 5744
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5745
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5746
			if (!err)
5747
				err = ext4_handle_dirty_metadata(handle,
5748
								 NULL,
5749
								 iloc.bh);
5750 5751 5752
			brelse(iloc.bh);
		}
	}
5753
	ext4_std_error(inode->i_sb, err);
5754 5755 5756 5757
	return err;
}
#endif

5758
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5774
	journal = EXT4_JOURNAL(inode);
5775 5776
	if (!journal)
		return 0;
5777
	if (is_journal_aborted(journal))
5778 5779
		return -EROFS;

5780 5781
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5792
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5793
	else
5794
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5795
	ext4_set_aops(inode);
5796

5797
	jbd2_journal_unlock_updates(journal);
5798 5799 5800

	/* Finally we can mark the inode as dirty. */

5801
	handle = ext4_journal_start(inode, 1);
5802 5803 5804
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5805
	err = ext4_mark_inode_dirty(handle, inode);
5806
	ext4_handle_sync(handle);
5807 5808
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5809 5810 5811

	return err;
}
5812 5813 5814 5815 5816 5817

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5818
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5819
{
5820
	struct page *page = vmf->page;
5821 5822 5823
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5824
	void *fsdata;
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5849 5850 5851 5852 5853 5854 5855
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5856 5857
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5858 5859
					ext4_bh_unmapped)) {
			unlock_page(page);
5860
			goto out_unlock;
5861
		}
5862
	}
5863
	unlock_page(page);
5864 5865 5866 5867 5868 5869 5870 5871
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5872
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5873 5874 5875
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5876
			len, len, page, fsdata);
5877 5878 5879 5880
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5881 5882
	if (ret)
		ret = VM_FAULT_SIGBUS;
5883 5884 5885
	up_read(&inode->i_alloc_sem);
	return ret;
}