inode.c 168.1 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41

42
#include "ext4_jbd2.h"
43 44
#include "xattr.h"
#include "acl.h"
45
#include "ext4_extents.h"
46

47 48
#include <trace/events/ext4.h>

49 50
#define MPAGE_DA_EXTENT_TAIL 0x01

51 52 53
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
54 55 56 57
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
58 59
}

60 61
static void ext4_invalidatepage(struct page *page, unsigned long offset);

62 63 64
/*
 * Test whether an inode is a fast symlink.
 */
65
static int ext4_inode_is_fast_symlink(struct inode *inode)
66
{
67
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 69 70 71 72 73
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
74
 * The ext4 forget function must perform a revoke if we are freeing data
75 76 77 78 79 80
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
81
 *
82 83
 * If the handle isn't valid we're not journaling, but we still need to
 * call into ext4_journal_revoke() to put the buffer head.
84
 */
85
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
86
		struct buffer_head *bh, ext4_fsblk_t blocknr)
87 88 89 90 91 92 93 94
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95
		  "data mode %x\n",
96 97 98 99 100 101 102 103
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

104 105
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
106
		if (bh) {
107
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
108
			return ext4_journal_forget(handle, bh);
109 110 111 112 113 114 115
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
116 117
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
118
	if (err)
119
		ext4_abort(inode->i_sb, __func__,
120 121 122 123 124 125 126 127 128 129 130
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
131
	ext4_lblk_t needed;
132 133 134 135 136 137

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
138
	 * like a regular file for ext4 to try to delete it.  Things
139 140 141 142 143 144 145
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
146 147
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
148

149
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

166
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
167 168 169
	if (!IS_ERR(result))
		return result;

170
	ext4_std_error(inode->i_sb, PTR_ERR(result));
171 172 173 174 175 176 177 178 179 180 181
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
182 183 184
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
185
		return 0;
186
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
187 188 189 190 191 192 193 194 195
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
196 197
 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
				 int nblocks)
198
{
199 200 201 202 203 204 205 206
	int ret;

	/*
	 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
207
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
208
	jbd_debug(2, "restarting handle %p\n", handle);
209 210 211 212 213
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);

	return ret;
214 215 216 217 218
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
219
void ext4_delete_inode(struct inode *inode)
220 221
{
	handle_t *handle;
222
	int err;
223

224 225
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
226 227 228 229 230
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

231
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
232
	if (IS_ERR(handle)) {
233
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
234 235 236 237 238
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
239
		ext4_orphan_del(NULL, inode);
240 241 242 243
		goto no_delete;
	}

	if (IS_SYNC(inode))
244
		ext4_handle_sync(handle);
245
	inode->i_size = 0;
246 247 248 249 250 251
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
252
	if (inode->i_blocks)
253
		ext4_truncate(inode);
254 255 256 257 258 259 260

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
261
	if (!ext4_handle_has_enough_credits(handle, 3)) {
262 263 264 265 266 267 268 269 270 271 272 273
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

274
	/*
275
	 * Kill off the orphan record which ext4_truncate created.
276
	 * AKPM: I think this can be inside the above `if'.
277
	 * Note that ext4_orphan_del() has to be able to cope with the
278
	 * deletion of a non-existent orphan - this is because we don't
279
	 * know if ext4_truncate() actually created an orphan record.
280 281
	 * (Well, we could do this if we need to, but heck - it works)
	 */
282 283
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
284 285 286 287 288 289 290 291

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
292
	if (ext4_mark_inode_dirty(handle, inode))
293 294 295
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
296 297
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
316
 *	ext4_block_to_path - parse the block number into array of offsets
317 318 319
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
320 321
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
322
 *
323
 *	To store the locations of file's data ext4 uses a data structure common
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

346
static int ext4_block_to_path(struct inode *inode,
347 348
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
349
{
350 351 352
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
353 354 355 356 357
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

358
	if (i_block < direct_blocks) {
359 360
		offsets[n++] = i_block;
		final = direct_blocks;
361
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
362
		offsets[n++] = EXT4_IND_BLOCK;
363 364 365
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
366
		offsets[n++] = EXT4_DIND_BLOCK;
367 368 369 370
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
371
		offsets[n++] = EXT4_TIND_BLOCK;
372 373 374 375 376
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
377
		ext4_warning(inode->i_sb, "ext4_block_to_path",
378 379 380
			     "block %lu > max in inode %lu",
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
381 382 383 384 385 386
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

387
static int __ext4_check_blockref(const char *function, struct inode *inode,
388 389
				 __le32 *p, unsigned int max)
{
390
	__le32 *bref = p;
391 392
	unsigned int blk;

393
	while (bref < p+max) {
394
		blk = le32_to_cpu(*bref++);
395 396
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
397
						    blk, 1))) {
398
			ext4_error(inode->i_sb, function,
399 400
				   "invalid block reference %u "
				   "in inode #%lu", blk, inode->i_ino);
401 402 403 404
			return -EIO;
		}
	}
	return 0;
405 406 407 408
}


#define ext4_check_indirect_blockref(inode, bh)                         \
409
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
410 411 412
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
413
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
414 415
			      EXT4_NDIR_BLOCKS)

416
/**
417
 *	ext4_get_branch - read the chain of indirect blocks leading to data
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
442 443
 *
 *      Need to be called with
444
 *      down_read(&EXT4_I(inode)->i_data_sem)
445
 */
A
Aneesh Kumar K.V 已提交
446 447
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
448 449 450 451 452 453 454 455
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
456
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
457 458 459
	if (!p->key)
		goto no_block;
	while (--depth) {
460 461
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
462
			goto failure;
463

464 465 466 467 468 469 470 471 472 473 474
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
475

476
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
477 478 479 480 481 482 483 484 485 486 487 488 489
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
490
 *	ext4_find_near - find a place for allocation with sufficient locality
491 492 493
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
494
 *	This function returns the preferred place for block allocation.
495 496 497 498 499 500 501 502 503 504 505 506 507 508
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
509
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
510
{
511
	struct ext4_inode_info *ei = EXT4_I(inode);
512
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
513
	__le32 *p;
514
	ext4_fsblk_t bg_start;
515
	ext4_fsblk_t last_block;
516
	ext4_grpblk_t colour;
517 518
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
534 535 536 537 538 539 540
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
541 542
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

543 544 545 546 547 548 549
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

550 551
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
552
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
553 554
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
555 556 557 558
	return bg_start + colour;
}

/**
559
 *	ext4_find_goal - find a preferred place for allocation.
560 561 562 563
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
564
 *	Normally this function find the preferred place for block allocation,
565
 *	returns it.
566 567
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
568
 */
A
Aneesh Kumar K.V 已提交
569
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
570
				   Indirect *partial)
571
{
572 573
	ext4_fsblk_t goal;

574
	/*
575
	 * XXX need to get goal block from mballoc's data structures
576 577
	 */

578 579 580
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
581 582 583
}

/**
584
 *	ext4_blks_to_allocate: Look up the block map and count the number
585 586 587 588 589 590 591 592 593 594
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
595
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
596
				 int blocks_to_boundary)
597
{
598
	unsigned int count = 0;
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
622
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
623 624 625 626 627 628 629 630
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
631
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
632 633 634
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
635
{
636
	struct ext4_allocation_request ar;
637
	int target, i;
638
	unsigned long count = 0, blk_allocated = 0;
639
	int index = 0;
640
	ext4_fsblk_t current_block = 0;
641 642 643 644 645 646 647 648 649 650
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
651 652 653
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
654 655
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
656 657
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
658 659 660
		if (*err)
			goto failed_out;

661 662
		BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);

663 664 665 666 667 668
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
669 670 671 672 673 674 675 676 677
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
678
			break;
679
		}
680 681
	}

682 683 684 685 686
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
687 688 689 690 691 692 693 694 695 696
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
697
	BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
698

699 700 701 702 703 704 705 706 707
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
708 709 710 711
			/*
			 * save the new block number
			 * for the first direct block
			 */
712 713
			new_blocks[index] = current_block;
		}
714
		blk_allocated += ar.len;
715 716
	}
allocated:
717
	/* total number of blocks allocated for direct blocks */
718
	ret = blk_allocated;
719 720 721
	*err = 0;
	return ret;
failed_out:
722
	for (i = 0; i < index; i++)
723
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
724 725 726 727
	return ret;
}

/**
728
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
729 730 731 732 733 734 735 736 737 738
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
739
 *	the same format as ext4_get_branch() would do. We are calling it after
740 741
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
742
 *	picture as after the successful ext4_get_block(), except that in one
743 744 745 746 747 748
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
749
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
750 751
 *	as described above and return 0.
 */
752
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
753 754 755
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
756 757 758 759 760 761
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
762 763
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
764

765
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
784
		err = ext4_journal_get_create_access(handle, bh);
785
		if (err) {
786 787
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
788 789 790 791 792 793 794 795
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
796
		if (n == indirect_blks) {
797 798 799 800 801 802
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
803
			for (i = 1; i < num; i++)
804 805 806 807 808 809
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

810 811
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
812 813 814 815 816 817 818 819
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
820
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
821
		ext4_journal_forget(handle, branch[i].bh);
822
	}
823
	for (i = 0; i < indirect_blks; i++)
824
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
825

826
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
827 828 829 830 831

	return err;
}

/**
832
 * ext4_splice_branch - splice the allocated branch onto inode.
833 834 835
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
836
 *	ext4_alloc_branch)
837 838 839 840 841 842 843 844
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
845
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
846 847
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
848 849 850
{
	int i;
	int err = 0;
851
	ext4_fsblk_t current_block;
852 853 854 855 856 857 858 859

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
860
		err = ext4_journal_get_write_access(handle, where->bh);
861 862 863 864 865 866 867 868 869 870 871 872 873 874
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
875
			*(where->p + i) = cpu_to_le32(current_block++);
876 877 878 879 880 881 882 883 884 885 886
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
887
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
888 889
		 */
		jbd_debug(5, "splicing indirect only\n");
890 891
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
892 893 894 895 896 897
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
898
		ext4_mark_inode_dirty(handle, inode);
899 900 901 902 903 904
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
905
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
906
		ext4_journal_forget(handle, where[i].bh);
907 908
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
909
	}
910
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
911 912 913 914 915

	return err;
}

/*
916 917 918 919
 * The ext4_ind_get_blocks() function handles non-extents inodes
 * (i.e., using the traditional indirect/double-indirect i_blocks
 * scheme) for ext4_get_blocks().
 *
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
936
 *
937 938 939 940 941
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
942
 */
943
static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
944 945 946
			       ext4_lblk_t iblock, unsigned int maxblocks,
			       struct buffer_head *bh_result,
			       int flags)
947 948
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
949
	ext4_lblk_t offsets[4];
950 951
	Indirect chain[4];
	Indirect *partial;
952
	ext4_fsblk_t goal;
953 954 955 956
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
957
	ext4_fsblk_t first_block = 0;
958

A
Alex Tomas 已提交
959
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
960
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
A
Aneesh Kumar K.V 已提交
961
	depth = ext4_block_to_path(inode, iblock, offsets,
962
				   &blocks_to_boundary);
963 964 965 966

	if (depth == 0)
		goto out;

967
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
968 969 970 971 972 973 974 975

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
976
			ext4_fsblk_t blk;
977 978 979 980 981 982 983 984

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
985
		goto got_it;
986 987 988
	}

	/* Next simple case - plain lookup or failed read of indirect block */
989
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
990 991 992
		goto cleanup;

	/*
993
	 * Okay, we need to do block allocation.
994
	*/
995
	goal = ext4_find_goal(inode, iblock, partial);
996 997 998 999 1000 1001 1002 1003

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
1004
	count = ext4_blks_to_allocate(partial, indirect_blks,
1005 1006
					maxblocks, blocks_to_boundary);
	/*
1007
	 * Block out ext4_truncate while we alter the tree
1008
	 */
1009
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1010 1011
				&count, goal,
				offsets + (partial - chain), partial);
1012 1013

	/*
1014
	 * The ext4_splice_branch call will free and forget any buffers
1015 1016 1017 1018 1019 1020
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1021
		err = ext4_splice_branch(handle, inode, iblock,
1022 1023
					 partial, indirect_blks, count);
	else
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
qsize_t ext4_get_reserved_space(struct inode *inode)
{
	unsigned long long total;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks +
		EXT4_I(inode)->i_reserved_meta_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	return total;
}
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1081 1082 1083
	if (!blocks)
		return 0;

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1104 1105 1106 1107 1108 1109 1110 1111 1112
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1113 1114 1115 1116 1117

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1118 1119 1120 1121 1122 1123

	/*
	 * free those over-booking quota for metadata blocks
	 */
	if (mdb_free)
		vfs_dq_release_reservation_block(inode, mdb_free);
1124 1125 1126 1127 1128 1129 1130 1131

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
	if (!total && (atomic_read(&inode->i_writecount) == 0))
		ext4_discard_preallocations(inode);
1132 1133
}

1134 1135
static int check_block_validity(struct inode *inode, const char *msg,
				sector_t logical, sector_t phys, int len)
1136 1137
{
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1138
		ext4_error(inode->i_sb, msg,
1139 1140 1141 1142 1143 1144 1145 1146 1147
			   "inode #%lu logical block %llu mapped to %llu "
			   "(size %d)", inode->i_ino,
			   (unsigned long long) logical,
			   (unsigned long long) phys, len);
		return -EIO;
	}
	return 0;
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/*
 * Return the number of dirty pages in the given inode starting at
 * page frame idx.
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
			head = page_buffers(page);
			bh = head;
			do {
				if (!buffer_delay(bh) &&
				    !buffer_unwritten(bh)) {
					done = 1;
					break;
				}
			} while ((bh = bh->b_this_page) != head);
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
			if (num >= max_pages)
				break;
		}
		pagevec_release(&pvec);
	}
	return num;
}

1206
/*
1207
 * The ext4_get_blocks() function tries to look up the requested blocks,
1208
 * and returns if the blocks are already mapped.
1209 1210 1211 1212 1213 1214
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
1215
 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1228 1229
int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
		    unsigned int max_blocks, struct buffer_head *bh,
1230
		    int flags)
1231 1232
{
	int retval;
1233 1234

	clear_buffer_mapped(bh);
1235
	clear_buffer_unwritten(bh);
1236

1237 1238 1239
	ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, max_blocks,
		  (unsigned long)block);
1240
	/*
1241 1242
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1243 1244 1245 1246
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1247
				bh, 0);
1248
	} else {
1249
		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1250
					     bh, 0);
1251
	}
1252
	up_read((&EXT4_I(inode)->i_data_sem));
1253

1254
	if (retval > 0 && buffer_mapped(bh)) {
1255 1256
		int ret = check_block_validity(inode, "file system corruption",
					       block, bh->b_blocknr, retval);
1257 1258 1259 1260
		if (ret != 0)
			return ret;
	}

1261
	/* If it is only a block(s) look up */
1262
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1273 1274
		return retval;

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
	clear_buffer_unwritten(bh);

1287
	/*
1288 1289 1290 1291
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1292 1293
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1294 1295 1296 1297 1298 1299 1300

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1301
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1302
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1303 1304 1305 1306
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1307 1308
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1309
					      bh, flags);
1310
	} else {
1311
		retval = ext4_ind_get_blocks(handle, inode, block,
1312
					     max_blocks, bh, flags);
1313 1314 1315 1316 1317 1318 1319

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1320
			EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1321
		}
1322
	}
1323

1324
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1325
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1326 1327 1328 1329 1330 1331 1332

	/*
	 * Update reserved blocks/metadata blocks after successful
	 * block allocation which had been deferred till now.
	 */
	if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
		ext4_da_update_reserve_space(inode, retval);
1333

1334
	up_write((&EXT4_I(inode)->i_data_sem));
1335
	if (retval > 0 && buffer_mapped(bh)) {
1336 1337 1338
		int ret = check_block_validity(inode, "file system "
					       "corruption after allocation",
					       block, bh->b_blocknr, retval);
1339 1340 1341
		if (ret != 0)
			return ret;
	}
1342 1343 1344
	return retval;
}

1345 1346 1347
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1348 1349
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1350
{
1351
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1352
	int ret = 0, started = 0;
1353
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1354
	int dio_credits;
1355

J
Jan Kara 已提交
1356 1357 1358 1359
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1360 1361
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1362
		if (IS_ERR(handle)) {
1363
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1364
			goto out;
1365
		}
J
Jan Kara 已提交
1366
		started = 1;
1367 1368
	}

1369
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1370
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
J
Jan Kara 已提交
1371 1372 1373
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1374
	}
J
Jan Kara 已提交
1375 1376 1377
	if (started)
		ext4_journal_stop(handle);
out:
1378 1379 1380 1381 1382 1383
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1384
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1385
				ext4_lblk_t block, int create, int *errp)
1386 1387 1388
{
	struct buffer_head dummy;
	int fatal = 0, err;
1389
	int flags = 0;
1390 1391 1392 1393 1394 1395

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
1396 1397 1398
	if (create)
		flags |= EXT4_GET_BLOCKS_CREATE;
	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1399
	/*
1400 1401
	 * ext4_get_blocks() returns number of blocks mapped. 0 in
	 * case of a HOLE.
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1418
			J_ASSERT(handle != NULL);
1419 1420 1421 1422 1423

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1424
			 * writes use ext4_get_block instead, so it's not a
1425 1426 1427 1428
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1429
			fatal = ext4_journal_get_create_access(handle, bh);
1430
			if (!fatal && !buffer_uptodate(bh)) {
1431
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1432 1433 1434
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1435 1436
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1453
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1454
			       ext4_lblk_t block, int create, int *err)
1455
{
1456
	struct buffer_head *bh;
1457

1458
	bh = ext4_getblk(handle, inode, block, create, err);
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1472 1473 1474 1475 1476 1477 1478
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1479 1480 1481 1482 1483 1484 1485
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1486 1487
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1488
	     block_start = block_end, bh = next) {
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1506
 * close off a transaction and start a new one between the ext4_get_block()
1507
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1508 1509
 * prepare_write() is the right place.
 *
1510 1511
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1512 1513 1514 1515
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1516
 * By accident, ext4 can be reentered when a transaction is open via
1517 1518 1519 1520 1521 1522
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1523
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1524 1525 1526 1527 1528
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1529
				       struct buffer_head *bh)
1530 1531 1532
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1533
	return ext4_journal_get_write_access(handle, bh);
1534 1535
}

N
Nick Piggin 已提交
1536
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1537 1538
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1539
{
1540
	struct inode *inode = mapping->host;
1541
	int ret, needed_blocks;
1542 1543
	handle_t *handle;
	int retries = 0;
1544
	struct page *page;
1545
	pgoff_t index;
1546
	unsigned from, to;
N
Nick Piggin 已提交
1547

1548
	trace_ext4_write_begin(inode, pos, len, flags);
1549 1550 1551 1552 1553
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1554
	index = pos >> PAGE_CACHE_SHIFT;
1555 1556
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1557 1558

retry:
1559 1560 1561 1562
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1563
	}
1564

1565 1566 1567 1568
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1569
	page = grab_cache_page_write_begin(mapping, index, flags);
1570 1571 1572 1573 1574 1575 1576
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1577
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1578
				ext4_get_block);
N
Nick Piggin 已提交
1579 1580

	if (!ret && ext4_should_journal_data(inode)) {
1581 1582 1583
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1584 1585

	if (ret) {
1586 1587
		unlock_page(page);
		page_cache_release(page);
1588 1589 1590 1591
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1592 1593 1594
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1595
		 */
1596
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1597 1598 1599 1600
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1601
			ext4_truncate(inode);
1602
			/*
1603
			 * If truncate failed early the inode might
1604 1605 1606 1607 1608 1609 1610
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1611 1612
	}

1613
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1614
		goto retry;
1615
out:
1616 1617 1618
	return ret;
}

N
Nick Piggin 已提交
1619 1620
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1621 1622 1623 1624
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1625
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1626 1627
}

1628
static int ext4_generic_write_end(struct file *file,
1629 1630 1631
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1674 1675 1676 1677
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1678
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1679 1680
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1681
static int ext4_ordered_write_end(struct file *file,
1682 1683 1684
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1685
{
1686
	handle_t *handle = ext4_journal_current_handle();
1687
	struct inode *inode = mapping->host;
1688 1689
	int ret = 0, ret2;

1690
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1691
	ret = ext4_jbd2_file_inode(handle, inode);
1692 1693

	if (ret == 0) {
1694
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1695
							page, fsdata);
1696
		copied = ret2;
1697
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1698 1699 1700 1701 1702
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1703 1704
		if (ret2 < 0)
			ret = ret2;
1705
	}
1706
	ret2 = ext4_journal_stop(handle);
1707 1708
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1709

1710
	if (pos + len > inode->i_size) {
1711
		ext4_truncate(inode);
1712
		/*
1713
		 * If truncate failed early the inode might still be
1714 1715 1716 1717 1718 1719 1720 1721
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1722
	return ret ? ret : copied;
1723 1724
}

N
Nick Piggin 已提交
1725
static int ext4_writeback_write_end(struct file *file,
1726 1727 1728
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1729
{
1730
	handle_t *handle = ext4_journal_current_handle();
1731
	struct inode *inode = mapping->host;
1732 1733
	int ret = 0, ret2;

1734
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1735
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1736
							page, fsdata);
1737
	copied = ret2;
1738
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1739 1740 1741 1742 1743 1744
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1745 1746
	if (ret2 < 0)
		ret = ret2;
1747

1748
	ret2 = ext4_journal_stop(handle);
1749 1750
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1751

1752
	if (pos + len > inode->i_size) {
1753
		ext4_truncate(inode);
1754
		/*
1755
		 * If truncate failed early the inode might still be
1756 1757 1758 1759 1760 1761 1762
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1763
	return ret ? ret : copied;
1764 1765
}

N
Nick Piggin 已提交
1766
static int ext4_journalled_write_end(struct file *file,
1767 1768 1769
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1770
{
1771
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1772
	struct inode *inode = mapping->host;
1773 1774
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1775
	unsigned from, to;
1776
	loff_t new_i_size;
1777

1778
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1779 1780 1781 1782 1783 1784 1785 1786
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1787 1788

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1789
				to, &partial, write_end_fn);
1790 1791
	if (!partial)
		SetPageUptodate(page);
1792 1793
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1794
		i_size_write(inode, pos+copied);
1795
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1796 1797
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1798
		ret2 = ext4_mark_inode_dirty(handle, inode);
1799 1800 1801
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1802

1803
	unlock_page(page);
1804
	page_cache_release(page);
1805
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1806 1807 1808 1809 1810 1811
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1812
	ret2 = ext4_journal_stop(handle);
1813 1814
	if (!ret)
		ret = ret2;
1815
	if (pos + len > inode->i_size) {
1816
		ext4_truncate(inode);
1817
		/*
1818
		 * If truncate failed early the inode might still be
1819 1820 1821 1822 1823 1824
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1825 1826

	return ret ? ret : copied;
1827
}
1828 1829 1830

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1831
	int retries = 0;
1832 1833
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	unsigned long md_needed, mdblocks, total = 0;
1834 1835 1836 1837 1838 1839

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1840
repeat:
1841 1842 1843 1844 1845 1846 1847 1848
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	/*
	 * Make quota reservation here to prevent quota overflow
	 * later. Real quota accounting is done at pages writeout
	 * time.
	 */
	if (vfs_dq_reserve_block(inode, total)) {
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return -EDQUOT;
	}

1859
	if (ext4_claim_free_blocks(sbi, total)) {
1860
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1861
		vfs_dq_release_reservation_block(inode, total);
A
Aneesh Kumar K.V 已提交
1862 1863 1864 1865
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1866 1867 1868 1869 1870 1871 1872 1873 1874
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1875
static void ext4_da_release_space(struct inode *inode, int to_free)
1876 1877 1878 1879
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1880 1881 1882
	if (!to_free)
		return;		/* Nothing to release, exit */

1883
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1899
	/* recalculate the number of metablocks still need to be reserved */
1900
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1901 1902 1903 1904 1905 1906 1907 1908
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1909 1910
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1911 1912

	/* update per-inode reservations */
1913 1914
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1915 1916 1917 1918

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1919 1920

	vfs_dq_release_reservation_block(inode, release);
1921 1922 1923
}

static void ext4_da_page_release_reservation(struct page *page,
1924
					     unsigned long offset)
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1941
	ext4_da_release_space(page->mapping->host, to_release);
1942
}
1943

1944 1945 1946 1947 1948 1949
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1950
 * them with writepage() call back
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1963
	long pages_skipped;
1964 1965 1966 1967 1968
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1969 1970

	BUG_ON(mpd->next_page <= mpd->first_page);
1971 1972 1973
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1974
	 * If we look at mpd->b_blocknr we would only be looking
1975 1976
	 * at the currently mapped buffer_heads.
	 */
1977 1978 1979
	index = mpd->first_page;
	end = mpd->next_page - 1;

1980
	pagevec_init(&pvec, 0);
1981
	while (index <= end) {
1982
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1983 1984 1985 1986 1987
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1988 1989 1990 1991 1992 1993 1994 1995
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1996
			pages_skipped = mpd->wbc->pages_skipped;
1997
			err = mapping->a_ops->writepage(page, mpd->wbc);
1998 1999 2000 2001 2002
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
2003
				mpd->pages_written++;
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
2026
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2027 2028 2029 2030 2031 2032 2033 2034 2035
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
2036
	pgoff_t index, end;
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

				if (buffer_delay(bh) ||
						buffer_unwritten(bh)) {

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2094
				} else if (buffer_mapped(bh))
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

2154 2155 2156
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2169 2170 2171
	return;
}

2172 2173 2174
/*
 * mpage_da_map_blocks - go through given space
 *
2175
 * @mpd - bh describing space
2176 2177 2178 2179
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2180
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2181
{
2182
	int err, blks, get_blocks_flags;
A
Aneesh Kumar K.V 已提交
2183
	struct buffer_head new;
2184 2185 2186 2187
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2188 2189 2190 2191

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2192
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2193 2194
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2195
		return 0;
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2206
	/*
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	 * Call ext4_get_blocks() to allocate any delayed allocation
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
	 * want to change *many* call functions, so ext4_get_blocks()
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2223
	 */
2224 2225 2226 2227 2228
	new.b_state = 0;
	get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
			    EXT4_GET_BLOCKS_DELALLOC_RESERVE);
	if (mpd->b_state & (1 << BH_Delay))
		get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2229
	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2230
			       &new, get_blocks_flags);
2231 2232
	if (blks < 0) {
		err = blks;
2233 2234 2235 2236
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2237 2238 2239
		 */
		if (err == -EAGAIN)
			return 0;
2240 2241

		if (err == -ENOSPC &&
2242
		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2243 2244 2245 2246
			mpd->retval = err;
			return 0;
		}

2247
		/*
2248 2249 2250 2251 2252
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2253
		 */
2254 2255 2256 2257 2258 2259 2260 2261
		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
			 "delayed block allocation failed for inode %lu at "
			 "logical offset %llu with max blocks %zd with "
			 "error %d\n", mpd->inode->i_ino,
			 (unsigned long long) next,
			 mpd->b_size >> mpd->inode->i_blkbits, err);
		printk(KERN_CRIT "This should not happen!!  "
		       "Data will be lost\n");
A
Aneesh Kumar K.V 已提交
2262
		if (err == -ENOSPC) {
2263
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2264
		}
2265
		/* invalidate all the pages */
2266
		ext4_da_block_invalidatepages(mpd, next,
2267
				mpd->b_size >> mpd->inode->i_blkbits);
2268 2269
		return err;
	}
2270 2271 2272
	BUG_ON(blks == 0);

	new.b_size = (blks << mpd->inode->i_blkbits);
2273

2274 2275
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
2276

2277 2278 2279 2280
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2281 2282
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2283
		mpage_put_bnr_to_bhs(mpd, next, &new);
2284

2285 2286 2287 2288 2289 2290 2291
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2292
	 * Update on-disk size along with block allocation.
2293 2294 2295 2296 2297 2298 2299 2300 2301
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2302
	return 0;
2303 2304
}

2305 2306
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2318 2319
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2320 2321
{
	sector_t next;
2322
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2346 2347 2348
	/*
	 * First block in the extent
	 */
2349 2350 2351 2352
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2353 2354 2355
		return;
	}

2356
	next = mpd->b_blocknr + nrblocks;
2357 2358 2359
	/*
	 * Can we merge the block to our big extent?
	 */
2360 2361
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2362 2363 2364
		return;
	}

2365
flush_it:
2366 2367 2368 2369
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2370 2371
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2372 2373
	mpd->io_done = 1;
	return;
2374 2375
}

2376
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2377
{
2378
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2379 2380
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2395
	struct buffer_head *bh, *head;
2396 2397
	sector_t logical;

2398 2399 2400 2401
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
2402
		 * try to write them again after
2403 2404 2405 2406 2407 2408
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2409 2410 2411 2412 2413 2414
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2415
		 * and start IO on them using writepage()
2416 2417
		 */
		if (mpd->next_page != mpd->first_page) {
2418 2419
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2420 2421 2422 2423 2424 2425 2426
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2437 2438 2439
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2440 2441 2442 2443 2444 2445 2446
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2447 2448
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2449 2450
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2451 2452 2453 2454 2455 2456 2457 2458
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2459 2460 2461 2462
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2463
			 * with the page in ext4_writepage
2464
			 */
2465
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2466 2467 2468
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2469 2470
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2471 2472 2473 2474 2475 2476 2477 2478 2479
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2480 2481
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2482
			}
2483 2484 2485 2486 2487 2488 2489 2490
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2491 2492 2493
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2494 2495 2496 2497 2498 2499 2500
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2501 2502 2503 2504 2505
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;
2506 2507 2508 2509
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2510 2511 2512 2513 2514 2515 2516 2517 2518

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2519
	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2520 2521
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2522 2523 2524 2525
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2526 2527 2528 2529 2530
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2531
		map_bh(bh_result, inode->i_sb, invalid_block);
2532 2533 2534 2535
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
2536 2537 2538 2539 2540 2541 2542 2543
		if (buffer_unwritten(bh_result)) {
			/* A delayed write to unwritten bh should
			 * be marked new and mapped.  Mapped ensures
			 * that we don't do get_block multiple times
			 * when we write to the same offset and new
			 * ensures that we do proper zero out for
			 * partial write.
			 */
2544
			set_buffer_new(bh_result);
2545 2546
			set_buffer_mapped(bh_result);
		}
2547 2548 2549 2550 2551
		ret = 0;
	}

	return ret;
}
2552

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
 * callback function for block_prepare_write(), nobh_writepage(), and
 * block_write_full_page().  These functions should only try to map a
 * single block at a time.
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
 * delayed allocation before calling nobh_writepage() or
 * block_write_full_page().  Otherwise, b_blocknr could be left
 * unitialized, and the page write functions will be taken by
 * surprise.
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2570 2571 2572 2573 2574
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

2575 2576
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

2577 2578 2579 2580
	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
2581
	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2582 2583 2584 2585 2586
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2587 2588
}

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       struct writeback_control *wbc,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
out:
	return ret;
}

2642
/*
2643 2644 2645 2646 2647 2648 2649 2650 2651
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2652 2653 2654 2655 2656
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2682
 */
2683
static int ext4_writepage(struct page *page,
2684
			  struct writeback_control *wbc)
2685 2686
{
	int ret = 0;
2687
	loff_t size;
2688
	unsigned int len;
2689 2690 2691
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2692
	trace_ext4_writepage(inode, page);
2693 2694 2695 2696 2697
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2698

2699
	if (page_has_buffers(page)) {
2700
		page_bufs = page_buffers(page);
2701
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2702
					ext4_bh_delay_or_unwritten)) {
2703
			/*
2704 2705
			 * We don't want to do  block allocation
			 * So redirty the page and return
2706 2707 2708
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2729
		ret = block_prepare_write(page, 0, len,
2730
					  noalloc_get_block_write);
2731 2732 2733 2734
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2735
						ext4_bh_delay_or_unwritten)) {
2736 2737 2738 2739 2740 2741 2742 2743 2744
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2745 2746 2747 2748 2749
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2750
		/* now mark the buffer_heads as dirty and uptodate */
2751
		block_commit_write(page, 0, len);
2752 2753
	}

2754 2755 2756 2757 2758 2759 2760 2761 2762
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
		return __ext4_journalled_writepage(page, wbc, len);
	}

2763
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2764
		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2765
	else
2766 2767
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2768 2769 2770 2771

	return ret;
}

2772
/*
2773 2774 2775 2776 2777
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2778
 */
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2796

2797
static int ext4_da_writepages(struct address_space *mapping,
2798
			      struct writeback_control *wbc)
2799
{
2800 2801
	pgoff_t	index;
	int range_whole = 0;
2802
	handle_t *handle = NULL;
2803
	struct mpage_da_data mpd;
2804
	struct inode *inode = mapping->host;
2805
	int no_nrwrite_index_update;
2806 2807
	int pages_written = 0;
	long pages_skipped;
2808
	unsigned int max_pages;
2809
	int range_cyclic, cycled = 1, io_done = 0;
2810 2811
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2812
	loff_t range_start = wbc->range_start;
2813
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2814

2815
	trace_ext4_da_writepages(inode, wbc);
2816

2817 2818 2819 2820 2821
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2822
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2823
		return 0;
2824 2825 2826 2827 2828

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2829
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2830 2831 2832 2833 2834
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2835
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2836 2837
		return -EROFS;

2838 2839
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2840

2841 2842
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2843
		index = mapping->writeback_index;
2844 2845 2846 2847 2848 2849
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2850
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2851

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
	if (!range_cyclic && range_whole)
		desired_nr_to_write = wbc->nr_to_write * 8;
	else
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2882 2883 2884
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2885 2886 2887 2888 2889 2890 2891 2892
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

2893
retry:
2894
	while (!ret && wbc->nr_to_write > 0) {
2895 2896 2897 2898 2899 2900 2901 2902

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2903
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2904

2905 2906 2907 2908
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2909
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2910 2911
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
2912 2913
			goto out_writepages;
		}
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
					&mpd);
		/*
		 * If we have a contigous extent of pages and we
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2945
		trace_ext4_da_write_pages(inode, &mpd);
2946
		wbc->nr_to_write -= mpd.pages_written;
2947

2948
		ext4_journal_stop(handle);
2949

2950
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2951 2952 2953 2954
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2955
			jbd2_journal_force_commit_nested(sbi->s_journal);
2956 2957 2958
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2959 2960 2961 2962
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2963 2964
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2965
			ret = 0;
2966
			io_done = 1;
2967
		} else if (wbc->nr_to_write)
2968 2969 2970 2971 2972 2973
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2974
	}
2975 2976 2977 2978 2979 2980 2981
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2982
	if (pages_skipped != wbc->pages_skipped)
2983 2984 2985 2986
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
			 "with nr_to_write = %ld ret = %d\n",
			 __func__, wbc->nr_to_write, ret);
2987 2988 2989

	/* Update index */
	index += pages_written;
2990
	wbc->range_cyclic = range_cyclic;
2991 2992 2993 2994 2995 2996
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2997

2998
out_writepages:
2999 3000
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
3001 3002
	if (wbc->nr_to_write > nr_to_writebump)
		wbc->nr_to_write -= nr_to_writebump;
3003
	wbc->range_start = range_start;
3004
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3005
	return ret;
3006 3007
}

3008 3009 3010 3011 3012 3013 3014 3015 3016
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3017
	 * counters can get slightly wrong with percpu_counter_batch getting
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

3035
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3036 3037
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3038
{
3039
	int ret, retries = 0;
3040 3041 3042 3043 3044 3045 3046 3047 3048
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
3049 3050 3051 3052 3053 3054 3055

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3056
	trace_ext4_da_write_begin(inode, pos, len, flags);
3057
retry:
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3069 3070 3071
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3072

3073
	page = grab_cache_page_write_begin(mapping, index, flags);
3074 3075 3076 3077 3078
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3079 3080 3081
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3082
				ext4_da_get_block_prep);
3083 3084 3085 3086
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3087 3088 3089 3090 3091 3092
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3093
			ext4_truncate(inode);
3094 3095
	}

3096 3097
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3098 3099 3100 3101
out:
	return ret;
}

3102 3103 3104 3105 3106
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3107
					    unsigned long offset)
3108 3109 3110 3111 3112 3113 3114 3115 3116
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3117
	for (i = 0; i < idx; i++)
3118 3119
		bh = bh->b_this_page;

3120
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3121 3122 3123 3124
		return 0;
	return 1;
}

3125
static int ext4_da_write_end(struct file *file,
3126 3127 3128
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3129 3130 3131 3132 3133
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3134
	unsigned long start, end;
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3148

3149
	trace_ext4_da_write_end(inode, pos, len, copied);
3150
	start = pos & (PAGE_CACHE_SIZE - 1);
3151
	end = start + copied - 1;
3152 3153 3154 3155 3156 3157 3158 3159

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3171

3172 3173 3174
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3175 3176 3177 3178 3179
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3180
		}
3181
	}
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3203
	ext4_da_page_release_reservation(page, offset);
3204 3205 3206 3207 3208 3209 3210

out:
	ext4_invalidatepage(page, offset);

	return;
}

3211 3212 3213 3214 3215
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3216 3217
	trace_ext4_alloc_da_blocks(inode);

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3228
	 *
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3248
	 *
3249 3250 3251 3252 3253 3254
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3255

3256 3257 3258 3259 3260
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3261
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3262 3263 3264 3265 3266 3267 3268 3269
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3270
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3271 3272 3273 3274 3275
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3286
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3298
		 * NB. EXT4_STATE_JDATA is not set on files other than
3299 3300 3301 3302 3303 3304
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3305 3306
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
3307 3308 3309
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3310 3311 3312 3313 3314

		if (err)
			return 0;
	}

3315
	return generic_block_bmap(mapping, block, ext4_get_block);
3316 3317
}

3318
static int ext4_readpage(struct file *file, struct page *page)
3319
{
3320
	return mpage_readpage(page, ext4_get_block);
3321 3322 3323
}

static int
3324
ext4_readpages(struct file *file, struct address_space *mapping,
3325 3326
		struct list_head *pages, unsigned nr_pages)
{
3327
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3328 3329
}

3330
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3331
{
3332
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3333 3334 3335 3336 3337 3338 3339

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3340 3341 3342 3343
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3344 3345
}

3346
static int ext4_releasepage(struct page *page, gfp_t wait)
3347
{
3348
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3349 3350 3351 3352

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3353 3354 3355 3356
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3357 3358 3359
}

/*
3360 3361
 * O_DIRECT for ext3 (or indirect map) based files
 *
3362 3363 3364 3365 3366
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3367 3368
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3369
 */
3370
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3371 3372
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3373 3374 3375
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3376
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3377
	handle_t *handle;
3378 3379 3380 3381 3382 3383 3384 3385
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3386 3387 3388 3389 3390 3391
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3392
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3393 3394 3395 3396
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3397 3398
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3399
			ext4_journal_stop(handle);
3400 3401 3402 3403 3404
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3405
				 ext4_get_block, NULL);
3406

J
Jan Kara 已提交
3407
	if (orphan) {
3408 3409
		int err;

J
Jan Kara 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3420
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3421
		if (ret > 0) {
3422 3423 3424 3425 3426 3427 3428 3429
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3430
				 * ext4_mark_inode_dirty() to userspace.  So
3431 3432
				 * ignore it.
				 */
3433
				ext4_mark_inode_dirty(handle, inode);
3434 3435
			}
		}
3436
		err = ext4_journal_stop(handle);
3437 3438 3439 3440 3441 3442 3443
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
/* Maximum number of blocks we map for direct IO at once. */

static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
{
	handle_t *handle = NULL;
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	int dio_credits;

3454 3455
	ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
		   inode->i_ino, create);
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
	/*
	 * DIO VFS code passes create = 0 flag for write to
	 * the middle of file. It does this to avoid block
	 * allocation for holes, to prevent expose stale data
	 * out when there is parallel buffered read (which does
	 * not hold the i_mutex lock) while direct IO write has
	 * not completed. DIO request on holes finally falls back
	 * to buffered IO for this reason.
	 *
	 * For ext4 extent based file, since we support fallocate,
	 * new allocated extent as uninitialized, for holes, we
	 * could fallocate blocks for holes, thus parallel
	 * buffered IO read will zero out the page when read on
	 * a hole while parallel DIO write to the hole has not completed.
	 *
	 * when we come here, we know it's a direct IO write to
	 * to the middle of file (<i_size)
	 * so it's safe to override the create flag from VFS.
	 */
	create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;

	if (max_blocks > DIO_MAX_BLOCKS)
		max_blocks = DIO_MAX_BLOCKS;
	dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
	handle = ext4_journal_start(inode, dio_credits);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
			      create);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	ext4_journal_stop(handle);
out:
	return ret;
}

static void ext4_free_io_end(ext4_io_end_t *io)
{
3498 3499
	BUG_ON(!io);
	iput(io->inode);
3500 3501
	kfree(io);
}
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
static void dump_aio_dio_list(struct inode * inode)
{
#ifdef	EXT4_DEBUG
	struct list_head *cur, *before, *after;
	ext4_io_end_t *io, *io0, *io1;

	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
		ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
		return;
	}

	ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
	list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
		cur = &io->list;
		before = cur->prev;
		io0 = container_of(before, ext4_io_end_t, list);
		after = cur->next;
		io1 = container_of(after, ext4_io_end_t, list);

		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
			    io, inode->i_ino, io0, io1);
	}
#endif
}
3526 3527 3528 3529

/*
 * check a range of space and convert unwritten extents to written.
 */
3530
static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3531 3532 3533 3534 3535 3536
{
	struct inode *inode = io->inode;
	loff_t offset = io->offset;
	size_t size = io->size;
	int ret = 0;

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
		   "list->prev 0x%p\n",
	           io, inode->i_ino, io->list.next, io->list.prev);

	if (list_empty(&io->list))
		return ret;

	if (io->flag != DIO_AIO_UNWRITTEN)
		return ret;

3547 3548 3549
	if (offset + size <= i_size_read(inode))
		ret = ext4_convert_unwritten_extents(inode, offset, size);

3550
	if (ret < 0) {
3551
		printk(KERN_EMERG "%s: failed to convert unwritten"
3552 3553 3554 3555 3556
			"extents to written extents, error is %d"
			" io is still on inode %lu aio dio list\n",
                       __func__, ret, inode->i_ino);
		return ret;
	}
3557

3558 3559 3560
	/* clear the DIO AIO unwritten flag */
	io->flag = 0;
	return ret;
3561
}
3562 3563 3564 3565 3566 3567 3568 3569
/*
 * work on completed aio dio IO, to convert unwritten extents to extents
 */
static void ext4_end_aio_dio_work(struct work_struct *work)
{
	ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
	struct inode *inode = io->inode;
	int ret = 0;
3570

3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
	mutex_lock(&inode->i_mutex);
	ret = ext4_end_aio_dio_nolock(io);
	if (ret >= 0) {
		if (!list_empty(&io->list))
			list_del_init(&io->list);
		ext4_free_io_end(io);
	}
	mutex_unlock(&inode->i_mutex);
}
/*
 * This function is called from ext4_sync_file().
 *
 * When AIO DIO IO is completed, the work to convert unwritten
 * extents to written is queued on workqueue but may not get immediately
 * scheduled. When fsync is called, we need to ensure the
 * conversion is complete before fsync returns.
 * The inode keeps track of a list of completed AIO from DIO path
 * that might needs to do the conversion. This function walks through
 * the list and convert the related unwritten extents to written.
 */
int flush_aio_dio_completed_IO(struct inode *inode)
{
	ext4_io_end_t *io;
	int ret = 0;
	int ret2 = 0;

	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
		return ret;

	dump_aio_dio_list(inode);
	while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
		io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
				ext4_io_end_t, list);
		/*
		 * Calling ext4_end_aio_dio_nolock() to convert completed
		 * IO to written.
		 *
		 * When ext4_sync_file() is called, run_queue() may already
		 * about to flush the work corresponding to this io structure.
		 * It will be upset if it founds the io structure related
		 * to the work-to-be schedule is freed.
		 *
		 * Thus we need to keep the io structure still valid here after
		 * convertion finished. The io structure has a flag to
		 * avoid double converting from both fsync and background work
		 * queue work.
		 */
		ret = ext4_end_aio_dio_nolock(io);
		if (ret < 0)
			ret2 = ret;
		else
			list_del_init(&io->list);
	}
	return (ret2 < 0) ? ret2 : 0;
}

static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3628 3629 3630 3631 3632 3633
{
	ext4_io_end_t *io = NULL;

	io = kmalloc(sizeof(*io), GFP_NOFS);

	if (io) {
3634
		igrab(inode);
3635
		io->inode = inode;
3636
		io->flag = 0;
3637 3638 3639
		io->offset = 0;
		io->size = 0;
		io->error = 0;
3640 3641
		INIT_WORK(&io->work, ext4_end_aio_dio_work);
		INIT_LIST_HEAD(&io->list);
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
	}

	return io;
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
			    ssize_t size, void *private)
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
		return;

	/* if not aio dio with unwritten extents, just free io and return */
	if (io_end->flag != DIO_AIO_UNWRITTEN){
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3665
		return;
3666 3667
	}

3668 3669 3670 3671
	io_end->offset = offset;
	io_end->size = size;
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3672
	/* queue the work to convert unwritten extents to written */
3673 3674
	queue_work(wq, &io_end->work);

3675 3676 3677
	/* Add the io_end to per-inode completed aio dio list*/
	list_add_tail(&io_end->list,
		 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
	iocb->private = NULL;
}
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3689 3690 3691 3692
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3711 3712 3713
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3714 3715
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3716 3717
		 *
 		 * As to previously fallocated extents, ext4 get_block
3718 3719 3720
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3721 3722 3723 3724 3725 3726 3727 3728
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3729
 		 */
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
			iocb->private = ext4_init_io_end(inode);
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
			 * direct IO, so that later ext4_get_blocks()
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3746 3747 3748 3749 3750
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
					 ext4_get_block_dio_write,
					 ext4_end_io_dio);
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
		} else if (ret > 0)
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
			ret = ext4_convert_unwritten_extents(inode,
								offset, ret);
3777 3778
		return ret;
	}
3779 3780

	/* for write the the end of file case, we fall back to old way */
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

3797
/*
3798
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3810
static int ext4_journalled_set_page_dirty(struct page *page)
3811 3812 3813 3814 3815
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3816
static const struct address_space_operations ext4_ordered_aops = {
3817 3818
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3819
	.writepage		= ext4_writepage,
3820 3821 3822 3823 3824 3825 3826 3827 3828
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3829
	.error_remove_page	= generic_error_remove_page,
3830 3831
};

3832
static const struct address_space_operations ext4_writeback_aops = {
3833 3834
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3835
	.writepage		= ext4_writepage,
3836 3837 3838 3839 3840 3841 3842 3843 3844
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3845
	.error_remove_page	= generic_error_remove_page,
3846 3847
};

3848
static const struct address_space_operations ext4_journalled_aops = {
3849 3850
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3851
	.writepage		= ext4_writepage,
3852 3853 3854 3855 3856 3857 3858 3859
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3860
	.error_remove_page	= generic_error_remove_page,
3861 3862
};

3863
static const struct address_space_operations ext4_da_aops = {
3864 3865
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3866
	.writepage		= ext4_writepage,
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3877
	.error_remove_page	= generic_error_remove_page,
3878 3879
};

3880
void ext4_set_aops(struct inode *inode)
3881
{
3882 3883 3884 3885
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3886
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3887 3888 3889
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3890 3891
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3892
	else
3893
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3894 3895 3896
}

/*
3897
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3898 3899 3900 3901
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3902
int ext4_block_truncate_page(handle_t *handle,
3903 3904
		struct address_space *mapping, loff_t from)
{
3905
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3906
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3907 3908
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3909 3910
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3911
	struct page *page;
3912 3913
	int err = 0;

3914 3915
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3916 3917 3918
	if (!page)
		return -EINVAL;

3919 3920 3921 3922 3923 3924 3925 3926 3927
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3928
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3929
		zero_user(page, offset, length);
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3954
		ext4_get_block(inode, iblock, bh, 0);
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3975
	if (ext4_should_journal_data(inode)) {
3976
		BUFFER_TRACE(bh, "get write access");
3977
		err = ext4_journal_get_write_access(handle, bh);
3978 3979 3980 3981
		if (err)
			goto unlock;
	}

3982
	zero_user(page, offset, length);
3983 3984 3985 3986

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3987
	if (ext4_should_journal_data(inode)) {
3988
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3989
	} else {
3990
		if (ext4_should_order_data(inode))
3991
			err = ext4_jbd2_file_inode(handle, inode);
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4015
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4016 4017
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4018
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4019 4020 4021
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4022
 *	This is a helper function used by ext4_truncate().
4023 4024 4025 4026 4027 4028 4029
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4030
 *	past the truncation point is possible until ext4_truncate()
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4049
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4050 4051
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4052 4053 4054 4055 4056 4057 4058 4059
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4060
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4071
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4083
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4084 4085 4086 4087 4088 4089
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4090
	while (partial > p) {
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4106
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4107 4108 4109 4110
			      struct buffer_head *bh,
			      ext4_fsblk_t block_to_free,
			      unsigned long count, __le32 *first,
			      __le32 *last)
4111 4112 4113 4114
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4115 4116
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4117
		}
4118
		ext4_mark_inode_dirty(handle, inode);
4119 4120
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4121 4122
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4123
			ext4_journal_get_write_access(handle, bh);
4124 4125 4126 4127
		}
	}

	/*
4128 4129 4130 4131 4132
	 * Any buffers which are on the journal will be in memory. We
	 * find them on the hash table so jbd2_journal_revoke() will
	 * run jbd2_journal_forget() on them.  We've already detached
	 * each block from the file, so bforget() in
	 * jbd2_journal_forget() should be safe.
4133
	 *
4134
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4135 4136 4137 4138
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
4139
			struct buffer_head *tbh;
4140 4141

			*p = 0;
A
Aneesh Kumar K.V 已提交
4142 4143
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
4144 4145 4146
		}
	}

4147
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
4148 4149 4150
}

/**
4151
 * ext4_free_data - free a list of data blocks
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4169
static void ext4_free_data(handle_t *handle, struct inode *inode,
4170 4171 4172
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4173
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4174 4175 4176 4177
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4178
	ext4_fsblk_t nr;		    /* Current block # */
4179 4180 4181 4182 4183 4184
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4185
		err = ext4_journal_get_write_access(handle, this_bh);
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4203
				ext4_clear_blocks(handle, inode, this_bh,
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4214
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4215 4216 4217
				  count, block_to_free_p, p);

	if (this_bh) {
4218
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4219 4220 4221 4222 4223 4224 4225

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4226
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4227
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4228 4229 4230 4231 4232 4233
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
4234 4235 4236 4237
	}
}

/**
4238
 *	ext4_free_branches - free an array of branches
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4250
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4251 4252 4253
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4254
	ext4_fsblk_t nr;
4255 4256
	__le32 *p;

4257
	if (ext4_handle_is_aborted(handle))
4258 4259 4260 4261
		return;

	if (depth--) {
		struct buffer_head *bh;
4262
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4277
				ext4_error(inode->i_sb, "ext4_free_branches",
4278
					   "Read failure, inode=%lu, block=%llu",
4279 4280 4281 4282 4283 4284
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4285
			ext4_free_branches(handle, inode, bh,
4286 4287 4288
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4289 4290 4291 4292 4293

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
4294
			 * jbd2_journal_revoke().
4295 4296 4297
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
4298
			 * transaction then jbd2_journal_forget() will simply
4299
			 * brelse() it.  That means that if the underlying
4300
			 * block is reallocated in ext4_get_block(),
4301 4302 4303 4304 4305 4306 4307 4308
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
4309
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4327
			if (ext4_handle_is_aborted(handle))
4328 4329
				return;
			if (try_to_extend_transaction(handle, inode)) {
4330
				ext4_mark_inode_dirty(handle, inode);
4331 4332
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4333 4334
			}

4335
			ext4_free_blocks(handle, inode, nr, 1, 1);
4336 4337 4338 4339 4340 4341 4342

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4343
				if (!ext4_journal_get_write_access(handle,
4344 4345 4346
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4347 4348 4349 4350
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4351 4352 4353 4354 4355 4356
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4357
		ext4_free_data(handle, inode, parent_bh, first, last);
4358 4359 4360
	}
}

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4374
/*
4375
 * ext4_truncate()
4376
 *
4377 4378
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4395
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4396
 * that this inode's truncate did not complete and it will again call
4397 4398
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4399
 * that's fine - as long as they are linked from the inode, the post-crash
4400
 * ext4_truncate() run will find them and release them.
4401
 */
4402
void ext4_truncate(struct inode *inode)
4403 4404
{
	handle_t *handle;
4405
	struct ext4_inode_info *ei = EXT4_I(inode);
4406
	__le32 *i_data = ei->i_data;
4407
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4408
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4409
	ext4_lblk_t offsets[4];
4410 4411 4412 4413
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4414
	ext4_lblk_t last_block;
4415 4416
	unsigned blocksize = inode->i_sb->s_blocksize;

4417
	if (!ext4_can_truncate(inode))
4418 4419
		return;

4420
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4421 4422
		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;

A
Aneesh Kumar K.V 已提交
4423
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4424
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4425 4426
		return;
	}
A
Alex Tomas 已提交
4427

4428
	handle = start_transaction(inode);
4429
	if (IS_ERR(handle))
4430 4431 4432
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4433
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4434

4435 4436 4437
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4438

4439
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4452
	if (ext4_orphan_add(handle, inode))
4453 4454
		goto out_stop;

4455 4456 4457 4458 4459
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4460

4461
	ext4_discard_preallocations(inode);
4462

4463 4464 4465 4466 4467
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4468
	 * ext4 *really* writes onto the disk inode.
4469 4470 4471 4472
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4473 4474
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4475 4476 4477
		goto do_indirects;
	}

4478
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4479 4480 4481 4482
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4483
			ext4_free_branches(handle, inode, NULL,
4484 4485 4486 4487 4488 4489 4490 4491 4492
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4493
			ext4_free_branches(handle, inode, partial->bh,
4494 4495 4496 4497 4498 4499
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4500
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4501 4502 4503
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4504
		brelse(partial->bh);
4505 4506 4507 4508 4509 4510
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4511
		nr = i_data[EXT4_IND_BLOCK];
4512
		if (nr) {
4513 4514
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4515
		}
4516 4517
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4518
		if (nr) {
4519 4520
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4521
		}
4522 4523
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4524
		if (nr) {
4525 4526
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4527
		}
4528
	case EXT4_TIND_BLOCK:
4529 4530 4531
		;
	}

4532
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4533
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4534
	ext4_mark_inode_dirty(handle, inode);
4535 4536 4537 4538 4539 4540

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4541
		ext4_handle_sync(handle);
4542 4543 4544 4545 4546
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4547
	 * ext4_delete_inode(), and we allow that function to clean up the
4548 4549 4550
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4551
		ext4_orphan_del(handle, inode);
4552

4553
	ext4_journal_stop(handle);
4554 4555 4556
}

/*
4557
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4558 4559 4560 4561
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4562 4563
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4564
{
4565 4566 4567 4568 4569 4570
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4571
	iloc->bh = NULL;
4572 4573
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4574

4575 4576 4577
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4578 4579
		return -EIO;

4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4590
	if (!bh) {
4591 4592 4593
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
4594 4595 4596 4597
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4621
			int i, start;
4622

4623
			start = inode_offset & ~(inodes_per_block - 1);
4624

4625 4626
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4639
			for (i = start; i < start + inodes_per_block; i++) {
4640 4641
				if (i == inode_offset)
					continue;
4642
				if (ext4_test_bit(i, bitmap_bh->b_data))
4643 4644 4645
					break;
			}
			brelse(bitmap_bh);
4646
			if (i == start + inodes_per_block) {
4647 4648 4649 4650 4651 4652 4653 4654 4655
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4656 4657 4658 4659 4660 4661 4662 4663 4664
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4665
			/* s_inode_readahead_blks is always a power of 2 */
4666 4667 4668 4669 4670 4671 4672
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4673
				num -= ext4_itable_unused_count(sb, gdp);
4674 4675 4676 4677 4678 4679 4680
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4691 4692 4693
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4694 4695 4696 4697 4698 4699 4700 4701 4702
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4703
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4704 4705
{
	/* We have all inode data except xattrs in memory here. */
4706 4707
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4708 4709
}

4710
void ext4_set_inode_flags(struct inode *inode)
4711
{
4712
	unsigned int flags = EXT4_I(inode)->i_flags;
4713 4714

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4715
	if (flags & EXT4_SYNC_FL)
4716
		inode->i_flags |= S_SYNC;
4717
	if (flags & EXT4_APPEND_FL)
4718
		inode->i_flags |= S_APPEND;
4719
	if (flags & EXT4_IMMUTABLE_FL)
4720
		inode->i_flags |= S_IMMUTABLE;
4721
	if (flags & EXT4_NOATIME_FL)
4722
		inode->i_flags |= S_NOATIME;
4723
	if (flags & EXT4_DIRSYNC_FL)
4724 4725 4726
		inode->i_flags |= S_DIRSYNC;
}

4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4745

4746
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4747
				  struct ext4_inode_info *ei)
4748 4749
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4750 4751
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4752 4753 4754 4755 4756 4757

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4758 4759 4760 4761 4762 4763
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4764 4765 4766 4767
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4768

4769
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4770
{
4771 4772
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4773
	struct ext4_inode_info *ei;
4774
	struct buffer_head *bh;
4775 4776
	struct inode *inode;
	long ret;
4777 4778
	int block;

4779 4780 4781 4782 4783 4784 4785
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4786

4787 4788
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4789 4790
		goto bad_inode;
	bh = iloc.bh;
4791
	raw_inode = ext4_raw_inode(&iloc);
4792 4793 4794
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4795
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4811
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4812
			/* this inode is deleted */
4813
			brelse(bh);
4814
			ret = -ESTALE;
4815 4816 4817 4818 4819 4820 4821 4822
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4823
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4824
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4825
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4826 4827
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4828
	inode->i_size = ext4_isize(raw_inode);
4829 4830 4831
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4832
	ei->i_last_alloc_group = ~0;
4833 4834 4835 4836
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4837
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4838 4839 4840
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4841
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4842
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4843
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4844
		    EXT4_INODE_SIZE(inode->i_sb)) {
4845
			brelse(bh);
4846
			ret = -EIO;
4847
			goto bad_inode;
4848
		}
4849 4850
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4851 4852
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4853 4854
		} else {
			__le32 *magic = (void *)raw_inode +
4855
					EXT4_GOOD_OLD_INODE_SIZE +
4856
					ei->i_extra_isize;
4857
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4858
				ei->i_state |= EXT4_STATE_XATTR;
4859 4860 4861 4862
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4863 4864 4865 4866 4867
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4868 4869 4870 4871 4872 4873 4874
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4875
	ret = 0;
4876
	if (ei->i_file_acl &&
4877
	    ((ei->i_file_acl <
4878 4879 4880 4881 4882 4883 4884 4885 4886
	      (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
	       EXT4_SB(sb)->s_gdb_count)) ||
	     (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
		ext4_error(sb, __func__,
			   "bad extended attribute block %llu in inode #%lu",
			   ei->i_file_acl, inode->i_ino);
		ret = -EIO;
		goto bad_inode;
	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4887 4888 4889 4890 4891
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4892
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4893 4894
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4895
		/* Validate block references which are part of inode */
4896 4897 4898
		ret = ext4_check_inode_blockref(inode);
	}
	if (ret) {
4899 4900
		brelse(bh);
		goto bad_inode;
4901 4902
	}

4903
	if (S_ISREG(inode->i_mode)) {
4904 4905 4906
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4907
	} else if (S_ISDIR(inode->i_mode)) {
4908 4909
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4910
	} else if (S_ISLNK(inode->i_mode)) {
4911
		if (ext4_inode_is_fast_symlink(inode)) {
4912
			inode->i_op = &ext4_fast_symlink_inode_operations;
4913 4914 4915
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4916 4917
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4918
		}
4919 4920
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4921
		inode->i_op = &ext4_special_inode_operations;
4922 4923 4924 4925 4926 4927
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4928 4929 4930
	} else {
		brelse(bh);
		ret = -EIO;
4931
		ext4_error(inode->i_sb, __func__,
4932 4933 4934
			   "bogus i_mode (%o) for inode=%lu",
			   inode->i_mode, inode->i_ino);
		goto bad_inode;
4935
	}
4936
	brelse(iloc.bh);
4937
	ext4_set_inode_flags(inode);
4938 4939
	unlock_new_inode(inode);
	return inode;
4940 4941

bad_inode:
4942 4943
	iget_failed(inode);
	return ERR_PTR(ret);
4944 4945
}

4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4959
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4960
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4961
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4962 4963 4964 4965 4966 4967
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4968 4969 4970 4971
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4972
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4973
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4974
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4975
	} else {
A
Aneesh Kumar K.V 已提交
4976 4977 4978 4979 4980
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4981
	}
4982
	return 0;
4983 4984
}

4985 4986 4987 4988 4989 4990 4991
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4992
static int ext4_do_update_inode(handle_t *handle,
4993
				struct inode *inode,
4994
				struct ext4_iloc *iloc)
4995
{
4996 4997
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4998 4999 5000 5001 5002
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5003 5004
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5005

5006
	ext4_get_inode_flags(ei);
5007
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5008
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5009 5010 5011 5012 5013 5014
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5015
		if (!ei->i_dtime) {
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5033 5034 5035 5036 5037 5038

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5039 5040
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5041
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5042
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5043 5044
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5045 5046
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5047
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5064
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5065
			sb->s_dirt = 1;
5066 5067
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
5068
					EXT4_SB(sb)->s_sbh);
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5083 5084 5085
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5086

5087 5088 5089 5090 5091
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5092
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5093 5094
	}

5095 5096 5097 5098
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
	if (!err)
		err = rc;
5099
	ei->i_state &= ~EXT4_STATE_NEW;
5100 5101

out_brelse:
5102
	brelse(bh);
5103
	ext4_std_error(inode->i_sb, err);
5104 5105 5106 5107
	return err;
}

/*
5108
 * ext4_write_inode()
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5125
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5142
int ext4_write_inode(struct inode *inode, int wait)
5143
{
5144 5145
	int err;

5146 5147 5148
	if (current->flags & PF_MEMALLOC)
		return 0;

5149 5150 5151 5152 5153 5154
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5155

5156 5157 5158 5159 5160 5161
		if (!wait)
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5162

5163 5164 5165
		err = ext4_get_inode_loc(inode, &iloc);
		if (err)
			return err;
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
		if (wait)
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
			ext4_error(inode->i_sb, __func__,
				   "IO error syncing inode, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long)iloc.bh->b_blocknr);
			err = -EIO;
		}
5176 5177
	}
	return err;
5178 5179 5180
}

/*
5181
 * ext4_setattr()
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5195 5196 5197 5198 5199 5200 5201 5202
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5203
 */
5204
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
5220 5221
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
5222 5223 5224 5225
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5226
		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5227
		if (error) {
5228
			ext4_journal_stop(handle);
5229 5230 5231 5232 5233 5234 5235 5236
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5237 5238
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5239 5240
	}

5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

5252 5253 5254 5255
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

5256
		handle = ext4_journal_start(inode, 3);
5257 5258 5259 5260 5261
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

5262 5263 5264
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5265 5266
		if (!error)
			error = rc;
5267
		ext4_journal_stop(handle);
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5284 5285 5286 5287
	}

	rc = inode_setattr(inode, attr);

5288
	/* If inode_setattr's call to ext4_truncate failed to get a
5289 5290 5291
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
5292
		ext4_orphan_del(NULL, inode);
5293 5294

	if (!rc && (ia_valid & ATTR_MODE))
5295
		rc = ext4_acl_chmod(inode);
5296 5297

err_out:
5298
	ext4_std_error(inode->i_sb, error);
5299 5300 5301 5302 5303
	if (!error)
		error = rc;
	return error;
}

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5330

5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5359 5360
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5361
}
5362

5363
/*
5364 5365 5366
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5367
 *
5368 5369 5370
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
5371
 *
5372 5373 5374 5375
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5376 5377
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5404 5405
	if (groups > ngroups)
		groups = ngroups;
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5420 5421
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5422
 *
5423
 * This could be called via ext4_write_begin()
5424
 *
5425
 * We need to consider the worse case, when
5426
 * one new block per extent.
5427
 */
A
Alex Tomas 已提交
5428
int ext4_writepage_trans_blocks(struct inode *inode)
5429
{
5430
	int bpp = ext4_journal_blocks_per_page(inode);
5431 5432
	int ret;

5433
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5434

5435
	/* Account for data blocks for journalled mode */
5436
	if (ext4_should_journal_data(inode))
5437
		ret += bpp;
5438 5439
	return ret;
}
5440 5441 5442 5443 5444

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5445
 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5446 5447 5448 5449 5450 5451 5452 5453 5454
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5455
/*
5456
 * The caller must have previously called ext4_reserve_inode_write().
5457 5458
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5459
int ext4_mark_iloc_dirty(handle_t *handle,
5460
			 struct inode *inode, struct ext4_iloc *iloc)
5461 5462 5463
{
	int err = 0;

5464 5465 5466
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5467 5468 5469
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5470
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5471
	err = ext4_do_update_inode(handle, inode, iloc);
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5482 5483
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5484
{
5485 5486 5487 5488 5489 5490 5491 5492 5493
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5494 5495
		}
	}
5496
	ext4_std_error(inode->i_sb, err);
5497 5498 5499
	return err;
}

5500 5501 5502 5503
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5504 5505 5506 5507
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5556
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5557
{
5558
	struct ext4_iloc iloc;
5559 5560 5561
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5562 5563

	might_sleep();
5564
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5565 5566
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
5582 5583
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5584
					ext4_warning(inode->i_sb, __func__,
5585 5586 5587
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5588 5589
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5590 5591 5592 5593
				}
			}
		}
	}
5594
	if (!err)
5595
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5596 5597 5598 5599
	return err;
}

/*
5600
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5601 5602 5603 5604 5605
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5606
 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5607 5608 5609 5610 5611 5612
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5613
void ext4_dirty_inode(struct inode *inode)
5614
{
5615
	handle_t *current_handle = ext4_journal_current_handle();
5616 5617
	handle_t *handle;

5618 5619 5620 5621 5622
	if (!ext4_handle_valid(current_handle)) {
		ext4_mark_inode_dirty(current_handle, inode);
		return;
	}

5623
	handle = ext4_journal_start(inode, 2);
5624 5625 5626 5627 5628 5629
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
5630
		       __func__);
5631 5632 5633
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
5634
		ext4_mark_inode_dirty(handle, inode);
5635
	}
5636
	ext4_journal_stop(handle);
5637 5638 5639 5640 5641 5642 5643 5644
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5645
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5646 5647 5648
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5649
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5650
{
5651
	struct ext4_iloc iloc;
5652 5653 5654

	int err = 0;
	if (handle) {
5655
		err = ext4_get_inode_loc(inode, &iloc);
5656 5657
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5658
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5659
			if (!err)
5660 5661 5662
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5663 5664 5665
			brelse(iloc.bh);
		}
	}
5666
	ext4_std_error(inode->i_sb, err);
5667 5668 5669 5670
	return err;
}
#endif

5671
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5687
	journal = EXT4_JOURNAL(inode);
5688 5689
	if (!journal)
		return 0;
5690
	if (is_journal_aborted(journal))
5691 5692
		return -EROFS;

5693 5694
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5695 5696 5697 5698 5699 5700 5701 5702 5703 5704

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5705
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5706
	else
5707 5708
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5709

5710
	jbd2_journal_unlock_updates(journal);
5711 5712 5713

	/* Finally we can mark the inode as dirty. */

5714
	handle = ext4_journal_start(inode, 1);
5715 5716 5717
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5718
	err = ext4_mark_inode_dirty(handle, inode);
5719
	ext4_handle_sync(handle);
5720 5721
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5722 5723 5724

	return err;
}
5725 5726 5727 5728 5729 5730

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5731
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5732
{
5733
	struct page *page = vmf->page;
5734 5735 5736
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5737
	void *fsdata;
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5762 5763 5764 5765 5766 5767 5768
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5769 5770
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5771 5772
					ext4_bh_unmapped)) {
			unlock_page(page);
5773
			goto out_unlock;
5774
		}
5775
	}
5776
	unlock_page(page);
5777 5778 5779 5780 5781 5782 5783 5784
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5785
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5786 5787 5788
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5789
			len, len, page, fsdata);
5790 5791 5792 5793
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5794 5795
	if (ret)
		ret = VM_FAULT_SIGBUS;
5796 5797 5798
	up_read(&inode->i_alloc_sem);
	return ret;
}